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In Gaussian Process Regression (GPR), hyperparameters are often estimated by maximizing the marginal like-
lihood function. However, this data-dominant hyperparameter estimation process can lead to poor extrapolation
performance and often violates known physics, especially in sparse data scenarios. In this paper, we embed
physics-based knowledge through penalization of the marginal likelihood objective function and study the effect

of this new objective on consistency of optimal hyperparameters and quality of GPR fit. Three case studies are
presented, where physics-based knowledge is available in the form of linear Partial Differential Equations (PDEs),
while initial or boundary conditions are not known so direct forward simulation of the model is challenging. The
results reveal that the new hyperparameter set obtained from the augmented marginal likelihood function can
improve the prediction performance of GPR, reduce the violation of the underlying physics, and mitigate

overfitting problems.

1. Introduction

Gaussian Process Regression (GPR) is a powerful interpolation
technique to construct a predictive model with a finite set of observation
points available in a system (Rasmussen, 2003). Due to its flexibility to
approximate arbitrary continuous functions, and to provide an accom-
panying measure of the uncertainty of prediction, GPR is extensively
used in various areas such as time-series analysis (Roberts et al., 2013),
Bayesian optimization (Gustafsson et al., 2020; J. Kim & Choi, 2019; M.
Kim et al., 2022; Pahari et al., 2021; Paulson & Lu, 2022), model cali-
bration (Bradley et al., 2022; Dai et al., 2022; Eugene et al., 2020;
Kennedy & O’Hagan, 2001), experimental design (W. Chen et al., 2008;
Olofsson et al., 2018; Olofsson et al., 2021; Petsagkourakis & Galvanin,
2021), feasibility analysis (Boukouvala & lerapetritou, 2012), predic-
tion (Grbic et al., 2013; Kong et al., 2018), process modeling (Ahmad &
Karimi, 2021; Alves et al., 2022), optimization (Davis & Ierapetritou,
2007; Quirante et al., 2015; Schweidtmann et al., 2021; Wiebe et al.,
2022) and control (Berkenkamp & Schoellig, 2015; Bonzanini et al.,
2021; Jain et al., 2018; Kocijan et al., 2003). Its Bayesian interpretation
based on simple parameterization makes GPR a competing candidate
among many other Machine Learning (ML) models such as Support
Vector Regression (SVR) and Neural Networks (NN). In recent years,
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GPR has been actively improved and extended under different contexts,
including efficient optimization (Cao et al., 2013), improved learning of
the data (Damianou & Lawrence, 2013; Mattos & Barreto, 2019),
generalizable kernels (Damianou & Lawrence, 2013; Duvenaud et al.,
2011; Wilson & Adams, 2013), and integration with physics-based laws
(Constantinescu & Anitescu, 2013; Jidling et al., 2017b; Nevin et al.,
2021; Paulson & Lu, 2022; Raissi & Karniadakis, 2018; Raissi et al.,
2017; X. Yang et al., 2018).

GPR is a nonparametric kernel-based method fully characterized by
the mean and kernel functions (Rasmussen, 2003). Therefore, the choice
of functional forms of the mean and kernel functions and their hyper-
parameters play a critical role in GPR performance (Fischer et al., 2016;
Rasmussen, 2003). In practice, modelers often use a zero-prior mean and
choose a kernel depending on the belief (e.g., smoothness, periodicity)
of the system. In this case, hyperparameters of the kernel become a
primary interest to modelers since model performance is highly deter-
mined by its hyperparameters.

Hyperparameters in GPR are estimated via two popular methods: (a)
Maximum (marginal) Likelihood Estimation (MLE) (Blum & Riedmiller,
2013) and (b) Markov Chain Monte Carlo (MCMC) sampling (Titsias
etal., 2008). MLE is a point estimation method that produces a single set
of hyperparameters by maximizing the (marginal) likelihood function.
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On the other hand, MCMC utilizes the full prior probability distribution
and generates the posterior distribution of hyperparameters by the
number of MCMC draws. While MCMC is powerful in that it incorporates
the prior distribution of hyperparameters and has computational trac-
tability for the non-Gaussian likelihood function (Titsias et al., 2008), it
requires expert knowledge for the choice of prior and careful tuning of
MCMC parameters to avoid a highly biased model (Bayarri et al., 2007;
Liu et al., 2009).

Therefore, MLE is commonly chosen by many practitioners since it is
less computationally burdensome, and it is more straightforward to
implement and use. While MLE is asymptotically unbiased and consid-
ered a good estimator for large samples (Firth, 1993), it may produce
biased estimates (i.e., the expected value of MLE estimates are far from
the true parameter values), ill-posed (i.e., the prediction with obtained
MLE estimates are sensitive to small data perturbations) (Karvonen &
Oates, 2022), or cause overfitting problems under sparse data scenarios
(Greenland et al., 2000) as it solely depends on training data. Moreover,
the MLE objective is nonconvex (Z. Chen & Wang, 2018; Manzhos &
Thara, 2021; Mohammed & Cawley, 2017) and thus it is highly depen-
dent on initialization and prior assumptions, which lead to convergence
to various locally optimal solutions. Fitted GPR models that are either
overfitted or locally optimal may fit the observed data well, but can
severely violate the underlying physics of the system, especially in
extrapolatory regions.

Fortunately, valuable physics-based information is available in many
scientific and engineering applications in addition to the data collected.
This physics-based information commonly exists as a form of equality or
inequality constraints, where the constraints can either be represented
as a set of algebraic equations, or as a set of ordinary differential (ODE)
or partial differential equations (PDE). If this first-principle knowledge is
available, then embedding it in various forms during training has been
shown to improve the generalizability of the fitted surrogate models.
Recent studies demonstrate the potential of GPR under this hybrid
modeling framework (e.g., a combination of physics-based equalities
and GPR) in forward (Albert & Rath, 2020; Gulian et al., 2022; Jidling
et al., 2017b; Lange-Hegermann, 2018, 2021; Lorenzi & Filippone,
2018; Raissi & Karniadakis, 2018; Sarkka, 2011) and inverse (Rai &
Tripathi, 2019; Raissi & Karniadakis, 2018; Raissi et al., 2017; S. Yang
etal., 2021) problems of ODE/PDE systems. GPR with different physical
constraints in the form of inequalities (e.g., bounded, monotonicity,
convexity constraints) has also been widely studied (Swiler et al., 2020)
via a truncated Gaussian assumption (Da Veiga & Marrel, 2012;
Lépez-Lopera et al., 2018; Maatouk & Bay, 2017; X. Wang & Berger,
2016), bounded likelihood function (Bachoc et al., 2019; Jensen et al.,
2013; Riihimaki & Vehtari, 2010), constrained hyperparameter opti-
mization (Pensoneault et al., 2020), or deep probabilistic models (Lor-
enzi & Filippone, 2018). While these approaches can improve the
model’s performance and reduce the violation of the physical con-
straints known to the system, there exists little systematic study on how
physics-based knowledge affects the optimization of hyperparameters of
GPR models. Since the posterior hyperparameters of GPR determine the
success or failure of the trained model, it is crucial to obtain posterior
hyperparameters that correctly capture system dynamics and avoid
biased models.

A special case of hybridization that is even more challenging is when
PDEs are available but directly non-solvable because initial and/or
boundary conditions are not exact or unattainable (Christov, 2013;
Vessella, 2015; Y. B. Wang et al., 2010; Z. Wang et al., 2021; Xiong et al.,
2006). In many diverse fields including mechanical engineering (Y. B.
Wang et al., 2010; Xiong et al., 2006), electromagnetic engineering
(Vessella, 2015), material science engineering (Z. Wang et al., 2021),
and chemical engineering (Christov, 2013; Kevrekidis et al., 2017),
governing PDEs are available but non-solvable because the information
at hand is incomplete. It has been studied that non-rigorous settings or
imperfect knowledge of initial and boundary conditions can result in
discovering wrong dynamics of the system, non-consonant between
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initial and boundary conditions (Kevrekidis et al., 2017) and raise
different issues in numerical discretization techniques such as singu-
larities (Flyer & Fornberg, 2003; Fornberg & Flyer, 2004) and
non-convergence (Liang et al., 2021).

