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First Floor Elevation (FFE) of a house is crucial information for flood management and for accurately assessing
the flood exposure risk of a property. However, the lack of reliable FFE data on a large geographic scale
significantly limits efforts to mitigate flood risk, such as decision on elevating a property. The traditional method
of collecting elevation data of a house relies on time-consuming and labor-intensive on-site inspections con-
ducted by licensed surveyors or engineers. In this paper, we propose an automated and scalable method for
extracting FFE from mobile LiDAR point cloud data. The fine-tuned yolov5 model is employed to detect doors,
windows, and garage doors on the intensity-based projection of the point cloud, achieving an mAP@0.5:0.95 of
0.689. Subsequently, FFE is estimated using detected objects. We evaluated the Median Absolute Error (MAE)
metric for the estimated FFE in Manville, Ventnor, and Longport, which resulted in values of 0.2 ft, 0.27 ft, and
0.24 ft, respectively. The availability of FFE data has the potential to provide valuable guidance for setting flood
insurance premiums and facilitating benefit-cost analyses of buyout programs targeting residential buildings

with a high flood risk.

1. Introduction

It is widely recognized that flooding is among the most prevalent
natural disasters, and it is not only the deadliest but also the most costly
disaster on Earth [1]. Due to the climate change, the water levels around
the world's coasts is raising and the flood risk will inevitably increase in
these areas [2]. Moreover, the changes in Land Use and Land Cover
(LULQ), infrastructure and population demographics are also among the
leading factors that damaging floods are observed increasing in severity,
duration and frequency in recent decades [3]. From 2000 to 2015, the
total population in the inundation zone observed using satellite data
grew by 58-86 million, and the proportion of the population exposed to
floods is expected to increase further based on the climate change pro-
jection for 2030 [4]. Research indicates that the absolute damage loss
from floods could rise by a factor of 20 by the end of the century along
the global socioeconomic development if in the absence of risk miti-
gating measures [5]. The compounded effect of these driving forces
poses a challenge to understanding the causes, consequences, and
mitigation strategies associated with flooding events.

To diminish the effect of flood hazards on infrastructure assets and
enhance flood resilience, it is necessary to implement flood management

actions, particularly in communities that are vulnerable to flooding and
hurricanes [6]. Flood management can be divided into four phases:
mitigation, preparedness, response, and recovery [7]. The measures
used in flood management can be classified into two categories: struc-
tural and non-structural ones. For example, the structural measures
employed during the mitigation stage encompass activities such as
elevating flood-prone properties, implementing buyout programs, or
facilitating the relocation of affected communities. Flood insurance,
specifically the National Flood Insurance Program (NFIP) managed by
the Federal Emergency Management Administration (FEMA) in the
United States, is a vital non-structural method aimed at reducing the
socio-economic impact of floods during the preparedness stage. Lowest
Floor Elevation (LFE) of a building is an essential information for the
measures utilized in the full phases of the flood management. According
to the description of FEMA, the lowest floor refers to the lowest enclosed
living area (including basement) other than building access, parking, or
storage [8]. In the newly implemented Risk Rating 2.0 program, among
which the risk-based premiums are introduced and can yield a positive
societal benefit, First Floor Elevation (FFE) is used as one of the factors
to calculate the insurance rates [9,10]. The flood vulnerability analysis
of individual buildings can be conducted through comparing the FFE
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with the Base Flood Elevation (BFE, i.e., the elevation of surface water
resulting from a flood that has a 1% chance of equaling or exceeding that
level in any given year) which can be obtained from the Flood Insurance
Rate Map (FIRM).

The absence of reliable FFE data on a large geographic scale, such as
boroughs or states, poses significant limitations for flood management.
FEMA actively promotes the use of Elevation Certificates by commu-
nities to document elevation information for properties and demonstrate
compliance with floodplain management ordinances. The Elevation
Certificates can serve as a valuable reference for property owners when
applying for flood insurance. The traditional method of collecting
elevation information for Elevation Certificates relies on on-site in-
spection, which is typically conducted by a licensed surveyor or engi-
neer. According to FEMA, the vertical accuracy of the Elevation
Certificates surveyed by GPS can be accurate up to 0.5 ft. with a 95%
confidence level [11]. However, the manual inspection process for col-
lecting elevation data is both time-consuming and labor-intensive. Ac-
cording to the Elevation Certificate and Instructions provided by FEMA,
it is estimated that an average of 3.75 h is required per elevation cer-
tificate to gather all the necessary elevation information. Consequently,
scaling this process for large areas poses significant challenges.
Addressing this data gap is crucial for advancing flood management
practices and reducing the potential impacts of flooding.

