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A B S T R A C T   

First Floor Elevation (FFE) of a house is crucial information for flood management and for accurately assessing 
the flood exposure risk of a property. However, the lack of reliable FFE data on a large geographic scale 
significantly limits efforts to mitigate flood risk, such as decision on elevating a property. The traditional method 
of collecting elevation data of a house relies on time-consuming and labor-intensive on-site inspections con
ducted by licensed surveyors or engineers. In this paper, we propose an automated and scalable method for 
extracting FFE from mobile LiDAR point cloud data. The fine-tuned yolov5 model is employed to detect doors, 
windows, and garage doors on the intensity-based projection of the point cloud, achieving an mAP@0.5:0.95 of 
0.689. Subsequently, FFE is estimated using detected objects. We evaluated the Median Absolute Error (MAE) 
metric for the estimated FFE in Manville, Ventnor, and Longport, which resulted in values of 0.2 ft, 0.27 ft, and 
0.24 ft, respectively. The availability of FFE data has the potential to provide valuable guidance for setting flood 
insurance premiums and facilitating benefit-cost analyses of buyout programs targeting residential buildings 
with a high flood risk.   

1. Introduction 

It is widely recognized that flooding is among the most prevalent 
natural disasters, and it is not only the deadliest but also the most costly 
disaster on Earth [1]. Due to the climate change, the water levels around 
the world's coasts is raising and the flood risk will inevitably increase in 
these areas [2]. Moreover, the changes in Land Use and Land Cover 
(LULC), infrastructure and population demographics are also among the 
leading factors that damaging floods are observed increasing in severity, 
duration and frequency in recent decades [3]. From 2000 to 2015, the 
total population in the inundation zone observed using satellite data 
grew by 58–86 million, and the proportion of the population exposed to 
floods is expected to increase further based on the climate change pro
jection for 2030 [4]. Research indicates that the absolute damage loss 
from floods could rise by a factor of 20 by the end of the century along 
the global socioeconomic development if in the absence of risk miti
gating measures [5]. The compounded effect of these driving forces 
poses a challenge to understanding the causes, consequences, and 
mitigation strategies associated with flooding events. 

To diminish the effect of flood hazards on infrastructure assets and 
enhance flood resilience, it is necessary to implement flood management 

actions, particularly in communities that are vulnerable to flooding and 
hurricanes [6]. Flood management can be divided into four phases: 
mitigation, preparedness, response, and recovery [7]. The measures 
used in flood management can be classified into two categories: struc
tural and non-structural ones. For example, the structural measures 
employed during the mitigation stage encompass activities such as 
elevating flood-prone properties, implementing buyout programs, or 
facilitating the relocation of affected communities. Flood insurance, 
specifically the National Flood Insurance Program (NFIP) managed by 
the Federal Emergency Management Administration (FEMA) in the 
United States, is a vital non-structural method aimed at reducing the 
socio-economic impact of floods during the preparedness stage. Lowest 
Floor Elevation (LFE) of a building is an essential information for the 
measures utilized in the full phases of the flood management. According 
to the description of FEMA, the lowest floor refers to the lowest enclosed 
living area (including basement) other than building access, parking, or 
storage [8]. In the newly implemented Risk Rating 2.0 program, among 
which the risk-based premiums are introduced and can yield a positive 
societal benefit, First Floor Elevation (FFE) is used as one of the factors 
to calculate the insurance rates [9,10]. The flood vulnerability analysis 
of individual buildings can be conducted through comparing the FFE 
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with the Base Flood Elevation (BFE, i.e., the elevation of surface water 
resulting from a flood that has a 1% chance of equaling or exceeding that 
level in any given year) which can be obtained from the Flood Insurance 
Rate Map (FIRM). 

The absence of reliable FFE data on a large geographic scale, such as 
boroughs or states, poses significant limitations for flood management. 
FEMA actively promotes the use of Elevation Certificates by commu
nities to document elevation information for properties and demonstrate 
compliance with floodplain management ordinances. The Elevation 
Certificates can serve as a valuable reference for property owners when 
applying for flood insurance. The traditional method of collecting 
elevation information for Elevation Certificates relies on on-site in
spection, which is typically conducted by a licensed surveyor or engi
neer. According to FEMA, the vertical accuracy of the Elevation 
Certificates surveyed by GPS can be accurate up to 0.5 ft. with a 95% 
confidence level [11]. However, the manual inspection process for col
lecting elevation data is both time-consuming and labor-intensive. Ac
cording to the Elevation Certificate and Instructions provided by FEMA, 
it is estimated that an average of 3.75 h is required per elevation cer
tificate to gather all the necessary elevation information. Consequently, 
scaling this process for large areas poses significant challenges. 
Addressing this data gap is crucial for advancing flood management 
practices and reducing the potential impacts of flooding. 

