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Safety-Critical Control With Input Delay in
Dynamic Environment

Tamas G. Molnar
and Gabor Orosz

Abstract—Endowing nonlinear systems with safe behavior is
increasingly important in modern control. This task is par-
ticularly challenging for real-life control systems that operate
in dynamically changing environments. This article develops a
framework for safety-critical control in dynamic environments,
by establishing the notion of environmental control barrier func-
tions (ECBFs). Importantly, the framework is able to guarantee
safety even in the presence of input delay, by accounting for
the evolution of the environment during the delayed response of
the system. The underlying control synthesis relies on predicting
the future state of the system and the environment over the
delay interval, with robust safety guarantees against prediction
errors. The efficacy of the proposed method is demonstrated by
a simple adaptive cruise control (ACC) problem and a more
complex robotics application on a Segway platform.

Index Terms— Delay systems, dynamic environment, predictive
control, robust control, safety-critical control.

I. INTRODUCTION

AFETY is of great importance in many control systems,
including a wide spectrum of applications from automated
vehicles (AVs) [1], [2] through robotics [3], [4], [5], [6] and
multirobot systems [7], [8], [9], to controlling the spread
of infectious diseases [10], [11]. Notably, safety is often
affected by a dynamic environment that surrounds the control
system. For example, robots must avoid collision with other
agents in multirobot systems [12], [13], AVs must drive safely
among other road users [14], and robotic manipulators must
collaborate safely with their human operator [15], [16], [17].
Strict safety requirements call for theoretical safety guaran-
tees and provably safe controllers. Thus, control synthesis must
take into account how the control system interacts with its
environment, and it must ensure that environment’s evolution
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Fig. 1. Proposed safety-critical control framework in high-fidelity simulation
of a Segway. The Segway safely avoids a moving obstacle, even when the
obstacle’s future position is unknown, and there is input delay in the control
loop. This is accomplished via the ECBF plotted at the bottom. Observe that
the Segway uses different strategies in the delay-free and delayed cases. See
video at https://youtu.be/NIImeVnlziM.

does not lead to safety violations. As such, dynamic environ-
ments pose a major challenge for safety-critical control.

An important element of this challenge is that the response
time of control systems may be commensurate with how fast
the environment changes. Response times include sensory,
feedback, and actuation delays that arise in practice [18].
The magnitude of the delay depends on the application: it
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is milliseconds in robotic systems [19], a few tenths of a
second in AVs [20], and days in epidemiological models [21].
Delays significantly impact safety in dynamic environments,
since by the time the control system responds, the environment
may change, and safety may be compromised. To overcome
this danger, one must consider how the dynamic—and often
uncertain—environment evolves over the delay period, which
yields a major challenge in designing provably safe con-
trollers. This article addresses this problem by establishing
a framework for safety-critical control that takes dynamic
environments and time delays into account explicitly.

A. State of the Art

Formally, safety is often framed as a set invariance problem
by requiring the state of the system to evolve within a safe set
for all time. The theory of control barrier functions (CBFs)
provides an elegant solution to achieve this goal [22]. While
this theory delivers formal safety guarantees, one shall secure
these guarantees in dynamic environments during practical
implementation. Several works have built on CBFs to transfer
safety-critical controllers from theory to practice, by pro-
viding robustness against disturbances [23], [24], [25], [26],
[27], measurement uncertainty [28], [29], [30], and model
mismatches [31], [32]. Safety in dynamic environments was
addressed in [33] and [34] in the context of collision avoidance
in multiagent systems by incorporating chance constraints
into model predictive control and probabilistic safety barrier
certificates, respectively. Furthermore, human assist control
was discussed in [35] and [36], in which response to changing
environments was handled via time-varying CBFs, including
adaptivity to unknown environment parameters and robustness
to disturbances.

The safety of time delay systems has been attracting
increasing attention. The safety of continuous-time systems
with state delay was established by safety functionals in [37]
and [38], which were extended to control barrier functionals
in [39] and [40]. Discrete-time control systems with input
delay were studied in [41] for linear and in [42] for nonlinear
dynamics. Linear systems with input delays were addressed
in continuous time in [43] and [44] via control barrier and
Lyapunov functions. Safety-critical control of continuous-time
nonlinear systems with measurement delays was tackled in our
works [10], [11] in an application to controlling the spread of
COVID-19. These papers leveraged predictor feedback [45],
[46], [47], [48] to compensate the delay by predicting the
future evolution of the system.

Remarkably, Singletary et al. [42] also relied on predictor
feedback to compensate input delay. The underlying theory
was established in discrete time by assuming that the sys-
tem’s evolution is predicted accurately. As opposed, here,
we consider continuous-time systems and address prediction
errors. Parallel to our work, Abel et al. [49] proposed predictor
feedback in continuous time for compensating multiple input
delays in safety-critical control, wherein input channels with
shorter delays were used to keep the system safe until longer
delays were compensated. Abel et al. [50] modified the predic-
tor to compensate time-varying input delay and achieve safety.
Molnar et al. [51] endowed safety-critical predictor feedback
controllers with robustness against disturbances. Yet, these
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works have not addressed safety in dynamic environments
that evolve independently of the control input. This article
intends to fill this gap and tackle the challenges arising from
the combination of dynamic environments and delays.

In this article, we explicitly involve dynamically changing
environments into the framework for safety-critical control,
in order to handle uncertain environments with worst case
safety guarantees in a deterministic fashion. Importantly, our
framework also allows us to compensate the effect of input
delay, which was not addressed in the literature.

B. Contributions

Here, we build on [10] and [11] to establish the theory of
safety-critical control for nonlinear continuous-time systems
with input delay, operating in dynamically changing environ-
ments. Our contributions are threefold.

1) We establish the notion of environmental control barrier
functions (ECBFs) for delay-free systems to explicitly
address scenarios in which safety is affected by a
dynamic environment. This notion is particularly useful
when the dynamics of the environment are inherently
more uncertain than those of the control system.

2) We connect the theories of CBFs and predictor feedback
by developing the notions of CBFs and ECBFs for
systems with input delay and synthesizing safety-critical
controllers via predictor feedback. Predictors require
special care in dynamic environments, as the envi-
ronment’s future cannot be predicted accurately. Thus,
we make controllers robust against prediction errors.

3) We demonstrate the efficacy of this framework on
real-life engineering systems where time delays and
dynamic environments both occur, through the examples
of adaptive cruise control (ACC) and obstacle avoidance
with a Segway.

Fig. 1 illustrates a sample of these results. A Segway is
controlled to safely avoid a moving obstacle via the proposed
ECBFs in high-fidelity simulation. Without delay in its control
loop (left), the Segway pitches backward to go under the
obstacle. With input delay (right), the Segway approaches the
obstacle, then moves in reverse to make space, and pitches
forward to go under it. Remarkably, these safe behaviors
emerge from the ECBF automatically, which handles reactive
planning in a holistic fashion.

This article is structured as follows. Section II revisits
CBFs for delay-free systems. Section III addresses safety
in dynamic environments by introducing ECBFs. Section IV
extends CBFs and ECBFs to systems with input delays and
discusses safety-critical control via predictor feedback with
robustness against prediction errors. In these sections, ACC is
used as illustrative example, whereas Section V demonstrates
the safety-critical control of a Segway by numerical simula-
tions. We conclude our work in Section VI.