Extracting FFE information from public geospatial data sets is a
promising approach in addressing the gap in building structural eleva-
tion data. For instance, several studies have focused on extracting FFE
information from the publicly accessible Google Street View (GSV) im-
ages with computer vision methods [12,13]. However, the spatial ac-
curacy of the GSV images is limited [14], particularly when compared to
elevation certificates. Another concern with GSV images is that they
often become outdated in floodplain areas due to constant rebuilding
and renovation activities. Other public geospatial data sets such as
airborne LiDAR have also been utilized to estimate FFE information
[15]. However, due to the angles of observations, airborne LiDAR
cannot capture information about building facades. Consequently, esti-
mating FFE from airborne LiDAR relies on proxy measures, such as
ground elevations, which can only provide FFE estimates with limited
accuracy. Researchers have also experimented with capturing FFE data
with drone-based mapping and infrared thermography [16,17]. Never-
theless, these methods cannot be scaled up to encompass a large number
of buildings due to either the requirement of manual interpretation or
the very limited sample sizes. It is possible to capture survey-grade
LiDAR data with UAV LiDAR. But due to the constraints of batteries,
LiDAR systems used on drones tend to have lower spatial resolutions
than those used on vehicular platforms. Additionally, battery and fly
zone restrictions often limit the area that can be covered by drone-based
survey grade mapping systems. It is also important to note that most
current studies on extracting FFE information from pubic geospatial data
sets have confined their study areas to the block or street level, and their
proposed methods have been validated primarily on residential build-
ings with homogeneous architectural styles [13,17,18].

Mobile LiDAR technology provides a scalable solution to rapidly scan
building facades at the street level, providing more detailed building
facade information than what can be obtained with airborne and UAV
LiDAR system. With a tactile inertia navigation system and high accu-
racy laser scanners, mobile LiDAR can achieve survey-grade spatial
mapping accuracy even at driving speeds. The resulting point cloud data
can be used to generate 3D digital elevation models of buildings across
large communities. This provides survey-grade mapping data that has
the potential to support the extraction of FFE information on a city-wide
scale. In a previously published study, we demonstrated the feasibility of
manually extracting FFE information from large mobile LiDAR point
cloud data, achieving accuracy comparable to traditional survey
methods [19]. However, the substantial volume of point cloud data,
often encompassing hundreds of millions or even billions of points
containing multiple attributes (e.g., coordinates, intensity, GPS time,
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and even color), poses challenges for manual FFE information extraction
across extensive areas. Additionally, occlusions resulting from line-of-
sight issue create gaps in point cloud data coverage, significantly
complicating the process of FFE information extraction.

As a sub-field of artificial intelligence, computer vision aims at
enabling machines or artificial systems automatically interpret visual
inputs (e.g., images, videos and point cloud) and derive meaningful
information for decision making [20-25]. Benefiting from the avail-
ability of large-scale visual datasets across various computer vision tasks
and advancements in hardware, such as Graphics Processing Units
(GPUs), deeper neural networks can be trained to achieve state-of-the-
art performance, and some of these networks have demonstrated the
ability to outperform the human visual system. However, despite these
advancements, research on extracting FFE information from mobile
LiDAR data with AI methods is still very limited. This scarcity could be
attributed to several factors. First, there is a shortage of annotated mo-
bile LiDAR data for segmentation and recognition tasks. Second, zero-
shot learning based on large-scale foundational models is predomi-
nantly trained on data that differs significantly from mobile LiDAR data.
Third, the availability of mobile LiDAR data for extensive flood-related
studies is not always guaranteed for large areas. The convergence of
these factors has resulted in an underexplored area that nevertheless
holds immense potential to enhance floodplain management.

This study focuses on the design and evaluation of computer vision
based FFE information extraction from large-scale mobile LiDAR point
cloud data. It addresses two key questions:

(1) How can data representations derived from mobile LiDAR data
can be optimized to enhance the utilization of foundational
computer vision models and reduce the reliance on annotated
training data?

(2) How to design and train machine learning models to reliably and
accurately extract FFE information in communities characterized
by wide variety of building typologies?

More specifically, this paper outlines a method that integrates
building facade detection, point cloud projection, and deep learning
based computer vison methods to extract first floor elevation from
massive mobile LiDAR data sets. The method underwent rigorous testing
and evaluation on mobile LiDAR data collected from three communities.
The main contributions of this work include:

e Generation of effective data representations from mobile LiDAR data
to facilitate deep learning based FFE information extraction

Design of an automated and scalable approach for extracting FFE
from mobile LiDAR point cloud data, demonstrating the capability to
achieve sub-feet accuracy in mean absolute error

Creation of ground truth FFE data for three representative commu-
nities, each facing diverse flooding threats and featuring different
types of building typologies. This ground truth data was derived from
elevation certificates and manual annotation, providing valuable
insights into the uncertainty associated with the proposed method.

The rest of the paper is organized as follows. Section 2 introduces the
relevant studies on extracting elevation information of buildings, point
cloud representation and 2D object detection. Section 3 covers the study
area introduction, datasets, and methodology. Section 4 shows the re-
sults of the proposed methodology and analysis of the estimated FFE
datasets.