Extracting FFE information from public geospatial data sets is a 
promising approach in addressing the gap in building structural eleva
tion data. For instance, several studies have focused on extracting FFE 
information from the publicly accessible Google Street View (GSV) im
ages with computer vision methods [12,13]. However, the spatial ac
curacy of the GSV images is limited [14], particularly when compared to 
elevation certificates. Another concern with GSV images is that they 
often become outdated in floodplain areas due to constant rebuilding 
and renovation activities. Other public geospatial data sets such as 
airborne LiDAR have also been utilized to estimate FFE information 
[15]. However, due to the angles of observations, airborne LiDAR 
cannot capture information about building facades. Consequently, esti
mating FFE from airborne LiDAR relies on proxy measures, such as 
ground elevations, which can only provide FFE estimates with limited 
accuracy. Researchers have also experimented with capturing FFE data 
with drone-based mapping and infrared thermography [16,17]. Never
theless, these methods cannot be scaled up to encompass a large number 
of buildings due to either the requirement of manual interpretation or 
the very limited sample sizes. It is possible to capture survey-grade 
LiDAR data with UAV LiDAR. But due to the constraints of batteries, 
LiDAR systems used on drones tend to have lower spatial resolutions 
than those used on vehicular platforms. Additionally, battery and fly 
zone restrictions often limit the area that can be covered by drone-based 
survey grade mapping systems. It is also important to note that most 
current studies on extracting FFE information from pubic geospatial data 
sets have confined their study areas to the block or street level, and their 
proposed methods have been validated primarily on residential build
ings with homogeneous architectural styles [13,17,18]. 

Mobile LiDAR technology provides a scalable solution to rapidly scan 
building facades at the street level, providing more detailed building 
façade information than what can be obtained with airborne and UAV 
LiDAR system. With a tactile inertia navigation system and high accu
racy laser scanners, mobile LiDAR can achieve survey-grade spatial 
mapping accuracy even at driving speeds. The resulting point cloud data 
can be used to generate 3D digital elevation models of buildings across 
large communities. This provides survey-grade mapping data that has 
the potential to support the extraction of FFE information on a city-wide 
scale. In a previously published study, we demonstrated the feasibility of 
manually extracting FFE information from large mobile LiDAR point 
cloud data, achieving accuracy comparable to traditional survey 
methods [19]. However, the substantial volume of point cloud data, 
often encompassing hundreds of millions or even billions of points 
containing multiple attributes (e.g., coordinates, intensity, GPS time, 

and even color), poses challenges for manual FFE information extraction 
across extensive areas. Additionally, occlusions resulting from line-of- 
sight issue create gaps in point cloud data coverage, significantly 
complicating the process of FFE information extraction. 

As a sub-field of artificial intelligence, computer vision aims at 
enabling machines or artificial systems automatically interpret visual 
inputs (e.g., images, videos and point cloud) and derive meaningful 
information for decision making [20–25]. Benefiting from the avail
ability of large-scale visual datasets across various computer vision tasks 
and advancements in hardware, such as Graphics Processing Units 
(GPUs), deeper neural networks can be trained to achieve state-of-the- 
art performance, and some of these networks have demonstrated the 
ability to outperform the human visual system. However, despite these 
advancements, research on extracting FFE information from mobile 
LiDAR data with AI methods is still very limited. This scarcity could be 
attributed to several factors. First, there is a shortage of annotated mo
bile LiDAR data for segmentation and recognition tasks. Second, zero- 
shot learning based on large-scale foundational models is predomi
nantly trained on data that differs significantly from mobile LiDAR data. 
Third, the availability of mobile LiDAR data for extensive flood-related 
studies is not always guaranteed for large areas. The convergence of 
these factors has resulted in an underexplored area that nevertheless 
holds immense potential to enhance floodplain management. 

This study focuses on the design and evaluation of computer vision 
based FFE information extraction from large-scale mobile LiDAR point 
cloud data. It addresses two key questions:  

(1) How can data representations derived from mobile LiDAR data 
can be optimized to enhance the utilization of foundational 
computer vision models and reduce the reliance on annotated 
training data?  

(2) How to design and train machine learning models to reliably and 
accurately extract FFE information in communities characterized 
by wide variety of building typologies? 

More specifically, this paper outlines a method that integrates 
building façade detection, point cloud projection, and deep learning 
based computer vison methods to extract first floor elevation from 
massive mobile LiDAR data sets. The method underwent rigorous testing 
and evaluation on mobile LiDAR data collected from three communities. 
The main contributions of this work include:  

• Generation of effective data representations from mobile LiDAR data 
to facilitate deep learning based FFE information extraction  

• Design of an automated and scalable approach for extracting FFE 
from mobile LiDAR point cloud data, demonstrating the capability to 
achieve sub-feet accuracy in mean absolute error 

• Creation of ground truth FFE data for three representative commu
nities, each facing diverse flooding threats and featuring different 
types of building typologies. This ground truth data was derived from 
elevation certificates and manual annotation, providing valuable 
insights into the uncertainty associated with the proposed method. 

The rest of the paper is organized as follows. Section 2 introduces the 
relevant studies on extracting elevation information of buildings, point 
cloud representation and 2D object detection. Section 3 covers the study 
area introduction, datasets, and methodology. Section 4 shows the re
sults of the proposed methodology and analysis of the estimated FFE 
datasets. 

