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Abstract—Complex control systems are often described in
a layered fashion, represented as higher-order systems where
the inputs appear after a chain of integrators. While Con-
trol Barrier Functions (CBFs) have proven to be powerful
tools for safety-critical controller design of nonlinear systems,
their application to higher-order systems adds complexity to
the controller synthesis process—it necessitates dynamically
extending the CBF to include higher order terms, which
consequently modifies the safe set in complex ways. We pro-
pose an alternative approach for addressing safety of higher-
order systems through Control Barrier Function Backstepping.
Drawing inspiration from the method of Lyapunov backstep-
ping, we provide a constructive framework for synthesizing
safety-critical controllers and CBFs for higher-order systems
from a top-level dynamics safety specification and controller
design. Furthermore, we integrate the proposed method with
Lyapunov backstepping, allowing the tasks of stability and
safety to be expressed individually but achieved jointly. We
demonstrate the efficacy of this approach in simulation.

I. INTRODUCTION

Safety is becoming an ever more prevalent design con-
sideration in modern control systems as these systems are
deployed in real-world environments. Control Barrier Func-
tions (CBFs) have become a popular tool for constructively
synthesizing controllers that endow nonlinear systems with
rigorous guarantees of safety [1], [2]. Originally posed such
that the input of the system directly impacted the time
derivative of the CBE, recent work has sought to extend
this to higher-order nonlinear systems in which multiple
time derivatives are required for the input to influence the
evolution of the CBF [3]-[6]. While these works allow
for the safety-critical control of higher-order systems, they
require verifying the feasibility of CBF conditions using the
full system dynamics and change the safe set in complex
ways. Alternatively, the work in [7] has explored designing
CBFs for a top-level model, and using a tracking controller
that addresses the full system dynamics.

As the complexity of systems increase, it is often desirable
to approach the control design process with a simplified top-
level model that guides design for subsystems addressing the
full system dynamics. Backstepping is a well established
design technique for addressing the robust stabilization of
layered systems of this form, i.e., nonlinear systems with
higher-order dynamics [8], [9]. It considers design for the
top-level model and recursively designs a controller using
the full system dynamics, also allowing it to address the
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challenge of mixed-relative degree, where inputs enter the
system dynamics at different levels. Using backstepping
to stabilize systems while meeting state constraints has
been studied through lens of non-overshooting control [10],
and has recently been related to CBFs [11], [12]. These
works achieve safe behavior using a structured controller
that yields a linear dynamic relationship between sequential
states in a cascade, such that a system does not overshoot a
setpoint as it stabilizes. Other work has used backstepping
in the context of Lyapunov-Barrier functions to ensure state
constraints are met [13]-[15]. These approaches couple
ensuring safety with ensuring stability, which may impose
strict structural requirements on safety constraints. To the
best of our knowledge, decoupling stability and safety
and exploring backstepping purely with safety constraints
expressed through CBFs has not been considered.

A core challenge in combining CBF-based methods with
backstepping is finding smooth controllers that ensure safety
as backstepping requires the differentiation of controllers ap-
pearing higher in the integrator chain. From the conception
of CBFs, they have typically been used as constraints in
optimization-based controllers—either paired with CLFs [1],
or filtering a desired stabilizing controller [2]—which are
inherently non-smooth. Additionally, typically one wishes
to design controllers that are not only safe, but are also
stabilizing, precluding smooth CBF controller instantiations,
e.g., using Sontag’s Universal formula [16]. While it may
be possible to address these non-smooth challenges [17],
[18], we will use approach in [19] for synthesizing smooth
controllers meeting both CLF and CBF constraints.