2. Literature review
2.1. Studies on the extraction of building elevation information

The methodology of estimating building elevation information can
be classified into two paradigms: (1) regression-based method and (2)
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detection-based method. Gordon [18] developed statistical regression
model between FFH (First Floor Height) and selected building attributes
(i.e., foundation type, DEM value, difference in grade, year built and
flood zone), and then calculated the FFE (First Floor Elevation) through
combining predicted FFH and LAG (Lowest Adjacent Grade which
means the elevation of the ground next to the building). As the building
attributes data can be easily obtained from the tax assessor database for
most buildings, the regression model can fill the gap where elevation
certificate is missing. Of particular concern is the generalization of the
statistical model. The relationship between the FFH and building attri-
butes can differ depending on geographical features and architectural
styles, for example, the houses are typically built at an elevated height in
coastal communities, whereas it is uncommon in inland communities. In
the work of Gordon [18], only tabular data is used to build the regres-
sion model. Visual data which contains structure appearance informa-
tion of the buildings has the potential to enhance the model's ability to
generalize. The detection-based methods utilize remote sensing data in
different modalities, such as 2D images, infrared thermal images and 3D
point cloud, to detect components related to the building's elevation.
Ning, et al. [12] trained an object detection model to detect door from
the Google Street View (GSV) imagery and then calculate the bottom
elevation of the door (i.e., First Floor Elevation, FFE) using the roadway
elevation and the height of the camera. Needham [13] estimated FFE by
using Google Earth and Google Street View, and they converted the
vertical pixel distance between the ground and first floor to the real
length and then calculate the actual real-world elevation. Diaz, et al.
[17] reconstructed the 3D model of the residential communities using
the images collected by drones and georeferenced the model with
ground control points (GCPs), and finally manually label the elevation
(i.e., FFE, LAG) on the 3D model. Point cloud can provide accurate ge-
ometry information and Haghighatgou, et al. [26] detect buildings'
lowest openings in rural areas from the point cloud collected by Mobile
Laser Scanner (MLS). The limitations of current buildings' elevation
related studies can be summarized as follows: (1) limited to small area,
such as street or block level; (2) most studies only utilized 2D images (i.
e., GSV, Google satellite images, UAV images) which have limited spatial
measurement accuracy [14]; (3) dependent on manual interpretation
and not possible to scale up the process of extracting elevation infor-
mation for large areas.

2.2. 2D object detection

2D object detection focuses on classifying and localizing objects in
2D images, and it serves as a basis for many higher-level computer vision
tasks (i.e., object tracking, instance segmentation, and image
captioning) [27]. As a mature technique, object detection has greatly
benefited from the advancements in deep learning and has found
widespread application in the real world, such as face recognition, robot
vision, and video surveillance. Horizontal Bounding Box (HBB) which
describes each object with a horizontal rectangle is the most used object
representation in 2D object detection, while Oriented Bounding Box
(OBB) which can precisely localize oriented object is more appropriate
for images taken from the spaceborne or airborne platforms [28]. In the
early days prior to the widespread use of deep learning, traditional ob-
ject detection methods typically involved the following three steps [29]:
(1) select informative regions which can be generated with multiscale
sliding window; (2) extract visual features which are usually hand-
crafted features, such as Scale-Invariant Feature Transform (SIFT) [30]
and Histograms of Oriented Gradients (HOG) [31]; (3) leverage a clas-
sifier, such as Supported Vector Machine (SVM) [32], to recognize the
object. Benefited from the advancement of computation hardware (e.g.,
GPUs) and the availability of large annotated datasets, such as Microsoft
COCO [33], Deep Neural Networks (DNNs) with strong generalization
ability have been trained successfully to improve all the computer vision
tasks. The DNN-based object detection methods can be divided into two
groups: (1) one-stage based method and (2) two-stage based method.
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The two-stage detectors typically have two stages, and the first generates
Region of Interest (ROI) and then estimate the object class and bounding
box. The representative two-stage detectors are R-CNN series, such as
Fast-RCNN, Faster-RCNN, Mask R-CNN, and they can obtain highly ac-
curate detection results [34-37]. However, the high latency limits the
two-stage detectors in time-sensitive applications. One-stage detectors
directly learn the object class and bounding box in a single pass,
resulting in faster inference speeds compared to two-stage detectors.
You Only Look Once (YOLO) series detectors are the most widely used
one-stage object detection method, and the dedicated designed network
architectures, training sample assignment, and loss functions improve
the detection accuracy of the one-stage detectors [38,39]. In recent
years, the Transformer architecture which is built on attention mecha-
nisms shows its power in Nature Language Process (NLP), and it's also
transferred to Computer Vision areas [40]. The Transformer-based de-
tector, such as DETR [41], can realize the object detection in end-to-end
way without using non-maximum suppression (NMS) as a post-
processing.