In order to embed physics-based information into the hyper-
parameter estimation process, we study the incorporation of physics-
based penalty terms into the MLE function. Penalization of the MLE
function has been studied before in different contexts, where it has been
shown that it can provide solutions for challenges such as unbounded
likelihood problems (Ciuperca et al., 2003; Ng, 2022), biased estimator
problems (Firth, 1993), parameter estimation instability and overfitting
problems (Cole et al., 2014; Coles & Dixon, 1999; Papukdee et al., 2022;
Tamuri et al., 2014). We utilize this MLE penalization approach under
the hybridization context (i.e., physics-informed ML) by incorporating a
physical violation amount of the model as a penalization term into the
MLE objective. It is important to note that physics-based penalization
has proven to have a successful tuning effect on the prediction perfor-
mance of neural networks (Raissi et al., 2019), where physics-based
information is incorporated as a loss term during training via auto-
matic differentiation (Baydin et al., 2018). A major advantage of GPR
models is the analytical property that any linear transformation of a
Gaussian process is also Gaussian (Rasmussen, 2003). This allows us to
analytically express the physical violations as a function of hyper-
parameters of GPR, which is critical when embedding physics in the case
where initial and/or boundary conditions are not available.

In this work, we address two important questions. First, does physics-
based penalization have a significant and meaningful tuning effect on
the hyperparameter estimation process under sparse data scenarios?
Second, can GPR with these physics-embedded hyperparameters
improve the model’s generalizability and reduce the violation of the
physics for systems where only partial or imperfect physics-based
knowledge is available? We present three case studies where physics-
based knowledge is available in the form of PDE and compare the per-
formance of GPRs where hyperparameters are obtained via penalized
MLE, standard MLE and MCMCG, respectively. Two-way ANOVA analysis
(Scheffe, 1999) is performed to test the significance of the physics-based
penalization and the computational complexity is presented to discuss
the efficiency of the method. We have observed that by penalizing the
MLE objective, we can find the hyperparameter set that improves the
prediction performance of GPR, while reducing the violation of physics
and overfitting problems more consistently than conventional initiali-
zation approaches under sparse data scenarios.

The remainder of the paper is structured as follows. Section 2 in-
troduces the basic terms and formulation of GPR. Section 3 explains the
reformulation of the physics-based knowledge (partial differential
equations (PDE)) as a function of hyperparameters of GPR. Section 4
describes the physics-based penalization approach in the context of
maximum likelihood estimation. Section 5 presents three case studies
and compares the prediction performance of the proposed approach and
standard GPR. Section 6 provides a possible explanation for the reduc-
tion in uncertainty observed with the penalization approach, analyzes
the effect of the degree of extrapolation, and presents the computational
complexity of the proposed approach. Section 7 summarizes the method
and describes future directions.

2. Gaussian process regression

Gaussian Process Regression (GPR) is a non-parametric model which
describes the probability distribution over functions, with the assump-
tion that every finite collection of f(x) and f(x') follows a multivariate
Gaussian distribution (where, x and x refer to two different input loca-
tions). The logic of the Gaussian Process lies in updating the prior belief
over the function p(f|X) with the observation dataset (X,y) to infer the
model structure via the Bayesian rule (Rasmussen, 2003). With the
zero-mean prior p(f|X, ) ~ N(0, K), the posterior predictive
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distribution of f at single test point X* follows

PUICX. y. 0) ~ N(ETK 4 )y kKT K ) ) @)

Where k* describes the covariance between the training inputs X,
X@, XM and test input X*, k* = (kXU X*),kX®?, Xx*)
o k(X® )T k** is the kernel function between the test input, k** =
k(X*,X*), K is the kernel matrix populated by the kernel function be-
k(x®, xM) k(X(l),X(N))

tween training inputs, i.e., K = : : , 0" is
k(X(N)7X(1)) k(X(N),X(N))
the posterior hyperparameters of GPR and o2 is the variance of Gaussian
observation noise in y.

The kernel function k(:,-) describes the covariance between the
outputs, and it is commonly selected based on our belief in the system.
The popular Gaussian kernels assume smoothness over function:

k(X(’),XU)) = c()v(f(X(i))ﬂf(XU))) = ‘rzexp< _% iWq (x{([i) _xg)>2> @

g=1

Where X is the i observation of a p-dimensional input space, X® =
(x(li),x(zi)..., xl(,i)), and 72 and w, are the hyperparameters of the kernel.
Hyperparameters of GPR (i.e., 0 = [¢2, wq, 62]) are often estimated by

maximizing the marginal likelihood function p(y|X):
0 = argmaxfiogn(y|X,0)]
0

3)

+ %yT(K + o'ﬁl)ily +%log2;z

1
argmin 7lz)g|K + 06’1
0 2

The aforementioned procedure is outlined in Algorithm 1 in the
Appendix F.

3. Reformulation of the partial differential equation (PDE) with
Gaussian process models

A useful analytical property of a Gaussian Process (GP) is that when a
GP model is linearly transformed, the transformation also follows a GP.
This property has been previously used to embed derivative/integral
information into the GP modeling (Albert & Rath, 2020; Graepel, 2003;
Gulian et al., 2022; Jidling et al., 2017a; Lange-Hegermann, 2018;
Morris et al., 1993; Rai & Tripathi, 2019; Raissi et al., 2017; Solak et al.,
2002; H. Wang & Zhou, 2021). Here, we utilize this property for the
system where physics-based information is given as a form of linear PDE
(i.e., linear transformation of the response variable f). We denote the
linear operator .’ from PDE in a way that it satisfies Z'(f) = 0. As an
illustrative example, consider the heat equation, described by the
following PDE:
of  If
5 =32 (©)]
where f is the heat (response variable) and t and x is the time and the
position (input variables). Then the linear operator . is defined as

_90) 20

oo o

Note that the linear operator . is defined to meet #'(f) = 0. For
simplicity, let us denote input x as x; and t as x,. Let X! be the i input

70

(5)

space observation, then X® = (x,t0) = (x| x{) wherei =1,2,...,N,
and let the single test point X* as X* = (x*,t") = (x}, x3). Here, X is the N
x 2 observation input matrix, X = (X)), (X@)7, ..., (x®)")T,

By utilizing GP’s analytical property that the linear transformation of
GP follows a Gaussian Process (Rasmussen, 2003), we can derive the

explicit GP posterior predictive distribution for each derivative term:
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XX,y ~ N(ET (K1) y k0 -k (K4 a2l) k) ©)

Y 1X Xy ~ N(KI(K+an) Ty, k2 =k (K+an) k) )

ax; 4% XE n ? X; x; n x5

where k;. = 2 k(XD X*), k(XP,X*), ..., k(X™M,x*))T, and k=
2

%k(XﬁX*). Note that we have direct access to the functional form of
2772

GP posterior predictive distribution before estimating the hyper-

parameters ¢* from the MLE function. Each component in vector k;é is

calculated as

0

i * a 1 i * 2
0x§k(X()’X ) =3 [Fexp(—Equ@é) —xq> )}

q=1

= () = k(X X") ®

Similarly, the second derivative term f,, follows the GP posterior
predictive distribution:

o*f

2
ox;

IX*, X, y~ N(kjfz (K+a) 'y, ki —kh (Kwﬁl)"k;) ©)
1 1 1 -1

2
where k;;lfz:#(k(XﬂLX*),k(X@KX*),...7k(X("’>7X*))T and k7, =
04

.y . oT
Wk(X ,X*). Each component in vector kxIz is calculated as

0000 = o))

ox;? ox;

=w <w1 (x(li) 7xT)271>k(X(i)7X*) (10)

Likewise, the PDE can be reformulated with the GP posterior pre-
dictive distribution at different testing locations X0 = (x;?, x;7),
where j = 1,2, ..., N,s. We denote the mean of the GP posterior pre-
dictive distribution at test point X* after a linear transformation as
J(f)mean:

_o Of

o ox?

L) mean
_ T 21\ "L, T PN |
—KI(K+a1) y—kE(K+1) y

= (kI =k (K1) ly =7 (K+a2) 'y an

Here, Z(f) nean is @ function of test input X* and the hyperparameters 6
given observation dataset (X,y). The above steps show how physics-
based knowledge can be reformulated as a function of hyper-
parameters in GPR. These steps in GPR have an analogous role as an
automatic differentiation (Baydin et al., 2018) employed in
physics-informed Neural Networks (Raissi et al., 2019).