2. Literature review 

2.1. Studies on the extraction of building elevation information 

The methodology of estimating building elevation information can 
be classified into two paradigms: (1) regression-based method and (2) 
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detection-based method. Gordon [18] developed statistical regression 
model between FFH (First Floor Height) and selected building attributes 
(i.e., foundation type, DEM value, difference in grade, year built and 
flood zone), and then calculated the FFE (First Floor Elevation) through 
combining predicted FFH and LAG (Lowest Adjacent Grade which 
means the elevation of the ground next to the building). As the building 
attributes data can be easily obtained from the tax assessor database for 
most buildings, the regression model can fill the gap where elevation 
certificate is missing. Of particular concern is the generalization of the 
statistical model. The relationship between the FFH and building attri
butes can differ depending on geographical features and architectural 
styles, for example, the houses are typically built at an elevated height in 
coastal communities, whereas it is uncommon in inland communities. In 
the work of Gordon [18], only tabular data is used to build the regres
sion model. Visual data which contains structure appearance informa
tion of the buildings has the potential to enhance the model's ability to 
generalize. The detection-based methods utilize remote sensing data in 
different modalities, such as 2D images, infrared thermal images and 3D 
point cloud, to detect components related to the building's elevation. 
Ning, et al. [12] trained an object detection model to detect door from 
the Google Street View (GSV) imagery and then calculate the bottom 
elevation of the door (i.e., First Floor Elevation, FFE) using the roadway 
elevation and the height of the camera. Needham [13] estimated FFE by 
using Google Earth and Google Street View, and they converted the 
vertical pixel distance between the ground and first floor to the real 
length and then calculate the actual real-world elevation. Diaz, et al. 
[17] reconstructed the 3D model of the residential communities using 
the images collected by drones and georeferenced the model with 
ground control points (GCPs), and finally manually label the elevation 
(i.e., FFE, LAG) on the 3D model. Point cloud can provide accurate ge
ometry information and Haghighatgou, et al. [26] detect buildings' 
lowest openings in rural areas from the point cloud collected by Mobile 
Laser Scanner (MLS). The limitations of current buildings' elevation 
related studies can be summarized as follows: (1) limited to small area, 
such as street or block level; (2) most studies only utilized 2D images (i. 
e., GSV, Google satellite images, UAV images) which have limited spatial 
measurement accuracy [14]; (3) dependent on manual interpretation 
and not possible to scale up the process of extracting elevation infor
mation for large areas. 

2.2. 2D object detection 

2D object detection focuses on classifying and localizing objects in 
2D images, and it serves as a basis for many higher-level computer vision 
tasks (i.e., object tracking, instance segmentation, and image 
captioning) [27]. As a mature technique, object detection has greatly 
benefited from the advancements in deep learning and has found 
widespread application in the real world, such as face recognition, robot 
vision, and video surveillance. Horizontal Bounding Box (HBB) which 
describes each object with a horizontal rectangle is the most used object 
representation in 2D object detection, while Oriented Bounding Box 
(OBB) which can precisely localize oriented object is more appropriate 
for images taken from the spaceborne or airborne platforms [28]. In the 
early days prior to the widespread use of deep learning, traditional ob
ject detection methods typically involved the following three steps [29]: 
(1) select informative regions which can be generated with multiscale 
sliding window; (2) extract visual features which are usually hand
crafted features, such as Scale-Invariant Feature Transform (SIFT) [30] 
and Histograms of Oriented Gradients (HOG) [31]; (3) leverage a clas
sifier, such as Supported Vector Machine (SVM) [32], to recognize the 
object. Benefited from the advancement of computation hardware (e.g., 
GPUs) and the availability of large annotated datasets, such as Microsoft 
COCO [33], Deep Neural Networks (DNNs) with strong generalization 
ability have been trained successfully to improve all the computer vision 
tasks. The DNN-based object detection methods can be divided into two 
groups: (1) one-stage based method and (2) two-stage based method. 

The two-stage detectors typically have two stages, and the first generates 
Region of Interest (ROI) and then estimate the object class and bounding 
box. The representative two-stage detectors are R-CNN series, such as 
Fast-RCNN, Faster-RCNN, Mask R-CNN, and they can obtain highly ac
curate detection results [34–37]. However, the high latency limits the 
two-stage detectors in time-sensitive applications. One-stage detectors 
directly learn the object class and bounding box in a single pass, 
resulting in faster inference speeds compared to two-stage detectors. 
You Only Look Once (YOLO) series detectors are the most widely used 
one-stage object detection method, and the dedicated designed network 
architectures, training sample assignment, and loss functions improve 
the detection accuracy of the one-stage detectors [38,39]. In recent 
years, the Transformer architecture which is built on attention mecha
nisms shows its power in Nature Language Process (NLP), and it's also 
transferred to Computer Vision areas [40]. The Transformer-based de
tector, such as DETR [41], can realize the object detection in end-to-end 
way without using non-maximum suppression (NMS) as a post- 
processing. 

2.3. Point cloud representations 

Point cloud, as an important 3D data structure, can describe the 
accurate geometric information of the real world. Different from the 
image which has a regular format and can be represented using a matrix, 
point cloud is a set of coordinates and point attributes (i.e., color, in
tensity, GPS time). The unordered nature of the data poses a challenge to 
processing point cloud using DNNs, as the architecture represented by 
Convolutional Neural Network (CNN) is primarily designed to operate 
on structured grid-like data. Different representation formats of point 
cloud have been developed to process collections of 3D points for tasks, 
such as 3D shape classification, 3D object detection, multi-object 
tracking and segmentation [42]. The representation formats of point 
cloud can be divided into three groups: (1) projection; (2) voxel and (3) 
point-set [43]. Projection-based methods offer an intuitive approach to 
process point clouds by converting them into view projections (such as 
bird's eye view, front view) from a specific perspective. This trans
formation allows leveraging off-the-shelf 2D computer vision algorithms 
for further analysis and processing. By projecting the 3D points onto a 
2D plane, these methods enable the utilization of well-established 
techniques developed for image-based analysis. Li, et al. [44] project 
the 3D point cloud into a 2D projection map and detect vehicles using 
fully convolutional network. While some studies observe the point cloud 
from a top-down perspective, for example Saleh, et al. [45] detect ve
hicles on the bird's eye view generated from point cloud. Chen, et al. 
[46] combines multiple views generated from point cloud for 3D object 
detection. One limitation of the projection-based methods is that 
3D–2D projection will result in information loss (i.e., depth information 
in front view and height information in bird's eye view). Unlike 
projection-based methods that convert 3D points to 2D images, voxel- 
based methods divide 3D space into regular 3D voxels. 3D CNN is 
used to learn features from the predefined voxels and subsequently 
perform the downstream tasks, such as 3D object detection [47]. The 
voxelization process, which involves merging multiple points within the 
same voxel, can lead to information loss. Additionally, when dividing a 
large 3D space into smaller voxels, the computation and memory re
quirements can become burdensome. To utilize all the information 
contained in the 3D point cloud, many algorithms were developed to 
directly consume point cloud data. They focus on dealing with the un
ordered nature of the point cloud, for example PointNet uses a symmetry 
function for the unordered inputs, while some new model architectures 
are particularly appropriate for processing unordered data (i.e., graph 
CNN, self-attention operator in Transformer) [48–50]. 
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3. Material and methods 