2.3. Point cloud representations

Point cloud, as an important 3D data structure, can describe the
accurate geometric information of the real world. Different from the
image which has a regular format and can be represented using a matrix,
point cloud is a set of coordinates and point attributes (i.e., color, in-
tensity, GPS time). The unordered nature of the data poses a challenge to
processing point cloud using DNNs, as the architecture represented by
Convolutional Neural Network (CNN) is primarily designed to operate
on structured grid-like data. Different representation formats of point
cloud have been developed to process collections of 3D points for tasks,
such as 3D shape classification, 3D object detection, multi-object
tracking and segmentation [42]. The representation formats of point
cloud can be divided into three groups: (1) projection; (2) voxel and (3)
point-set [43]. Projection-based methods offer an intuitive approach to
process point clouds by converting them into view projections (such as
bird's eye view, front view) from a specific perspective. This trans-
formation allows leveraging off-the-shelf 2D computer vision algorithms
for further analysis and processing. By projecting the 3D points onto a
2D plane, these methods enable the utilization of well-established
techniques developed for image-based analysis. Li, et al. [44] project
the 3D point cloud into a 2D projection map and detect vehicles using
fully convolutional network. While some studies observe the point cloud
from a top-down perspective, for example Saleh, et al. [45] detect ve-
hicles on the bird's eye view generated from point cloud. Chen, et al.
[46] combines multiple views generated from point cloud for 3D object
detection. One limitation of the projection-based methods is that
3D—2D projection will result in information loss (i.e., depth information
in front view and height information in bird's eye view). Unlike
projection-based methods that convert 3D points to 2D images, voxel-
based methods divide 3D space into regular 3D voxels. 3D CNN is
used to learn features from the predefined voxels and subsequently
perform the downstream tasks, such as 3D object detection [47]. The
voxelization process, which involves merging multiple points within the
same voxel, can lead to information loss. Additionally, when dividing a
large 3D space into smaller voxels, the computation and memory re-
quirements can become burdensome. To utilize all the information
contained in the 3D point cloud, many algorithms were developed to
directly consume point cloud data. They focus on dealing with the un-
ordered nature of the point cloud, for example PointNet uses a symmetry
function for the unordered inputs, while some new model architectures
are particularly appropriate for processing unordered data (i.e., graph
CNN, self-attention operator in Transformer) [48-50].
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3. Material and methods
3.1. Study area and datasets

Ninety percent of natural disasters within the United States involve
flooding and both the frequency and damage cost of floods are rising
according to the reports from the National Oceanic and Atmospheric
Administration (NOAA) [51]. As illustrated in Fig. 1, one inland borough
and two coastal cities are selected as study areas in this paper, and all the
study areas are in or near the flood zones defined by FEMA. Manville is
an inland borough with a total area of 2.45 mile? in Somerset County, in
the U.S. state of New Jersey (NJ), and estimated population is 10,875 in
2022 according to the United States Census Bureau. Manville, an inland
town, experiences frequent riverine flooding, with approximately 490
structures within the 1% annual chance of exceeding the floodplain.
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Both Ventnor and Longport are coastal cities located in Atlantic County,
New Jersey, along the Jersey shore, and they are susceptible to tidal and
hurricane storms. According to data from the United States Census Bu-
reau, Ventnor spans a total area of 3.52 mile?, while Longport covers an
area of 1.56 mile?. In terms of population, the estimated number of
residents in Ventnor was 9246 in 2022. Similarly, Longport had an
estimated population of 884 in the same year. The building stocks in
these communities are varied to a great extent. Manville is a working-
class town where almost all homes are primary dwellings, Longport,
on the other hand, has been completely rebuilt with million-dollar
homes after Hurricane Sandy and has most secondary/vacation
homes. Ventnor has a mix of primary and secondary residences.
Together they provide a comprehensive mix of building types suscep-
tible to floods.

A Mobile Mapping System (MMS) was employed to collect point
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Fig. 1. Study area. Flood zones come from the Flood Insurance Rate Map (FIRM) of FEMA. Zone A, AE, AO, AH and VE are all identified as flood hazard areas with

high risk.
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cloud of the selected study area, and the mapping trajectories are dis-
played on Fig. 1. Most residential buildings in the three cities were
covered by the mapping tasks. The rotation speed of the laser scanner (i.
e., Z + F PROFILER® 9012) was set at 100 revolutions per second,
allowing for the collection of over 1 million points per second. Operating
at an approximate speed of 20 miles per hour, the MMS facilitated the
efficient acquisition of high-quality and dense 3D data of the sur-
rounding environment. Table 1 provides a summary of the data, indi-
cating that they were collected on four different dates, primarily during
the summer months. In the case of Manville, some areas were not
covered during the initial mapping right after Hurricane Ida in 2021 due
to road accessibility issues. Consequently, an additional scanning was
conducted the following year. The total length of mapping trajectories
for Manville amounted to 63.4 miles. Longport, being the smallest city
among the three study areas, required five trajectories with a combined
length of 27.1 miles to cover the community adequately. Ventnor, as the
study site with the largest area, necessitated 12 trajectories spanning a
total length of 70.6 miles.

3.2. Methodology

The overall framework of the proposed method for the automated
and scalable extraction of FFE is depicted in Fig. 2. The process involves
several key steps. Firstly, the point cloud is clipped for each building
based on parcels data, and subsequently projected onto a Bird's Eye
View. Next, building facades are detected and projected onto the front
view, which includes an intensity map and an elevation map. To identify
specific building components (i.e., window, door, and garage door), a
yolov5 model is trained using manual annotations from the intensity
view. Finally, the bottom of the front door and the information from
elevation map are utilized to calculate the FFE. Further details regarding
the framework and its implementation will be elaborated in the subse-
quent sections of this paper.

3.2.1. Pre-processing of point cloud

Although the point cloud data contains multiple attributes, this study
focuses solely on utilizing the coordinates and intensity information.
The point cloud data is represented by an unorder set {(Xi, Yi,Z;, i)},
wherei = 1,2,...,N. Here, X|, Y;,Z;,and [; denote the coordinates and
intensity of the ith point in the set. The parcels data, an important
geographic information system (GIS) dataset, enables spatial analysis
and visualization. The parcels utilized in this research were developed
during the Parcels Normalization Project in 2008-2014 by the NJ Office
of GIS (NJOGIS). The coordinates of both point cloud and parcels were
transformed into the New Jersey State Plane Coordinate System,
NADS83, with units of measure are in feet. The point cloud generated
along the mapping trajectory is clipped for each building based on
parcels data, and it enables the extraction of building-specific informa-
tion and facilitates subsequent analysis.