4. Penalization of physics-based knowledge in maximum
likelihood estimation

Here, we introduce physics-based knowledge as a form of - (f),,.an
into the marginal likelihood function as shown in Eq. (3). We use the Lo-
norm squared of the linearly-transformed mean predictive distribution ||
Z(fmeanll> as a Physics Violation (PV) function denoted by PV(0, X*|X,
y). Note that PV is a function of test input X* = (xi, x3), and we define
the collection of test inputs for calculating PV as collocation points X,.
These collocation points are also referred to as virtual points in con-
strained GPR fields, where the physics-based constraints are imposed
(Da Veiga & Marrel, 2012; Golchi et al., 2015; Rithimaki & Vehtari,
2010; Swiler et al., 2020; X. Wang & Berger, 2016).
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Penalized Negative Log Marginal Likelihood = — % logp(y|X,0) + NL PV(6,X:0|X,y)
col

(PNLML)

1 1 1 — 1 *
=5 loglK + afl| {3 log2nf+— y" (K + o7 )" y|+ mw(e,xng,y)

Complexity Normalizing

penalty

Data-fit Physics-fit

constant

Standardized negative log marginal likelihood Standardized physics violation

(SNLML) (SPV)

Fig. 1. Interpretation of Penalized Negative Log Marginal Likelihood (PNLML).

Table 1
Priors used in the performed experiments.

Prior Distribution

Prior 1 0; ~ Uniform(0,1)

Prior 2 log(6;) ~ Uniform(— 5,5)
Prior 3 0; ~inv y%(2)

Prior 4 0; ~ Gamma(7.5, 1)

Since physics-based knowledge indicates that the linearly-
transformed mean predictive distribution - (f),,,,, should be zero for
everywhere in the system domain X* € Qygem, any non-zero amount of
the PV function suggests some degree of violation of underlying physics.

From this observation, we introduce || Z(f) .|/ into the negative
marginal likelihood function while standardizing each component by
the number of observation data points N and the number of collocation
points N, respectively.

. . 1 1 )
O sics = argmin | — ]vlogp(y\X, 0) +mpv(9,xw,|x, y) 12)

Fig. 1 describes the interpretation of each term in the augmented
marginal likelihood function (i.e., penalized negative log marginal
likelihood). The first term indicates the complexity penalty of a model,
the second term is a normalizing constant, and the third term determines
the data-fit (Rasmussen, 2003). The newly augmented fourth term is
constructed from the physics-based knowledge and determines the
physics-fit of the model. This augmented objective function considers
the model’s physics-fit to the given physics-based knowledge and the
data-fit to the training data. We minimize this augmented objective
function using the L-BFGS-B optimization algorithm (Zhu et al., 1997) to
get a new set of physics-informed hyperparameters. The aforementioned
procedure is summarized in Algorithm 2 in the Appendix F.

It is important to note that the standard marginal likelihood function
is non-convex and the convergence to a global optimum is not guaran-
teed. Locally optimal hyperparameters can lead to poor extrapolation
and interpretability, and cause overfitting problems. A common
approach to tackle this issue is to use multiple starting points from a
specific prior distribution, perform multi-start local optimization, and
choose the hyperparameters with the largest marginal likelihood (Z.
Chen & Wang, 2018). Since the PNLML is a non-convex function as well,
we also perform multiple initializations for the penalization approach as
well as the conventional approach. This analysis will allow us to analyze
the difference in consistency of convergence and statistical significance
in the results between the physics-informed approach and the black-box
GPR approach.

5. Results

Three case studies are introduced to discuss the effect of the physics-
based penalization in GPR. Three different hyperparameter estimation
processes are presented - MLE, pMLE (MLE with physics-based penali-
zation), and MCMC, where MLE and pMLE are the point estimation

methods and MCMC is the full Bayesian treatment of the GPR in terms of
hyperparameter estimation and prediction. Since neither informative
priors nor careful tuning of MCMC parameters from domain knowledge
is involved here, we consider MLE and MCMC methods as purely data-
driven methods.

The hyperparameter estimation process in GPR and pGPR is affected
by various factors such as choice of kernels, optimization algorithm and
parameter settings, priors of hyperparameters, distribution/number of
observation data, and location and amount of collocation points. In this
paper, we investigate the effect of three important factors: (a) Priors of
hyperparameters, (b) distribution/number of observation data, and (c)
collocation points. We use a squared exponential kernel with a prior
mean of 0, f|X,0 ~ N(0,K) and the L-BFGS-B optimization algorithm
(Zhu et al., 1997) for all case studies.

In point estimation methods (MLE and pMLE), four different non-
informative priors (Chen & Wang, 2018; Wilson & Adams, 2013) of
hyperparameters in Table 1 are used throughout the experiment to see
how the penalized objective guides the MLE process using different
non-informed starting points. Here, multistart optimization is also per-
formed for each prior because objective functions are non-convex and
L-BFGS-B is a local solver. A full Bayesian treatment with
Metropolis-Hastings MCMC algorithm (Chib & Greenberg, 1995) is
performed with the standard likelihood function and with Prior 4 in
Table 1, using the R package mcmc (Geyer & Johnson, 2013). 1000
MCMC draw (samples) is used with 100 Burn-in (i.e., discard 100 initial
samples) for all case studies.

The distribution of training data (X, y) for a given system domain is
another important factor that determines the interpolation and extrap-
olation prediction performance of the method. This is because GPR
prediction converges to a (zero) prior mean if the test location is far from
the training region (Appendix A). To take this factor into account, we
introduce the space-filling degree (SFD) of the training data.

SFD is measured by computing the ratio of the convex hull area
Aconvex (constructed from the training data) to the entire system domain
area Agyqem. An additional condition on the distance between any two
training data points is added to impose uniformity in the sampling and
avoid extreme cases where most data is clustered. The sampling criteria
Q, for the case studies presented in Sections 5.1. (Laplace equation) and
5.2. (Heat equation) are shown in Eq. (13).

Qo =[Z: SFD >0.75,min(Z;, 7;) > 0.2] 13)

where SFD = ‘2”";” and ¥;, Z; are samples drawn from the training
sstem

dataset (i,j = 1,2, ..., N where N is the number of training data).

Prediction performance is evaluated using the standardized root
mean squared error (SRMSE) and the mean standardized log loss (MSLL)
on the test dataset. Note that MSLL incorporates predictive variance
(uncertainty) of the trained model in addition to the prediction error.
Usually, the smaller MSLL indicates a better model has been identified
(Rasmussen, 2003).
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Fig. 2. Laplace’s equation: Top: True function f and the distribution of training data (Set 9 in Fig. 3) and collocation points. Second row: Prediction performance of
GPR for three different hyperparameter estimation methods (MLE, MCMC, and pMLE). Third row: Error plot between the true function f and each prediction method.
Bottom: Prediction at four system boundaries in the system. The 95% confidence intervals (1.96 x o) are plotted as a dotted line.
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Fig. 3. Laplace’s equation: Left: Boxplot of log(SRMSE) and MSLL for four different priors in Table 1. 25 initializations are performed for each prior in the opti-
mization. Each boxplot shows the combined results of 10 different training set scenarios and contains 250 data points (25 x 10). Right: Boxplot of log(SRMSE) and
MSLL for 10 different training set scenarios (i.e., Set 1, Set 2, ..., Set 10). Each boxplot shows the combined results of 4 different priors and contains 100 data points
(25 x 4). The red triangle points show prediction error when the best posterior hyperparameters (i.e., posterior hyperparameters that produce the lowest SRMSE)
from the pMLE are used as an initialization point for the optimization of the standard MLE objective function. Left and Right Plots show the boxplot of the same dataset
but with a different axis, and the outliers outside of the y-range are presented as the numbers for the corresponding cases. The box plot results for different training

datasets are provided in Table C in Appendix C with the MCMC prediction results.

i =)
SRMSE = Y= 77 14)
Oy
MSLL = zN: 11og(2n5?) +M (15)
N 2|2l o

Here, y; is the test output, y; is the predicted output, and El-z is the pre-
dicted variance wherei = 1,2,...,N. oy is the standardized deviation of
¥;, and it is taken into account to consider the scale of the output values.
If the MSLL does not converge at the test point (Eiz — 0), we do not
include this test point in the calculation.

5.1. Laplace’s equation

Laplace’s equation is a partial differential equation (PDE) that has
different cartesian solutions f = x® — 3xy?,y® — 3x2y, cos(kx)cosh(ky),
cos(kx)e?, e *sin(ky), ... depending on the boundary conditions spec-
ified for the system:

’f Lo

g tae =0 (16)

We consider the case where the boundary condition is unknown to
the modeler so that the true solution cannot be estimated from numer-
ical discretization techniques.

In order to train and evaluate the model performance, we first as-
sume that the true solution of the system is f(x,y) = x> — 3xy? and
sample 200 data points from f using Maxpro (Joseph et al., 2020)
space-filling design. Out of 200 data points, we sample 10 training data
points under criteria Q. (equation (13)). The rest of the points are used

for testing model accuracy. This is repeated 10 times to quantify the
generalizability of the methods for different training/test data scenarios.
In the penalized marginal likelihood function (pMLE), the physics
violation function is calculated on 100 collocation points (X7,;), uni-
formly sampled with Maxpro (Joseph et al., 2020). Note that the only
available knowledge at hand is the 10 sparse observation points and the
physics-based knowledge (PDE without the boundary conditions). We
observe how physics-based penalization can help tune the hyper-
parameters so that the trained model can better represent the true
system.