The goal of this paper is to to unify backstepping with
CBFs, thereby enabling safe controller design at multiple
levels with varying degrees of model complexity. To this
end, after a review of CBFs and Lyapunov backstepping, we
begin in Section III by formulating a nonlinear controller
that ensures safety of a system with a single cascade via
Barrier Functions and backstepping. A consequence of this
result is that we may constructively synthesize a CBF for
the full cascaded system using a CBF and smooth controller
designed only considering the top-level of the system, which
is often easier than directly finding a CBF for the full-order
system. Additionally, in Section IV, we demonstrate that
this approach can be generalized to the multiple-cascade
setting, and address the challenge of mixed relative-degree
systems. The main result of this paper, presented in Section
V, is the unification of Lyapunov and Barrier backstepping,
wherein we show that by designing a controller that renders
the top-level dynamics both stable and safe, we may use
backstepping to achieve stability and safety of the full cas-
caded system. Importantly, using the techniques in [19], we
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are able to design a smooth top-level controller amenable to
backstepping. These results are demonstrated in simulation
in Section VI in the context of obstacle avoidance.

II. BACKGROUND

In this section we revisit Barrier Functions, Control Bar-
rier Functions and Lyapunov backstepping as a precursor to
introducing Control Barrier Function backstepping.

Consider a nonlinear control-affine system:

x = f(x) + g(x)u, (1)

with state x € R”, input u € R™, and functions f : R” —
R™ and g : R™ — R™ " assumed to be locally Lipschitz
continuous on R™. A locally Lipschitz continuous controller
k : R™ — R™ yields the closed loop system:

x = f(x) + g(x)k(x). (2)

As the functions f, g, and k are locally Lipschitz continuous,
for any initial condition xy, € R", there exists a maximal
time interval I(xg) = [0, tmax(X0)) and a unique continu-
ously differentiable solution ¢ : I(xo) — R™ satisfying:

() =1£(p(t) + gle(t) k(e(t)), 3)
#(0) = xo, “4)
for all t € I(x0) [20].

A. Control Barrier Functions

We define the notion of safety in this context as forward
invariance of a set in the state space. Specifically, suppose
there exists a set C C R"™ defined as the O-superlevel set of
a continuously differentiable function h : R” — R:

C={xeR" | h(x)>0}. (5)

The set C is said to be forward invariant if for any initial
condition xo € C, we have ¢(t) € C for all t € I(x(). In
this case, we call the system (2) safe with respect to the set
C, and refer to C as the safe set.

Before defining Barrier Functions and Control Barrier
Functions, we recall the following definitions. A continuous
function « : [0,00) — [0,00) is said to be class Koo
(o € Ko) if « is strictly monotonically increasing with
a(0) = 0 and lim,_,, a(r) = 0o, and a continuous function
a R — R is said to be extended class Ko, (a0 € KS) if it
belongs to Ko and lim,_,_ a(r) = —oo. We now define
Barrier Functions:

Definition 1 (Barrier Function (BF) [21]). Let C C R™ be
the O-superlevel set of a continuously differentiable function
h:R™ — R with 2%(x) # 0 when h(x) = 0. The function
h is a Barrier Function (BF) for (2) on C if there exists
a € K, such that for all x € R™:

T )160+ 2 ()80 k(x) > ~a(h(x)).  (6)
Leh(x) Lgh(x)

We have the following result establishing the safety of a
set C for the closed-loop system (2) through BFs:

Theorem 1 ( [21], [22]). Let C C R™ be the 0-superlevel
set of a continuously differentiable function h : R — R
with 2% (x) # 0 when h(x) = 0. If h is a BF for (2) on C,
then the system (2) is safe with respect to the set C.

Control Barrier Functions provide a tool for synthesizing
controllers that enforce the safety of C:

Definition 2 (Control Barrier Function (CBF) [21]). Let
C C R"™ be the O-superlevel set of a continuously differ-
entiable function h : R — R with %Z(X) # 0 when
h(x) = 0. The function h is a Control Barrier Function
(CBF) for (1) on C if there exists a € K such that for all
x € R™

sup h(x,u) £ sup Leh(x) + Lgh(x)u > —a(h(x)).

ucRrm™ ucR™ o

Given a CBF h for (1) and a corresponding a € K, we
define the point-wise set of control values:

Kepr(x) = {u cR™ \ h(x,u) > —a(h(x)) } )
This yields the following result:

Theorem 2 ([21]). Let C C R™ be the O-superlevel set
of a continuously differentiable function h : R™ — R with
%(X) #0 when h(x)=0. If h is a CBF for (1) on
C, then the set Kcpr(x) is non-empty for all x € R",
and for any locally Lipschitz continuous controller k with
k(x) € Kcpr(x) for all x € R", the function h is a BF for
(2) on C.

