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A B S T R A C T   

In Gaussian Process Regression (GPR), hyperparameters are often estimated by maximizing the marginal like
lihood function. However, this data-dominant hyperparameter estimation process can lead to poor extrapolation 
performance and often violates known physics, especially in sparse data scenarios. In this paper, we embed 
physics-based knowledge through penalization of the marginal likelihood objective function and study the effect 
of this new objective on consistency of optimal hyperparameters and quality of GPR fit. Three case studies are 
presented, where physics-based knowledge is available in the form of linear Partial Differential Equations (PDEs), 
while initial or boundary conditions are not known so direct forward simulation of the model is challenging. The 
results reveal that the new hyperparameter set obtained from the augmented marginal likelihood function can 
improve the prediction performance of GPR, reduce the violation of the underlying physics, and mitigate 
overfitting problems.   

1. Introduction 

Gaussian Process Regression (GPR) is a powerful interpolation 
technique to construct a predictive model with a finite set of observation 
points available in a system (Rasmussen, 2003). Due to its flexibility to 
approximate arbitrary continuous functions, and to provide an accom
panying measure of the uncertainty of prediction, GPR is extensively 
used in various areas such as time-series analysis (Roberts et al., 2013), 
Bayesian optimization (Gustafsson et al., 2020; J. Kim & Choi, 2019; M. 
Kim et al., 2022; Pahari et al., 2021; Paulson & Lu, 2022), model cali
bration (Bradley et al., 2022; Dai et al., 2022; Eugene et al., 2020; 
Kennedy & O’Hagan, 2001), experimental design (W. Chen et al., 2008; 
Olofsson et al., 2018; Olofsson et al., 2021; Petsagkourakis & Galvanin, 
2021), feasibility analysis (Boukouvala & Ierapetritou, 2012), predic
tion (Grbić et al., 2013; Kong et al., 2018), process modeling (Ahmad & 
Karimi, 2021; Alves et al., 2022), optimization (Davis & Ierapetritou, 
2007; Quirante et al., 2015; Schweidtmann et al., 2021; Wiebe et al., 
2022) and control (Berkenkamp & Schoellig, 2015; Bonzanini et al., 
2021; Jain et al., 2018; Kocijan et al., 2003). Its Bayesian interpretation 
based on simple parameterization makes GPR a competing candidate 
among many other Machine Learning (ML) models such as Support 
Vector Regression (SVR) and Neural Networks (NN). In recent years, 

GPR has been actively improved and extended under different contexts, 
including efficient optimization (Cao et al., 2013), improved learning of 
the data (Damianou & Lawrence, 2013; Mattos & Barreto, 2019), 
generalizable kernels (Damianou & Lawrence, 2013; Duvenaud et al., 
2011; Wilson & Adams, 2013), and integration with physics-based laws 
(Constantinescu & Anitescu, 2013; Jidling et al., 2017b; Nevin et al., 
2021; Paulson & Lu, 2022; Raissi & Karniadakis, 2018; Raissi et al., 
2017; X. Yang et al., 2018). 

GPR is a nonparametric kernel-based method fully characterized by 
the mean and kernel functions (Rasmussen, 2003). Therefore, the choice 
of functional forms of the mean and kernel functions and their hyper
parameters play a critical role in GPR performance (Fischer et al., 2016; 
Rasmussen, 2003). In practice, modelers often use a zero-prior mean and 
choose a kernel depending on the belief (e.g., smoothness, periodicity) 
of the system. In this case, hyperparameters of the kernel become a 
primary interest to modelers since model performance is highly deter
mined by its hyperparameters. 

Hyperparameters in GPR are estimated via two popular methods: (a) 
Maximum (marginal) Likelihood Estimation (MLE) (Blum & Riedmiller, 
2013) and (b) Markov Chain Monte Carlo (MCMC) sampling (Titsias 
et al., 2008). MLE is a point estimation method that produces a single set 
of hyperparameters by maximizing the (marginal) likelihood function. 
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On the other hand, MCMC utilizes the full prior probability distribution 
and generates the posterior distribution of hyperparameters by the 
number of MCMC draws. While MCMC is powerful in that it incorporates 
the prior distribution of hyperparameters and has computational trac
tability for the non-Gaussian likelihood function (Titsias et al., 2008), it 
requires expert knowledge for the choice of prior and careful tuning of 
MCMC parameters to avoid a highly biased model (Bayarri et al., 2007; 
Liu et al., 2009). 

Therefore, MLE is commonly chosen by many practitioners since it is 
less computationally burdensome, and it is more straightforward to 
implement and use. While MLE is asymptotically unbiased and consid
ered a good estimator for large samples (Firth, 1993), it may produce 
biased estimates (i.e., the expected value of MLE estimates are far from 
the true parameter values), ill-posed (i.e., the prediction with obtained 
MLE estimates are sensitive to small data perturbations) (Karvonen & 
Oates, 2022), or cause overfitting problems under sparse data scenarios 
(Greenland et al., 2000) as it solely depends on training data. Moreover, 
the MLE objective is nonconvex (Z. Chen & Wang, 2018; Manzhos & 
Ihara, 2021; Mohammed & Cawley, 2017) and thus it is highly depen
dent on initialization and prior assumptions, which lead to convergence 
to various locally optimal solutions. Fitted GPR models that are either 
overfitted or locally optimal may fit the observed data well, but can 
severely violate the underlying physics of the system, especially in 
extrapolatory regions. 

Fortunately, valuable physics-based information is available in many 
scientific and engineering applications in addition to the data collected. 
This physics-based information commonly exists as a form of equality or 
inequality constraints, where the constraints can either be represented 
as a set of algebraic equations, or as a set of ordinary differential (ODE) 
or partial differential equations (PDE). If this first-principle knowledge is 
available, then embedding it in various forms during training has been 
shown to improve the generalizability of the fitted surrogate models. 
Recent studies demonstrate the potential of GPR under this hybrid 
modeling framework (e.g., a combination of physics-based equalities 
and GPR) in forward (Albert & Rath, 2020; Gulian et al., 2022; Jidling 
et al., 2017b; Lange-Hegermann, 2018, 2021; Lorenzi & Filippone, 
2018; Raissi & Karniadakis, 2018; Särkkä, 2011) and inverse (Rai & 
Tripathi, 2019; Raissi & Karniadakis, 2018; Raissi et al., 2017; S. Yang 
et al., 2021) problems of ODE/PDE systems. GPR with different physical 
constraints in the form of inequalities (e.g., bounded, monotonicity, 
convexity constraints) has also been widely studied (Swiler et al., 2020) 
via a truncated Gaussian assumption (Da Veiga & Marrel, 2012; 
López-Lopera et al., 2018; Maatouk & Bay, 2017; X. Wang & Berger, 
2016), bounded likelihood function (Bachoc et al., 2019; Jensen et al., 
2013; Riihimäki & Vehtari, 2010), constrained hyperparameter opti
mization (Pensoneault et al., 2020), or deep probabilistic models (Lor
enzi & Filippone, 2018). While these approaches can improve the 
model’s performance and reduce the violation of the physical con
straints known to the system, there exists little systematic study on how 
physics-based knowledge affects the optimization of hyperparameters of 
GPR models. Since the posterior hyperparameters of GPR determine the 
success or failure of the trained model, it is crucial to obtain posterior 
hyperparameters that correctly capture system dynamics and avoid 
biased models. 

A special case of hybridization that is even more challenging is when 
PDEs are available but directly non-solvable because initial and/or 
boundary conditions are not exact or unattainable (Christov, 2013; 
Vessella, 2015; Y. B. Wang et al., 2010; Z. Wang et al., 2021; Xiong et al., 
2006). In many diverse fields including mechanical engineering (Y. B. 
Wang et al., 2010; Xiong et al., 2006), electromagnetic engineering 
(Vessella, 2015), material science engineering (Z. Wang et al., 2021), 
and chemical engineering (Christov, 2013; Kevrekidis et al., 2017), 
governing PDEs are available but non-solvable because the information 
at hand is incomplete. It has been studied that non-rigorous settings or 
imperfect knowledge of initial and boundary conditions can result in 
discovering wrong dynamics of the system, non-consonant between 

initial and boundary conditions (Kevrekidis et al., 2017) and raise 
different issues in numerical discretization techniques such as singu
larities (Flyer & Fornberg, 2003; Fornberg & Flyer, 2004) and 
non-convergence (Liang et al., 2021). 

In order to embed physics-based information into the hyper
parameter estimation process, we study the incorporation of physics- 
based penalty terms into the MLE function. Penalization of the MLE 
function has been studied before in different contexts, where it has been 
shown that it can provide solutions for challenges such as unbounded 
likelihood problems (Ciuperca et al., 2003; Ng, 2022), biased estimator 
problems (Firth, 1993), parameter estimation instability and overfitting 
problems (Cole et al., 2014; Coles & Dixon, 1999; Papukdee et al., 2022; 
Tamuri et al., 2014). We utilize this MLE penalization approach under 
the hybridization context (i.e., physics-informed ML) by incorporating a 
physical violation amount of the model as a penalization term into the 
MLE objective. It is important to note that physics-based penalization 
has proven to have a successful tuning effect on the prediction perfor
mance of neural networks (Raissi et al., 2019), where physics-based 
information is incorporated as a loss term during training via auto
matic differentiation (Baydin et al., 2018). A major advantage of GPR 
models is the analytical property that any linear transformation of a 
Gaussian process is also Gaussian (Rasmussen, 2003). This allows us to 
analytically express the physical violations as a function of hyper
parameters of GPR, which is critical when embedding physics in the case 
where initial and/or boundary conditions are not available. 