Fig. 2 shows the true solution f and the prediction performance of
trained GPR models via three different hyperparameter estimation
methods (fyyz: MLE, fieyc: MCMC, f5: PMLE) for one of the training/
test data scenarios. From 25 multiple initializations for each prior in
Table 1, the hyperparameter set which produces the lowest SRMSE test
error is selected for model prediction in Fig. 2.

As expected, the prediction performance of data-driven methods
(fsmwe> farcmc) is reasonable at training points, however, they become poor
in the region where data is not observed. Since standard GPR (fy;,
fateme) only relies on training data, the trained model is not able to
determine how to behave in the region where dynamics are not
observed. Moreover, it is clearly shown from the error plot in Fig. 2 that
the data-driven approach suffers from overfitting. On the other hand, the
physics-based penalization approach (f;;; ) can reduce overfitting
problems in these unexplored regions (the region where no training data
is observed) and train models to reflect the underlying physics of the
system.

Fig. 3 shows the box plot of the prediction performance of different
methods for four different priors and 10 different training/test data
scenarios. Here, 25 initializations are performed for each prior for 10
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Table 2
Laplace’s equation: The p values from two-way ANOVA analysis (Scheffe, 1999)
for different priors and the methods

SRMSEs MSLL
Priors 0.001 0.060
Methods (MLE vs pMLE) < 2.2e-16 < 2.0e-16

different training datasets, respectively. These results indicate that the
hyperparameters estimated with the physics-based penalization can
reduce the prediction error as well as uncertainty (lower SRMSE and
MSLL) for different priors and for different training/test data scenarios.

Note that multiple initializations are required for the point estima-
tion methods (MLE and pMLE) because of the non-convexity of the
objective functions. Non-informative prior settings (initializations) of
the hyperparameters can result in outliers that cause poor prediction
performance in both cases. However, the penalization approach can
reduce the number of trials of initialization, produces a smaller number
of outliers, and give us more consistent results.

Table 2 shows the p values calculated from the two-way ANOVA
analysis (Scheffe, 1999) for different priors and point estimation
methods. The p value in Table 2 determines whether each factor (prior
type, methods type) has a significant impact on SRMSEs and MSLLs, and
the small p value indicates the significant difference between groups.
The results reveal that the penalization has a statistically significant
effect on both SRMSEs and MSLLs. Here, it is interesting to see that
physics embedding as a form of a mean of physical violation function has
a significant effect on MSLL (i.e., uncertainty information). This may be
due to the benefit of reducing overfitting problems, which will be dis-
cussed in Section 6. While physics-based penalization has a significant
impact on both prediction accuracy and the uncertainty information, the
selection of a prior distribution does not show a significant effect on the
MSLL at a 5% significance level, which agrees with a previous study (Z.
Chen & Wang, 2018) showing that priors for hyperparameter tuning
have no notable impacts on the model performance.

Fig. 4 shows a schematic illustration of two different objective
functions for MLE and pMLE. This visualization shows the effect of
physics-based penalization on the objective function, which identifies
significantly different local optima influenced by highly physics-violated
regions.

Table 3 shows the average values of SRMSE, MSLL, SNLML, and SPV
(Fig. 1) for three different approaches. It is observed that the SPV is
estimated to be very large in data-driven methods (MLE, MCMC), while
the physics-based penalization approach (pMLE) favors the region
where the physics violation is small and reduces the violation of un-
derlying physics by sacrificing the data-fit (Low SPV and large SNLML
value). Note that there is a big difference in the scale of values between
the SNLML and SPV (e.g., 0.436 (SNLML) and 722 (SPV) for GPR (MLE)

Standardized log marginal likelihood
(SLML)
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in Table 3). This is because SPV involves the second derivative infor-
mation and the L2-norm square calculation. However, it is interesting
that sacrificing the data-fit in pMLE does not lead to violating the
observation data-fit of the model, and a significant reduction of physical
violation can still be achieved. In other words, including the physics
violation term in the marginal likelihood function can mitigate over-
fitting problems by balancing the data-fit and the physics-fit. This
observation agrees with the previous study that the Maximum penalized
likelihood estimation (MPLE) approach can reduce the overfitting
problems when samples are limited (Tamuri et al., 2014).

5.2. Heat equation

The distribution of heat f is described by the following PDE:

of  Of
Pt et a17)
where the output heat f is a function of position x and time t. We assume
f = e ®%%c0s(2.5x) — e~fcos(x —1) is the true dynamics of the system,
and sample 200 total data points from the true solution in domain x € [0,
1], t € [0, 1] using Maxpro space-filling design (Joseph et al., 2020). Out
of 200 total data points, 10 training data points are sampled under
criteria Q4 (Eq. (13)) and the rest are saved as a test set. Using the above
scheme, 10 different training/test datasets are generated to evaluate the
model performance.

As in the previous case study, we assume that the true dynamics of
the system is unknown, but the modeler has the domain knowledge that
the system should follow the underlying physics f; = fi.. Note that there
are infinite solutions f that meet the equation f; = f,, without initial and
boundary conditions, but we constrain the solution space by utilizing the
sparse observation data. Here, 200 collocation points are sampled over
the domain using Maxpro (Joseph et al., 2020) and 25 initializations are
performed for each prior in Table 1 for each training dataset.

Fig. 5 shows that the penalization with physics-based knowledge
(fyme) helps improve the prediction performance within the system

Table 3
Laplace’s equation: Average log(SRMSE), MSLL, SNLML, and SPV for three
different hyperparameter estimation methods. (Brackets show the standard
€rrors)

Log(SRMSE) MSLL SNLML SPV
GPR (MLE) -2.23(0.613)  -1.29 0.436 7.22e2
(3.250) (0.317) (8.3%3)
GPR(MCMC)  -1.99(0.248) -1.15 0.706 3.72el (7.17)
(0.131) (0.097)
GPR (pMLE) -4.15(0.486)  -3.53 0.879 1.27 (2.89¢1)
(0.898) (0.128)

Penalized log marginal likelihood
(PLML)

Fig. 4. Laplace’s equation: Standardized log marginal likelihood (SLML), Standardized physics violation (SPV) and the penalized log marginal likelihood (PLML)
values for three different hyperparameters (wi,ws,7) locations when Set 1 in Fig. 3 is used. One of the local optima is presented for each objective function,
respectively. Log scale is used for better visualization of local optima in each objective function.
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Fig. 5. Heat equation: Top: True function f and the distribution of training data (Set 8 in Fig. 6) and collocation points. Second row: Prediction performance of GPR for
three different hyperparameter estimation methods (MLE, MCMC, and pMLE). Third row: Error plot between the true function f and each prediction method. Bottom:
Prediction at four system boundaries in the system. The 95% confidence intervals (1.96 x o) are plotted as a dotted line.

domain and at the four different boundaries of the system, when
compared to the standard data-driven GPR (f;;; 5, fircmc)- Since physics-
based penalization considers the physics-fit on the system domain
through the collocation points, it mitigates overfitting problems by
reducing the violation of the underlying physics of the system.

Fig. 6 shows the boxplots of the prediction performance for different
hyperparameter estimation methods for different priors in Table 1 and
for 10 different training/test data scenarios. The general trend shows
that the prediction error (SRMSEs and MSLL) is decreased when the
hyperparameters are estimated from the penalized marginal likelihood
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Fig. 6. Heat equation: Left: Boxplot of 1og(SRMSE) and MSLL for four different priors in Table 1. 25 initializations are performed for each prior in the optimization.
Each boxplot shows the combined results of 10 different training set scenarios and contains 250 data points (25 x 10). Right: Boxplot of log(SRMSE) and MSLL for 10
different training set scenarios (i.e., Set 1, Set 2, ..., Set 10). Each boxplot shows the combined results of 4 different priors and contains 100 data points (25 x 4). The
red triangle points show prediction error when the best posterior hyperparameters (i.e., posterior hyperparameters that produce the lowest SRMSE) from the pMLE
are used as an initialization point for the optimization of the standard MLE objective function. Left and Right Plots show the boxplot of the same dataset but with a
different axis, and the outliers outside of the y-range are presented as the numbers for the corresponding cases. The MSLL for Set 7 and Set 10 for pMLE initialization
(red triangle) are 7.75 and 40.30, respectively, and omitted due to the range of the plot. The test points that have zero variance are excluded from MSLL calculation,
which results in higher MSLL in pMLE for set 3 (12 test points have zero variance with hyperparameters obtained from pMLE). The box plot results for different

training datasets are provided in Table C in Appendix C with the MCMC prediction results.