3.2.2. Building facades detection

In most cases, the elevation measurement of the bottom of the front
door is used as FFE. To ensure accurate identification of key components
and minimize the influence of non-relevant points, a simple yet effective
projection-based method is employed to extract building facades. The
BEV representation of 3D point cloud is encoded by density. The point
cloud is projected onto XY plane and discretized into 2D grid with a

Table 1
Information of the mapping trajectories.

City Date Number of trajectories Length of Trajectories (mi)
Manville 20,210,906 9 52.9

20,220,705 3 10.5
Ventnor 20,210,811 12 70.6

Longport 20,210,809 5 27.1
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resolution of 0.05 ft. Each cell within the BEV projection stores the
number of points and a fixed threshold of 30 is applied to generate a
binary mask that highlights the facades. To determine the orientation of
building facade, a Gaussian Mixture Model is employed to detect lines on
the binary mask derived from the BEV density map. The orthogonal
direction of the detected line, denoted as 0, indicates the orientation of
the building facade. This orientation angle 6 is subsequently utilized in
the projection of the 3D point cloud onto the front view. For buildings
with multiple recorded facades, typically two orthogonal facades, two
orientation angles are utilized to generate two distinct front views for
the same building.

3.2.3. Front view representation

When projecting the 3D point cloud of the detected facade onto the
front view, a rotation is applied along the Z-axis using the orientation
angle 6. This rotation aligns the building facade with the XZ plane. As
illustrated in formula (1), the front view representation of 3D point
cloud is encoded based on intensity and elevation information with a
resolution of 0.05 ft, where VieWinensity, Vi€Welevation, Nij are the
intensity-based front view, elevation-based front view and number of
points within cell (i,j). Each pixel (i,j) is represented by the average
intensity and the Z coordinate of all the points within that cell.

. .. 1 Nij
Vlewimensity (I:J) = NiiJZk:lIk (1)

Viewelevalion(i7j) = NLUZ::IZI(
3.2.4. Detection of building components

A fine-tuned yolov5 model is utilized to detect key building com-
ponents (i.e., window, door and garage door) related to the FFE on the
intensity-based front view [52]. Yolov5 is a state-of-the-art one-stage 2D
object detector known for its high accuracy and efficiency in detecting
target objects. The choice of model size and image size are important
considerations for achieving optimal training results. The yolov5 model
comes in different sizes, namely Nano (n), Small (s), Medium (m), Large
(1), and extra-large (x1). Larger models generally yield better detection
results but require more GPU memory during training and lead to slower
inference speeds. Training at a higher resolution benefits the detection
of small objects. For this study, all training is based on models pre-
trained on the COCO dataset, with the selected input image sizes of
640 and 1280. The objects in the COCO dataset have a large pixel
coverage, while the target objects in this paper, such as windows and
doors, are relatively small compared to the entire building facade. To
address this, a slicing-aided hyper inference and fine-tuning approach is
employed to enhance the performance of the yolov5 detector for small
objects [53]. The intensity-based front view images are sliced into
256*256 patches for fine-tuning and inference. The tool Labellmg is
used for manual annotation of selected objects on the intensity-based
front view, and all images are randomly selected from Ventnor city for
labeling [54]. Examples of manually annotated building components are
illustrated in Fig. 3. The labeled bounding boxes exclude window and
door frames, and we treat separate windows as distinct instances. In
total, 1216 intensity images were labeled, with 80% were used as the
training set, 10% for validation and the remaining 10% for testing. Four
metrics, namely Precision (P), Recall (R), mAPQ@0.5, and
mAP@O.5 : 0.95, are utilized to evaluate the performance of the detec-
tor. Precision and Recall are calculated using formula (2), where TP, FP,
and FN represent True Positives, False Positives and False Negatives,
respectively. The reported precision and recall are derived through
maximizing F1 score. The mAP metrics are used by COCO, and mAP@0.5
represents the mean average precision at Intersection over Union (IoU)
of 0.5 over all categories, while mAP@0.5 : 0.95 denotes averaged pre-
cision at 10 IoU thresholds, from 0.5 to 0.95 with an interval of 0.05,
over all categories.
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3.2.5. Estimation of FFE

The intensity-based front view and elevation-based front view in this
study are derived from the same 3D point cloud data. Consequently, the
bounding boxes of the target objects detected in the intensity images can
be directly mapped to the corresponding locations in the elevation im-
ages. The calculation of the FFE is performed using formula (3), where n
represents the number of pixels with valid elevation values along the
bottom line of the bounding box of the door, and Z; represents the
elevation value for the ith pixel. To mitigate the potential impact of
misdetections of doors on floors higher than the first floor, a rule-based

post-processing method is employed. The pseudo code for this post-
processing method is provided in Table 2. The variables Elevgq,
EleVyindow, and Elevg,.qe denote the lowest elevation of detected doors,
windows and building facade, respectively. These values are calculated
using the same formula as the FFE. The threshold value of 9 ft is utilized,
which corresponds to the average height of the first story measured from
the exterior of residential buildings in Ventnor city. This measurement
typically indicates the distance from the bottom of the door to the ceiling
based on the point cloud data.