3.1. Study area and datasets 

Ninety percent of natural disasters within the United States involve 
flooding and both the frequency and damage cost of floods are rising 
according to the reports from the National Oceanic and Atmospheric 
Administration (NOAA) [51]. As illustrated in Fig. 1, one inland borough 
and two coastal cities are selected as study areas in this paper, and all the 
study areas are in or near the flood zones defined by FEMA. Manville is 
an inland borough with a total area of 2.45 mile2 in Somerset County, in 
the U.S. state of New Jersey (NJ), and estimated population is 10,875 in 
2022 according to the United States Census Bureau. Manville, an inland 
town, experiences frequent riverine flooding, with approximately 490 
structures within the 1% annual chance of exceeding the floodplain. 

Both Ventnor and Longport are coastal cities located in Atlantic County, 
New Jersey, along the Jersey shore, and they are susceptible to tidal and 
hurricane storms. According to data from the United States Census Bu
reau, Ventnor spans a total area of 3.52 mile2, while Longport covers an 
area of 1.56 mile2. In terms of population, the estimated number of 
residents in Ventnor was 9246 in 2022. Similarly, Longport had an 
estimated population of 884 in the same year. The building stocks in 
these communities are varied to a great extent. Manville is a working- 
class town where almost all homes are primary dwellings, Longport, 
on the other hand, has been completely rebuilt with million-dollar 
homes after Hurricane Sandy and has most secondary/vacation 
homes. Ventnor has a mix of primary and secondary residences. 
Together they provide a comprehensive mix of building types suscep
tible to floods. 

A Mobile Mapping System (MMS) was employed to collect point 

Fig. 1. Study area. Flood zones come from the Flood Insurance Rate Map (FIRM) of FEMA. Zone A, AE, AO, AH and VE are all identified as flood hazard areas with 
high risk. 
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cloud of the selected study area, and the mapping trajectories are dis
played on Fig. 1. Most residential buildings in the three cities were 
covered by the mapping tasks. The rotation speed of the laser scanner (i. 
e., Z + F PROFILER® 9012) was set at 100 revolutions per second, 
allowing for the collection of over 1 million points per second. Operating 
at an approximate speed of 20 miles per hour, the MMS facilitated the 
efficient acquisition of high-quality and dense 3D data of the sur
rounding environment. Table 1 provides a summary of the data, indi
cating that they were collected on four different dates, primarily during 
the summer months. In the case of Manville, some areas were not 
covered during the initial mapping right after Hurricane Ida in 2021 due 
to road accessibility issues. Consequently, an additional scanning was 
conducted the following year. The total length of mapping trajectories 
for Manville amounted to 63.4 miles. Longport, being the smallest city 
among the three study areas, required five trajectories with a combined 
length of 27.1 miles to cover the community adequately. Ventnor, as the 
study site with the largest area, necessitated 12 trajectories spanning a 
total length of 70.6 miles. 

3.2. Methodology 

The overall framework of the proposed method for the automated 
and scalable extraction of FFE is depicted in Fig. 2. The process involves 
several key steps. Firstly, the point cloud is clipped for each building 
based on parcels data, and subsequently projected onto a Bird's Eye 
View. Next, building facades are detected and projected onto the front 
view, which includes an intensity map and an elevation map. To identify 
specific building components (i.e., window, door, and garage door), a 
yolov5 model is trained using manual annotations from the intensity 
view. Finally, the bottom of the front door and the information from 
elevation map are utilized to calculate the FFE. Further details regarding 
the framework and its implementation will be elaborated in the subse
quent sections of this paper. 

3.2.1. Pre-processing of point cloud 
Although the point cloud data contains multiple attributes, this study 

focuses solely on utilizing the coordinates and intensity information. 
The point cloud data is represented by an unorder set {(Xi, Yi, Zi, Ii)},

where i = 1, 2, …, N. Here, Xi, Yi, Zi, and Ii denote the coordinates and 
intensity of the ith point in the set. The parcels data, an important 
geographic information system (GIS) dataset, enables spatial analysis 
and visualization. The parcels utilized in this research were developed 
during the Parcels Normalization Project in 2008–2014 by the NJ Office 
of GIS (NJOGIS). The coordinates of both point cloud and parcels were 
transformed into the New Jersey State Plane Coordinate System, 
NAD83, with units of measure are in feet. The point cloud generated 
along the mapping trajectory is clipped for each building based on 
parcels data, and it enables the extraction of building-specific informa
tion and facilitates subsequent analysis. 