II. PRELIMINARIES TO SAFETY-CRITICAL CONTROL

Consider a control-affine system with state x(f) € X C R"
and control input u(f) € U < R™

X =fx)+gu 1)
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where f: X — R" and g : X — R"*™ are locally Lipschitz
continuous on X. Let x(0) = xyp € X be the initial condition.
When the input u = k(x) is given by a locally Lipschitz con-
tinuous controller k : X — U, system (1) has a unique solution
over a time interval t € I(xg). For simplicity, we assume
I(xp) = [0, 00); i.e., the solution exists for all ¢ > 0.

We consider the system safe if its state is contained
within a safe set S C X for all time. Accordingly, we frame
safety-critical control as rendering set S forward invariant
under dynamics (1): the controller needs to ensure for all
xo € S that x(f) € S, Vr = 0. Specifically, we define S as the
zero-superlevel set of a continuously differentiable function
h:X—R

S={xecX:h() >0} )

where the selection of & is application-driven.

A. Control Barrier Functions

We ensure the forward invariance of the safe set S by
the framework of CBFs. First, we briefly revisit the main
result in [22] that establishes the definition of CBFs and the
theoretical safety guarantees. We use the notation || for
Euclidean norm, and we call a function a : (—a, b) — R,
a,b > 0 as extended class /C function, if it is continuous,
strictly monotonically increasing and a(0) = 0.

Definition 1: Function h is a CBF for (1) if there exists an
extended class K function a, such that for all x € §

sup h(x, u) > —a(h(x)) 3)
usl
where
h(x,u) = VAE)(f (x) + g(x)u) )

is the derivative of A along system (1).
Note that sup becomes max if U is compact. With the CBF
definition, [22] establishes formal safety guarantees as follows.
Theorem 1 [22]: If h is a CBF for (1), then any locally
Lipschitz continuous controller u = k(x) satisfying

h(x,u) > —a(h(x)) (5)

¥Vx € § renders § forward invariant (safe); i.e., it ensures
XoeS=x(t) e S, vt=0.

The proof can be found in [22], and further technical
details with discussion about the selection of a are in [52].
Throughout this article, we use the variants of the safety
condition (5).

Remark 1: Condition (5) is often used in the context of
optimization-based controllers [22]. Given a control input
ug = kq(x) by a desired controller kq: X — U, one can
modify this input in a minimally invasive fashion to guarantee
safety by solving the following quadratic program (QP):

k(x) = argmin [lu — ks (x)]

s.t. h(x, u) > —a(h(x)). (6)

This defines the control law u = k(x) implicitly. The feasi-
bility of this QP is guaranteed by the definition of CBFs
(Definition 1). However, verifying that a given A is indeed a
CBF is nontrivial when there are input constraints (U C R™).
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An approach to overcome input constraints is the backup
set method [17], that relies on the forward integration of
the dynamics similar to predictor feedback presented in
Section IV. Otherwise, without input bounds (U = R™),
feasibility guarantees can be proven, and the solution to
QP (6) can even be expressed explicitly based on the
Karush—Kuhn-Tucker (KKT) conditions [53] as k(x) = kq(x)
if Vhi(x)g(x) =0 and

k(x) = ka(x) + max{—go(x), 0}¢" (x)
$o(x) = VR(x)(f(x) + g(0)ka(x)) + a(h(x))
$1(x) = Vh(x)g(x) @)

if VA(x)g(x) # 0, where ¢ (x) = ¢/ (x)/ (1 (X)¢] (x)) is the
right pseudo-inverse of ¢;(x). The derivation of (7) is given
in Appendix I. Note that if VA(x)g(x) # 0, Vx € S, it is often
referred to as h has relative degree 1 (i.e., the first derivative
of h with respect to time is affected by «). For higher relative
degrees (when a higher derivative of h is affected by u),
there exist systematic methods to construct CBFs from A2 and
guarantee safety; see [54], [55], [56], and [57] for details.
An example for such extension is given later in Section V.

III. SAFETY IN DYNAMIC ENVIRONMENT

So far, we related safety to the state x(¢) of the system.
Often safety is also affected by the state of the environment,
which we characterize by e(f) € E < R/, where e is a contin-
uously differentiable function of time with é(f) € £ € R and
e(0) = ey € E. This leads to an environmental safe set S,

Se={(x,e) e X x E: H(x,e) = 0} (8)

where H : X x E — R is assumed to be continuously differ-
entiable in both arguments.

A. Environmental CBFs

We enforce safety in dynamic environments by introducing
the notion of ECBFs5.

Definition 2: Function H is an ECBF for (1) if there exists
an extended class /C function «, such that for all (x, e) € S,
and é € £

sup H’(x, e,é,u) > —a(H(x,e)) 9
uel
where
H(x,e,é,u) = ViH(x, e)(f (x) + g(x)u) + V. H (x, e)é
(10)

is the derivative of H along system (1).

ECBFs are a time-dependent extension of CBFs, wherein
the dependence on time is considered through the state e(r)
of the environment. This will facilitate addressing environ-
ment uncertainty in Section III-B. The ECBF condition (9)
is directly related to the CBF condition (3), with an addi-
tional term in the derivative with respect to time. Further
literature on time-varying CBFs can be found, for example,
in [35] and [36].

Via the ECBF, an extension of Theorem 1 yields theoretical
safety guarantees in dynamic environments, as given below.
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Theorem 2: If H is an ECBF for (1), then any locally
Lipschitz continuous controller u = K (x, e, é) satisfying

H(x,e,é,u) > —a(H(x, €)) (11)

V(x,e) € S. and Vé € £ renders S. forward invariant; i.e.,
it ensures (xp, €p) € Se = (x(7), e(t)) € S., Vi = 0.

Proof: Equation (1) and its environment form the aug-
mented system

z=F(@)+ G(2)v

with augmented state z, input », and dynamics F and G as
follows:

(x) (x)
[} [} -} co-[]

(13)

For this system, function H; : X x E — R, H,(z) = H(x, e)
is a CBF, since H is an ECBE. Based on Theorem 1, safety
is guaranteed with respect to the zero-superlevel set of H; by

H,(z,v) > —a(H,(2)). (14)

Substituting the definitions of z, v, F, G, and H, leads to (11)
and proves the statement in Theorem 2. |
Remark 2: Theorem 2 yields safety-critical controllers of
the form K : X x E x &€ — U, u = K(x, e, é) that depend
on the environment as well through e and é. For example,
a controller based on optimization (specifically, a QP) reads

12)

K(x,e, é) = argmj[r} lu — Kq(x, e, é)]?
st. H(x,e,é,u) > —a(H(x, €)) (15)
analogously to (6), with explicit solution for U = R™
K(x,e,é) = Kq(x, e, &) + max{—®o(x, ¢, &), 0}OF (x, ¢)
(DQ(I, e, é) = VXH(xJ f)(.f(x) + g(x)Kd(x: €, é))
+V.H(x,e)é +a(H(x,e))
@(x,e) = ViH(x,e)g(x)

analogously to (7) if Vi H (x, e)g(x) #£ 0.

(16)

B. Robust Safety in Uncertain Environment

ECBFs rely on the environment’s state e and its deriv-
ative é. In practice, these quantities are typically estimated
with uncertainty. Thus, now, we robustify safety-critical con-
trollers against uncertainties in the environment. Motivated by
the method developed in [30] for handling state uncertainty,
we provide robustness based on worst case uncertainty bounds
(i.e., in a deterministic fashion). For simplicity, we consider no
uncertainty in x, since the environment is typically associated
with more uncertainty than the state of the control system.