Remark 1. The strict inequality in (7) serves two purposes.
First, it ensures the set (8) is non-empty (as with a non-strict
inequality in (6), the supremum may hold with equality, but
there may be no input such that the supremum is attained).
Second, strictness enables proving optimization-based con-
trollers using CBFs are locally Lipschitz continuous [23].

B. Lyapunov Backstepping
Consider now a control-affine system of the form:

x = fo(x) + go(x)¢, ©)

é = fl(x7€) + gl(xa £)u> (]O)

with x € R", & € RP, and u € R™, and functions
fo : R" - R, gg : R" = R"P, f; : R" x RP — RP,
and g; : R™ x RP — RP*™ assumed to be locally Lipschitz
continuous on their respective domains. This system is
referred to as being in strict-feedback form. We further
assume that f,(0) = £1(0,0) = O and g; is pseudo-
invertible on R™ x RP. Given a locally Lipschitz continuous
controller k : R™ xRP — R™ yields the closed-loop system:

x = fo(x) + go(x)§, (1)

E = fl(xa E) + gl(xas)k(xa 5)’ (12)

which for any initial condition (x¢, &,) € R™ x R? there is a
maximum interval I((x¢,&,)) € R>( and a unique solution

® = (px, Pe) satisfying (3)-(4) Vt € I((xo0,&))-
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Let there exist a function V; : R™ — R>( and a function
ko(x) : R" — RP, both twice-continuously differentiable
on R™, and 71,72, 73 € Keo such that kg(0) = 0 and:

T ([xll2) < Vo(x) < y2(]x]l2),
%(xxfo(x) + go(x)ko(x)) < —3([|x[l2),

for all x € R™. The function ko(x) reflects a stabilizing
controller that we would implement for the system (9) if we
could directly control £&. As we only directly control u, we
must backstep through the state & to access u. Consider a
function V' : R™ x R? — R defined as:

V(x,€) = Vo(x) + i(é Cko(x)T (€~ ko(x),  (15)

(13)
(14)

where 11 € Rso. We note there exist 71,75 € Ko such that:

n(lxl2) + 711§ —ko(x)[2) < V(x,§),  (16)
V(x,8) < v(lxll2) + (1§ —ko(x)ll2), (A7)
for all x € R™ and & € RP. The time derivative of V is:
oVt
TQ(X) (fo(x) + go(x)€)

+ %(& —ko(x))" <f1<x,£) +g1(x,§u

V(x,€u) = (18)

— 5 ) (f(x) + go(x)g)>.
Using a locally Lipschitz continuous feedback controller k :
R™ x RP — R™ defined as:
ok
K(x§) = (. (Bl &)+ G200 (o) + o)

S (Zomea) A at). o)

with A € R>q yields:

V(. € K(x,€)) = 22 () () + (x)ko (x)

- %(5 —ko(x)) " (€ —ko(x)),

< = 73(lIxll2) = (1§ — ko(x)ll2), 21)

for 74 € Ko defined as v4(s) = \/(2u)s?. Hence V is
a Lyapunov function for (11)-(12), such that I((xo, &,)) =
[0,00) for all (x¢,&,) € R™ x RP, and ¢, (t) — 0 and
e (t) —ko(px(t)) — 0 as t — oo. Furthermore, we have:

Jnf V(x,6,0) < —ers(xl2) - er3 (1§ ko(x) ). (22)

for all x # 0 and &€ # kq(x), where ¢ € (0, 1), such that V'
is a Control Lyapunov Function (CLF) [23]. This enables a
stabilizing convex optimization-based controller defined as:

(20)

o1
K(x, €) = argmin - Jul
UER"L

s.t. V(x, € 1) < —eys([xll2) — er3(/€ — ko(x)]|2),

that is locally Lipschitz continuous on (R™ x R?)\ {0} if
3 is locally Lipschitz continuous [23].