3.2.2. Building facades detection 
In most cases, the elevation measurement of the bottom of the front 

door is used as FFE. To ensure accurate identification of key components 
and minimize the influence of non-relevant points, a simple yet effective 
projection-based method is employed to extract building facades. The 
BEV representation of 3D point cloud is encoded by density. The point 
cloud is projected onto XY plane and discretized into 2D grid with a 

resolution of 0.05 ft. Each cell within the BEV projection stores the 
number of points and a fixed threshold of 30 is applied to generate a 
binary mask that highlights the facades. To determine the orientation of 
building facade, a Gaussian Mixture Model is employed to detect lines on 
the binary mask derived from the BEV density map. The orthogonal 
direction of the detected line, denoted as θ, indicates the orientation of 
the building facade. This orientation angle θ is subsequently utilized in 
the projection of the 3D point cloud onto the front view. For buildings 
with multiple recorded facades, typically two orthogonal facades, two 
orientation angles are utilized to generate two distinct front views for 
the same building. 

3.2.3. Front view representation 
When projecting the 3D point cloud of the detected facade onto the 

front view, a rotation is applied along the Z-axis using the orientation 
angle θ. This rotation aligns the building facade with the XZ plane. As 
illustrated in formula (1), the front view representation of 3D point 
cloud is encoded based on intensity and elevation information with a 
resolution of 0.05 ft, where Viewintensity, Viewelevation, Ni,j are the 
intensity-based front view, elevation-based front view and number of 
points within cell (i, j). Each pixel (i, j) is represented by the average 
intensity and the Z coordinate of all the points within that cell. 

Viewintensity(i, j) =
1

Ni,j

∑Ni,j

k=1
Ik (1)  

Viewelevation(i, j) =
1

Ni,j

∑Ni,j

k=1
Zk  

3.2.4. Detection of building components 
A fine-tuned yolov5 model is utilized to detect key building com

ponents (i.e., window, door and garage door) related to the FFE on the 
intensity-based front view [52]. Yolov5 is a state-of-the-art one-stage 2D 
object detector known for its high accuracy and efficiency in detecting 
target objects. The choice of model size and image size are important 
considerations for achieving optimal training results. The yolov5 model 
comes in different sizes, namely Nano (n), Small (s), Medium (m), Large 
(l), and extra-large (xl). Larger models generally yield better detection 
results but require more GPU memory during training and lead to slower 
inference speeds. Training at a higher resolution benefits the detection 
of small objects. For this study, all training is based on models pre- 
trained on the COCO dataset, with the selected input image sizes of 
640 and 1280. The objects in the COCO dataset have a large pixel 
coverage, while the target objects in this paper, such as windows and 
doors, are relatively small compared to the entire building facade. To 
address this, a slicing-aided hyper inference and fine-tuning approach is 
employed to enhance the performance of the yolov5 detector for small 
objects [53]. The intensity-based front view images are sliced into 
256*256 patches for fine-tuning and inference. The tool LabelImg is 
used for manual annotation of selected objects on the intensity-based 
front view, and all images are randomly selected from Ventnor city for 
labeling [54]. Examples of manually annotated building components are 
illustrated in Fig. 3. The labeled bounding boxes exclude window and 
door frames, and we treat separate windows as distinct instances. In 
total, 1216 intensity images were labeled, with 80% were used as the 
training set, 10% for validation and the remaining 10% for testing. Four 
metrics, namely Precision (P), Recall (R), mAP@0.5, and 
mAP@0.5 : 0.95, are utilized to evaluate the performance of the detec
tor. Precision and Recall are calculated using formula (2), where TP, FP, 
and FN represent True Positives, False Positives and False Negatives, 
respectively. The reported precision and recall are derived through 
maximizing F1 score. The mAP metrics are used by COCO, and mAP@0.5 
represents the mean average precision at Intersection over Union (IoU) 
of 0.5 over all categories, while mAP@0.5 : 0.95 denotes averaged pre
cision at 10 IoU thresholds, from 0.5 to 0.95 with an interval of 0.05, 
over all categories. 

Table 1 
Information of the mapping trajectories.  

City Date Number of trajectories Length of Trajectories (mi) 

Manville 20,210,906 9 52.9 
20,220,705 3 10.5 

Ventnor 20,210,811 12 70.6 
Longport 20,210,809 5 27.1  
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P =
TP

TP + FP
(2)  

R =
TP

TP + FN  

F1 = 2 ×
P × R
P + R  

3.2.5. Estimation of FFE 
The intensity-based front view and elevation-based front view in this 

study are derived from the same 3D point cloud data. Consequently, the 
bounding boxes of the target objects detected in the intensity images can 
be directly mapped to the corresponding locations in the elevation im
ages. The calculation of the FFE is performed using formula (3), where n 
represents the number of pixels with valid elevation values along the 
bottom line of the bounding box of the door, and Zi represents the 
elevation value for the ith pixel. To mitigate the potential impact of 
misdetections of doors on floors higher than the first floor, a rule-based 

post-processing method is employed. The pseudo code for this post- 
processing method is provided in Table 2. The variables Elevdoor, 
Elevwindow, and Elevfacade denote the lowest elevation of detected doors, 
windows and building facade, respectively. These values are calculated 
using the same formula as the FFE. The threshold value of 9 ft is utilized, 
which corresponds to the average height of the first story measured from 
the exterior of residential buildings in Ventnor city. This measurement 
typically indicates the distance from the bottom of the door to the ceiling 
based on the point cloud data. 