Consider that the true environment state e and its derivative
é are not available, only some estimates & and é. We assume
these estimates have known uncertainty bounds &, and &;

le—ell <&, |é—é| <e.. a7

While it may be nontrivial to find such error bounds, con-
servative over-approximations of uncertainty bounds are usu-
ally available in practice for many perception, measurement,
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or state estimation algorithms. As such, the approach proposed
below is limited to setups with known uncertainty bounds,
since safety is guaranteed by considering the worst case
scenario.

The main idea is to enforce safety through a conservative
lower bound on the unknown expression H (x,e,é,u) +
a(H (x, e)) that must be kept nonnegative per Theorem 2. The
bound uses the known quantities & and ¢ in the form

H(x,e,é,u)+ a(H(x, e))

= H(x, e,é,u)+a(H(x,2)) —Cle, es,u) > 0. (18)

This is stated more formally with the specific expression of
C(ge, ¢, u) below, after some additional assumptions.

Assume that the following regularity conditions on H hold.
Functions Vi H(x,e)f(x), V:H(x,e)g(x), and a(H (x,e))
are Lipschitz continuous in argument e¢ on S, with Lipschitz
coefficients Lypfe, Lvag.e, and Loop ., Whereas V. H (x, e)é
is Lipschitz continuous in e and é on S x & with Lipschitz
coefficients Lype e and Lyge . This implies

ViHf|xe — ViHf|xe = —Lvnuselle — ||
(VeHglxe — ViHglxe)u = —Lyngelle — 2| [lu]|
VeHé|xee — VeHe|, ;5 > —Lvneelle — €|
— Lynecllé — €|
—Loorelle — 2]

X868

aoH|y, —aoH|,

IV

19)

This leads to the following sufficient condition for safety.

Proposition 1: If H is an ECBF for (1) and the regularity
conditions in (19) hold, then any locally Lipschitz continuous
controller u = K(x, &, @) satisfying

H(x,2,é,u) — C(ec,es,u) > —a(H(x,2))  (20)
with
C(ee, 6, u) = (Lyrfe + Lacte + Lvnee)ee
+Lvreece + Lyngecellull (21)

V(x,8) € S. and Vé € £ renders S, forward invariant; i.e.,
it ensures (xp, €g) € Se = (x(7), e(t)) € Se, Vi = 0.

Proof: The steps of the proof follow those of [30, The-
orem 2]: we show that (20) implies (11), and we apply
Theorem 2. We relate (20) to (11) by introducing the difference
between their corresponding terms. By using (10), we get

H(x,e,é,u)+a(H(x,€))
= H(x,2,é,u) +a(H(x,2))
+ViHf|xe — ViHf |xe + (Vngb:‘e — V;Hg[x‘é)u
+VeHé|ree — VeHé|, ;3 + a0 H|xe—ao Hl|yp.
(22)

These differences show up in (19). Thus, the regularity con-
ditions (19) on H, the uncertainty bound (17), and condi-
tions (20) and (21) imply (11), which completes the proof.
|

Less conservative problem-specific bounds than (21) also
work as long as they imply (11). Furthermore, we highlight
that (21) involves the term ||u||. This, when incorporated into
an optimization problem, such as (6), leads to a second-order
cone program (SOCP) rather than a QP if Ly, . # 0.
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Fig. 2. Strategies for ACC where an AV intends to safely follow an HV;
(a) phase portrait, (b) velocity of HV, (c) control input of AV, and (d) ECBE.
The HV represents an environment for the AV. In the ideal scenario where
the HV’s position and speed are accurately known to the AV, controller (15)
ensures safety (black). When the HV’s position and speed are measured with
error (the environment is uncertain), controller (15) violates safety (red). When
controller (15) is robustified via constraint (20), safety is maintained even in
the presence of environment uncertainty (blue).

Example 1 (ACC): We consider an ACC problem, where
an AV intends to follow a human-driven vehicle (HV) without
collision; see Fig. 2. This problem has been studied previously
without the notion of ECBFs. In [1], polyhedral-controlled
invariant sets and finite-state abstraction were used, and in [2]
and [22], CBFs were applied. We revisit this problem, use
ECBFs to tackle it, and demonstrate that this framework allows
us to explicitly take into account uncertainties in the HV’s
motion. This will also play an essential role in Section IV to
extend the resulting safety-critical controller to safe ACC with
input delay, which was not addressed in [1], [2], and [22].

We denote the length of the AV by [, the position of its rear
bumper by s, and its speed by v, and we model its motion by

i fx)

(23)

g(x)

where p(v) indicates resistance terms. The input u is acceler-
ation command that is assumed to be realized by a low-level
controller. The HV’s position and speed, denoted by s, and v,
characterize the environment for the AV: ¢ = 5, and é = v;.

To avoid collisions, the AV intends to keep its speed v below
a safe limit &d for a selected # > 0, where this limit depends
on the distance d = sy —s — [. Thus, we use the ECBF

H(x,e)=k(s1—s—1)—0o 24)

and a linear extended class X function a(h) = y h with y > 0.
For this choice, we have V.H(x,e)f(x) = —kv + p(v),
ViH(x,e)g(x)=—1, and V. H(x, e)é = kv;.

Substituting these expressions into (10) and the safety
condition (11) leads to

k(i —v)+yEE—s—1D—o)+ p() > u. (25)

Hence, the AV should not accelerate more than the expression
on the left-hand side. This expression resembles the desired
acceleration of simple ACC controllers; in fact, for p(v) =0,
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it is equivalent to the one in [2] with a special choice of
feedback gains and range policy. Enforcing (25), for example,
through the QP (15), guarantees safety based on Theorem 2.

Fig. 2 shows numerical simulation results with the
safety-critical controller for p(v) = 0.1 4 0.0003 02,y =3,
and ¥ = 2 (with units in SI). The HV performs constant speed
cruising, braking with 2 m/s?> and constant speed cruising
again; see Fig. 2(b). The AV intends to travel at a constant
speed higher than the HV’s speed with desired controller
Ka(x, e, é) = 0. By applying the QP (15) with constraint (25),
the AV is able to slow down safely behind the HV; see Fig. 2
(black curve).

The controller relies on the position and speed of the
HV. These can be obtained by onboard sensors, such as
radar, LiDAR, cameras, or ultrasonics, or by vehicle-to-vehicle
connectivity with the HV. If these quantities are measured
with error, safety may be violated. This is demonstrated in
Fig. 2 (red color), where the controller relies on the measured
valuesé =§;, =51+ 1m and é = 1 = v1 + 1 m/s instead of
the true values e = s; and é = p;. Overestimating the position
and speed of the HV causes the system to leave the safe set.

The controller can be made robust to such uncertainties in
the environment by replacing the safety condition (11) with the
robustified constraint (20) in the QP (15). If the HV’s position
and speed estimates have known error bounds &, and ¢,, that
is, |s; — 81| <&y, and |v; — 0] < &, then, after substitution
into (20) and using (21), the robustified constraint becomes

k(o1 —ep—0)+y (k@1 —es—s—1)—v) +p) >u
(26)

where we used the Lipschitz coefficients Lyye = Lvag.e =
Lvhee =0, Loore =7k, and Lyye; = k. In this example,
the additional robustifying terms are equivalent to consid-
ering the worst case (smallest possible) position and speed
for the HV.