Table 4
Heat equation: The p values (Scheffe, 1999) for different priors and the methods
SRMSEs MSLL
Priors 0.0187 0.0002
Methods (MLE vs pMLE) < 2e-16 0.0012

function.

In this case study however, it is important to note that embedding
physics-based information during non-convex optimization does not
always outperform standard GPR (e.g., Set 3 in Fig. 6), even when the

Standardized log marginal likelihood
(SLML)
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penalization has a statistically significant effect on the prediction of the
model (Table 4). One possible reason is that the 100 multiple initiali-
zations from four different non-informative priors are not sufficient to
find good local optima. For example, Standard GPR (e.g., Set 4 and 7 in
Fig. 6) could find a new hyperparameter set (red triangle) when the
posterior hyperparameters from the penalized marginal likelihood
function are used as an initialization point in the optimization of the
standard marginal likelihood function. Note that this newly found
hyperparameter set is not discoverable in the previous simulation with
100 initializations from different priors. This indicates the possibilities
of an unexplored region of local optima. The other reason may include

Penalized log marginal likelihood
(PLML)
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Fig. 7. Heat equation: Left: Standardized log marginal likelihood (SLML). Middle: Standardized physics violation (SPV). Right: penalized log marginal likelihood
(PLML) values for three different hyperparameters (wq, wz, 7) locations when Set 5 in Fig. 6 is used. One of the local optima is presented for each objective function,
respectively. Log scale is used for better visualization of local optima in each objective function.
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Table 5
Heat equation: Average 1log(SRMSE), MSLL, SNLML, and SPV for three different
hyperparameter estimation methods. (Brackets show the standard errors)

Log(SRMSE) MSLL SNLML SPV
GPR (MLE) -0.841 0.263 (9.20) 0.282 1.30e2
(0.380) (0.298) (1.10e3)
GPR -1.03 (0.226) -1.18 0.520 5.61 (2.19)
(MCMC) (0.184) (0.106)
GPR (pMLE) -1.21 (0.326) -0.748 0.403 0.766 (2.12)
(3.54) (0.335)

the use of a stationary Gaussian kernel under sparse data for explaining
the non-stationary dynamics described by the heat equation. To accu-
rately capture the complex dynamics of a system, a modeler may use a
more generalizable kernel (e.g., Matern kernel (Rasmussen, 2003), ad-
ditive Gaussian Kernel (Duvenaud et al., 2011)) or advanced GPR
modeling framework (e.g., deep Gaussian process (Damianou & Law-
rence, 2013)) and combine it with the physics-based penalization
approach.

Fig. 6 (red triangle) indicates that the posterior hyperparameter set
obtained from physics-based penalization often acts as an informative
initialization that can help find better local optima with the standard
marginal likelihood. Similarly, a modeler can use the posterior hyper-
parameters obtained from the marginal likelihood estimation as an
initialization/starting point for optimizing the penalized marginal like-
lihood function, instead of starting from a non-informative prior.

Fig. 7 shows that the physics-based penalization transforms the
marginal likelihood function into a new objective that embeds the
physics-based knowledge and changes the landscape entirely. It can also
be observed based on this mapping that the purely data-driven

Computers and Chemical Engineering 178 (2023) 108320

landscape is more “flat”, with multiple equivalent locally optimal solu-
tions across the search space, while the PLML objective landscape cre-
ates a surface that has a narrower basin of local optima, mostly clustered
in a smaller region of the space. This may explain why when using this
hybrid objective approach, we could more consistently find similar local
optima with improved performance.

Table 5 shows that the standard data-driven GPR (MLE, MCMC)
produces a high SPV value and lower SNLML, which indicates the high
violation of physics-based information and thus overfitting problems.
This is expected, because it only relies on the available dataset without
considering any physics-based knowledge. GPR with physics-based
penalization (pMLE) balances the data-fit and the physics-fit and suc-
cessfully finds a new hyperparameter set that produces a lower predic-
tion error while mitigating overfitting problems.

5.3. Fiber orientation probability distribution (FOPD) model

The aim of this case study is to highlight the potential of the proposed
method to capture the underlying nature of a system’s response, when
limited and noisy experimental data are available. We consider the Fiber
Orientation Probability Distribution (FOPD) model (Olson et al., 2004)
which is derived from the Fokker-Planck equation (Risken, 1996). The
FOPD model describes the time evolution of the probability density
function of particles within a fluid. It is analogous to the standard
convection-diffusion equation used for molecular diffusion and heat
transfer, but in the FOPD model, the convection and diffusion are
determined by fiber orientation angle and the turbulent dispersion,
respectively (Olson et al., 2004). This model is used to describe fiber
orientation of pulp suspensions in paper manufacturing machines,
which is a property linked to final paper quality and tensile strength.
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Fig. 8. FOPD model: Left: Boxplot of log(SRMSE) and MSLL for four different priors in Table 1. 25 initializations are performed for each prior in the optimization.
Each boxplot shows the combined results of 3 different training set scenarios and contains 75 data points (25 x 3). Right: Boxplot of log(SRMSE) and MSLL for 3
different training set scenarios. Each boxplot shows the combined results of 4 different priors and contains 100 data points (25 x 4). The red triangle points show
prediction error when the best posterior hyperparameters (i.e., posterior hyperparameters that produce the lowest SRMSE) from the pMLE are used as an initial-
ization point for the optimization of the standard MLE objective function. Left and Right Plots show the boxplot of the same dataset but with a different axis, and the
outliers outside of the y-range are presented as the numbers for the corresponding cases. The box plot results for different training datasets are provided in Table C in

Appendix C with the MCMC prediction results.
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Table 6
FOPD model: Average log(SRMSE), MSLL, SNLML, and SPV for three different
hyperparameter estimation methods. (Brackets show the standard errors)

log(SRMSE) MSLL SNLML SPV
GPR (MLE) 0.601 4.47el -1.23 1.58e3
(0.440) (7.27e1) (0.999) (1.78e4)
GPR 0.399 6.95 (1.13el) -1.13 2.3%1
(MCMC) (0.662) (0.955) (3.6%¢1)
GPR (pMLE) 0.141 2.12 (0.903e1) 0.083 (1.46)  2.89 (0.959)
(0.402)

Under steady-state conditions with only one spatial direction, the
equation becomes:

dy dy Ay

L _pt_ 77 18

“ox TRt T T og as)
where y(x, @) is fiber orientation probability distribution, x is the posi-
tion of the particle, ¢ is the projected angle of the fiber, ¢ is the rota-
tional angular velocity of fiber, D, is the dispersion coefficient, and u is
the fluid velocity. If the fiber suspension flow is considered in the
headbox section (contracting channel) of the paper machine, ¢ and u
have the following relationships, which are derived from the continuity
equation:

Uy

; L ou
———, = — —sin(2
00T e

L to

u(x) = 19

where L is the headbox length, R is the contraction ratio, u is the inlet
velocity. The dimensionless form with above relationships becomes
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= 5"6752 + 2Rcos(2¢) [% + l//} (20)

where Ep = %, X=x/Landu = % Eq. (20) describes the fiber orien-
tation probability distribution of pulp suspensions in the headbox of a
paper machine.

It is common that the fiber orientation is only and partially observed
near the exit (x/L = 0.97) of the headbox and the fiber orientation is
randomly distributed at the entrance (i.e., y(x = 0) = 1/z). We use 9
equidistant data at (x = 0) and a few experimental data (Zhang, 2001)
near the exit (x/L = 0.97) of the headbox for training the model. Note
that the additional homogeneous Neumann boundary conditions at two
boundaries y(¢ = —z /2) and y(¢ = 7 /2) are also required (Olson et al.,
2004) to solve Eq. (20) with the numerical discretization technique such
as Streamline Upwind/Petrov-Galerkin method (SUPG) (Brooks &
Hughes, 1982). However, if the observation data is noisy and the
boundary conditions are not exact or unobtainable, the numerical dis-
cretization approach may result in an extremely ill-posed problem
(Alifanov, 2012) where very small perturbation of boundary condition
observation results in significant large errors in the numerical solution of
PDE:s. If this is the case, our approach can be an alternative direction to
avoid large numerical errors while still capturing the underlying nature
of the true solution.