FFE =

∑n
1Zi

n
(3) 

Fig. 2. The framework of the proposed method for the automated and scalable extraction of FFE based on mobile point cloud data.  

Fig. 3. Examples of manually annotated building components.  

Table 2 
Pseudo code of rule-based post-processing method.  

IF Elevdoor − Elevwindow > 9ft AND Elevwindow − Elevfacade < 9ft: 
Elevdoor is identified as door on floors higher than the first floor and is removed.  

J. Xia and J. Gong                                                                                                                                                                                                                              



Automation in Construction 159 (2024) 105258

7

The accuracy of the estimated FFE data is evaluated using two types 
of ground references: (1) manually annotated FFE data and (2) FFE data 
obtained from local Elevation Certificates records. The former involves 
the extraction of FFE data by directly labeling the bottom point of the 
front door in the 3D point cloud view. Labeling in the 3D space presents 
greater challenges compared to 2D image annotation. To facilitate this 
task, a web-based labeling tool is developed based on the Potree library 
[55]. This tool enables multiple human annotators to work on the point 
cloud annotation simultaneously. Elevation Certificates, particularly 
their digital records, are not readily available for most communities. 145 
validated Elevation Certificates records in Longport city are provided by 
local communities [56]. Three metrics, namely Root Mean Square Error 
(RMSE), Median Absolute Error (MAE), and recall of FFE whose absolute 
error is lower than 1 ft, are calculated between the estimated FFE and 
ground reference to evaluate the performance of the proposed method. 

4. Results and discussions 

4.1. Accuracy evaluation of the object detection 

All models underwent fine-tuning for 300 epochs using pretrained 
weights from the COCO dataset. The fine-tuning process was performed 
on a machine equipped with 6 NVIDIA RTX5000 GPUs. The accuracy of 
the models was evaluated on the test set, and the evaluation results are 
presented in Table 3. Generally, larger models tend to exhibit better 
performance on the test set. Among the four model size candidates, the 
large (l) model demonstrates the highest accuracy. For instance, when 
considering an input image size of 640, all four metrics of the large 
model surpass those of the other models. Interestingly, the extra-large 
(xl) model with an input image size of 1280 does not outperform the 
large model, which may be attributed to the size of the training samples. 
Insufficient availability of high-quality training samples could lead to 
the underfitting of a more complex model. When comparing models of 
the same size, larger image sizes tend to yield improved performance. 
This improvement is particularly evident for the small (s) model, which 
exhibits a 0.064 increase in mAP@0.5:0.95. The accuracy of detection 
takes precedence over inference speed in this study, therefore, the large 
model with an image size of 1280 is selected for the subsequent detec
tion of target objects and FFE estimation. 

In order to improve the detection of small objects, slicing aided fine- 
tuning was applied to the selected yolov5 large model with an image size 
of 1280. The accuracy of the model with slicing aided fine-tuning, 
evaluated on the test set, is presented in Table 4. Among the three ob
ject categories, the door category poses the greatest challenge to the 
detector, with lower accuracy compared to the other two categories. 
Considering the mAP@0.5 metric, the window category (0.834) and the 
garage door category (0.925) exhibit significantly higher accuracies 
than the door category (0.756). The mAP@0.5:0.95 metric is more 
demanding and reflects the detector's localization ability. With slicing 
aided fine-tuning, the overall mAP@0.5:0.95 for all classes improves by 
0.018. Analyzing the individual categories, both the door and window 
categories show increases in mAP@0.5:0.95, with the window category 
achieving a substantial improvement of 0.05. However, the garage door 
category experiences a slight decrease in mAP@0.5:0.95 (0.006). This 

could be attributed to the fact that garage doors are relatively larger 
than doors and windows, making them more prone to being fragmented 
during the slicing process. 

The object detection samples obtained from the yolov5 large model, 
utilizing slicing aided fine-tuning with an image size of 1280, are 
showcased in Fig. 4. Residential buildings exhibit a wide range of visual 
appearance characteristics, including split-level structures, varying 
numbers of floors, and elevated components. The target objects, such as 
doors, windows, and garages, present challenges for the object detection 
algorithm due to their diverse sizes, colors, materials, and positions. In 
comparison to the optical Google Street View images, intensity-based 
front views projected from 3D point cloud data have certain disadvan
tages, namely sparsity and a lack of rich texture information such as 
color. Nevertheless, with effective fine-tuning, the model can accurately 
classify and localize windows, doors, and garages in the front view 
projections of most residential buildings. For certain mansions, partic
ularly in coastal areas, such as the sixth example shown, the presence of 
doors on the second floor may pose challenges for accurately estimating 
the FFE. Another difficulty lies in distinguishing exterior glass doors, as 
they can closely resemble windows in the intensity-based front view. 
Additionally, the laser scanner's light signal cannot penetrate fore
ground objects like vegetation, leading to black holes in the point cloud 
projection, as observed in examples 7 and 8. Detecting objects concealed 
behind vegetation becomes extremely challenging under such circum
stances. It can probably reduce the impact of vegetation occlusion 
through conducting mobile mapping and collecting point cloud data 
during autumn and winter seasons and facilitate more accurate esti
mation of FFE. 