In this work, we address two important questions. First, does physics- 
based penalization have a significant and meaningful tuning effect on 
the hyperparameter estimation process under sparse data scenarios? 
Second, can GPR with these physics-embedded hyperparameters 
improve the model’s generalizability and reduce the violation of the 
physics for systems where only partial or imperfect physics-based 
knowledge is available? We present three case studies where physics- 
based knowledge is available in the form of PDE and compare the per
formance of GPRs where hyperparameters are obtained via penalized 
MLE, standard MLE and MCMC, respectively. Two-way ANOVA analysis 
(Scheffe, 1999) is performed to test the significance of the physics-based 
penalization and the computational complexity is presented to discuss 
the efficiency of the method. We have observed that by penalizing the 
MLE objective, we can find the hyperparameter set that improves the 
prediction performance of GPR, while reducing the violation of physics 
and overfitting problems more consistently than conventional initiali
zation approaches under sparse data scenarios. 

The remainder of the paper is structured as follows. Section 2 in
troduces the basic terms and formulation of GPR. Section 3 explains the 
reformulation of the physics-based knowledge (partial differential 
equations (PDE)) as a function of hyperparameters of GPR. Section 4 
describes the physics-based penalization approach in the context of 
maximum likelihood estimation. Section 5 presents three case studies 
and compares the prediction performance of the proposed approach and 
standard GPR. Section 6 provides a possible explanation for the reduc
tion in uncertainty observed with the penalization approach, analyzes 
the effect of the degree of extrapolation, and presents the computational 
complexity of the proposed approach. Section 7 summarizes the method 
and describes future directions. 

2. Gaussian process regression 

Gaussian Process Regression (GPR) is a non-parametric model which 
describes the probability distribution over functions, with the assump
tion that every finite collection of f(x) and f(x′) follows a multivariate 
Gaussian distribution (where, x and x′ refer to two different input loca
tions). The logic of the Gaussian Process lies in updating the prior belief 
over the function p(f |X) with the observation dataset (X, y) to infer the 
model structure via the Bayesian rule (Rasmussen, 2003). With the 
zero-mean prior p(f |X, θ) ∼ N(0, K), the posterior predictive 
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distribution of f at single test point X∗ follows 

p(f |X∗, X, y, θ∗) ∼ N
(

k∗T (
K + σ2

nI
)−1y, k∗∗ − k∗T (

K + σ2
nI

)−1k∗
)

(1)  

Where k∗ describes the covariance between the training inputs X(1),

X(2), ..., X(N) and test input X∗, k∗ = (k(X(1), X∗), k(X(2), X∗)

, …, k(X(N), X∗))
T, k∗∗ is the kernel function between the test input, k∗∗ =

k(X∗, X∗), K is the kernel matrix populated by the kernel function be

tween training inputs, i.e., K =

⎡

⎣
k(X(1), X(1)) ⋯ k(X(1), X(N))

⋮ ⋱ ⋮
k(X(N), X(1)) ⋯ k(X(N), X(N))

⎤

⎦, θ∗ is 

the posterior hyperparameters of GPR and σ2
n is the variance of Gaussian 

observation noise in y. 
The kernel function k(⋅, ⋅) describes the covariance between the 

outputs, and it is commonly selected based on our belief in the system. 
The popular Gaussian kernels assume smoothness over function: 

k
(
X(i), X(j)) = cov

(
f
(
X(i)), f

(
X(j)))

= τ2exp

(

−
1
2

∑p

q=1
wq

(
x(i)

q − x(j)
q

)2
)

(2)  

Where X(i) is the ith observation of a p-dimensional input space, X(i) =

(x(i)
1 , x(i)

2 …, x(i)
p ), and τ2 and wq are the hyperparameters of the kernel. 

Hyperparameters of GPR (i.e., θ = [τ2, wq, σ2
n ]) are often estimated by 

maximizing the marginal likelihood function p(y|X): 

θ∗ = argmax
θ

[logp(y|X, θ)]

= argmin
θ

[
1
2

log
⃒
⃒K + σ2

nI
⃒
⃒ +

1
2
yT (

K + σ2
nI

)−1y +
N
2

log2π
] (3) 

The aforementioned procedure is outlined in Algorithm 1 in the 
Appendix F. 

3. Reformulation of the partial differential equation (PDE) with 
Gaussian process models 

A useful analytical property of a Gaussian Process (GP) is that when a 
GP model is linearly transformed, the transformation also follows a GP. 
This property has been previously used to embed derivative/integral 
information into the GP modeling (Albert & Rath, 2020; Graepel, 2003; 
Gulian et al., 2022; Jidling et al., 2017a; Lange-Hegermann, 2018; 
Morris et al., 1993; Rai & Tripathi, 2019; Raissi et al., 2017; Solak et al., 
2002; H. Wang & Zhou, 2021). Here, we utilize this property for the 
system where physics-based information is given as a form of linear PDE 
(i.e., linear transformation of the response variable f). We denote the 
linear operator L from PDE in a way that it satisfies L (f) = 0. As an 
illustrative example, consider the heat equation, described by the 
following PDE: 

∂f
∂t

=
∂2f
∂x2 (4)  

where f is the heat (response variable) and t and x is the time and the 
position (input variables). Then the linear operator L is defined as 

L (⋅) =
∂(⋅)
∂t

−
∂2

(⋅)
∂x2 (5) 

Note that the linear operator L is defined to meet L (f) = 0. For 
simplicity, let us denote input x as x1 and t as x2. Let X(i) be the ith input 
space observation, then X(i) = (x(i), t(i)) = (x(i)

1 , x(i)
2 ) where i = 1,2,…,N, 

and let the single test point X∗ as X∗ = (x∗,t∗) = (x∗
1, x∗

2). Here, X is the N 
× 2 observation input matrix, X = ((X(1))

T
, (X(2))

T
, …, (X(N))

T
)

T
.

By utilizing GP’s analytical property that the linear transformation of 
GP follows a Gaussian Process (Rasmussen, 2003), we can derive the 
explicit GP posterior predictive distribution for each derivative term: 

f |X∗, X, y ∼ N
(

k∗T (
K + σ2

nI
)−1y, k∗∗ − k∗T (

K + σ2
nI

)−1k∗
)

(6)  

∂f
∂x∗

2
|X∗, X, y ∼ N

(
k∗T

x∗
2

(
K + σ2

nI
)−1y, k∗∗

x∗
2

− k∗T
x∗

2

(
K + σ2

nI
)−1k∗

x∗
2

)
(7)  

where k∗
x∗

2
= ∂

∂x∗
2
(k(X(1), X∗), k(X(2), X∗), …, k(X(N), X∗))

T, and k∗∗
x∗

2
=

∂2

∂x∗
2∂x∗

2
k(X∗, X∗). Note that we have direct access to the functional form of 

GP posterior predictive distribution before estimating the hyper
parameters θ∗ from the MLE function. Each component in vector k∗

x∗
2 

is 
calculated as 

∂
∂x∗

2
k
(
X(i), X∗

)
=

∂
∂x∗

2

[

τ2exp

(

−
1
2

∑2

q=1
wq

(
x(i)

q − x∗
q

)2
)]

= w2

(
x(i)

2 − x∗
2

)
k
(
X(i), X∗

)
(8) 

Similarly, the second derivative term fxx follows the GP posterior 
predictive distribution: 

∂2f
∂x∗2

1
|X∗, X, y ∼ N

(
k∗T

x∗2
1

(
K + σ2

nI
)−1y, k∗∗

x∗2
1

− k∗T
x∗2

1

(
K + σ2

nI
)−1k∗

x∗2
1

)
(9)  

where k∗T
x∗2

1
= ∂2

∂x∗2
1

(k(X(1), X∗), k(X(2), X∗), …, k(X(N), X∗))
T and k∗∗

x∗2
1

=

∂4

∂x∗2
1 ∂x∗2

1
k(X∗, X∗). Each component in vector k∗T

x∗2
1 

is calculated as 

∂2

∂x∗2
1

k
(
X(i), X∗

)
=

∂
∂x∗

1

[
w1

(
x(i)

1 − x∗
1

)
k
(
X(i), X∗

)]

= w1

(
w1

(
x(i)

1 − x∗
1

)2
− 1

)
k
(
X(i), X∗

)
(10) 

Likewise, the PDE can be reformulated with the GP posterior pre
dictive distribution at different testing locations X∗,(j) = (x∗,(j)

1 , x∗,(j)
2 ),

where j = 1, 2, …, Ntest. We denote the mean of the GP posterior pre
dictive distribution at test point X∗ after a linear transformation as 
L (f)mean: 

L (f )mean =
∂f
∂x∗

2
−

∂2f
∂x∗2

1  

= k∗T
x∗

2

(
K + σ2

nI
)−1y − k∗T

x∗2
1

(
K + σ2

nI
)−1y  

=
(

k∗T
x∗

2
− k∗T

x∗2
1

)(
K + σ2

nI
)−1y = K

∗
(
K + σ2

nI
)−1y (11)  

Here, L (f)mean is a function of test input X∗ and the hyperparameters θ 
given observation dataset (X, y). The above steps show how physics- 
based knowledge can be reformulated as a function of hyper
parameters in GPR. These steps in GPR have an analogous role as an 
automatic differentiation (Baydin et al., 2018) employed in 
physics-informed Neural Networks (Raissi et al., 2019). 