(23)

III. CONTROL BARRIER FUNCTION BACKSTEPPING

In this section we explore how Control Barrier Functions
can be used to achieve safety for the cascaded system in (9)-
(10) when one must backstep through the state £&. Suppose
there exists a set Cy C R™ defined as the 0-superlevel set of
a twice-continuously differentiable function Ay : R” — R:

Co = {X e R" | hQ(X) > O}, 24)
that we wish to keep safe. We further assume that % (x) #
0 when ho(x) = 0. As the input u does not show up
in the time derivative of hy, we may not directly apply
the Control Barrier Function methodology established in
Section II. Instead, motivated by the Lyapunov setting, we
take a backstepping approach using CBFs. In particular, sup-
pose there exists a twice-continuously differentiable function
ko(x) : R™ — RP and a function «g € K, such that:

oho

x (%) (fo(x) + go(x)ko(x)) > —apg(ho(x)).

(25
As before, ko(x) reflects a controller that renders Cy safe
that we would implement for the system (9) if we could
directly control &£. Let us consider a twice-continuously
differentiable function h : R™ x R? — R defined as:
— 5 (€~ ko(x))T (€ —ko(x)), (26)
with € Rsg. We note that we subtracted the quadratic
error term instead of adding is as in (15). Define the set
C C R™ x RP as the O-superlevel set of the function h:

C={(x,€) e R" xR? | h(x,&) > 0}, (27)

noting that C C Cy xRRP. This enables the following theorem:

Theorem 3. Let Cy be the O-superlevel set of a twice-
continuously differentiable function hg : R™ — R with
9o (x) # O when ho(x) = 0. If there exists a twice-
continuously differentiable function ko(x) : R™ — R? and a
globally Lipschitz! function g € KS, such that (25) holds,
then there exists a locally Lipschitz continuous controller
k : R™ x RP — RP such that the function h defined in (26)
is a Barrier Function for the closed-loop system (11)-(12)
on the set C defined in (27). Moreover, if (xo,&,) € C, then

x(t) € Co for all t € I((x0,p)).
Proof. We observe that:

@X %X 1 —OXT%X
[gﬁ(X,s)}:[ax(Hf(s ko(x)) " 5 (x)
og

(x.€) e 1) S

from which we may conclude that if g—g(x,é) = 0 and
h(x,&) = 0, we must have ho(x) = 0, and thus %(X,E) =

I'We note this assumption permits linear extended class K functions, i.e,
ao(r) = kr for some k € Rxq, which are often used in practice
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9ho (x) # 0 by assumption. Furthermore, taking the time

dae);ivative of h yields:
h(x, & a) = %(X) (fo(x) + go(x)€) (29)
- e k00 (B8 + mix O

Using a locally Lipschitz continuous feedback controller k :
R™ x RP — R™ defined as:

k(x,€) = gi(x, &) < —fi(x,6) + %(X) (fo(x) + go(x)€)

)
s (Grmme) - 5E- k). GO

with A € R>q yields:
hx, € K(x,6) =20 ()(f(x) +g(x)ko(x) (3D

+ %(5 — ko(x))T (€ — ko(x)),
> — ap(ho(x)) + %ns “ k)| (32)

Letting L be the Lipschitz constant of g and choosing \ >
L yields:

(%, € k(x,€)) > — ao(ho(x) + %ne ~ko®)|Z (33)

and the global Lipschitz property of o yields that:

a0 (o) = 1€ = Ko ) = o)

L
< ﬂus —ko(x)[13. (34

Noting the definition of (26), rearranging (34) yields:

ao(h(x,§)) > ao(ho(x)) — i”ﬁ —ko(x)[l3.  (35)

Negating both sides of this expression and combining with
(33) allows us to conclude that:

il(X, 5’ k(X7 5)) 2 —Oéo(h(x, 5))