A noise hyperparameter oﬁ (Eq. (1)) is introduced to capture the
noise in the experimental data, which is estimated with the kernel
hyperparameters during the (penalized) marginal likelihood estimation.
Note that the starting point of the noise hyperparameter and the bounds
during the optimization are important. If the noise hyperparameter is
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Fig. 9. FOPD model: Prediction performance of GPR with three different hyperparameter estimation methods. Top, Middle, and Bottom Row use three different
training datasets. The fiber orientation probability distribution y at six different locations (x/L = 0, 0.29, 0.44, 0.6, 0.75, and 0.97) when R=10 and D,=2 are shown,
where y is the fiber orientation distribution in the plane of the paper and is calculated by substituting y for ¢ in Eq. (20) and with the relationship y = — 1 Rsin(2y).

The 68.2% confidence intervals (1 x o) are plotted as a dotted line.

11
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Fig. 10. Heat equation: Uncertainty and the SLML are measured at 216 different
hyperparameter locations: w; =w, =[0.10, 2.08, 4.06, 6.04, 8.02, 10.0], and
7 = [0.10, 20.08, 40.06, 60.04, 80.02, 100.0]. The average value of the un-
certainty and the SLML at 200 test points are used for each hyperparameter set.
Training set 5 in Fig. 6 is used for calculation.

Table 7

Heat equation: The Pearson correlation coefficient (Benesty et al., 2009) between
SLML, SPV, and uncertainty (95% confidence interval) are measured at 216
different hyperparameter locations: w; = w, = [0.10, 2.08, 4.06, 6.04, 8.02,
10.0], and = = [0.10, 20.08, 40.06, 60.04, 80.02, 100.0]. 10 different training
datasets are sampled for SFD ~ [0.175,0.225], [0.275,0.325], [0.475,0.525],
[0.775,0.825], respectively, and the average values are presented. Outliers are
detected using the interquartile range (IQR) criterion and excluded from the
calculation.

Pearson correlation coefficient SLML SPV Uncertainty
SLML -

SPV -0.086

Uncertainty 0.748 0.273 -

not regulated properly, we may reach the local optima where data
variability is mostly captured by noise. To avoid this issue, we set the
upper bound of the noise hyperparameter as le? and set the prior
(initialization) of it as 1e” for point estimation methods (MLE and
PMLE). For MCMC analysis, we sample the noise hyperparameter from
the Gamma distribution: 62 ~ Gamma(0.05, 1) in each iteration. 1000
collocation points are used for the penalization, which are uniformly
sampled on the system domain with Maxpro (Joseph et al., 2020).

Fig. 8 shows the boxplots of SRMSE and the MSLL for different priors
and three training data scenarios. Results show that the physics-based
penalization can help find local optima that produce a better predic-
tion performance while mitigating the violation of physics (SPV in
Table 6). It is interesting to see that a large number of outliers are pre-
sent in MSLL when the model is trained with the observation data set 3
(90 outliers that produce MSLL larger than 120). This indicates that
optimization with the MLE objective is prone to get stuck in a locally
optimal region that produces large uncertainty for the four different
priors experimented (Table 1). By penalizing the MLE objective with
physics-based information, this region is no longer found and thus
significantly improves the model performance.

According to all case studies (Table 3, 5, and 6) we investigated, the
MLE hyperparameter estimation method has the lowest SNLML values,
implying that the overfitting problems may be the most prominent. By
embedding the physics-based knowledge into the optimization process,
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GPR with pMLE significantly mitigates the overfitting issue.

Fig. 9 shows the prediction performance of different hyperparameter
estimation methods for three different training datasets. Note that the
bell-shaped nature of the true system is captured with the physics-based
penalization method (f;;,), which is not achievable with the standard
data-driven approach (fy;z, fircuc)- This gives a promising outlook that
the proposed approach (f,;5) can not only improve the performance
over the data-driven methods (fy;z, fycmc), but also discover the un-
derlying nature of the true system, which was not discoverable before
with the limited samples.

6. Discussion
6.1. Uncertainty reduction

It is interesting to see that a physics-based penalization approach can
also reduce the uncertainty of the prediction in many cases. This implies
that the GPR model captures the behavior of the system under a tighter
uncertainty interval. While the assessment of the quality of the uncer-
tainty is yet another open problem (Li et al., 2021), it is worth discussing
why physics-based penalization can reduce the uncertainty. In GPR, it is
known that variance (uncertainty) of the posterior predictive distribu-
tion has a closed-form representation (Eq. (1)) if a Gaussian likelihood is
assumed. If a zero prior mean is used and other variables (e.g., type of
kernels, training data used) are kept constant, the posterior predictive
distribution and the reduction of the uncertainty in penalization are
influenced by the posterior hyperparameters.

As shown in Table 3, 5, and 6, the physics-based penalization helps
reduce overfitting problems in sparse data scenarios, as demonstrated by
the higher SNLML (or lower SLML). If uncertainty increases in over-
fitting scenarios, mitigating overfitting problems with the physics-based
penalization may help reduce the uncertainty as well. Under sparse data
scenarios (Fig. 10), we observed a trend that the uncertainty increases as
the SLML (training data-fit) is increased, implying that the overfitting
can cause an increase in uncertainty.

Table 7 shows the Pearson correlation coefficient (Benesty et al.,
2009) between SLML, SPV, and uncertainty. 10 different training set
scenarios are considered for 4 different space-filling degrees (SFD =
[0.175,0.225], [0.275,0.325], [0.475,0.525], [0.775,0.825]), respec-
tively. The general trend shows that the uncertainty and the SLML have
a high correlation (uncertainty increases as SLML is increased) under
sparse data scenarios. While the data points in Fig. 10 do not necessarily
represent local optima, it is expected that the local optima that have high
SLML will likely have high uncertainty as well, which can be the reason
why we observe the reduced uncertainty in the penalization approach.

6.2. Degree of extrapolation

While the physics-based penalization demonstrates a tuning effect
for better prediction, it still suffers from extrapolation challenges
(Appendix A). If training data is sampled in a limited space, the tuning
effect may not be significant. Fig. 11 shows the interpolation and
extrapolation prediction performance for the Laplace equation case
study. The interpolation prediction error is calculated on the test points,
which are located inside of the convex hull constructed from training
data, and the remaining points outside of the convex hull are considered
for calculating the extrapolation error.

It is observed that both the interpolation and extrapolation predic-
tion error is lower in the penalization approach, while the performance
improvement from the physics-based tuning increases as the data is
more regularly sampled over the system domain (i.e., SFD is increased).
In addition, physics-based penalization can help reduce the outliers for
different initializations.
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Fig. 11. Laplace’s equation: Top: One example of sampled training data for different SFD values considered. Bottom: Interpolation and Extrapolation prediction error
for GPRs with two different hyperparameter estimation methods (MLE and pMLE). 25 initializations are used for each prior in Table 1 and 10 different training
dataset is tested (Each boxplot contains 1000 data points (25 x 4 x 10)). Here, the minimum distance condition min(Z;, &;) in Eq. (13) is not considered.

There can be the case that the penalization still works effectively
when SFD is low. Consider the case where the system dynamics are only
abruptly changed in the centerline and dynamics are constant in the
remaining region. If the modeler sets the constant GP prior mean that is
close to the real dynamics (in the remaining region) and focuses on
collecting the training data in the centerline, the physics-based penali-
zation may still work better since the closed-form distribution of the
GPR converges to the prior mean for the extrapolation region. In order
for the physics-based tuning effect to be effective in different real ap-
plications, the training data should be sampled evenly on the system
domain and capture the rough dynamics of the system.

6.3. Computational complexity

The computational cost for maximizing the marginal likelihood
function is O(N®) (Rasmussen, 2003) where N is the number of training

data and is dominated by inverting the kernel matrix (K + aﬁl)fl.
Traditionally, Cholesky decomposition is used for numerical stability
and faster calculation (Rasmussen, 2003). Algorithm 3 and Algorithm 4
show the optimization procedure with the marginal likelihood and the
penalized marginal likelihood using Cholesky Decomposition,
respectively.

Penalized marginal likelihood function includes the additional esti-

13

mation of PV(0, X;,|X,y) for each iteration of optimization, which adds
additional complexity O(N,;N?/2). In the scarce dataset N.,;>N, opti-
mization of penalized marginal likelihood is dominated by O(N,,N?/2).