FFE = % 3)

Table 2
Pseudo code of rule-based post-processing method.

IF Elevgoor — EleVyindow > 9ft AND EleVyingow — EleVicage < 9ft:
Elevg,,, is identified as door on floors higher than the first floor and is removed.




J. Xia and J. Gong

The accuracy of the estimated FFE data is evaluated using two types
of ground references: (1) manually annotated FFE data and (2) FFE data
obtained from local Elevation Certificates records. The former involves
the extraction of FFE data by directly labeling the bottom point of the
front door in the 3D point cloud view. Labeling in the 3D space presents
greater challenges compared to 2D image annotation. To facilitate this
task, a web-based labeling tool is developed based on the Potree library
[55]. This tool enables multiple human annotators to work on the point
cloud annotation simultaneously. Elevation Certificates, particularly
their digital records, are not readily available for most communities. 145
validated Elevation Certificates records in Longport city are provided by
local communities [56]. Three metrics, namely Root Mean Square Error
(RMSE), Median Absolute Error (MAE), and recall of FFE whose absolute
error is lower than 1 ft, are calculated between the estimated FFE and
ground reference to evaluate the performance of the proposed method.

4. Results and discussions
4.1. Accuracy evaluation of the object detection

All models underwent fine-tuning for 300 epochs using pretrained
weights from the COCO dataset. The fine-tuning process was performed
on a machine equipped with 6 NVIDIA RTX5000 GPUs. The accuracy of
the models was evaluated on the test set, and the evaluation results are
presented in Table 3. Generally, larger models tend to exhibit better
performance on the test set. Among the four model size candidates, the
large (1) model demonstrates the highest accuracy. For instance, when
considering an input image size of 640, all four metrics of the large
model surpass those of the other models. Interestingly, the extra-large
(x1) model with an input image size of 1280 does not outperform the
large model, which may be attributed to the size of the training samples.
Insufficient availability of high-quality training samples could lead to
the underfitting of a more complex model. When comparing models of
the same size, larger image sizes tend to yield improved performance.
This improvement is particularly evident for the small (s) model, which
exhibits a 0.064 increase in mAP@0.5:0.95. The accuracy of detection
takes precedence over inference speed in this study, therefore, the large
model with an image size of 1280 is selected for the subsequent detec-
tion of target objects and FFE estimation.

In order to improve the detection of small objects, slicing aided fine-
tuning was applied to the selected yolov5 large model with an image size
of 1280. The accuracy of the model with slicing aided fine-tuning,
evaluated on the test set, is presented in Table 4. Among the three ob-
ject categories, the door category poses the greatest challenge to the
detector, with lower accuracy compared to the other two categories.
Considering the mAP@0.5 metric, the window category (0.834) and the
garage door category (0.925) exhibit significantly higher accuracies
than the door category (0.756). The mAP@0.5:0.95 metric is more
demanding and reflects the detector's localization ability. With slicing
aided fine-tuning, the overall mAP@0.5:0.95 for all classes improves by
0.018. Analyzing the individual categories, both the door and window
categories show increases in mAP@0.5:0.95, with the window category
achieving a substantial improvement of 0.05. However, the garage door
category experiences a slight decrease in mAP@0.5:0.95 (0.006). This

Table 3
Accuracy of yolov5 models with different model size and input image size.
Image size Model size Precision Recall mAP@0.5 mAP@0.5:0.95
640 s 0.750 0.789 0.787 0.582
m 0.694 0.792 0.781 0.603
1 0.740 0.817 0.825 0.648
x1 0.800 0.766 0.806 0.627
1280 s 0.806 0.789 0.819 0.646
m 0.854 0.747 0.812 0.627
1 0.789 0.845 0.842 0.671
x1 0.761 0.798 0.810 0.658
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Table 4

Accuracy of yolov5 large model with an image size of 1280 using slicing aided
fine-tuning. The number in parentheses represents the difference achieved by
using slicing aided fine-tuning compared to not using it.

Precision Recall mAP@0.5 mAP@0.5:0.95
All 0.775 0.838 0.838 0.689 (+0.018)
Door 0.870 0.687 0.756 0.516 (+0.011)
Garage door 0.675 1.000 0.925 0.867 (—0.006)
Window 0.781 0.827 0.834 0.686 (+0.050)

could be attributed to the fact that garage doors are relatively larger
than doors and windows, making them more prone to being fragmented
during the slicing process.