Thus, h is a BF for the closed-loop system (11)-(12) on the
set C. Hence, by Theorem 1, C is safe, i.e., (xg,&,) € C =
p(t) €C = @, (t) € Cp for all t € I((x0,&p)). O

(36)

Remark 2. The preceding result establishes the safety of
the set C, rather than the set Cy. We do not necessarily have
that xo € Cy 1mphes QOx(t) € Coy for all ¢t € I((X(),EO)).
This requirement on the initial condition &, appears in other
results studying safety for higher-order systems [3]-[5].
We now make the following observation. Suppose that
ho(x*) =0, € = ko(x*) and:
Ohy
ox

(x)(fo(x") + go(x")ko(x")) =0, (37)

for some x* € Cy. Then, we have that:

sup h(x*, ko(x*),u) = 0 = —a(h(x*, ko(x))), (38)

ueR™
for any o € K¢ . Thus, we do not have that there exists an
extended class K, function a such that the strict inequality
in (7) is met, and hence we may not conclude that h is a
CBF for the system (9)-(10) on C. The primary reason that
h is not a CBF lies in the fact that when & = ko(x*), the
input does not have an effect on the time derivative of h. In
this situation, the evolution of & is entirely dependent on the
design of the controller k. Instead of (25), suppose that:

oho
ox

Considering any x € R™ now, if & = ko(x), we have that:

(x) (fo(x) + go(x)ko(x)) > —ag(ho(x)).  (39)

h(x,ko(x),u) > —ag(ho(x)) = —ap(h(x,ko(x))), (40)

for all u € R"™. Noting that if & # ko(x), h can be made
arbitrarily large through input, we may conclude that:

sup h(X,E,U) > 70[0(h(X,€)).

ueR™

(41)

This is summarized in the following theorem:

Theorem 4. Let Cy be the O-superlevel set of a twice-
continuously differentiable function hy : R® — R with
%(X) # 0 when ho(x) 0. If there exists a twice-
continuously differentiable function ko(x) : R™ — R? and a
Sunction oy € K¢, such that (39) holds, then the function h
defined in (26) is a Control Barrier Function for the system

(9)-(10) on the set C defined in (27).

Theorem 4 does not explicitly require the assumption of
global Lipschitz continuity on g, which was needed to
achieve (36) when using the particular controller (30). As
CBFs are typically used in the context of control synthesis
(beyond purely verification), we notice that (41) implies that:

sup h(x,&u) > —Oél(h(X,E)),

ucRkRm™

(42)

for any oy € K¢ such that ay(s) > ap(s) for all s €
R. Thus we may view «; as an design parameter we may
specify. For any such locally Lipschitz> a; € K¢, and any
locally Lipschitz continuous kg : R™ x RP — R™, we can
synthesize an optimization-based controller:

1
k(x,€) = argmin _u —ka(x,€)[3
ueR"n

s.t. h(x, &, u) > —oq (h(x,£)),

(43)

that is locally Lipschitz continuous on R™ x RP [23] and
renders h a BF for (11)-(12) on C.

2Though it is not necessary for ag to be locally Lipschitz continuous to
imply the existence of such an «, it is a sufficient condition.
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IV. MULTI-STEP CBF BACKSTEPPING

In this section we extend the preceding CBF backstepping
approach to higher-order mixed-relative degree systems via
a recursive design process typical of backstepping.

Consider the nonlinear system? in strict feedback form:

& = fo(&o) + 80.e(€0)€1 + 8o,u(€0) o, (44a)
& =f1(&0, &) + 81e(€0. &1)Eo + 81u(€p, &1 )ur, (44D)

Er = fT(£07£17£27 . é'r) + gT(EOaglv e 7€r)u7“7

with states §; € RP* and inputs u; € R™ for i =
0,...,r. The functions f;, g; for i = 0,...,7 and g; ¢
for ¢ = 0,...,7r — 1 are assumed to be smooth on their
respective domains. We further assume that the functions
g = (8¢ 8u) for i = 1,...,7 — 1 and the func-
tion g, are pseudo-invertible on their respective domains.
Let us denote ¢; = Zézopj, M, & Z;:Omj, and
z; = (&,€1,-..,&,) € R% fori = 0,...,7. We seek to
construct a controller k : R% — RMr such that setting
u = (ug,...,u,) = k(z,) achieves safety.