4. Penalization of physics-based knowledge in maximum 
likelihood estimation 

Here, we introduce physics-based knowledge as a form of L (f)mean 
into the marginal likelihood function as shown in Eq. (3). We use the L2- 
norm squared of the linearly-transformed mean predictive distribution ‖
L (f)mean‖

2
2 as a Physics Violation (PV) function denoted by PV(θ, X∗|X,

y). Note that PV is a function of test input X∗ = (x∗
1, x∗

2), and we define 
the collection of test inputs for calculating PV as collocation points X∗

col. 
These collocation points are also referred to as virtual points in con
strained GPR fields, where the physics-based constraints are imposed 
(Da Veiga & Marrel, 2012; Golchi et al., 2015; Riihimäki & Vehtari, 
2010; Swiler et al., 2020; X. Wang & Berger, 2016). 

J. Kim et al.                                                                                                                                                                                                                                      



Computers and Chemical Engineering 178 (2023) 108320

4

Since physics-based knowledge indicates that the linearly- 
transformed mean predictive distribution L (f)mean should be zero for 
everywhere in the system domain X∗ ∈ Ωsystem, any non-zero amount of 
the PV function suggests some degree of violation of underlying physics. 
From this observation, we introduce ‖ L (f)mean‖

2
2 into the negative 

marginal likelihood function while standardizing each component by 
the number of observation data points N and the number of collocation 
points Ncol, respectively. 

θ∗
physics = argmin

θ

[

−
1
N

logp(y|X, θ) +
1

Ncol
PV

(
θ, X∗

col|X, y
)
]

(12) 

Fig. 1 describes the interpretation of each term in the augmented 
marginal likelihood function (i.e., penalized negative log marginal 
likelihood). The first term indicates the complexity penalty of a model, 
the second term is a normalizing constant, and the third term determines 
the data-fit (Rasmussen, 2003). The newly augmented fourth term is 
constructed from the physics-based knowledge and determines the 
physics-fit of the model. This augmented objective function considers 
the model’s physics-fit to the given physics-based knowledge and the 
data-fit to the training data. We minimize this augmented objective 
function using the L-BFGS-B optimization algorithm (Zhu et al., 1997) to 
get a new set of physics-informed hyperparameters. The aforementioned 
procedure is summarized in Algorithm 2 in the Appendix F. 

It is important to note that the standard marginal likelihood function 
is non-convex and the convergence to a global optimum is not guaran
teed. Locally optimal hyperparameters can lead to poor extrapolation 
and interpretability, and cause overfitting problems. A common 
approach to tackle this issue is to use multiple starting points from a 
specific prior distribution, perform multi-start local optimization, and 
choose the hyperparameters with the largest marginal likelihood (Z. 
Chen & Wang, 2018). Since the PNLML is a non-convex function as well, 
we also perform multiple initializations for the penalization approach as 
well as the conventional approach. This analysis will allow us to analyze 
the difference in consistency of convergence and statistical significance 
in the results between the physics-informed approach and the black-box 
GPR approach. 

5. Results 

Three case studies are introduced to discuss the effect of the physics- 
based penalization in GPR. Three different hyperparameter estimation 
processes are presented - MLE, pMLE (MLE with physics-based penali
zation), and MCMC, where MLE and pMLE are the point estimation 

methods and MCMC is the full Bayesian treatment of the GPR in terms of 
hyperparameter estimation and prediction. Since neither informative 
priors nor careful tuning of MCMC parameters from domain knowledge 
is involved here, we consider MLE and MCMC methods as purely data- 
driven methods. 

The hyperparameter estimation process in GPR and pGPR is affected 
by various factors such as choice of kernels, optimization algorithm and 
parameter settings, priors of hyperparameters, distribution/number of 
observation data, and location and amount of collocation points. In this 
paper, we investigate the effect of three important factors: (a) Priors of 
hyperparameters, (b) distribution/number of observation data, and (c) 
collocation points. We use a squared exponential kernel with a prior 
mean of 0, f |X, θ ∼ N(0, K) and the L-BFGS-B optimization algorithm 
(Zhu et al., 1997) for all case studies. 

In point estimation methods (MLE and pMLE), four different non- 
informative priors (Chen & Wang, 2018; Wilson & Adams, 2013) of 
hyperparameters in Table 1 are used throughout the experiment to see 
how the penalized objective guides the MLE process using different 
non-informed starting points. Here, multistart optimization is also per
formed for each prior because objective functions are non-convex and 
L-BFGS-B is a local solver. A full Bayesian treatment with 
Metropolis-Hastings MCMC algorithm (Chib & Greenberg, 1995) is 
performed with the standard likelihood function and with Prior 4 in 
Table 1, using the R package mcmc (Geyer & Johnson, 2013). 1000 
MCMC draw (samples) is used with 100 Burn-in (i.e., discard 100 initial 
samples) for all case studies. 

The distribution of training data (X, y) for a given system domain is 
another important factor that determines the interpolation and extrap
olation prediction performance of the method. This is because GPR 
prediction converges to a (zero) prior mean if the test location is far from 
the training region (Appendix A). To take this factor into account, we 
introduce the space-filling degree (SFD) of the training data. 

SFD is measured by computing the ratio of the convex hull area 
Aconvex (constructed from the training data) to the entire system domain 
area Asystem. An additional condition on the distance between any two 
training data points is added to impose uniformity in the sampling and 
avoid extreme cases where most data is clustered. The sampling criteria 
ΩD for the case studies presented in Sections 5.1. (Laplace equation) and 
5.2. (Heat equation) are shown in Eq. (13). 

ΩD =
[
D : SFD ≥ 0.75, min

(
D i, D j

)
≥ 0.2

]
(13)  

where SFD = Aconvex
Asystem 

and D i, D j are samples drawn from the training 
dataset (i, j = 1, 2, …, N where N is the number of training data). 

Prediction performance is evaluated using the standardized root 
mean squared error (SRMSE) and the mean standardized log loss (MSLL) 
on the test dataset. Note that MSLL incorporates predictive variance 
(uncertainty) of the trained model in addition to the prediction error. 
Usually, the smaller MSLL indicates a better model has been identified 
(Rasmussen, 2003). 

Fig. 1. Interpretation of Penalized Negative Log Marginal Likelihood (PNLML).  

Table 1 
Priors used in the performed experiments.   

Prior Distribution 

Prior 1 θi ∼ Uniform(0, 1)

Prior 2 log(θi) ∼ Uniform( − 5,5)

Prior 3 θi ∼ inv χ2(2)

Prior 4 θi ∼ Gamma(7.5, 1)
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Fig. 2. Laplace’s equation: Top: True function f and the distribution of training data (Set 9 in Fig. 3) and collocation points. Second row: Prediction performance of 
GPR for three different hyperparameter estimation methods (MLE, MCMC, and pMLE). Third row: Error plot between the true function f and each prediction method. 
Bottom: Prediction at four system boundaries in the system. The 95% confidence intervals (1.96 × σ) are plotted as a dotted line. 
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SRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N
i=1(yi − ỹi)

2
√

σy
(14)  

MSLL =
1
N

∑N

i=1

[
1
2

log
(
2πσ̃2

i

)
+

(yi − ỹi)
2

2σ̃2
i

]

(15)  

Here, yi is the test output, ỹi is the predicted output, and σ̃2
i is the pre

dicted variance where i = 1,2,…,N. σy is the standardized deviation of 
yi, and it is taken into account to consider the scale of the output values. 
If the MSLL does not converge at the test point (σ̃2

i → 0), we do not 
include this test point in the calculation. 

5.1. Laplace’s equation 

Laplace’s equation is a partial differential equation (PDE) that has 
different cartesian solutions f = x3 − 3xy2, y3 − 3x2y, cos(kx)cosh(ky),

cos(kx)eky, e−kxsin(ky), … depending on the boundary conditions spec
ified for the system: 

∂2f
∂x2 +

∂2f
∂y2 = 0 (16) 

We consider the case where the boundary condition is unknown to 
the modeler so that the true solution cannot be estimated from numer
ical discretization techniques. 

In order to train and evaluate the model performance, we first as
sume that the true solution of the system is f(x, y) = x3 − 3xy2 and 
sample 200 data points from f using Maxpro (Joseph et al., 2020) 
space-filling design. Out of 200 data points, we sample 10 training data 
points under criteria ΩD (equation (13)). The rest of the points are used 

for testing model accuracy. This is repeated 10 times to quantify the 
generalizability of the methods for different training/test data scenarios. 
In the penalized marginal likelihood function (pMLE), the physics 
violation function is calculated on 100 collocation points (X∗

col), uni
formly sampled with Maxpro (Joseph et al., 2020). Note that the only 
available knowledge at hand is the 10 sparse observation points and the 
physics-based knowledge (PDE without the boundary conditions). We 
observe how physics-based penalization can help tune the hyper
parameters so that the trained model can better represent the true 
system. 