The effect of these robustifying terms is shown in Fig. 2
(blue color) for e, = 1.4 m and &, = 1.4 m/s. The AV is able
to safely slow down behind the HV despite the uncertainty in
the HV’s measured state. Notice that the controller is slightly
conservative: the AV stays farther from the boundary of the
safe set than in the case without uncertainty.

IV. SAFETY OF SYSTEMS WITH INPUT DELAY
Now, consider the system with input delay 7 > 0

(M) = f(x@®)+gx®)u(t — )

where f and g are the same as in (1), and u is bounded and
continuous almost everywhere (with a potential discontinuity
at r = 0 when the controller is turned on). We still assume
that there exists a unique solution x(f) over t > 0.

27

A. Solution of the System and Predictors

To synthesize safety-critical controllers, we ensure that
given the state x(f) at time 7, the solution of (27) continues
to be safe over [f,f+ r]. This property depends on the
instantaneous control input u(t) to be synthesized via CBFs
and also on the input history over [t — 7,1) given by u, € B

u (@) = u(t +6), 6cl—r,0). (28)
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Here, BB denotes the space of functions mapping from [—z, 0)
to U that are bounded and continuous almost everywhere.

The solution over [f,f + 7] is characterized by the semi-
flow W : [0,7] x X x B— X as a function of the state x(t)
and as a functional of the input history u;

x(t+9) =Y, x(t),u), v <l0,r]. (29)

The semi-flow is obtained by the forward integration of (27)

7
YO xu) =x+ [ (7(¥.xu)

+8(P(p, x, ur))us(p — r))dco-
Of particular interest will be the state x(f + ), that reads
x(t+17)=Y(r, x(1), uy). 31)

We remark that, since u is bounded, u(f) does not affect the
value of the integral, and thus, u,; is defined over [—z7,0).
That is, the input history u,; does not include the instantaneous
control input #(t). This will allow us to utilize the input history
u; when synthesizing the control input u(f).

Hereinafter, x(f + 7) = ¥ (z, x(f), u;) is called predicted
state, and (30) serves as predicfor. The predicted state will
play a key role in safety-critical control. It can be calculated by
forward integration of (27) over [f, f + 7]. Explicit expressions
are available for linear systems with A € R"*" and B € R"*™

i(f) = Ax(t) + Bu(t — 1) (32)

(30)

where the predicted state is given by the convolution integral

T
¥ (z, x(t), us) :e"”x(r)Jrf AN Bu, (¥ — r)dd. (33)
0
Note that predictors also exist for systems with time-varying
and state-dependent delays, as given in [46], that have also
been considered in the context of safety in [50]. While the
upcoming theorems are stated for constant delay, they could be
extended to varying delays by using the appropriate predictor.

B. CBFs With Input Delay

The following definition generalizes CBFs for systems with
input delay in the form (27) with 7 > 0.

Definition 3: Function h is a CBF for (27) with 7 > 0 if
there exists an extended class K function a, such that for all
xeSand u; e B

sup h(xp, u) > —a(h(xp)) (34)
uell
where xp, = ¥ (z, x, u;) with ¥ given by (30).

The definition recovers Definition 1 in the delay-free case,
since xp = x if = = 0. With this definition, we guarantee safety
analogously to Theorem 1. We assume that safety-critical con-
trol starts at = 0. According to (29), x(J) = ¥ (J, xo, uo),
¥ € [0, 7]; that is, the solution over [0, 7] evolves based on the
initial input history u#, which we cannot prescribe. Therefore,
we need the following assumption to ensure safety over [0, 7].

Assumption 1: The initial history up of the control input
satisfies x () = W (0, xo, up) € S, VI € [0, z].

Now, we are ready to state our main theorem that ensures
safety in the presence of the input delay 7 > 0.
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Theorem 3: If h is a CBF for (27) with 7 > 0,
then any locally Lipschitz continuous controller u = k(xp),
xp = ¥(z, x, u;) with input history u; satisfying

h(xp, u) > —a(h(xp)) (35)

VxeS and Vu; € B renders S forward invariant under
Assumption 1; i.e., it ensures xp € S = x(f) € S, Vit = 0.

Proof: Since Assumption 1 ensures x(J) € S, Vd € [0, 7],
it is sufficient to prove x(zr) € S = x(t) € S, Vt = 7. By dif-
ferentiation of (30) with respect to 4, we have

d
@‘P(ﬁ, x(0),ur) = f(¥@,x(), ur))
+g (Y@, x(@), up))ut +9 — 7).

Furthermore, by noticing (d/dd)x(t +J) = (d/df)x(t + 3)
and by using (29), we get
(d/d)V (I, x(t), uy) = (d/dt)¥ (9, x(t), u;). Substituting
this into (36) and using ¥ = 7z, we get the following delay-free
system for x,(t) = ¥ (z, x(), us):

Xp(t) = fxp(1)) + g (xp(0))u(?).

For this system, Theorem 1 can be applied, since (34) and (35)
hold; thus, we get xp(0) € S = xp(f) € S, ¥Vt =0 that is
equivalent to x(z) € S = x(t) € S, Vt = 1. [ ]
Remark 3: As opposed to the delay-free case, the controller
in Theorem 3 is no longer a state-feedback controller, but it
also depends on the input history «; through the predicted state
xp = ¥(z, x, u;). Furthermore, optimization-based controllers
for systems with input delay can be synthesized via Theorem 3
similar to (6). The following QP can be solved if 7 > 0:

(36)

37

k(xp) = arg min |lu — ka(xp)|I”

s.t. h(xp, u) > —a(h(xp)). (38)

Here, the desired controller kg : X — U may also account
for the delay and can potentially depend on the predicted
state. The solution to (38) is equivalent to applying the
control law (6) of the corresponding delay-free system on the
predicted state x, = ¥ (z, x, u;). This allows one to extend
explicitly available delay-free control laws, such as (7), for
systems with input delays. However, an explicit expression for
k is not always available, especially if additional constraints
are added to (6). In such cases, one cannot construct u# by
separately solving the delay-free QP (6) and calculating the
predicted state xp, but one needs to solve QP (38) directly.
Remark 4: In practice, predicting the future state may not
be perfectly accurate. Often, only an estimate £, of the
predicted state x, is available. Classically, this estimate is
provided by the numerical forward integration of (27). Alterna-
tively, state prediction can also be done by more modern tools,
such as data-driven methods and machine learning. Theorem 3
guarantees safety for the ideal scenario of accurate prediction,
Xp = xp. However, mismatches between £, and x, inevitably
occur due to model uncertainties and computation errors [47],
and longer prediction (larger delay) typically yields larger
prediction error %, — xp. The effect of prediction errors can
be studied via the notion of input-to-state safety [24], [27], as
we did in [11], where we showed that the input disturbance
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d = k(&) — k(xp) makes a larger set Sq © S forward invari-
ant. Alternatively, if the prediction error is bounded and there
exists &, > 0 such that || £, — x;|| < &,, robustness against the
prediction error can be provided analogously to Proposition 1
using the following condition:

h(Rp, u) — (Lvng + Laoh)ex — Lungexllull > —a(h(%p))
(39)

where L is the Lipschitz coefficient of the subscripted function
on S. This method was originally used in [30] to address
mismatches between estimated and true states (X and x) of
delay-free systems. While safety is guaranteed, the additional
terms may lead to conservative behavior where the system
evolves far away from the safe set boundary. The conservatism
depends on the error bound &, and the Lipschitz coefficients.