Fig. 12 shows the computational cost (for the hyperparameter esti-
mation) and the prediction error (SRMSE) for the Laplace equation case
study for a different number of training data and collocation points
(Table is provided in Appendix D, E). Since the penalized approach re-
quires additional estimation of PV(6,X;;|X,y) for each iteration of
optimization, it yields additional computational time compared to the
standard GPR (GPR.MLE) and the MCMC approach. However, this extra
cost has the benefit of leading to improved prediction quality. Note that
CPU results can be affected by algorithmic settings. For example, results
are reported for fixed MCMC settings (i.e., 1000 MCMC draws), and the
computational time will increase when the number of draws increases.
Here, GPR with a full Bayesian treatment (GPR.MCMC) shows a larger
error than the point estimation method with the standard marginal
likelihood (GPR.MLE). This indicates the difficulty in tuning MCMC
parameters and selecting appropriate priors.

Fig. 12 and Appendix D show that the small number of collocation
points is still effective for embedding physics into GPR. In other words, a
small number of collocation points may be sufficient to find a tuned local
optimum. This may lead to an interesting discussion on an efficient
sampling of collocation points to embed physics.
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the standard GPR where hyperparameters are estimated by optimizing the marginal likelihood function, GPR.MCMC is the standard GPR with full Bayesian analysis
using the Metropolis-Hastings MCMC algorithm (Chib & Greenberg, 1995), and the pMLE.Col.20, pMLE.Col.50, pMLE.Col.100, and pMLE.Col.200 refers to the
penalization method where hyperparameters are estimated by optimizing penalized marginal likelihood function (pMLE) with different collocation points N, = 20,
50,100 and 200, respectively. 100 initializations are performed from Prior 4 for GPR.MLE and pMLE, and the average computational time is plotted. GPR.MCMC
generates 1000 MCMC draws with Prior 4. Note that the computational time for GPR.MCMC depends on the number of MCMC draws. Right: Prediction error on the
test points for three different methods. Predictions are estimated at 100 uniformly distributed points in each dimension (a total of 10000 prediction points). The best
point estimation value (posterior hyperparameters that produce the lowest error) from 100 initializations are chosen for prediction. GPR.MCMC prediction is made
with 100 Burn-in. Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz Processor is used.

7. Conclusions

We introduced physics-based penalization terms into the marginal
likelihood function during hyperparameter estimation in Gaussian
Process Regression (GPR). A series of results showed that physics-based
penalization can improve prediction performance, reduce uncertainty,
mitigate overfitting problems, and capture underlying physics that is not
discoverable with the standard purely data-driven approach. As verified
by p-values from two-way ANOVA analysis (Scheffe, 1999),
physics-based penalization shows a meaningful tuning effect on the
predictability of the GPR model.

The key observation is that the estimated posterior hyperparameters
obtained from the penalized marginal likelihood function produce
smaller physics violations (SPV) while sacrificing the data-fit (SLML).
This is because the penalized marginal likelihood objective function
balances the data-fit and the physics-fit during optimization. Based on
the case studies of this paper, we have observed that this modification
leads to more robust GPR hyperparameter tuning, which is more robust
to overfitting and has improved predictability in slighlty extrapolated
regions.

While physics-based penalization showed promising potential in
sparse data scenarios in different case studies, it is not a universal tool
that always produces a better result than the standard data-driven
approach. Rather, it should be interpreted as a physics-based tool that
a modeler can consider if a non-informative prior does not help, or
multiple initializations in MLE fails to find helpful local optima.

We believe that this work will be helpful to systems where data
acquisition is expensive and only a small set of samples is available, as
the physics-based penalization can help reduce the bias and overfitting
problems. In a broader context, this work can give modelers promising
options to understand complex real-world problems and help extend our
knowledge of systems, which is not achievable with only the data itself.

In this paper, we used the squared-exponential kernel to model the
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system’s dynamics. However, dynamics from different stochastic partial
differential equations may have non-stationary behavior, so GP with a
stationary kernel may have a limitation in accurate approximation even
under physics-based penalization. Moreover, if the modeler decides to
use a non-Gaussian likelihood function, the exact inference of the mar-
ginal likelihood function may be intractable so that the approximation
may be needed (Titsias et al., 2008). In this case, a transformation of the
observation space can be applied (Snelson et al., 2003).

We also used the L2-norm squared of the physics violation function
over the system domain to incorporate physics-based knowledge into
GPR. If outliers are present, however, this loss function can over-
emphasize the effect of the outliers and bias the hyperparameter opti-
mization process. This adds additional difficulty in finding the proper
hyperparameters of the kernel when a noise hyperparameter is intro-
duced. Therefore, it is important to set a good starting point and
reasonable noise level bounds during optimization to prevent the opti-
mization process from converging to the undesirable local optima (e.g.,
data variability is mostly captured by noise).

A modeler can adjust the important factors that affect the hyper-
parameter estimation process to improve the prediction performance of
the proposed model. For example, one can test different kernels and
optimization algorithms, adjust optimization parameters, increase the
number of initializations (i.e., initial starting points) for optimization,
and incorporate more collocation points. A modeler can also introduce
an additional regularization parameter A to the penalized MLE function
(Eq. (12)) and perform cross-validation (CV) to fine-tune the balance
between physics-fit and the data-fit. In order to improve the penalization
effect, various physics-based penalty functions can be tested in the
future. For example, the probabilistic formulation of the physics-based
penalization (Lorenzi & Filippone, 2018; Tamuri et al., 2014) for
hyperparameter tuning will be an interesting topic. Also, one can think
of incorporating uncertainty information into the physics violation
function or investigation of the effective sampling of collocation points
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(e.g., sampling the region where uncertainty is large).

Finally, a physics-based penalization approach can also give insight
into physics-embedded experimental design or sequential sampling (e.
g., Bayesian optimization) (Paulson & Lu, 2022). For example, an
effective sampling strategy, such as sampling the next data point where
the prediction improvement or the uncertainty reduction over standard
GPR is the highest, would be an interesting topic for future research.
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In standard GPR, Extrapolation performance in GPR is largely influenced by the kernel. This can be explained by Eq. (21) which represents GP
posterior mean at test point X* as a linear combination of N kernel functions (Rasmussen, 2003):

N
Mposterior (X*) = Mprion(X*) + Z ak (X([)=X*)

i=1

(2D

where a; = (K+621) 'y and kX0, X*) = cov(f(X?), f(X*)). In standard GPR with squared exponential kernel k(X X*) = rzexp<

L

2 ~ . . . . . .
% ZZ:1Wq (x(q) - xj;) > , the posterior mean Miposeerior (X*) converges to the prior mean my,r(X*) when the testing location is far from the training data

range |xfli> — xg|1.

In penalized GPR, the physics violation function PV can also be represented as a linear transformation of kernel functions. With zero prior mean

N 2
" @ S -1 i *
PV(O, X" (X, )= | ZFpeanlz=Il 7 (K+021) "y |3 = 11D @kies (X, X°) | (22)

i=1 2

- - ; 7 2 . o .
where .7 = (k;;T - k;g;),ai — (K+021) "y and Kphysics (X®, X*) = [wa(xy) — x3) — wi(wr (x}) —x7)" — 1)]k(XD, X*) = g(XO,X*)k(XD,X*). The per-
formance improvement of physics-based penalized GPR over standard GPR will be reduced when extrapolation region is large since the effect of

physics-based knowledge embedded in (X, X*) is dissipated out by the effect of squared exponential kernel converging to the (zero) prior mean (e.g.,
k(X9 X*)-0).

Appendix B. Interpretation and Reformulation of Penalization in MLE Estimation

Marginal likelihood is a non-convex function, and different prior settings on the standard GPR can lead to different local optima. Therefore, proper
prior settings are very important and can determine the performance of GPR. Introducing penalization term into marginal likelihood function can be
interpreted as utilizing the physics-embedded prior. If we assume that likelihood follows Gaussian, the penalized negative log marginal likelihood
(PNLML) under the Gaussian prior f|X,0 ~ N(0,K) becomes

PNLML = logp(y|X,6) + PV (6,X;,|X,y)

= —log (p(yIX., G)e*"V(0=X:(,,\X.y))

= —log ﬁe—%ﬂ (K21 ) y-Pv(07, IXy) ©23)
K + o2 (21)"

Note that the marginal likelihood function is estimated by integrating out f, loglp(y|X, 6)] = log[[p(|f, X, O)p(f|X,0)df] = — Llog|K + o21| —

DT(K+ aﬁl)fly — Ylog2x. The physics-violation function for the 5.2. Heat case study can be reformulated as
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71,

(24

o7 ar*
ijz}’ A=

(25)

(26)

— _ -1
If[(K+02l) ! (I+27"(K+02l) ! )] is positive semi-definite, we can see that penalized marginal likelihood function can be interpreted as using

the updated prior of p(f|0, [(K + 621 ) ' (I + 2.7 (K + 621 )71)]71) in standard GPR

POIX) = / POIF. X, O)p(fIX, )df

= [ N0iF0vap(ri0. [k ) (127 (K 20 ) )]

=N(ylo, [(K+a1) " (1427 (K+ a1 )’1)]71)

27)

The updated prior is constructed with matrix .77 which is populated from physics-based knowledge, so it can be interpreted as a physics-embedded

prior.