Fig. 2 shows the true solution f and the prediction performance of 
trained GPR models via three different hyperparameter estimation 
methods (f∗

MLE: MLE, f∗
MCMC: MCMC, f∗

pMLE: pMLE) for one of the training/ 
test data scenarios. From 25 multiple initializations for each prior in 
Table 1, the hyperparameter set which produces the lowest SRMSE test 
error is selected for model prediction in Fig. 2. 

As expected, the prediction performance of data-driven methods 
(f∗

MLE, f∗
MCMC) is reasonable at training points, however, they become poor 

in the region where data is not observed. Since standard GPR (f∗
MLE, 

f∗
MCMC) only relies on training data, the trained model is not able to 

determine how to behave in the region where dynamics are not 
observed. Moreover, it is clearly shown from the error plot in Fig. 2 that 
the data-driven approach suffers from overfitting. On the other hand, the 
physics-based penalization approach (f∗

pMLE ) can reduce overfitting 
problems in these unexplored regions (the region where no training data 
is observed) and train models to reflect the underlying physics of the 
system. 

Fig. 3 shows the box plot of the prediction performance of different 
methods for four different priors and 10 different training/test data 
scenarios. Here, 25 initializations are performed for each prior for 10 

Fig. 3. Laplace’s equation: Left: Boxplot of log(SRMSE) and MSLL for four different priors in Table 1. 25 initializations are performed for each prior in the opti
mization. Each boxplot shows the combined results of 10 different training set scenarios and contains 250 data points (25 × 10). Right: Boxplot of log(SRMSE) and 
MSLL for 10 different training set scenarios (i.e., Set 1, Set 2, …, Set 10). Each boxplot shows the combined results of 4 different priors and contains 100 data points 
(25 × 4). The red triangle points show prediction error when the best posterior hyperparameters (i.e., posterior hyperparameters that produce the lowest SRMSE) 
from the pMLE are used as an initialization point for the optimization of the standard MLE objective function. Left and Right Plots show the boxplot of the same dataset 
but with a different axis, and the outliers outside of the y-range are presented as the numbers for the corresponding cases. The box plot results for different training 
datasets are provided in Table C in Appendix C with the MCMC prediction results. 
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different training datasets, respectively. These results indicate that the 
hyperparameters estimated with the physics-based penalization can 
reduce the prediction error as well as uncertainty (lower SRMSE and 
MSLL) for different priors and for different training/test data scenarios. 

Note that multiple initializations are required for the point estima
tion methods (MLE and pMLE) because of the non-convexity of the 
objective functions. Non-informative prior settings (initializations) of 
the hyperparameters can result in outliers that cause poor prediction 
performance in both cases. However, the penalization approach can 
reduce the number of trials of initialization, produces a smaller number 
of outliers, and give us more consistent results. 

Table 2 shows the p values calculated from the two-way ANOVA 
analysis (Scheffe, 1999) for different priors and point estimation 
methods. The p value in Table 2 determines whether each factor (prior 
type, methods type) has a significant impact on SRMSEs and MSLLs, and 
the small p value indicates the significant difference between groups. 
The results reveal that the penalization has a statistically significant 
effect on both SRMSEs and MSLLs. Here, it is interesting to see that 
physics embedding as a form of a mean of physical violation function has 
a significant effect on MSLL (i.e., uncertainty information). This may be 
due to the benefit of reducing overfitting problems, which will be dis
cussed in Section 6. While physics-based penalization has a significant 
impact on both prediction accuracy and the uncertainty information, the 
selection of a prior distribution does not show a significant effect on the 
MSLL at a 5% significance level, which agrees with a previous study (Z. 
Chen & Wang, 2018) showing that priors for hyperparameter tuning 
have no notable impacts on the model performance. 

Fig. 4 shows a schematic illustration of two different objective 
functions for MLE and pMLE. This visualization shows the effect of 
physics-based penalization on the objective function, which identifies 
significantly different local optima influenced by highly physics-violated 
regions. 

Table 3 shows the average values of SRMSE, MSLL, SNLML, and SPV 
(Fig. 1) for three different approaches. It is observed that the SPV is 
estimated to be very large in data-driven methods (MLE, MCMC), while 
the physics-based penalization approach (pMLE) favors the region 
where the physics violation is small and reduces the violation of un
derlying physics by sacrificing the data-fit (Low SPV and large SNLML 
value). Note that there is a big difference in the scale of values between 
the SNLML and SPV (e.g., 0.436 (SNLML) and 722 (SPV) for GPR (MLE) 

in Table 3). This is because SPV involves the second derivative infor
mation and the L2-norm square calculation. However, it is interesting 
that sacrificing the data-fit in pMLE does not lead to violating the 
observation data-fit of the model, and a significant reduction of physical 
violation can still be achieved. In other words, including the physics 
violation term in the marginal likelihood function can mitigate over
fitting problems by balancing the data-fit and the physics-fit. This 
observation agrees with the previous study that the Maximum penalized 
likelihood estimation (MPLE) approach can reduce the overfitting 
problems when samples are limited (Tamuri et al., 2014). 

5.2. Heat equation 

The distribution of heat f is described by the following PDE: 

∂f
∂t

=
∂2f
∂x2 (17)  

where the output heat f is a function of position x and time t. We assume 
f = e−6.25tcos(2.5x) − e−tcos(x −1) is the true dynamics of the system, 
and sample 200 total data points from the true solution in domain x ∈ [0,

1], t ∈ [0, 1] using Maxpro space-filling design (Joseph et al., 2020). Out 
of 200 total data points, 10 training data points are sampled under 
criteria ΩD (Eq. (13)) and the rest are saved as a test set. Using the above 
scheme, 10 different training/test datasets are generated to evaluate the 
model performance. 

As in the previous case study, we assume that the true dynamics of 
the system is unknown, but the modeler has the domain knowledge that 
the system should follow the underlying physics ft = fxx. Note that there 
are infinite solutions f that meet the equation ft = fxx without initial and 
boundary conditions, but we constrain the solution space by utilizing the 
sparse observation data. Here, 200 collocation points are sampled over 
the domain using Maxpro (Joseph et al., 2020) and 25 initializations are 
performed for each prior in Table 1 for each training dataset. 

Fig. 5 shows that the penalization with physics-based knowledge 
(f∗

pMLE) helps improve the prediction performance within the system 

Table 2 
Laplace’s equation: The p values from two-way ANOVA analysis (Scheffe, 1999) 
for different priors and the methods   

SRMSEs MSLL 

Priors 0.001 0.060 
Methods (MLE vs pMLE) < 2.2e-16 < 2.0e-16  

Fig. 4. Laplace’s equation: Standardized log marginal likelihood (SLML), Standardized physics violation (SPV) and the penalized log marginal likelihood (PLML) 
values for three different hyperparameters (w1, w2, τ) locations when Set 1 in Fig. 3 is used. One of the local optima is presented for each objective function, 
respectively. Log scale is used for better visualization of local optima in each objective function. 

Table 3 
Laplace’s equation: Average log(SRMSE), MSLL, SNLML, and SPV for three 
different hyperparameter estimation methods. (Brackets show the standard 
errors)   

Log(SRMSE) MSLL SNLML SPV 

GPR (MLE) -2.23 (0.613) -1.29 
(3.250) 

0.436 
(0.317) 

7.22e2 
(8.39e3) 

GPR (MCMC) -1.99 (0.248) -1.15 
(0.131) 

0.706 
(0.097) 

3.72e1 (7.17) 

GPR (pMLE) -4.15 (0.486) -3.53 
(0.898) 

0.879 
(0.128) 

1.27 (2.89e1)  
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domain and at the four different boundaries of the system, when 
compared to the standard data-driven GPR (f∗

MLE, f∗
MCMC). Since physics- 

based penalization considers the physics-fit on the system domain 
through the collocation points, it mitigates overfitting problems by 
reducing the violation of the underlying physics of the system. 

Fig. 6 shows the boxplots of the prediction performance for different 
hyperparameter estimation methods for different priors in Table 1 and 
for 10 different training/test data scenarios. The general trend shows 
that the prediction error (SRMSEs and MSLL) is decreased when the 
hyperparameters are estimated from the penalized marginal likelihood 

Fig. 5. Heat equation: Top: True function f and the distribution of training data (Set 8 in Fig. 6) and collocation points. Second row: Prediction performance of GPR for 
three different hyperparameter estimation methods (MLE, MCMC, and pMLE). Third row: Error plot between the true function f and each prediction method. Bottom: 
Prediction at four system boundaries in the system. The 95% confidence intervals (1.96 × σ) are plotted as a dotted line. 
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function. 
In this case study however, it is important to note that embedding 

physics-based information during non-convex optimization does not 
always outperform standard GPR (e.g., Set 3 in Fig. 6), even when the 

penalization has a statistically significant effect on the prediction of the 
model (Table 4). One possible reason is that the 100 multiple initiali
zations from four different non-informative priors are not sufficient to 
find good local optima. For example, Standard GPR (e.g., Set 4 and 7 in 
Fig. 6) could find a new hyperparameter set (red triangle) when the 
posterior hyperparameters from the penalized marginal likelihood 
function are used as an initialization point in the optimization of the 
standard marginal likelihood function. Note that this newly found 
hyperparameter set is not discoverable in the previous simulation with 
100 initializations from different priors. This indicates the possibilities 
of an unexplored region of local optima. The other reason may include 

Fig. 6. Heat equation: Left: Boxplot of log(SRMSE) and MSLL for four different priors in Table 1. 25 initializations are performed for each prior in the optimization. 
Each boxplot shows the combined results of 10 different training set scenarios and contains 250 data points (25 × 10). Right: Boxplot of log(SRMSE) and MSLL for 10 
different training set scenarios (i.e., Set 1, Set 2, …, Set 10). Each boxplot shows the combined results of 4 different priors and contains 100 data points (25 × 4). The 
red triangle points show prediction error when the best posterior hyperparameters (i.e., posterior hyperparameters that produce the lowest SRMSE) from the pMLE 
are used as an initialization point for the optimization of the standard MLE objective function. Left and Right Plots show the boxplot of the same dataset but with a 
different axis, and the outliers outside of the y-range are presented as the numbers for the corresponding cases. The MSLL for Set 7 and Set 10 for pMLE initialization 
(red triangle) are 7.75 and 40.30, respectively, and omitted due to the range of the plot. The test points that have zero variance are excluded from MSLL calculation, 
which results in higher MSLL in pMLE for set 3 (12 test points have zero variance with hyperparameters obtained from pMLE). The box plot results for different 
training datasets are provided in Table C in Appendix C with the MCMC prediction results. 