The object detection samples obtained from the yolov5 large model,
utilizing slicing aided fine-tuning with an image size of 1280, are
showcased in Fig. 4. Residential buildings exhibit a wide range of visual
appearance characteristics, including split-level structures, varying
numbers of floors, and elevated components. The target objects, such as
doors, windows, and garages, present challenges for the object detection
algorithm due to their diverse sizes, colors, materials, and positions. In
comparison to the optical Google Street View images, intensity-based
front views projected from 3D point cloud data have certain disadvan-
tages, namely sparsity and a lack of rich texture information such as
color. Nevertheless, with effective fine-tuning, the model can accurately
classify and localize windows, doors, and garages in the front view
projections of most residential buildings. For certain mansions, partic-
ularly in coastal areas, such as the sixth example shown, the presence of
doors on the second floor may pose challenges for accurately estimating
the FFE. Another difficulty lies in distinguishing exterior glass doors, as
they can closely resemble windows in the intensity-based front view.
Additionally, the laser scanner's light signal cannot penetrate fore-
ground objects like vegetation, leading to black holes in the point cloud
projection, as observed in examples 7 and 8. Detecting objects concealed
behind vegetation becomes extremely challenging under such circum-
stances. It can probably reduce the impact of vegetation occlusion
through conducting mobile mapping and collecting point cloud data
during autumn and winter seasons and facilitate more accurate esti-
mation of FFE.

4.2. Accuracy evaluation of FFE

As shows in Table 5, the ablation study conducted in this research
examines the effectiveness of three different techniques: Slicing Aided
Fine-Tuning (SF), Post-Processing (PP), and Slicing Aided Hyper Infer-
ence (SAHI). The study focuses on evaluating their accuracy results
evaluated on the manually annotated ground references of Ventnor City.
The base model used for the study is the yolov5 large model, which
utilizes an input image size of 1280 and slicing aided fine-tuning. The
results obtained from this base model show an RMSE of 2.21 ft and a
MAE of 0.27 ft. Additionally, the recall of FFE, where true positive is
defined as an absolute error lower than 1 ft, is measured at 0.63. To
further refine the estimations, a rule-based post-processing technique is
applied. This post-processing approach significantly reduces the RMSE
to 1.81 ft and it does not decrease the rate of accurately estimated FFE
values. While the slicing aided hyper inference technique does not
demonstrate consistent improvement in the accuracy of estimated FFE.
Considering these factors, the practical estimation of FFE can benefit
from the combination of slicing aided fine-tuning and rule-based post-
processing techniques.

The scatter plots depicting the estimated FFE and ground references
for the three study areas are presented in Fig. 5. Specifically, when
examining the residential buildings in the inland community, Manville,
a wider range of FFE values is observed, primarily ranging from 40 to 80
ft. The estimated FFE values for 1819 residential buildings in Manville
exhibit an absolute error lower than 1 ft, accounting for 61% of the total
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Fig. 4. Visual inspection of the object detection results. The first and third rows

intensity-based front views with detected bounding boxes.

Table 5

Ablation study of yolov5 large model with an image size of 1280 evaluated on
the test set of Ventnor city. SF, PP, SAHI and FI denote slicing aided fine-tuning,
post-processing, slicing aided hyper inference, and full inference, respectively.
The measurement unit of RMSE and MAE is feet.

Model RMSE MAE Recall
SF 2.21 0.27 0.63
SF + PP 1.81 0.27 0.63
SF + PP + SAHI 2.14 0.35 0.63
SF + PP-++(SAHI-+FI) 2.18 0.36 0.63

2960 manually annotated buildings in this area. It shows a relatively
higher level of accuracy compared to the two coastal cities. The corre-
sponding RMSE and MAE metrics for Manville are measured at 0.75 ft
and 0.2 ft, respectively. Ventnor and Longport exhibit similar patterns,
with the elevation of residential buildings in these two cities being
significantly lower than that of Manville. In Ventnor, the FFE of resi-
dential buildings is primarily below 20 ft, and in Longport, it is even
lower, below 15 ft. Among the manually annotated FFE values in these
areas, 63% of the 4124 in Ventnor and 70% of the 872 in Longport can
be accurately estimated using the proposed automated method. As the
largest study area among the three selected sites, Ventnor demonstrates
the highest error in terms of both RMSE, which is 1.81 ft, and MAE,
which is 0.27 ft. On the other hand, Longport exhibits a notably higher
recall of highly accurately estimated FFE values, and its RMSE and MAE
are measured at 1.55 ft and 0.24 ft, respectively. Taking the FFE from
145 validated elevation certificates record as reference, it demonstrates
lower accuracy and the RMSE, MAE and recall metrics are measured at
1.93 ft, 0.44 ft and 0.56 in Longport.

The relationship between the estimated FFE and manually annotated

display Google Street View images, while the second and fourth rows depict

for different object detection confidence intervals is illustrated in Fig. 6.
The confidence score associated with a detected bounding box reflects
the accuracy of the object's classification and localization. The majority
of detected doors exhibit high confidence scores. For instance, the
yolov5 model detects doors with a confidence score higher than 0.8 for
1417 residential buildings in Manville, which accounts for over 70% of
the total properties. The figure also demonstrates a positive correlation
between the confidence level and the accuracy of the estimated FFE. The
group with a confidence interval of (0.9,1.0] exhibits the highest accu-
racy across all three study areas. In Manville, this group achieves an
RMSE and MAE of 0.44 ft and 0.17 ft, respectively. In Ventnor, the
corresponding metrics are 1.28 ft and 0.20 ft, while in Longport, they are
0.68 ft and 0.19 ft. However, it is important to note that there are in-
stances where groups with lower confidence scores demonstrate higher
accuracy compared to certain groups with higher confidence scores. This
phenomenon is likely influenced by the sample size of the groups. For
example, the group with a confidence interval of (0.2,0.3] in Longport
exhibits lower error than the group with a confidence interval of
(0.3,0.4]. Nevertheless, it is crucial to consider that the former group
consists of only 18 residential building samples. Based on the findings, it
is concluded that the accuracy of the estimated FFE can be improved by
utilizing more powerful detectors, such as RT-DETR, which can enhance
the object detection performance [57].