C. Safety With Input Delay in Dynamic Environment

Finally, we consider the scenario when safety needs to
be guaranteed for the time delay system (27) in a dynamic
environment described by the state e(f) and the environmental
safe set S.. We assume that the state e(f) of the environment
is a continuously differentiable function of time.!

In Theorem 3, the key step to achieve safety was to predict
the system’s state over the time interval [f,f + 7]. Now,
we make a prediction of the environment and rely on its future
state e,(t) = e(f + 7). Typically, the future state e, (f) depends
on the current state e(f), as emphasized by the notation

e(t+9)=T(,e(t)), 9 <][0,r]

where themap I : [0, 7] x E — E may be unknown and may
involve dependence on other quantities as well.

For this setup, we establish safety by extending the notion
of ECBFs to systems with input delay.

Definition 4: Function H is an ECBF for (27) with 7 > 0
if there exists an extended class X function a, such that for
all (x,e) e S.,éc€ and u; € B

(40)

(41)

sup f;’(xp, ep, ép, u) > —a(H (xp, €p))
uell
where x, =W¥(z,x,u;) with ¥ given by (30), while
e, = I'(z, e) with T' defined by (40).

With this definition, Theorems 2 and 3, that separately guar-
antee safety in dynamic environment and for input delay, can
be integrated into Theorem 4. Again, we make a preliminary
assumption that the system is safe over the interval t € [0, 7]
when safety depends on the initial input history ug.

Assumption 2: The initial history up of the control
input satisfies (x(9), e(?)) = (¥(I, x0, up), ['(J, €p)) € S,
Vi e [0, z].

Now, we can state the main theorem to ensure safety for
systems with input delay in dynamic environment.

Theorem 4: If H is an ECBF for (27) with z > 0, then
any locally Lipschitz continuous controller u = K (xp, €p, €p),
xp = ¥(z, x,us), and e, = I'(z, ) with history u; satisfying

H (xp, ep, ép, u) > —a(H (xp, €p)) (42)

In case of a higher relative degree r > 1, the state e(f) of the environ-
ment must be r times continuously differentiable. While we omit in-depth
discussion about higher relative degrees, an example is shown in Section V.

1513
V(x,e)ec S., Véec &, and Vu; € B renders S. forward
invariant under Assumption 2; ie.,, it ensures

(x0,€0) € S = (x(1),e(t)) € 8., ¥Vt = 0.

Proof: Assumption 2 yields (xp,e0) € S =
(x(13), e(?)) € S, VI € [0, r]; thus, what remains to prove is
(x(7),e(r)) € Se = (x(1), e(t)) € Se, ¥Vt = 7. This is equiva-
lent to (x,(0), ,(0)) € Sc = (xp(f), €p(t)) € Se, Vi > 0 based
on the definitions of x, and e,. According to the proof of
Theorem 3, x,(f) is governed by the delay-free dynamics (37).
Hence, Theorem 2 is directly applicable to this delay-free
system considering the environment given by e,. This provides
(xp(0), €p(0)) € Sc = (xp(r), €p(t)) € Se, ¥Vt =0 as desired,
which completes the proof. |

Remark 5: Theorem 4 ultimately leads to controllers that
use the state x, the input history u,, and the state of the
environment given by e, é. An example is the following QP:

y z g e
K(xp: €p, fp) = arg I:}rlaltffl [lu — Kd(xp, €p, ep)”

s.t. H(xp, ep, ép, u) > —a(H (xp, ep))
(43)

with x, = W(z, x, u;) and e, = I'(z, €); see (15) and (38).
Remark 6: In practice, the environment’s future state e,
and its derivative é, are unknown, and we can only provide
estimates &, and é,. Robustness against environment prediction
errors is a significant problem, since the evolution of the
environment is typically more uncertain than the dynamics
of the control system. Robustness can be addressed similar
to Section III-B, as follows. For simplicity, we assume that
the dynamics of the control system (27) is well known, and
its state is predicted with negligible error (£, = x;,); otherwise,
prediction errors could be overcome based on Remark 4. Then,
the approach of Proposition 1 can be applied to achieve robust-
ness against environment prediction errors, via the condition

}}(xp, ép, ép: u) — C(ee, 6, u) > —a (H (xp, ép)) (44)

with C(e., ., u) defined in (21), where ¢, and g; are error
bounds satisfying |le, — &p|| < &, and ||é, — §p|| < &

Example 2 (ACC With Input Delay): Consider the ACC
problem of Example 1, now with input delay 7z that represents
powertrain delays

5(t) o(t) 0
[560) = oot * [1] we-o
_— 2 ==

(1) Fx(0) g(x(t)

For passenger vehicles, the delay 7 is around 0.5-1 s [20];
hence, it is not negligible for safety-critical applications.

The effect of the delay is demonstrated in Fig. 3 (black).
Simulation results are shown with a large delay z =1,
zero initial input history, and the parameters of Example 2:
p(v) = 0.1 +0.0003 v%, y =3, and & = 2 (with units in SI).
If one implements the delay-free control design (15) relying
on (25), it fails to keep system (45) safe due to the delay z.
Safety is violated even when the HV cruises at constant speed.

Thus, we use Theorem 4 to ensure safety for ¢ > 0. We pre-
dict the AV’s motion by forward integrating (45) over the delay
interval [f,f + 7] using the input history u,. The resulting
predicted state is denoted by xp(f) = [sp(), vp(f)]". Further-
more, we predict the HV’s motion by assuming constant

(45)
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Fig. 3. Strategies for ACC with input delay; (a) phase portrait, (b) velocity
of HV, (c) control input of AV, and (d) ECBF. The naive implementation of
the delay-free control design (15) violates safety (black). The controller (43)
that relies on predictor feedback enforces safety as long as the prediction
of the HV's motion is accurate, and violates safety otherwise (red). When
controller (43) is robustified via constraint (44), safety is maintained despite
prediction errors (blue).

speed over [f,f + 7]: ép(r) =o1(f) and &,(t) = 51(f) +-v1(t)7.
The prediction is incorporated into the safety condition (42)
to synthesize a control input satisfying

f(vl — vp) +y (R(Sl +o17 —8p—1) — up) + pvp) = u
(46)

See (25). Fig. 3 (red color) shows the result of executing
the corresponding controller given by QP (43) with desired
controller Kq(xp, €p, ép) =0 and constraint (46). The con-
troller maintains safety as long as the HV travels at constant
speed, and the prediction about HV's future motion is accurate
(ép(t) = é,(7) and ép(t) = é,(1)). Then, safety is violated once
the HV starts to slow down, and the prediction no longer
matches the true future motion of the HV (&p(t) # ep(f)
and ép(r) # €ép(t)). While one can argue that the constant
speed prediction is overly simplistic and more sophisticated
predictions exist, the HV’s future motion is inherently uncer-
tain. Hence, we need to robustify the controller against this
uncertainty.