4.2. Accuracy evaluation of FFE 

As shows in Table 5, the ablation study conducted in this research 
examines the effectiveness of three different techniques: Slicing Aided 
Fine-Tuning (SF), Post-Processing (PP), and Slicing Aided Hyper Infer
ence (SAHI). The study focuses on evaluating their accuracy results 
evaluated on the manually annotated ground references of Ventnor City. 
The base model used for the study is the yolov5 large model, which 
utilizes an input image size of 1280 and slicing aided fine-tuning. The 
results obtained from this base model show an RMSE of 2.21 ft and a 
MAE of 0.27 ft. Additionally, the recall of FFE, where true positive is 
defined as an absolute error lower than 1 ft, is measured at 0.63. To 
further refine the estimations, a rule-based post-processing technique is 
applied. This post-processing approach significantly reduces the RMSE 
to 1.81 ft and it does not decrease the rate of accurately estimated FFE 
values. While the slicing aided hyper inference technique does not 
demonstrate consistent improvement in the accuracy of estimated FFE. 
Considering these factors, the practical estimation of FFE can benefit 
from the combination of slicing aided fine-tuning and rule-based post- 
processing techniques. 

The scatter plots depicting the estimated FFE and ground references 
for the three study areas are presented in Fig. 5. Specifically, when 
examining the residential buildings in the inland community, Manville, 
a wider range of FFE values is observed, primarily ranging from 40 to 80 
ft. The estimated FFE values for 1819 residential buildings in Manville 
exhibit an absolute error lower than 1 ft, accounting for 61% of the total 

Table 3 
Accuracy of yolov5 models with different model size and input image size.  

Image size Model size Precision Recall mAP@0.5 mAP@0.5:0.95 

640 s 0.750 0.789 0.787 0.582 
m 0.694 0.792 0.781 0.603 
l 0.740 0.817 0.825 0.648 
xl 0.800 0.766 0.806 0.627 

1280 s 0.806 0.789 0.819 0.646 
m 0.854 0.747 0.812 0.627 
l 0.789 0.845 0.842 0.671 
xl 0.761 0.798 0.810 0.658  

Table 4 
Accuracy of yolov5 large model with an image size of 1280 using slicing aided 
fine-tuning. The number in parentheses represents the difference achieved by 
using slicing aided fine-tuning compared to not using it.   

Precision Recall mAP@0.5 mAP@0.5:0.95 

All 0.775 0.838 0.838 0.689 (+0.018) 
Door 0.870 0.687 0.756 0.516 (+0.011) 
Garage door 0.675 1.000 0.925 0.867 (−0.006) 
Window 0.781 0.827 0.834 0.686 (+0.050)  

J. Xia and J. Gong                                                                                                                                                                                                                              



Automation in Construction 159 (2024) 105258

8

2960 manually annotated buildings in this area. It shows a relatively 
higher level of accuracy compared to the two coastal cities. The corre
sponding RMSE and MAE metrics for Manville are measured at 0.75 ft 
and 0.2 ft, respectively. Ventnor and Longport exhibit similar patterns, 
with the elevation of residential buildings in these two cities being 
significantly lower than that of Manville. In Ventnor, the FFE of resi
dential buildings is primarily below 20 ft, and in Longport, it is even 
lower, below 15 ft. Among the manually annotated FFE values in these 
areas, 63% of the 4124 in Ventnor and 70% of the 872 in Longport can 
be accurately estimated using the proposed automated method. As the 
largest study area among the three selected sites, Ventnor demonstrates 
the highest error in terms of both RMSE, which is 1.81 ft, and MAE, 
which is 0.27 ft. On the other hand, Longport exhibits a notably higher 
recall of highly accurately estimated FFE values, and its RMSE and MAE 
are measured at 1.55 ft and 0.24 ft, respectively. Taking the FFE from 
145 validated elevation certificates record as reference, it demonstrates 
lower accuracy and the RMSE, MAE and recall metrics are measured at 
1.93 ft, 0.44 ft and 0.56 in Longport. 

The relationship between the estimated FFE and manually annotated 

for different object detection confidence intervals is illustrated in Fig. 6. 
The confidence score associated with a detected bounding box reflects 
the accuracy of the object's classification and localization. The majority 
of detected doors exhibit high confidence scores. For instance, the 
yolov5 model detects doors with a confidence score higher than 0.8 for 
1417 residential buildings in Manville, which accounts for over 70% of 
the total properties. The figure also demonstrates a positive correlation 
between the confidence level and the accuracy of the estimated FFE. The 
group with a confidence interval of (0.9,1.0] exhibits the highest accu
racy across all three study areas. In Manville, this group achieves an 
RMSE and MAE of 0.44 ft and 0.17 ft, respectively. In Ventnor, the 
corresponding metrics are 1.28 ft and 0.20 ft, while in Longport, they are 
0.68 ft and 0.19 ft. However, it is important to note that there are in
stances where groups with lower confidence scores demonstrate higher 
accuracy compared to certain groups with higher confidence scores. This 
phenomenon is likely influenced by the sample size of the groups. For 
example, the group with a confidence interval of (0.2,0.3] in Longport 
exhibits lower error than the group with a confidence interval of 
(0.3,0.4]. Nevertheless, it is crucial to consider that the former group 
consists of only 18 residential building samples. Based on the findings, it 
is concluded that the accuracy of the estimated FFE can be improved by 
utilizing more powerful detectors, such as RT-DETR, which can enhance 
the object detection performance [57]. 