4.3. Spatial analysis of first floor elevation

Fig. 7 depicts the height of the first floor above bare ground along
with its corresponding distribution. However, it is important to note that
the proposed method used in this study was unable to estimate FFE for
occluded buildings, and those properties within the communities were
not displayed on the maps. The height of residential buildings above the
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Fig. 5. Estimated FFE using proposed method and ground reference (i.e., manually annotated FFE and elevation certificates) in feet and the larger and darker points
indicate detections with higher confidences. The FFE of the three study sites is estimated by the yolov5 large model with an image size of 1280 and slicing aided

fine-tuning.

bare ground in the inland city is measured lower than the coastal cities.
In Manville, the median difference between the first floor and ground is
2.62 ft, while in Ventnor and Longport, these values are slightly higher
at 3.14 ft and 3.45 ft, respectively. It is worth mentioning that in Man-
ville, the majority of residential buildings have heights ranging from 2 to
4 ft above bare ground. It is common to observe houses elevated more
than 6 ft as a retrofitting measure to mitigate the risks associated with
flooding and rising sea levels in coastal areas such as Ventnor and
Longport. In the inland city of Manville, the primary type of flood hazard
is pluvial flooding, and the flood zone AE is located near the river with
low elevation (as depicted in Fig. 1). Houses exposed to higher flood
risks should be constructed at higher elevations to comply with flood
protection requirements. In coastal communities, particularly in

Ventnor, houses located near the ocean exhibit higher first floor. The
availability of the First Floor Elevation (FFE) map proves instrumental in
conducting flood vulnerability analyses and facilitating informed
decision-making processes aimed at constructing flood-resilient com-
munities. It is important to emphasize that the accurate FFE information
derived from this study holds significant potential in assisting FEMA in
developing more precise risk-based flood insurance premiums. The map
highlights the substantial variations in flood exposure risks among
houses even within a relatively small area. By shifting from setting
premiums based on national averages to a pricing methodology that
better reflects the actual flood risk can yield significant societal benefits

[9].
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Fig. 7. Map of building footprints colorized with height of first floor above ground. The bare earth Digital Elevation Model (DEM) with a resolution of 10 ft is from
NJOGIS and the building footprints were generated by Microsoft (https://github.com/microsoft/USBuildingFootprints).

5. Conclusions

Due to the escalating flood risk and the extensive damage caused by
this hazard, researchers have become increasingly interested in imple-
menting flood management measures and enhancing the resilience of
flood-prone communities. Flood insurance is one of the most crucial
preparedness actions of defense against flood damage and the newly
implemented Risk Rating 2.0 of FEMA relies on FFE data to assess a
property's flood risk more accurately in the United States. Our proposed
methodology, which is automated and scalable, aims to address the data
gap concerning missing FFE information for residential buildings across
large geographic areas. Leveraging the projected intensity view of the
point cloud, we employed a foundational computer vision model, the
yolov5 large model, with an image size of 1280, incorporating slicing-
aided fine-tuning. This significantly reduced the need of annotated
mobile LiDAR point cloud data. This approach achieved an
mAP@0.5:0.95 of 0.689 for all classes. Furthermore, by incorporating
rule-based post-processing, we evaluated the MAE metric for the esti-
mated FFE in Manville, Ventnor, and Longport at 0.2 ft, 0.27 ft, and 0.24
ft, respectively, based on manually annotated ground reference data. In
Longport, validation against elevation certificates yielded an MAE of
0.44 ft for the estimated FFE. When considering the height of the first
floor above bare ground, residential buildings in inland cities were
found to have lower elevations compared to coastal cities. Specifically,
the median difference between the first floor and ground measured 2.62
ft, 3.14 ft, and 3.45 ft for Manville, Ventnor, and Longport, respectively.
The FFE data holds the potential to provide valuable guidance for setting
flood insurance premiums and facilitating benefit-cost analyses of
buyout programs targeting residential buildings with a high flood risk.

While our current work presents significant advancements, it is
important to acknowledge the existing limitations. One limitation lies in
the detection-based paradigm we employed, which does not provide
accurate estimates of First Floor Elevation (FFE) for occluded buildings.
To overcome this challenge, potential solutions could involve employing
regression techniques utilizing alternative building attributes or
exploring the fusion of visual data collected from both ground-based
platforms and airborne platforms such as UAVs. By integrating multi-
ple data sources, a more comprehensive estimation of FFE can be ach-
ieved. Another challenge we face is the issue of updating FFE
information. In our future research endeavors, we aim to address this by
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developing efficient methods to locate the reconstruct properties
affected by natural or human factors and minimize the required efforts
while enabling the estimation of FFE for these properties. Last, but not
the least, it is imperative to establish a direct linkage between the ac-
curacy of FFE extraction with flood risk reduction in future studies. This
linkage will make the method proposed here widely applicable to
floodplain management practices.
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