Predicting the HV’s future motion with constant speed leads
to a time-varying prediction error that depends on the velocity
profile v (¢). Assuming that the HV’s acceleration is limited to
a range [—dmin, Amax], We have the following physical bounds
for the environment prediction error: gp = ar and g, = arzf 2
with @ = max{anin, @Gmax}.- Then, the robustified condition (44)
leads to the form

JE(U] —ar — Up) +y (r‘c(sl +oyr —arl/2— sp—1) — vp)

+p(p) =u  (47)

See (46). Besides, it can be shown that replacing a with ampin
in (47) also implies (42). This provides a problem-specific
bound that is less conservative than (47) if amin < @Gmax-

Fig. 3 (blue curve) shows simulation results for con-
troller (43) with the robustified constraint (47) and api, =
Amax = 2.5 m ,’52. By Theorem 2, the controller ensures safety
even with input delay, in a dynamic, uncertain environment.
The price of robustness is slight conservatism: the system does
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Fig. 4. (a) Ninebot E4 Segway platform. (b) Its mechanical model illustrated
in equilibrium position. (c) Segway in motion aiming to avoid a moving
obstacle. (d) Simplified representation of the Segway.

not reach the safe set boundary but keeps a small distance,
since the controller uses the 2.5-m/s? braking limit instead of

the actual 2-m/s? braking over the 1-s delay interval.

V. CASE STUDY: CONTROL OF A SEGWAY

Now, we apply the theoretical constructions of this article to
a real-life robotic system: we consider the control of a Ninebot
E+ Segway platform [58] shown in Fig. 4(a). We intend to
drive the Segway, so that it safely avoids a moving obstacle,
even when the obstacle position is uncertain, and there is a
delay in the control loop. We conduct numerical simulations
of the Segway’s motion using a high-fidelity dynamical model.

We describe the planar motion of the Segway by its mechan-
ical model in Fig. 4(b) and (c). Fig. 4(b) depicts the Segway
in equilibrium, where the center of mass (CoM) of its frame
(point G) is above the wheel center (point C). Note that the
frame is asymmetric, and its axis is tilted in equilibrium at
an offset angle @y. Fig. 4(c) shows the Segway in motion
during obstacle avoidance, and Fig. 4(d) depicts its simplified
representation.

Our goal is to drive the Segway forward with a desired
speed pg while avoiding a moving, circular obstacle centered
at [e,y]" (point E in Fig. 4) with radius r. The obstacle
represents the environment of the Segway. We intend to control
the Segway such that its tip—point T in Fig. 4, located at
distance £ from the wheel center—does not collide with the
obstacle. The obstacle moves horizontally with constant speed
Dobs: € = €p — [Dgbs, € = —Vobs, and y = 0. For numerical
case study, we use pg =1 m/s, r =0.2 m, pgps = 0.5 m/s,
ep =1 m, and y = 1.0418 m (for this value, point T is located
0.05 m above the bottom of the obstacle when the Segway
is in equilibrium). First, we consider safety-critical control
by neglecting the time delay that may arise in the Segway’s
control loop; then, we address the effects of delay.

A. Safety-Critical Control in Dynamic Environment

We describe the Segway dynamics by the wheel center
position p and pitch angle ¢ as two-degrees-of-freedom
planar system with general coordinates ¢ = [p, 9] € Q
and velocities § =[v, ®]" ¢ R The state becomes
x =[p, @, v, ®]" € X, the configuration space is Q = R x
[0, 27 ], and the state space is X = Q x R2. The control input
u € R is the voltage applied on the motors at the wheels. The
dynamics are governed by

P v 0

) @ 0

o | = | foloo,0) | T | 2lo) | 5
@ fw(ﬁosvsw) gw(@)
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o|(®), 0.4|®)

time

delay-free dynamics

1 2 3 4 5
time, £(s)

Fig. 5. Safety-critical control of the Segway to avoid a moving obstacle,
with the delay-free dynamics (48) and known obstacle position. The Segway
safely avoids the obstacle with a controller that satisfies (53). (a) States, (b)
ECBF candidate, (c) phase portrait, and (d) control input.

For the derivation of this equation and the detailed expressions

of fo, fu, gv.and g, please refer to Appendix II-A. The model

parameters were identified in [58] and are listed in Table 1.
We track the desired speed py by the desired controller

Ka(x,e,) = Ky(p — pa) + Kop + K9 (49)
with  gains K;=8 Vs/m, K, =40V/rad, and
K; =10 Vs/rad, that also stabilizes the Segway to the

upright position. To avoid the moving obstacle, we construct
the ECBF candidate
H(x,e) =d'd —r?
P [ p + sin(p + po)—e ]

R+ fcos(g +@o) — ¥ o0

where d points from the obstacle center to the Segway’s tip.

We seek to maintain safety with respect to the environmental
safe set (8) using Theorem 2. However, H is not a valid
ECBE since V,H(x,e)g(x) =0, and H is independent of
the input u. Thus, we use a dynamic extension of the ECBF
based on [54]. We define the extended ECBF

He(x,e,é) = H(x,e,é) + y.H(x,e€) (51)

with y. > 0, whose derivative depends on the control input u
He(x,e,¢,é,u) = V:H(x, €, &)(f (x) + g (x)u)
+V.H(x,e,é)é+ V:H(x, e, €)é
+7eH(x, €,8). (52)
With this choice, H.(x,e,é) >0 is equivalent to (11) in
Theorem 2 considering a linear class K function with gradient

ye. Thus, safety is achieved if H, is kept nonnegative for all
time, which can be enforced if H.(xo, €p, €y) = 0 and

He(xaea éaéau) = _a(HE(x:@: é)) (53)

1515

safety is
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Fig. 6. Safety-critical control of the Segway to avoid a moving obstacle.
The dynamics (54) involve an input delay. The naive implementation of the
delay-free control design based on (53) fails to avoid the obstacle. (a) States,
(b) ECBF candidate, (c) phase portrait, and (d) control input.

See Theorem 2. Notice that the second derivative é&
shows up.

We implement a QP-based controller similar to (15), with
desired controller (49) and constraint (53) using linear class
K function a(H,) = y H, with y =7.55s7" and y. =7.5s7\.
For known obstacle position, the performance of the controller
is demonstrated in Fig. 5, with snapshots of the motion at the
bottom and its characteristics at the top. Fig. 5(a) shows that
the Segway tracks the desired velocity (p =~ pg) in upright
position (¢ =~ 0) until it has to evade the obstacle. Fig. 5(b)
indicates that the obstacle is safely avoided, as H is positive
for all time. Fig. 5(c) shows the corresponding phase portrait,
whereas Fig. 5(d) depicts the desired and actual control inputs.

B. Safety-Critical Control With Input Delay

Now, we consider the dynamics with input delay z > 0
arising from sensory, feedback, and actuation latencies

p(1) (1) 0

o) | _ o (1) 0 o
50) | T | £, 00,00) | | 20e@) '
o)) | fulo®,00),00)] | 2e@)

(54)

See (48). The effect of the delay is illustrated in Fig. 6. Here,
the same delay-free control design is used as in Fig. 5, but the
dynamics are subject to the input delay ¢ = 0.1 s. Although
the Segway realizes a stable motion, the delay leads to safety
violation: the Segway collides with the obstacle [HH becomes
negative in Fig. 6(b)]. While collision could be avoided by
buffering the obstacle, formal safety guarantees no longer hold
with delay. Moreover, the control input is much larger with
delay than without delay; see Figs. 5(d) and 6(d). Such large
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PARAMETERS OF THE SEGWAY MODEL
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Description Parameter  Value Unit
gravitational acceleration q 9.81 m/s?
radius of wheels R 0.195 m
mass of wheels M 2x2.485 kg
mass moment of inertia of wheels Ja 2x0.0559 l;tg-m2
distance of wheel center and frame CoM L 0.169 m
distance of wheel center and frame tip £ 0.75 m
mass of frame m 44.798 kg
mass moment of inertia of frame Ja 3836  kgm?
offset angle @Yo 0.138 rad
torque constant of motors Km 2x1.262 Nm/V
damping constant of motors by 2x1.225 Ns
™o 52.710 kg
Jo 5108  kgm?
a 0.6768 m
b 47274 -
. c 68.5205 1/s2
combined parameters o 0.0713 Ve/m
A 1.1605 m/s/V
B 03344  mis?/V
c 23355 1AV
D 1.7147  Us?V

inputs are undesired, as safety-critical control could become
infeasible with input bounds. To overcome the unsafe behavior,
the delay needs to be incorporated into the control design.