Table 4 
Heat equation: The p values (Scheffe, 1999) for different priors and the methods   

SRMSEs MSLL 

Priors 0.0187 0.0002 
Methods (MLE vs pMLE) < 2e-16 0.0012  

Fig. 7. Heat equation: Left: Standardized log marginal likelihood (SLML). Middle: Standardized physics violation (SPV). Right: penalized log marginal likelihood 
(PLML) values for three different hyperparameters (w1, w2, τ) locations when Set 5 in Fig. 6 is used. One of the local optima is presented for each objective function, 
respectively. Log scale is used for better visualization of local optima in each objective function. 
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the use of a stationary Gaussian kernel under sparse data for explaining 
the non-stationary dynamics described by the heat equation. To accu
rately capture the complex dynamics of a system, a modeler may use a 
more generalizable kernel (e.g., Matern kernel (Rasmussen, 2003), ad
ditive Gaussian Kernel (Duvenaud et al., 2011)) or advanced GPR 
modeling framework (e.g., deep Gaussian process (Damianou & Law
rence, 2013)) and combine it with the physics-based penalization 
approach. 

Fig. 6 (red triangle) indicates that the posterior hyperparameter set 
obtained from physics-based penalization often acts as an informative 
initialization that can help find better local optima with the standard 
marginal likelihood. Similarly, a modeler can use the posterior hyper
parameters obtained from the marginal likelihood estimation as an 
initialization/starting point for optimizing the penalized marginal like
lihood function, instead of starting from a non-informative prior. 

Fig. 7 shows that the physics-based penalization transforms the 
marginal likelihood function into a new objective that embeds the 
physics-based knowledge and changes the landscape entirely. It can also 
be observed based on this mapping that the purely data-driven 

landscape is more “flat”, with multiple equivalent locally optimal solu
tions across the search space, while the PLML objective landscape cre
ates a surface that has a narrower basin of local optima, mostly clustered 
in a smaller region of the space. This may explain why when using this 
hybrid objective approach, we could more consistently find similar local 
optima with improved performance. 

Table 5 shows that the standard data-driven GPR (MLE, MCMC) 
produces a high SPV value and lower SNLML, which indicates the high 
violation of physics-based information and thus overfitting problems. 
This is expected, because it only relies on the available dataset without 
considering any physics-based knowledge. GPR with physics-based 
penalization (pMLE) balances the data-fit and the physics-fit and suc
cessfully finds a new hyperparameter set that produces a lower predic
tion error while mitigating overfitting problems. 

5.3. Fiber orientation probability distribution (FOPD) model 

The aim of this case study is to highlight the potential of the proposed 
method to capture the underlying nature of a system’s response, when 
limited and noisy experimental data are available. We consider the Fiber 
Orientation Probability Distribution (FOPD) model (Olson et al., 2004) 
which is derived from the Fokker-Planck equation (Risken, 1996). The 
FOPD model describes the time evolution of the probability density 
function of particles within a fluid. It is analogous to the standard 
convection-diffusion equation used for molecular diffusion and heat 
transfer, but in the FOPD model, the convection and diffusion are 
determined by fiber orientation angle and the turbulent dispersion, 
respectively (Olson et al., 2004). This model is used to describe fiber 
orientation of pulp suspensions in paper manufacturing machines, 
which is a property linked to final paper quality and tensile strength. 

Table 5 
Heat equation: Average log(SRMSE), MSLL, SNLML, and SPV for three different 
hyperparameter estimation methods. (Brackets show the standard errors)   

Log(SRMSE) MSLL SNLML SPV 

GPR (MLE) -0.841 
(0.380) 

0.263 (9.20) 0.282 
(0.298) 

1.30e2 
(1.10e3) 

GPR 
(MCMC) 

-1.03 (0.226) -1.18 
(0.184) 

0.520 
(0.106) 

5.61 (2.19) 

GPR (pMLE) -1.21 (0.326) -0.748 
(3.54) 

0.403 
(0.335) 

0.766 (2.12)  

Fig. 8. FOPD model: Left: Boxplot of log(SRMSE) and MSLL for four different priors in Table 1. 25 initializations are performed for each prior in the optimization. 
Each boxplot shows the combined results of 3 different training set scenarios and contains 75 data points (25 × 3). Right: Boxplot of log(SRMSE) and MSLL for 3 
different training set scenarios. Each boxplot shows the combined results of 4 different priors and contains 100 data points (25 × 4). The red triangle points show 
prediction error when the best posterior hyperparameters (i.e., posterior hyperparameters that produce the lowest SRMSE) from the pMLE are used as an initial
ization point for the optimization of the standard MLE objective function. Left and Right Plots show the boxplot of the same dataset but with a different axis, and the 
outliers outside of the y-range are presented as the numbers for the corresponding cases. The box plot results for different training datasets are provided in Table C in 
Appendix C with the MCMC prediction results. 

J. Kim et al.                                                                                                                                                                                                                                      



Computers and Chemical Engineering 178 (2023) 108320

11

Under steady-state conditions with only one spatial direction, the 
equation becomes: 

u
∂ψ
∂x

= Dp
∂2ψ
∂ϕ2 −

∂(ϕ̇ψ)

∂ϕ
(18)  

where ψ(x, ϕ) is fiber orientation probability distribution, x is the posi
tion of the particle, ϕ is the projected angle of the fiber, ϕ̇ is the rota
tional angular velocity of fiber, Dp is the dispersion coefficient, and u is 
the fluid velocity. If the fiber suspension flow is considered in the 
headbox section (contracting channel) of the paper machine, ϕ̇ and u 
have the following relationships, which are derived from the continuity 
equation: 

u(x) =
u0

1 −
(
1 − 1

R

)(
x
L

), ϕ̇ = −
L
u0

∂u
∂x

sin(2ϕ) (19)  

where L is the headbox length, R is the contraction ratio, u0 is the inlet 
velocity. The dimensionless form with above relationships becomes 

u
∂ψ
∂x

= Dp
∂2ψ
∂ϕ2 + R

∂(sin(2ϕ)ψ)

∂ϕ  

= Dp
∂2ψ
∂ϕ2 + 2Rcos(2ϕ)

[
∂ψ
∂ϕ

+ ψ
]

(20)  

where Dp =
LDp
u0

, x = x/L and u = u
u0

. Eq. (20) describes the fiber orien
tation probability distribution of pulp suspensions in the headbox of a 
paper machine. 

It is common that the fiber orientation is only and partially observed 
near the exit (x/L = 0.97) of the headbox and the fiber orientation is 
randomly distributed at the entrance (i.e., ψ(x = 0) = 1/π). We use 9 
equidistant data at (x = 0) and a few experimental data (Zhang, 2001) 
near the exit (x/L = 0.97) of the headbox for training the model. Note 
that the additional homogeneous Neumann boundary conditions at two 
boundaries ψ(ϕ = −π /2) and ψ(ϕ = π /2) are also required (Olson et al., 
2004) to solve Eq. (20) with the numerical discretization technique such 
as Streamline Upwind/Petrov-Galerkin method (SUPG) (Brooks & 
Hughes, 1982). However, if the observation data is noisy and the 
boundary conditions are not exact or unobtainable, the numerical dis
cretization approach may result in an extremely ill-posed problem 
(Alifanov, 2012) where very small perturbation of boundary condition 
observation results in significant large errors in the numerical solution of 
PDEs. If this is the case, our approach can be an alternative direction to 
avoid large numerical errors while still capturing the underlying nature 
of the true solution. 