Suppose the set Cp is defined as the 0-superlevel set of a
smooth function kg : R%® — R as in (24), with 6"0 (zo) #0
when ho(zo) = 0. Let smooth functions kg ¢ : Rqo — RP1
and ko y : R% — R0, and a globally Lipschitz continuous
function o € K¢, with Lipschitz constant L satisfy:

dhy
23

(44¢)

¢ (20) (fo (z0) + go,¢(20)ko,¢(20) (45)

+ 80,u(20)ko,u(20)) > —ag(ho(zo)),

for all zg € R?%. Consider smooth functions (to be defined)
kig :R% — RPitt fori =1,...,7r—1and k; , : R% —
R™i fori =1,...,r, and the smooth function A : R¥" — R:

.
1 2

h(zr) = ho(2o) — ; 271_”51' —ki—1(zi1)l3,  (46)

with p; € Ry for ¢ = 1,...,r. Define the set C C R9" as:

C ={z, € R" | h(z,) > 0}, 47)

noting that C C Cy xRP* x- - - xRPr. Given this construction,
we have the following result:

Theorem 5. Let Cy be the O-superlevel set of smooth
function hgy : RP° — R with g—gg(zo) # 0 when hy(zg) = 0.
If there exist smooth functions koge : RP° — RP' and
kouw @ RP° — R™ and a globally Lipschitz function
oo € KS such that (45) holds, then there exists a smooth
controller k : R — RM+ and functions k; ¢ : R% — RPi+1
for i = 1,...,7 — 1 such that the function h : R — R
defined in (46) is a Barrier Function for the closed-loop
system (44) on the set C defined in (47). Moreover, if

3We do not notate a closed-loop system, but assume it is understood
that when we refer to this system as closed-loop, it is operating under a
controller.

the initial condition z.o € C, then ¢¢ (1) € Co for all
te I(Zry()).

Proof. We observe that:

oh dhg
L (z) =20 4
850 (Z ) a£ (ZO) ( 8)
ok
+Z k()T g (),
0
and for ¢ € {1, ...,T}, we have that:
oh 1
o (zr) = — —(& —ki—1¢(zi—1)) " 4
9, (zr) ’ui (& 1,6(Zi-1)) (49)
ok
+ Z k- e(z)- 1>>T—5£“<zﬂ>.
Jj= z+1 ¢
We can see recursively that if ggh (z,)=0fori=1,...,r,
then we must have &, = k;_ 15(2z 1) fori = 1,...,r,
and thus h(z,) = ho(&,) and (z,«) = ggg( 0)- As

9 (20) £ 0 when h(sa) = 0, we have that 21 (z,) £ 0

when h(z,) = 0, such that 8h (zr) # 0 when h(z,) = 0.
Using ko ¢ and kg, we deﬁne the smooth functions:

eston] = e (= te0+0( Gt
Oko e

&,
A
- 71(51 - ko,&(zo)))-
For:=2,...,

.
(20)8o, g(Zo)>
+ (20) (fo(20) + 80.¢(20)€1 + o,u(20)ko,u(20))

(50)
r — 1, recursively define smooth functions:
Kie(z)| _ o vt _g(m
|:ki,u(zi) = gz(zz) - fz(zz)

- Nigi 1 g(Zi 1)T(5i_1 -

Z 1 15
Ai

+gj,u(2j)kju(z))) — 5 (&~ ki1,g(zi1))),
and lastly define the smooth function:
kr,u(zi) = gT(ZT)T ( - fT(ZT’)

— Ur8r— 1§(Zr 1)T(€r—1_

+Zakr 1{

7=0

(51

ki—2¢(zi—2))