The input delay can be tackled via predictor feedback,
using Theorem 4. We assume that the state x, is accurately
predicted (£, = xp), while the predictions e,, ép, and &, of
the environment are uncertain. Hence, the controller relies on
estimates &, &y, and &, and their error bounds |le, — &,|| < &,
llég — §p|| <eg:; and |&p —3p|| < gz. Analogously to (44),
we use the robustified safety constraint

He(xps ép's éps Ep, u) — Cle., €z, €5, 1) > _a(He(xp: éps Ep))
(55)
with
C(ee,e6,u) = (LyH, fe + LaoH..e + Lvh.ee + Lvnie)ee
+ (Lvn.fe + LaoH. e + Lvnee + Lvnee)ee

+ Lynspee + (Lvngete + Lyn.gpee)llull
(56)

See (21). Here, £ denotes the Lipschitz coefficient of the
subscripted function with respect to the argument at the end
of the subscript. These coefficients were determined based on
the expressions of the Segway dynamics; see Appendix II-B.

Fig. 7 shows the implementation of the corresponding
QP-based controller, similar to (43), with desired con-
troller (49) applied on the predicted state and with con-
straint (55). The true future of the environment, given

by €, =0, éy = —vgps, and €, = € — vgps7, is unknown to
the controller. Instead, the controller relies on the predic-
tion €, =0, &, = —(vobs — Av), and &, = € — (vobs — AD)7.

That is, the speed of the obstacle is underestimated by
Av = 0.05 m/s. The controller is robustified against the pre-
diction error using the error bounds gz = 0, £; = 0.055 m/s,
and &, = rg; = 0.0055 m. With the proposed robust con-
troller, the Segway safely executes the obstacle avoidance task,
despite the delay in the control loop and the uncertainty in the
obstacle’s future position. This is achieved with a qualitatively
different motion than in the delay-free case. For zero delay in
Fig. 5, the Segway pitches backward to go under the obstacle.
For nonzero delay in Fig. 7, the Segway moves in reverse to

I
0.4[P) |I ||
| III' |
T 0.2 \ | |
1] E— _k_ —_/_II ______ Pate
Iunsufc
0 2 4 [i]
time
40
VNI S
> |7 i/ﬂ\ . ) Y I
L. O i Iﬁ\I | ] 8 0 I
B | hom ok UL M \
) 1-5‘,:"'-\ P, / 20 II'.
-2 \ ) \ Tk.
=40 :
-2 0 2 0 2 4 ]
D, @ time

robust control design for delayed dynamics

1 2 3 4 5
time, t(s)

Fig. 7. Safety-critical control of the Segway to avoid a moving obstacle.
The dynamics (54) involve an input delay that is compensated via predictor
feedback. The controller is designed using (55), taking into account prediction
errors. The Segway successfully avoids the obstacle despite the delay and the
uncertain future motion of the obstacle. (a) States, (b) ECBF candidate, (c)
phase portrait, and (d) control input.

get away from the obstacle, and then pitches forward to go
under it. Notably, this behavior is automatically generated by
ECBF, and with provable guarantees of safety.

VI. CONCLUSION

We have discussed safety-critical control for systems with
input delay that operate in dynamically evolving environment.
We have provided formal safety guarantees and proofs
thereof. We have established a method for safe control
synthesis by proposing ECBFs and integrating them with
predictor feedback. We have strengthened the underlying
safety condition to provide robustness against uncertain
environments, in which the future of the environment cannot
be predicted accurately, but bounds on the related prediction
error are known. The resulting control design uses worst
case uncertainty bounds and is provably safe. We have
demonstrated the method by an ACC problem, where the
motion of another vehicle creates an uncertain environment,
and by a Segway controller that avoids moving obstacles.
Our future work includes the analysis of prediction errors,
control of systems with both state and input delays, and use
of control barrier functionals acting on delayed states.

APPENDIX I
KKT CONDITIONS
This appendix shows the derivation of solution (6)
to the QP (7) without input constraints (U = R™). Let
Ak(x) = k(x) — kq(x), and consider ki (x, u) in (4) and do(x),
¢1(x) in (7) with ¢;(x) # 0. We can restate (6) as follows:

Ak(x) = arg min_ | Aul®
s.t. go(x) + 1 (x)Au = 0. (57)
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This optimization problem has convex objective and affine
constraint; hence, the KKT condifions [53] provide necessary
and sufficient conditions for optimality. The KKT conditions
imply that there exists a Lagrange multiplier ¢ : X — R, such
that x(x) and Ak(x) satisfy

p(x) >0 (58)

Ak(x) = p(X)${ (x) (59

Po(x) + 1 (x) Ak(x) = 0 (60)
1(x)(do(x) + ¢ (x) Ak(x)) = 0 (61)

which are referred to as dual feasibility, stationary, primal fea-
sibility, and complementary slackness conditions, respectively.

We decompose the dual feasibility condition (58) into two
cases: pu(x) =0 and u(x) > 0. For u(x) =0, the stationary
condition (39) gives

Ak(x) = 0. (62)
With the primal feasibility condition (60), this leads to
$o(x) > 0. (63)

For u(x) > 0, the complementary slackness condition (61)
implies

$o(x) + 1 (x) Ak(x) = 0.

Recall that ¢ (x) € R" is a nonzero vector with right pseudo-

inverse ¢ (x) = ¢, (x)/(1(x)¢] (x)), and ¢gp(x) €R is a

scalar. Then, we can express Ak(x) from (64) as follows:

Ak(x) = —¢o(x)¢] (x).

Furthermore, we can show that ¢(x) < 0 holds by expressing
¢o(x) from (64) and substituting the stationary condition (59)

Po(x) = —¢1 (X) Ak(x) = —p(x)¢1 (x)p] (x) <O

where we used that x(x) > 0 and ¢;(x)¢] (x) > 0.
In summary, for ux(x)=0, we have Ak(x)=0 and

¢o(x) = 0, while p(x) > 0 implies Ak(x) = —¢o(x)d; (x)
and ¢o(x) < 0. These can be written as follows:

(64)

(65)

(66)

0, if ¢o(x) =0
Ak(x) = 67
@ {—@(xwr(x), it o) <0 O
or more compactly as follows [10]:
Ak(x) = max{—go(x), 0}¢ (x). (68)

Since k(x) = kq(x) + Ak(x), we finally obtain (7) as the
solution to the QP (6).