A noise hyperparameter σ2
n (Eq. (1)) is introduced to capture the 

noise in the experimental data, which is estimated with the kernel 
hyperparameters during the (penalized) marginal likelihood estimation. 
Note that the starting point of the noise hyperparameter and the bounds 
during the optimization are important. If the noise hyperparameter is 

Table 6 
FOPD model: Average log(SRMSE), MSLL, SNLML, and SPV for three different 
hyperparameter estimation methods. (Brackets show the standard errors)   

log(SRMSE) MSLL SNLML SPV 

GPR (MLE) 0.601 
(0.440) 

4.47e1 
(7.27e1) 

-1.23 
(0.999) 

1.58e3 
(1.78e4) 

GPR 
(MCMC) 

0.399 
(0.662) 

6.95 (1.13e1) -1.13 
(0.955) 

2.39e1 
(3.69e1) 

GPR (pMLE) 0.141 
(0.402) 

2.12 (0.903e1) 0.083 (1.46) 2.89 (0.959)  

Fig. 9. FOPD model: Prediction performance of GPR with three different hyperparameter estimation methods. Top, Middle, and Bottom Row use three different 
training datasets. The fiber orientation probability distribution ψ at six different locations (x/L = 0, 0.29, 0.44, 0.6, 0.75, and 0.97) when R=10 and Dp=2 are shown, 
where γ is the fiber orientation distribution in the plane of the paper and is calculated by substituting γ for ϕ in Eq. (20) and with the relationship γ̇ = − 1

2 Rsin(2γ). 
The 68.2% confidence intervals (1 × σ) are plotted as a dotted line. 
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not regulated properly, we may reach the local optima where data 
variability is mostly captured by noise. To avoid this issue, we set the 
upper bound of the noise hyperparameter as 1e-2 and set the prior 
(initialization) of it as 1e-5 for point estimation methods (MLE and 
pMLE). For MCMC analysis, we sample the noise hyperparameter from 
the Gamma distribution: σ2

n ∼ Gamma(0.05, 1) in each iteration. 1000 
collocation points are used for the penalization, which are uniformly 
sampled on the system domain with Maxpro (Joseph et al., 2020). 

Fig. 8 shows the boxplots of SRMSE and the MSLL for different priors 
and three training data scenarios. Results show that the physics-based 
penalization can help find local optima that produce a better predic
tion performance while mitigating the violation of physics (SPV in 
Table 6). It is interesting to see that a large number of outliers are pre
sent in MSLL when the model is trained with the observation data set 3 
(90 outliers that produce MSLL larger than 120). This indicates that 
optimization with the MLE objective is prone to get stuck in a locally 
optimal region that produces large uncertainty for the four different 
priors experimented (Table 1). By penalizing the MLE objective with 
physics-based information, this region is no longer found and thus 
significantly improves the model performance. 

According to all case studies (Table 3, 5, and 6) we investigated, the 
MLE hyperparameter estimation method has the lowest SNLML values, 
implying that the overfitting problems may be the most prominent. By 
embedding the physics-based knowledge into the optimization process, 

GPR with pMLE significantly mitigates the overfitting issue. 
Fig. 9 shows the prediction performance of different hyperparameter 

estimation methods for three different training datasets. Note that the 
bell-shaped nature of the true system is captured with the physics-based 
penalization method (f∗

pMLE), which is not achievable with the standard 
data-driven approach (f∗

MLE, f∗
MCMC). This gives a promising outlook that 

the proposed approach (f∗
pMLE) can not only improve the performance 

over the data-driven methods (f∗
MLE, f∗

MCMC), but also discover the un
derlying nature of the true system, which was not discoverable before 
with the limited samples. 

6. Discussion 

6.1. Uncertainty reduction 

It is interesting to see that a physics-based penalization approach can 
also reduce the uncertainty of the prediction in many cases. This implies 
that the GPR model captures the behavior of the system under a tighter 
uncertainty interval. While the assessment of the quality of the uncer
tainty is yet another open problem (Li et al., 2021), it is worth discussing 
why physics-based penalization can reduce the uncertainty. In GPR, it is 
known that variance (uncertainty) of the posterior predictive distribu
tion has a closed-form representation (Eq. (1)) if a Gaussian likelihood is 
assumed. If a zero prior mean is used and other variables (e.g., type of 
kernels, training data used) are kept constant, the posterior predictive 
distribution and the reduction of the uncertainty in penalization are 
influenced by the posterior hyperparameters. 

As shown in Table 3, 5, and 6, the physics-based penalization helps 
reduce overfitting problems in sparse data scenarios, as demonstrated by 
the higher SNLML (or lower SLML). If uncertainty increases in over
fitting scenarios, mitigating overfitting problems with the physics-based 
penalization may help reduce the uncertainty as well. Under sparse data 
scenarios (Fig. 10), we observed a trend that the uncertainty increases as 
the SLML (training data-fit) is increased, implying that the overfitting 
can cause an increase in uncertainty. 

Table 7 shows the Pearson correlation coefficient (Benesty et al., 
2009) between SLML, SPV, and uncertainty. 10 different training set 
scenarios are considered for 4 different space-filling degrees (SFD =

[0.175,0.225], [0.275,0.325], [0.475,0.525], [0.775,0.825]), respec
tively. The general trend shows that the uncertainty and the SLML have 
a high correlation (uncertainty increases as SLML is increased) under 
sparse data scenarios. While the data points in Fig. 10 do not necessarily 
represent local optima, it is expected that the local optima that have high 
SLML will likely have high uncertainty as well, which can be the reason 
why we observe the reduced uncertainty in the penalization approach. 

6.2. Degree of extrapolation 

While the physics-based penalization demonstrates a tuning effect 
for better prediction, it still suffers from extrapolation challenges 
(Appendix A). If training data is sampled in a limited space, the tuning 
effect may not be significant. Fig. 11 shows the interpolation and 
extrapolation prediction performance for the Laplace equation case 
study. The interpolation prediction error is calculated on the test points, 
which are located inside of the convex hull constructed from training 
data, and the remaining points outside of the convex hull are considered 
for calculating the extrapolation error. 

It is observed that both the interpolation and extrapolation predic
tion error is lower in the penalization approach, while the performance 
improvement from the physics-based tuning increases as the data is 
more regularly sampled over the system domain (i.e., SFD is increased). 
In addition, physics-based penalization can help reduce the outliers for 
different initializations. 

Fig. 10. Heat equation: Uncertainty and the SLML are measured at 216 different 
hyperparameter locations: w1 = w2 = [0.10, 2.08, 4.06, 6.04, 8.02, 10.0], and 
τ = [0.10, 20.08, 40.06, 60.04, 80.02, 100.0]. The average value of the un
certainty and the SLML at 200 test points are used for each hyperparameter set. 
Training set 5 in Fig. 6 is used for calculation. 

Table 7 
Heat equation: The Pearson correlation coefficient (Benesty et al., 2009) between 
SLML, SPV, and uncertainty (95% confidence interval) are measured at 216 
different hyperparameter locations: w1 = w2 = [0.10, 2.08, 4.06, 6.04, 8.02,

10.0], and τ = [0.10, 20.08, 40.06, 60.04, 80.02, 100.0]. 10 different training 
datasets are sampled for SFD ~ [0.175,0.225], [0.275,0.325], [0.475,0.525], 
[0.775,0.825], respectively, and the average values are presented. Outliers are 
detected using the interquartile range (IQR) criterion and excluded from the 
calculation.  

Pearson correlation coefficient SLML SPV Uncertainty 

SLML -   
SPV -0.086 -  
Uncertainty 0.748 0.273 -  

J. Kim et al.                                                                                                                                                                                                                                      



Computers and Chemical Engineering 178 (2023) 108320

13

There can be the case that the penalization still works effectively 
when SFD is low. Consider the case where the system dynamics are only 
abruptly changed in the centerline and dynamics are constant in the 
remaining region. If the modeler sets the constant GP prior mean that is 
close to the real dynamics (in the remaining region) and focuses on 
collecting the training data in the centerline, the physics-based penali
zation may still work better since the closed-form distribution of the 
GPR converges to the prior mean for the extrapolation region. In order 
for the physics-based tuning effect to be effective in different real ap
plications, the training data should be sampled evenly on the system 
domain and capture the rough dynamics of the system. 

6.3. Computational complexity 

The computational cost for maximizing the marginal likelihood 
function is O(N3) (Rasmussen, 2003) where N is the number of training 
data and is dominated by inverting the kernel matrix (K + σ2

nI)−1. 
Traditionally, Cholesky decomposition is used for numerical stability 
and faster calculation (Rasmussen, 2003). Algorithm 3 and Algorithm 4 
show the optimization procedure with the marginal likelihood and the 
penalized marginal likelihood using Cholesky Decomposition, 
respectively. 

Penalized marginal likelihood function includes the additional esti

mation of PV(θ, X∗
col|X, y) for each iteration of optimization, which adds 

additional complexity O(NcolN2/2). In the scarce dataset Ncol≫N, opti
mization of penalized marginal likelihood is dominated by O(NcolN2/2). 

Fig. 12 shows the computational cost (for the hyperparameter esti
mation) and the prediction error (SRMSE) for the Laplace equation case 
study for a different number of training data and collocation points 
(Table is provided in Appendix D, E). Since the penalized approach re
quires additional estimation of PV(θ, X∗

col|X, y) for each iteration of 
optimization, it yields additional computational time compared to the 
standard GPR (GPR.MLE) and the MCMC approach. However, this extra 
cost has the benefit of leading to improved prediction quality. Note that 
CPU results can be affected by algorithmic settings. For example, results 
are reported for fixed MCMC settings (i.e., 1000 MCMC draws), and the 
computational time will increase when the number of draws increases. 
Here, GPR with a full Bayesian treatment (GPR.MCMC) shows a larger 
error than the point estimation method with the standard marginal 
likelihood (GPR.MLE). This indicates the difficulty in tuning MCMC 
parameters and selecting appropriate priors. 

Fig. 12 and Appendix D show that the small number of collocation 
points is still effective for embedding physics into GPR. In other words, a 
small number of collocation points may be sufficient to find a tuned local 
optimum. This may lead to an interesting discussion on an efficient 
sampling of collocation points to embed physics. 