Appendix C. Prediction performance for different hyperparameter estimation processes

Table C
The 1og(SRMSE) and the MSLL for different training dataset scenarios for three case studies. The median values are reported.
Case Study Different training dataset scenarios log(SRMSE) MSLL
MLE pPMLE MCMC MLE pMLE MCMC

Laplace Set 1 -2.28 -3.92 -1.54 -1.42 -3.68 -1.12
Set 2 -2.47 -4.07 -1.99 -2.35 -3.55 -1.18
Set 3 -2.44 -4.63 -2.19 -1.94 -3.98 -1.11
Set 4 -2.49 -3.98 -1.82 -1.19 -3.45 -1.26
Set 5 -2.80 -3.30 -2.10 -2.05 -3.30 -1.10
Set 6 -2.54 -4.52 -1.99 -1.78 -3.96 -1.31
Set 7 -1.72 -4.21 -1.87 -1.43 -4.07 -1.27
Set 8 -2.35 -4.49 -1.84 -1.36 -3.88 -1.18
Set 9 -1.65 -4.38 -2.08 -0.60 -3.08 -0.84
Set 10 -2.78 -4.46 -2.47 -2.03 -3.42 -1.13

Heat Set 1 -0.94 -0.96 -0.75 0.45 -0.22 -1.11
Set 2 -0.91 -1.04 -0.83 -1.37 -1.45 -1.18
Set 3 -1.34 -1.36 -1.43 -1.22 -0.55 -1.44
Set 4 -1.11 -1.28 -1.08 -1.13 -1.84 -1.46
Set 5 -0.62 -1.83 -0.80 0.08 -1.21 -1.03
Set 6 -0.96 -1.02 -1.18 0.36 0.05 -1.29
Set 7 -1.25 -1.61 -1.29 -0.96 -1.10 -1.19
Set 8 -0.29 -1.05 -1.12 -0.23 -1.18 -1.18
Set 9 -0.90 -1.26 -0.91 -0.31 -1.14 -0.93
Set 10 -0.62 -0.67 -0.91 -0.32 -0.84 -0.94

FOPD Set 1 0.73 0.27 0.39 4.77 0.52 0.60
Set 2 0.29 0.04 1.06 -0.57 -0.64 0.21
Set 3 0.62 -0.38 -0.26 127.21 3.96 20.03
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Appendix D. Effect of collocation points

Table D

The lowest SRMSEs (x10%) achieved by three methods for the different number of training data (Nyq) and collocation points (N,,). Training data is sampled under
criteria Qo n,,,—10= [Z : SFD > 0.75, min(Z;, 7;) > 0.2], Qo Nyyo=15= [Z : SFD > 0.8, min(Z;, 7;) > 0.17], Q. Ny=20= [Z : SFD > 0.8, min(Z;, 7;) > 0.13], and
Qo Nya=25= [ : SFD > 0.8, min(Z;, 7;) > 0.1]. Collocation points are independently sampled for each case using Maxpro design (Joseph et al., 2020). Prior 4 in
Table 1 is used for all methods. 100 initializations are performed from Prior 4 for the point estimation methods (GPR (MLE) and GPR (pMLE)) while 1000 MCMC draws
with Prior 4 (and 100 Burn-in) is used for GPR (MCMC).

Case Study Nata GPR (MLE) GPR (MCMC) GPR (pMLE)
N = 20 N =50 Neo = 100 Neo = 200

Laplace 10 86.5 145 17.7 16.9 17.1 17.1

15 9.37 53.7 5.31 5.07 5.17 5.19

20 1.44 3.52 1.37 1.35 1.36 1.36

25 1.01 2.27 0.977 0.966 0.970 0.969
Heat 10 234 250 212 209 212 210

15 153 160 107 123 114 119

20 89.2 80.5 77.0 77.6 76.9 77.4

25 32.1 30.3 25.6 25.6 25.4 25.3

Appendix E. Computational cost

Computational time is recorded for different hyperparameter estimation processes. In the high-dimensional space and a large number of training
data, it is expected that the point estimation method (i.e., optimization of (penalized) marginal likelihood) will become more efficient if collocation
points are effectively selected, as the computational time rapidly goes up for full Bayesian analysis (GPR-MCMC).

Table E

Computational time (in seconds) for maximizing the marginal likelihood (GPR-MLE), penalized marginal likelihood with a different number of collocation points (GPR
(pMLE)), and using full Bayesian treatment with Metropolis-Hastings MCMC algorithm (Chib & Greenberg, 1995) (GPR (MCMC)). Note that the computational cost is
presented for an average computational time of 100 initializations from Prior 4 for GPR (MLE) and GPR (pMLE). The computational cost for GPR (MCMC) is presented
for generating 1000 MCMC draws with Prior 4. Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz Processor is used.

Case Study Niata GPR (MLE) GPR (MCMC) GPR (pMLE)
N =20 N =50 N, = 100 N, = 200

Laplace 10 0.07 0.56 0.66 1.27 2.20 4.31

15 0.40 1.06 1.50 2.90 4.84 8.69

20 0.66 1.56 2.39 4.05 6.17 13.2

25 1.14 2.31 3.75 6.47 10.5 17.6
Heat 10 0.09 0.55 0.49 0.94 1.71 3.34

15 0.13 0.78 0.67 1.27 2.30 4.25

20 0.25 1.11 0.87 1.64 2.90 5.37

25 0.27 1.51 1.27 2.28 3.58 6.94

Appendix F. Algorithms

Algorithm 1
Standard Gaussian Process Regression

Input: Observation set (X,y), GP hyperparameters ¢
1: Gaussian Prior: f|X,6 ~ N(0,K)
2: Maximum (marginal) Likelihood Estimation: ¢* —argmin| — logp(y|X, )]
)

Output: Posterior predictive distribution: f|X,X*, y,0* ~ N(k'T(K + 0"211)71_)/, k — kT(K+ a,Z,I)flk*)

17



J. Kim et al. Computers and Chemical Engineering 178 (2023) 108320

Algorithm 2
Gaussian Process Regression with PNLML

Input: Observation dataset (X,y), GP hyperparameters ¢, number of observation dataset N, number of collocation points N,
1: Gaussian Prior: f|X,6 ~ N(0,K)

— 2
2: Formulation of Physics Violation (PV) function: PV(6,X.,|X,y) = || #" (K + 621 ) 1y [l

col

3: Maximum (marginal) Likelihood Estimation with PNLML:
1 1
o —argmin| — — X —PV(6,X,
B;hyslcs‘_ar p ln[ NIOSP()’l ,0) + Nt V(0. Xzoll X, ¥)

Output: Posterior predictive distribution: f|X,X*, y, 0 s ~ NKkT(K+ a2y, K — kT(K + 621) k)

Algorithm 3
Optimization of Marginal Likelihood using Cholesky Decomposition

Input: Observation dataset (X,y), kernel function k, kernel matrix K, collocation points X,;, number of observation dataset N, GP hyperparameters 6
1: L = cholesky(K+o02I)
2:v =LT\(L\y)
1 N
3: logp(y|X,0) = — EyTo— ZfillogLii - Eloan
Output: ° = argmin log[— p(y|X,0)]
0

* Computational Cost is O(N®/6) for line 1 and O(N?/2) for line 2

Algorithm 4
Optimization of Penalized Marginal Likelihood using Cholesky Decomposition

Input: Observation dataset (X,y), kernel function k, kernel matrix K, noise 0,21, collocation points X, physics-based linearly transformed Kernel .77, number of observation dataset N,
number of collocation points N,
1: L = cholesky(K+02I)
2:v =LT\(L\y)

1 N
3: logp(y|X,0) = — EyTo— SV logLi — o log2r

e * 2 % - % - * 7% i - i > i T
4 PV(O.XIX,y) = | 70 ||, where 7 = (7}, T30 Ty ) Hi = 170 (XD, X0, 7 (XD X0, ..., 7 (), XE))]
71 1 N
Output: 6y e = argmm[f Nlogp(y|X ,0) + N—PV(H, X 1X,y)
0 ol
* Computational Cost is O(N®/6) for line 1, O(N?/2) for line 2, and O(N,,;N?/2) for line 4
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