APPENDIX II
TECHNICAL DETAILS OF THE SEGWAY APPLICATION

Here, we derive the governing equations of the Segway
model described in Section V, using Lagrange equations of
the second kind. This reproduces the model in [58]. Then,
we describe the ECBF and the corresponding Lipschitz coef-
ficients for the obstacle avoidance task.
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A. Segway Dynamics

The Segway’s mechanical model is shown in Fig. 4. This
planar model contains two rigid bodies: the frame and the
wheels. The two wheels are considered to be identical; hence,
they are treated together with their combined mass and inertia,
while the voltage and torque at the two motors are assumed
to be the same. We denote the center of the wheels by point
C, the CoM of the frame by point G, their distance by L, and
the wheel radius by R. We measure the pitch angle, such that
@ = 0 in equilibrium, where G is located above C. Note that
the frame is asymmetric, and the frame axis is not vertical in
equilibrium, but it has an offset angle gy.

Assuming the wheels are rolling without slipping, the angu-
lar velocities wy, and wf of the wheel and the frame and the
velocities vc and vg of points C and G can be calculated by

oy = p/R, or=¢
= [P] o _ [P+ Lo cosg
S| 177 | -7 ]
Then, with the mass M and mass moment of inertia J¢ of the

wheels and the mass m and mass moment of inertia Jg of the
frame, the kinetic energy of the Segway is
1

T = 1Mug + —Jea? + lmvé + l.fgwfz
2 7 2

(69)

1 g 1
= Smop® +mLppcosp + = Jop’ (70)

where mo=m+ M + Jc/R*> and Jo=mL?>+ Js. The
potential energy of the Segway is

(71)

The power of the total driving torque My exerted by the two
motors at the wheels can be expressed as follows:

P =My(wy —awx) = Qpp+ Qp0p

yielding the general forces Qp = My/R and Q, = —My.

The driving torque My can be related to the voltage u of
the motors. We regard the voltage as control input, obtained
from the following motor model:

U=mgLcosgp.

(72)

U = Ryi + Kp(oww — wy)

My = Kii (73)

where i is the armature current, R, is the armature resistance,
Ky is the back electromagnetic field constant, and K, is the
torque constant of the motors. This implies the driving torque

My = Knu — b(p—Rp) (74)

with constants K, = K;/R, and b, = KK /(R,R).
With these preliminaries, we write Lagrange’s equations

deT oT oU
55 = a + 5 =0p
doeT oT oU
§£—$+$:Qm (75)
which, after substitution, lead to
mop +mLcos p—mL sinpg? = %
mLcosep + Jop—mgLsing = —Mj. (76)
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Ultimately, we obtain the equations of motion in the form

D(q)j + H(q,9) = Bu

with the inertia matrix D(gq), Coriolis and gravity terms
included in H (q, ¢), and input matrix B

_ my mlL cos ¢ | Ku/R
D) = I:mLcosw Jo ]’ B= [—Km

.. [~mLsinpg? + b/R(p—Rp)
H(q,q) = [ —mgLsing — b(p—Rg) |

)

(78)

The equations of motion can be rearranged to the first-order
control-affine form (1)

q)_[ q 0
['5?] B _—D“(G)H(q,é)] i [D—l(q)B]“ (79)
which leads to
ﬁ_ [ 0
@ _ 0] 5 0 y .
o1 | fole,0, @) £ (9)
2 Jo(@, v, ®) ga(9)

See (48). The expressions of the drift terms are
2

aw” sin ¢ — g sin @ cos
folp,0, @) = T Tl TR — k(@) (0 —Ro)
. 2 .
csin @ — w* sin @ cos @
folp,0,0) = = — 5 =" ~ Kgo(9)(0—R0)
(81)
whereas those of the control matrix read
A+ Bcosg C+ Dcosg
=——""7 = * 82
&v(p) b—costg ) b—costg (82)
with parameters
g B y_med  _mg b
mL’ m2L?’ mL’ Km
— KnJdo ; . &, — Kmm(), _ Kn . (83)
m2L2R mL m2L? mLR

The values of all parameters are listed in Table I. These were
identified for the Ninebot E+ Segway platform in [58].

B. Expression of the ECBF and Its Lipschitz Coefficients

Now, we give the detailed expressions of the extended
ECBF in (51) and the corresponding Lipschitz coefficients
in (56). The ECBF candidate in (50) is of the form

H(x, €) = ho(x) + h1(x)e + € (84)
with coefficients
ho(x) = (p + €sin(p + qpo))2
+ (R +£cos@ + po) — y)* — 17
hi(x) = =2(p + £sin(p + @o)). (85)

Then, the extended ECBF in (51) becomes

H.(x, e, &) = Ho(x) + Hi(x)e + hy(x)é + yee* + 2eé
(86)

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 4, JULY 2023

where

Hp(x) = Vpko(x)v i thh()(x)w + yeho(x)

Hi(x) = Vphl(x)v i thhl(x)w + yehi(x). (87)

Notice that hp and h; depend on the states p and ¢ only,
whose derivatives are independent of the control input u.
The Lipschitz coefficients in (56) belong to the functions

ViH.f(x,e,€) = Co(x) + C1(x)e + C2(x)é

ViHeg(x,e,é) = C3(x) + Ca(x)e

V.H.é(x, e, é) = Hy(x)é + 2y.eé + 2é>
V:H.é(x,e,é,é) = hi(x)é + 2eé

a o He(x,e,&) = y Ho(x) + y Hi(x)e + y hi(x)é

+yy.e’ +2yeé (88)
where
Co(x) = Vi Hp(x) f(x)
Ci(x) = Vi Hy(x) f(x)
Ca(x) = Vih(x) f(x)
Cs3(x) = Vi Hp(x)g(x)
Cy(x) = Vi Hi(x)g(x). (89)

For example, to identify the Lipschitz coefficients of V. H.é,
we can write
VeHeé(xa €, é) - VeHeé(x: é: E)
= H(x)(e — &) + 2y.(e¢ — 2é) +2(¢* — &)
= Hi(x)(e — &) + 2ycé(e — &) + 27.2(¢ — &)
+2é(6 — &) +2é(é — é)
> —(IH1(x)| + 2y. max |¢[)|e — 2]
écD;

— (27clel +21é] +2max |¢é])|é —e|. (90)
éeD;
Hence, the corresponding Lipschitz coefficients are
Lvnee = |Hi(x)| 4+ 2y, max |¢]
écD;
Lynes = 2ycle] +2[é| +2max [é]. on

Here, we considered that the unknown environment state
derivative é is restricted to a domain D; € £ to get local
Lipschitz coefficients. Similarly, the unknown environment
state ¢ and acceleration € can also be restricted to some
domains D, € E and D; € R.. In the case of the Segway,
we assumed that the obstacle’s position and the velocity
are restricted to D, = [-3,3] m and D; = [—0.55,0.55] m/s
(while its acceleration was known to be zero).

After similar calculation, the list of the remaining Lipschitz
coefficients is

Lyvn,.fe = |C1(x)]
Lyp,re = |Ca(x)]
Lyh.ge = |Ca(x)]
Lyrge =0

Lypse = 2max ||
éeD;

Lypee =0
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Lynzse = |hi(x)] + 2]é]
Laot,,e = ¥ |Hi(X)| + 7 7c(|e] + max |e]) + 2y max |¢é|
esD, ésD;

Laok.e = v M1 (x)| +2y1e|. 92)

Note that these coefficients may depend on the state x or the
estimates &, &, and é to reduce conservatism, while they are
independent of the unknown values e, é, and é.
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