Fig. 11. Laplace’s equation: Top: One example of sampled training data for different SFD values considered. Bottom: Interpolation and Extrapolation prediction error 
for GPRs with two different hyperparameter estimation methods (MLE and pMLE). 25 initializations are used for each prior in Table 1 and 10 different training 
dataset is tested (Each boxplot contains 1000 data points (25 × 4 × 10)). Here, the minimum distance condition min(D i, D j) in Eq. (13) is not considered. 
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7. Conclusions 

We introduced physics-based penalization terms into the marginal 
likelihood function during hyperparameter estimation in Gaussian 
Process Regression (GPR). A series of results showed that physics-based 
penalization can improve prediction performance, reduce uncertainty, 
mitigate overfitting problems, and capture underlying physics that is not 
discoverable with the standard purely data-driven approach. As verified 
by p-values from two-way ANOVA analysis (Scheffe, 1999), 
physics-based penalization shows a meaningful tuning effect on the 
predictability of the GPR model. 

The key observation is that the estimated posterior hyperparameters 
obtained from the penalized marginal likelihood function produce 
smaller physics violations (SPV) while sacrificing the data-fit (SLML). 
This is because the penalized marginal likelihood objective function 
balances the data-fit and the physics-fit during optimization. Based on 
the case studies of this paper, we have observed that this modification 
leads to more robust GPR hyperparameter tuning, which is more robust 
to overfitting and has improved predictability in slighlty extrapolated 
regions. 

While physics-based penalization showed promising potential in 
sparse data scenarios in different case studies, it is not a universal tool 
that always produces a better result than the standard data-driven 
approach. Rather, it should be interpreted as a physics-based tool that 
a modeler can consider if a non-informative prior does not help, or 
multiple initializations in MLE fails to find helpful local optima. 

We believe that this work will be helpful to systems where data 
acquisition is expensive and only a small set of samples is available, as 
the physics-based penalization can help reduce the bias and overfitting 
problems. In a broader context, this work can give modelers promising 
options to understand complex real-world problems and help extend our 
knowledge of systems, which is not achievable with only the data itself. 

In this paper, we used the squared-exponential kernel to model the 

system’s dynamics. However, dynamics from different stochastic partial 
differential equations may have non-stationary behavior, so GP with a 
stationary kernel may have a limitation in accurate approximation even 
under physics-based penalization. Moreover, if the modeler decides to 
use a non-Gaussian likelihood function, the exact inference of the mar
ginal likelihood function may be intractable so that the approximation 
may be needed (Titsias et al., 2008). In this case, a transformation of the 
observation space can be applied (Snelson et al., 2003). 

We also used the L2-norm squared of the physics violation function 
over the system domain to incorporate physics-based knowledge into 
GPR. If outliers are present, however, this loss function can over
emphasize the effect of the outliers and bias the hyperparameter opti
mization process. This adds additional difficulty in finding the proper 
hyperparameters of the kernel when a noise hyperparameter is intro
duced. Therefore, it is important to set a good starting point and 
reasonable noise level bounds during optimization to prevent the opti
mization process from converging to the undesirable local optima (e.g., 
data variability is mostly captured by noise). 

A modeler can adjust the important factors that affect the hyper
parameter estimation process to improve the prediction performance of 
the proposed model. For example, one can test different kernels and 
optimization algorithms, adjust optimization parameters, increase the 
number of initializations (i.e., initial starting points) for optimization, 
and incorporate more collocation points. A modeler can also introduce 
an additional regularization parameter λ to the penalized MLE function 
(Eq. (12)) and perform cross-validation (CV) to fine-tune the balance 
between physics-fit and the data-fit. In order to improve the penalization 
effect, various physics-based penalty functions can be tested in the 
future. For example, the probabilistic formulation of the physics-based 
penalization (Lorenzi & Filippone, 2018; Tamuri et al., 2014) for 
hyperparameter tuning will be an interesting topic. Also, one can think 
of incorporating uncertainty information into the physics violation 
function or investigation of the effective sampling of collocation points 

Fig. 12. Laplace’s equation: Left: Average computational time for the hyperparameter estimation step (in seconds) of three different methods. GPR.MLE refers to 
the standard GPR where hyperparameters are estimated by optimizing the marginal likelihood function, GPR.MCMC is the standard GPR with full Bayesian analysis 
using the Metropolis-Hastings MCMC algorithm (Chib & Greenberg, 1995), and the pMLE.Col.20, pMLE.Col.50, pMLE.Col.100, and pMLE.Col.200 refers to the 
penalization method where hyperparameters are estimated by optimizing penalized marginal likelihood function (pMLE) with different collocation points Ncol = 20, 
50,100 and 200, respectively. 100 initializations are performed from Prior 4 for GPR.MLE and pMLE, and the average computational time is plotted. GPR.MCMC 
generates 1000 MCMC draws with Prior 4. Note that the computational time for GPR.MCMC depends on the number of MCMC draws. Right: Prediction error on the 
test points for three different methods. Predictions are estimated at 100 uniformly distributed points in each dimension (a total of 10000 prediction points). The best 
point estimation value (posterior hyperparameters that produce the lowest error) from 100 initializations are chosen for prediction. GPR.MCMC prediction is made 
with 100 Burn-in. Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz Processor is used. 
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(e.g., sampling the region where uncertainty is large). 
Finally, a physics-based penalization approach can also give insight 

into physics-embedded experimental design or sequential sampling (e. 
g., Bayesian optimization) (Paulson & Lu, 2022). For example, an 
effective sampling strategy, such as sampling the next data point where 
the prediction improvement or the uncertainty reduction over standard 
GPR is the highest, would be an interesting topic for future research. 
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Appendix A. Extrapolation challenges in Gaussian process regression 

In standard GPR, Extrapolation performance in GPR is largely influenced by the kernel. This can be explained by Eq. (21) which represents GP 
posterior mean at test point X∗ as a linear combination of N kernel functions (Rasmussen, 2003): 

m̂posterior (X∗) = mprior(X∗) +
∑N

i=1
αik

(
X(i), X∗

)
(21)  

where αi = (K + σ2
nI )

−1y and k(X(i), X∗) = cov(f(X(i)), f(X∗)). In standard GPR with squared exponential kernel k(X(i), X∗) = τ2exp

(

−

1
2

∑p
q=1wq(x(i)

q − x∗
q)

2
)

, the posterior mean m̂posterior (X∗) converges to the prior mean mprior(X∗) when the testing location is far from the training data 

range |x(i)
q − x∗

q|↑. 
In penalized GPR, the physics violation function PV can also be represented as a linear transformation of kernel functions. With zero prior mean 

PV(θ, X∗|X, y)=‖ L (f )mean‖
2
2=‖ K

(
K + σ2

nI
)−1y ‖

2
2 = ‖

∑N

i=1
αikphysics

(
X(i), X∗

)
‖

2

2

(22)  

where K = (k∗T
x∗

2
− k∗T

x∗2
1

),αi = (K + σ2
nI )

−1y and kphysics(X(i), X∗) = [w2(x(i)
2 − x∗

2) − w1(w1(x(i)
1 − x∗

1)
2

− 1)]k(X(i), X∗) = g(X(i), X∗)k(X(i), X∗). The per

formance improvement of physics-based penalized GPR over standard GPR will be reduced when extrapolation region is large since the effect of 
physics-based knowledge embedded in g(X(i), X∗) is dissipated out by the effect of squared exponential kernel converging to the (zero) prior mean (e.g., 
k(X(i),X∗)→0). 

Appendix B. Interpretation and Reformulation of Penalization in MLE Estimation 

Marginal likelihood is a non-convex function, and different prior settings on the standard GPR can lead to different local optima. Therefore, proper 
prior settings are very important and can determine the performance of GPR. Introducing penalization term into marginal likelihood function can be 
interpreted as utilizing the physics-embedded prior. If we assume that likelihood follows Gaussian, the penalized negative log marginal likelihood 
(PNLML) under the Gaussian prior f |X, θ ∼ N(0, K) becomes 

PNLML = logp(y|X, θ) + PV
(
θ, X∗

col|X, y
)

= −log
(

p(y|X, θ)e−PV(θ,X∗
col |X,y)

)

= −log

(
1

⃒
⃒K + σ2

nI
⃒
⃒1/2

(2π)
N/2

e−1
2yT (K+σ2

nI )
−1

y−PV(θ,X∗
col |X,y)

)

(23) 

Note that the marginal likelihood function is estimated by integrating out f , log[p(y|X, θ)] = log[
∫

p(y|f , X, θ)p(f |X, θ)df ] = − 1
2 log

⃒
⃒K + σ2

nI
⃒
⃒ −

1
2yT(K + σ2

nI)−1y − N
2 log2π. The physics-violation function for the 5.2. Heat case study can be reformulated as 
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PV(θ, X∗
col|X, y) = ‖ (k∗T

x∗
2

− k∗T
x∗2

1
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2
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1
. Then penalized marginal likelihood becomes 

PNLML = −log

(
1

⃒
⃒K + σ2

nI
⃒
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e−1
2yT
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If we add ψ = −log
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If [(K + σ2
nI )

−1
(I + 2K

∗
(K + σ2

nI )
−1

)]
−1 

is positive semi-definite, we can see that penalized marginal likelihood function can be interpreted as using 

the updated prior of p(f |0, [(K + σ2
nI )

−1
(I + 2K

∗
(K + σ2

nI )
−1

)]
−1

) in standard GPR 

p(y|X) =

∫

p(y|f , X, θ)p(f |X, θ)df  

=

∫

N(y|f , 0N×N)p
(

f |0,
[(
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nI

)−1
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I + 2K
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(
K + σ2
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= N
(

y|0,
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K + σ2
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(
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(27) 

The updated prior is constructed with matrix K ∗ which is populated from physics-based knowledge, so it can be interpreted as a physics-embedded 
prior. 