4.3. Spatial analysis of first floor elevation 

Fig. 7 depicts the height of the first floor above bare ground along 
with its corresponding distribution. However, it is important to note that 
the proposed method used in this study was unable to estimate FFE for 
occluded buildings, and those properties within the communities were 
not displayed on the maps. The height of residential buildings above the 

Fig. 4. Visual inspection of the object detection results. The first and third rows display Google Street View images, while the second and fourth rows depict 
intensity-based front views with detected bounding boxes. 

Table 5 
Ablation study of yolov5 large model with an image size of 1280 evaluated on 
the test set of Ventnor city. SF, PP, SAHI and FI denote slicing aided fine-tuning, 
post-processing, slicing aided hyper inference, and full inference, respectively. 
The measurement unit of RMSE and MAE is feet.  

Model RMSE MAE Recall 

SF 2.21 0.27 0.63 
SF + PP 1.81 0.27 0.63 
SF + PP + SAHI 2.14 0.35 0.63 
SF + PP+(SAHI+FI) 2.18 0.36 0.63  
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bare ground in the inland city is measured lower than the coastal cities. 
In Manville, the median difference between the first floor and ground is 
2.62 ft, while in Ventnor and Longport, these values are slightly higher 
at 3.14 ft and 3.45 ft, respectively. It is worth mentioning that in Man
ville, the majority of residential buildings have heights ranging from 2 to 
4 ft above bare ground. It is common to observe houses elevated more 
than 6 ft as a retrofitting measure to mitigate the risks associated with 
flooding and rising sea levels in coastal areas such as Ventnor and 
Longport. In the inland city of Manville, the primary type of flood hazard 
is pluvial flooding, and the flood zone AE is located near the river with 
low elevation (as depicted in Fig. 1). Houses exposed to higher flood 
risks should be constructed at higher elevations to comply with flood 
protection requirements. In coastal communities, particularly in 

Ventnor, houses located near the ocean exhibit higher first floor. The 
availability of the First Floor Elevation (FFE) map proves instrumental in 
conducting flood vulnerability analyses and facilitating informed 
decision-making processes aimed at constructing flood-resilient com
munities. It is important to emphasize that the accurate FFE information 
derived from this study holds significant potential in assisting FEMA in 
developing more precise risk-based flood insurance premiums. The map 
highlights the substantial variations in flood exposure risks among 
houses even within a relatively small area. By shifting from setting 
premiums based on national averages to a pricing methodology that 
better reflects the actual flood risk can yield significant societal benefits 
[9]. 

Fig. 5. Estimated FFE using proposed method and ground reference (i.e., manually annotated FFE and elevation certificates) in feet and the larger and darker points 
indicate detections with higher confidences. The FFE of the three study sites is estimated by the yolov5 large model with an image size of 1280 and slicing aided 
fine-tuning. 
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Fig. 6. Estimated FFE and manually annotated FFE under different object detection confidence. The confidence value for each subplot is the large value of the 
interval, for example, conf. = 1.0 represents confidence range (0.9,1.0]. 
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5. Conclusions 

Due to the escalating flood risk and the extensive damage caused by 
this hazard, researchers have become increasingly interested in imple
menting flood management measures and enhancing the resilience of 
flood-prone communities. Flood insurance is one of the most crucial 
preparedness actions of defense against flood damage and the newly 
implemented Risk Rating 2.0 of FEMA relies on FFE data to assess a 
property's flood risk more accurately in the United States. Our proposed 
methodology, which is automated and scalable, aims to address the data 
gap concerning missing FFE information for residential buildings across 
large geographic areas. Leveraging the projected intensity view of the 
point cloud, we employed a foundational computer vision model, the 
yolov5 large model, with an image size of 1280, incorporating slicing- 
aided fine-tuning. This significantly reduced the need of annotated 
mobile LiDAR point cloud data. This approach achieved an 
mAP@0.5:0.95 of 0.689 for all classes. Furthermore, by incorporating 
rule-based post-processing, we evaluated the MAE metric for the esti
mated FFE in Manville, Ventnor, and Longport at 0.2 ft, 0.27 ft, and 0.24 
ft, respectively, based on manually annotated ground reference data. In 
Longport, validation against elevation certificates yielded an MAE of 
0.44 ft for the estimated FFE. When considering the height of the first 
floor above bare ground, residential buildings in inland cities were 
found to have lower elevations compared to coastal cities. Specifically, 
the median difference between the first floor and ground measured 2.62 
ft, 3.14 ft, and 3.45 ft for Manville, Ventnor, and Longport, respectively. 
The FFE data holds the potential to provide valuable guidance for setting 
flood insurance premiums and facilitating benefit-cost analyses of 
buyout programs targeting residential buildings with a high flood risk. 

While our current work presents significant advancements, it is 
important to acknowledge the existing limitations. One limitation lies in 
the detection-based paradigm we employed, which does not provide 
accurate estimates of First Floor Elevation (FFE) for occluded buildings. 
To overcome this challenge, potential solutions could involve employing 
regression techniques utilizing alternative building attributes or 
exploring the fusion of visual data collected from both ground-based 
platforms and airborne platforms such as UAVs. By integrating multi
ple data sources, a more comprehensive estimation of FFE can be ach
ieved. Another challenge we face is the issue of updating FFE 
information. In our future research endeavors, we aim to address this by 

developing efficient methods to locate the reconstruct properties 
affected by natural or human factors and minimize the required efforts 
while enabling the estimation of FFE for these properties. Last, but not 
the least, it is imperative to establish a direct linkage between the ac
curacy of FFE extraction with flood risk reduction in future studies. This 
linkage will make the method proposed here widely applicable to 
floodplain management practices. 
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