Appendix C. Prediction performance for different hyperparameter estimation processes  

Table C 
The log(SRMSE) and the MSLL for different training dataset scenarios for three case studies. The median values are reported.  

Case Study Different training dataset scenarios log(SRMSE) MSLL 
MLE pMLE MCMC MLE pMLE MCMC 

Laplace Set 1 -2.28 -3.92 -1.54 -1.42 -3.68 -1.12 
Set 2 -2.47 -4.07 -1.99 -2.35 -3.55 -1.18 
Set 3 -2.44 -4.63 -2.19 -1.94 -3.98 -1.11 
Set 4 -2.49 -3.98 -1.82 -1.19 -3.45 -1.26 
Set 5 -2.80 -3.30 -2.10 -2.05 -3.30 -1.10 
Set 6 -2.54 -4.52 -1.99 -1.78 -3.96 -1.31 
Set 7 -1.72 -4.21 -1.87 -1.43 -4.07 -1.27 
Set 8 -2.35 -4.49 -1.84 -1.36 -3.88 -1.18 
Set 9 -1.65 -4.38 -2.08 -0.60 -3.08 -0.84 
Set 10 -2.78 -4.46 -2.47 -2.03 -3.42 -1.13 

Heat Set 1 -0.94 -0.96 -0.75 0.45 -0.22 -1.11 
Set 2 -0.91 -1.04 -0.83 -1.37 -1.45 -1.18 
Set 3 -1.34 -1.36 -1.43 -1.22 -0.55 -1.44 
Set 4 -1.11 -1.28 -1.08 -1.13 -1.84 -1.46 
Set 5 -0.62 -1.83 -0.80 0.08 -1.21 -1.03 
Set 6 -0.96 -1.02 -1.18 0.36 0.05 -1.29 
Set 7 -1.25 -1.61 -1.29 -0.96 -1.10 -1.19 
Set 8 -0.29 -1.05 -1.12 -0.23 -1.18 -1.18 
Set 9 -0.90 -1.26 -0.91 -0.31 -1.14 -0.93 
Set 10 -0.62 -0.67 -0.91 -0.32 -0.84 -0.94 

FOPD Set 1 0.73 0.27 0.39 4.77 0.52 0.60 
Set 2 0.29 0.04 1.06 -0.57 -0.64 0.21 
Set 3 0.62 -0.38 -0.26 127.21 3.96 20.03  
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Appendix D. Effect of collocation points  

Appendix E. Computational cost 

Computational time is recorded for different hyperparameter estimation processes. In the high-dimensional space and a large number of training 
data, it is expected that the point estimation method (i.e., optimization of (penalized) marginal likelihood) will become more efficient if collocation 
points are effectively selected, as the computational time rapidly goes up for full Bayesian analysis (GPR-MCMC).  

Appendix F. Algorithms  

Table D 
The lowest SRMSEs (×103) achieved by three methods for the different number of training data (Ndata) and collocation points (Ncol). Training data is sampled under 
criteria ΩD , Ndata=10= [D : SFD ≥ 0.75, min(D i,D j) ≥ 0.2], ΩD , Ndata=15= [D : SFD ≥ 0.8, min(D i,D j) ≥ 0.17], ΩD , Ndata=20= [D : SFD ≥ 0.8, min(D i,D j) ≥ 0.13], and 
ΩD , Ndata=25= [D : SFD ≥ 0.8, min(D i, D j) ≥ 0.1]. Collocation points are independently sampled for each case using Maxpro design (Joseph et al., 2020). Prior 4 in 
Table 1 is used for all methods. 100 initializations are performed from Prior 4 for the point estimation methods (GPR (MLE) and GPR (pMLE)) while 1000 MCMC draws 
with Prior 4 (and 100 Burn-in) is used for GPR (MCMC).  

Case Study Ndata GPR (MLE) GPR (MCMC) GPR (pMLE) 
Ncol = 20 Ncol = 50 Ncol = 100 Ncol = 200 

Laplace 10 86.5 145 17.7 16.9 17.1 17.1 
15 9.37 53.7 5.31 5.07 5.17 5.19 
20 1.44 3.52 1.37 1.35 1.36 1.36 
25 1.01 2.27 0.977 0.966 0.970 0.969 

Heat 10 234 250 212 209 212 210 
15 153 160 107 123 114 119 
20 89.2 80.5 77.0 77.6 76.9 77.4 
25 32.1 30.3 25.6 25.6 25.4 25.3  

Table E 
Computational time (in seconds) for maximizing the marginal likelihood (GPR-MLE), penalized marginal likelihood with a different number of collocation points (GPR 
(pMLE)), and using full Bayesian treatment with Metropolis-Hastings MCMC algorithm (Chib & Greenberg, 1995) (GPR (MCMC)). Note that the computational cost is 
presented for an average computational time of 100 initializations from Prior 4 for GPR (MLE) and GPR (pMLE). The computational cost for GPR (MCMC) is presented 
for generating 1000 MCMC draws with Prior 4. Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz Processor is used.  

Case Study Ndata GPR (MLE) GPR (MCMC) GPR (pMLE) 
Ncol = 20 Ncol = 50 Ncol = 100 Ncol = 200 

Laplace 10 0.07 0.56 0.66 1.27 2.20 4.31 
15 0.40 1.06 1.50 2.90 4.84 8.69 
20 0.66 1.56 2.39 4.05 6.17 13.2 
25 1.14 2.31 3.75 6.47 10.5 17.6 

Heat 10 0.09 0.55 0.49 0.94 1.71 3.34 
15 0.13 0.78 0.67 1.27 2.30 4.25 
20 0.25 1.11 0.87 1.64 2.90 5.37 
25 0.27 1.51 1.27 2.28 3.58 6.94  

Algorithm 1 
Standard Gaussian Process Regression  

Input: Observation set (X, y), GP hyperparameters θ 
1: Gaussian Prior: f|X, θ ∼ N(0, K)

2: Maximum (marginal) Likelihood Estimation: θ∗←argmin
θ

[ − logp(y|X, θ)]

Output: Posterior predictive distribution: f|X, X∗, y, θ∗ ∼ N(k∗T(K + σ2
n I)−1y, k∗∗ − k∗T(K + σ2

n I)−1k∗)
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Algorithm 2 
Gaussian Process Regression with PNLML  

Input: Observation dataset (X, y), GP hyperparameters θ, number of observation dataset N, number of collocation points Ncol 
1: Gaussian Prior: f|X, θ ∼ N(0, K)

2: Formulation of Physics Violation (PV) function: PV(θ, X∗
col|X, y) = ‖ K ∗(K + σ2

n I )
−1y ‖

2
2 

3: Maximum (marginal) Likelihood Estimation with PNLML: 

θ∗
physics←argmin

θ

[
−

1
N

logp(y|X, θ) +
1

Ncol
PV(θ, X∗

col|X, y)
]

Output: Posterior predictive distribution: f|X, X∗, y, θ∗
physics ∼ N(k∗T(K + σ2

n I)−1y, k∗∗ − k∗T(K + σ2
n I)−1k∗)

Algorithm 3 
Optimization of Marginal Likelihood using Cholesky Decomposition  

Input: Observation dataset (X,y), kernel function k, kernel matrix K, collocation points Xcol , number of observation dataset N, GP hyperparameters θ 
1: L = cholesky(K+σ2

nI)
2: υ = LT\(L\y)

3: logp(y|X, θ) = −
1
2
yTυ −

∑N
i=1logLii −

N
2

log2π 

Output: θ∗ = argmin
θ

log[ − p(y|X, θ)]

* Computational Cost is O(N3/6) for line 1 and O(N2/2) for line 2  

Algorithm 4 
Optimization of Penalized Marginal Likelihood using Cholesky Decomposition  

Input: Observation dataset (X,y), kernel function k, kernel matrix K, noise σ2
n , collocation points Xcol, physics-based linearly transformed Kernel K , number of observation dataset N,

number of collocation points Ncol 

1: L = cholesky(K+σ2
nI)

2: υ = LT\(L\y)

3: logp(y|X, θ) = −
1
2
yTυ −

∑N
i=1logLii −

N
2

log2π 

4: PV(θ, X∗
col|X, y) = ‖ K ∗Tυ ‖

2
2 where K ∗ = [K ∗

1 , K ∗
2, …, K ∗

Ncol
], K ∗

i = [K ∗(X(1), X(i)
col), K ∗(X(2), X(i)

col), …, K ∗(X(N) , X(i)
col)]

T 

Output: θ∗
physics = argmin

θ

[
−

1
N

logp(y|X, θ) +
1

Ncol
PV(θ, X∗

col|X, y)
]

* Computational Cost is O(N3/6) for line 1, O(N2/2) for line 2, and O(NcolN2/2) for line 4  
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