Zi— )(f (z;) + &5, E(ZJ)EJ‘—H

(52)

k2 ¢(2r—2))

(zr—1)(£5(2;) + 85.(2))€; 41

gyl i (a) ~ 5 (6~ relan) )

Letting the controller k : R% — RMr be defined as:

k(z) = [kou(z0)" Keu(z)T]

a sequence of (laborious) calculations yields:

(53)

(20, K(z2)) = —ao(ho(zo) +Z e elai)
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Choosing \; > L for ¢ = 1,...,r and following the same
argument as in (31)-(36), we arrive at:

h(z,, k(z.)) > —ao(h(z,)). (54)

Thus, h is a BF for the closed-loop system (44) on the set
C. Hence, by Theorem 1 we may conclude the set C is safe,

ie, 2,0 €C = p(t) €C = ¢ (t) € Co. O
If instead of (45) we suppose that:
oh
87;‘0 (z0) (fo(20) + 8o,¢(20)ko.¢(20) (55)
0

+ 8o,uko,u(20)) > —ao(ho(20)),
we have the following result:

Theorem 6. Let Cy be the O-superlevel set of a smooth
function hgy : R — R with gi&m (z0) # 0 when ho(zo) = 0.
If there exist smooth functions ko ¢ : RP* — RP! and ko , :
RPo — R™° and a globally Lipschitz continuous function
ap € K&, such that (55) holds, then the function h defined
in (46) is a Control Barrier Function for the system (44) on

the set C defined in (47).

Consequently, for any locally Lipschitz o; € K¢, such
that a1 (s) > ag(s) for all s € R and any locally Lipschitz
continuous kq : R? — RMr we can synthesize a controller:

1
k(z,) = argmin §Hu - kd(zr)||§ (56)
ucRMr
s.t. h(zr, ug,...,u.) > —ay(h(z,)),

that is locally Lipschitz continuous on R9" [23] and renders
h a BF for (44) on C.

V. JOINT CLF AND CBF BACKSTEPPING

In this section we use joint Lyapunov and CBF back-
stepping to achieve both stability and safety of a cascaded
system. For simplicity, let us consider the system (9)-
(10). Suppose there exists functions Vp : R™ — Ry,
ho : R™ — R and kg : R” — R? with k(0) = 0, all twice-
continuously differentiable, and functions 1, vz, 73 € Koo
and a globally Lipschitz continuous function ag € g, such
that (13)-(14) and (25) are satisfied. Furthermore, let us
define the set Cy C R™ as in (24). As before, we wish to
stabilize the state to the origin while ensuring it remains in
the set Cy. Let us construct twice-continuously differentiable
functions V : R™ x R? — R>g and h : R™ x RP — R as:

1
V(x,€) = Vo(x) + 5— (€ —ko(x)) " (€ —ko(x)), (57)
2%
1
h(x, &) = ho(x) — 2;71(5 —ko(x))" (€ —ko(x)), (58)
with py, up € Rsg. The time derivatives for V' and h are

given in (18) and (29), using their respective values py and
1r. We express them compactly here as:

for functions by 1,051 : R" xRP — R and a; : R” xRP —

R™. As we saw in the individual backstepping cases, it was

possible to design (different) controllers such that the bounds

on the derivatives in (20) and (31) were met, implying that:
. 1

Jnf bva(x,8) + e (x ¢’ (61)

< =73(lIx[1) = 5(11€ = ko (x))ll2),

. 1
Jnf b1 (x.6) + an(x, &' (62)
A
< aolho(x)) - 5~ 1€ — k()3
Hh
We can rewrite these two inequality constraints as:
al(x7 £)Tu S CV,](X7 5)7 (63)
a1(x,6) "u < ena(x,§), (64)

for functions cy,1,cp,1 : R” x RP — R. A key observation
is that these constraints are mutually satisfiable, i.e, if we
design a controller k : R™ x RP — R™ such that:

a1 (x, &) 'k(x, &) < min{ey(x,€),cna(x,€)},  (65)

for all (x,&) € R™ x RP, then both (63) and (64) are met.
Thus under this controller, V' is a Lyapunov function and h
is a Barrier Function on C for the closed-loop system (11)-
(12), such that we may conclude both stability and safety.
An optimization-based controller achieving this is given by:

1
k(x,€) = argmin S ul; (66)

ucRm™
s.t.ag (X7 E)Tu < min{cVﬂ (X7 E)v Ch,1 (Xa 5)}

The intuition behind the joint feasibility of these constraints
is that the controller kj has been designed to provide both
stability and safety, and we are using the input u to drive
& to ko(x), thus benefiting both stability and safety. The
challenge is then to design a continuously differentiable
controller kg satisfying both (14) and (25). To accomplish
this, we will use the techniques presented in [19]. We note
that designing smooth stabilizing controllers via Lyapunov
functions often faces challenges at the origin [16]. With a
cascaded system, we may encounter the origin of the top-
level state without the entire state being at the origin. Thus,
in this work we slightly relax (14) to ensure smoothness,
in which case we achieve practical stability as opposed to
asymptotic stability.

Suppose that we are given a smooth desired top-level
controller ko q : R™ — IRP that is not necessarily stable
nor safe. Consider the top-level constraints:

%(x)(fo(x) +8o(x)(ko.a(x) +v)) < —y3(|[x]l2)
+ oy ([Ixll2),
Oho

(%) (fo(x) + go(x)(ko,a(x) + v)) > — ag(ho(x))-

0x
V(x, & u) = by (x,€) + ial (x,6)u (59) with § € Ry and ¥ : R — R>( a bump function:
122%
. 1 _ 1 c (—
h(Xa£7 u) = bh,l(x7 5) - —a (X7£)Tu7 (60) 1/)(8) = P ( 62_82) 00 ( 676)’ (67)
Hh 0, otherwise,
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with € € R. . We can rewrite these constraints as:

ay,o (X)TV + bvp(X) <0,
ah,o(x)—rv + bpo(x) <0,

(68)
(69)

for functions ay,g, ap,0 : R™ — RP and by, by 0 : R" — R.
Assuming Vj is a CLF and Ay is a CBF on C for (9) implies
the set-valued functions Uy, U}, : R™ — P(RP) defined as:

Ui(x) = {v eR” | ai,o(x)Tv +bio(x) < 0}, (70)

with 7 € {V, h} satisfy U;(x) # {0} for all x € R™. More-
over, for simplicity let us assume that Uy (x) U, (x) # {0}
for all x € R™, such that there exists a v that satisfies both
(68) and (69) simultaneously. If this is not possible, this
construction can be done relaxing stability and enforcing
safety as is common with combined CLF-CBF methods [2].

For a set U/ C RP, define the Gaussian weighted centroid
function p : R™ — RP as:

N fu vo(x,v)dv

U) = HF—— 71
where ¢ : R” x RP — R is defined as:
(%, v) = ——eIVIE/ o) 72)

V2r

with a smooth function o : R" — R>. As in [19], we may
synthesize a controller:

ko(x) = ko,a(x) + C(p(x)) (r(x; Uy) + p(x;Up))
+ (1 = ¢(p(x)) e (x; Uy N Up),

where ¢ : R — [0, 1] is a smooth partition of unity function
with ((s) =0 for s <0 and {(s) =1 for s > 1, and:

(73)

B ayo(x) Tapno(x)

p(x) = ;

llav,o(x)]l2]lan,o(x) |2
encodes the angle between ay,y and aj . The Gaussian
weighted centroid functions in (73) have closed-form so-
lutions [24], [25]. The controller in (73) respects both
constraints, i.e., (ko(x) — ko a(x)) € Uy (x) N U(x). In
addition, kg is smooth if the functions ay,o, a0, byv,0 and
bn,o are smooth.

(74)

VI. SIMULATION
In this section we demonstrate CBF backstepping with
two examples.

Example 1. Consider the planar double integrator system:
x=§ E=u, (75)

with x,£&,u € R?, and the goal of bringing the system to
the position x, € R? while avoiding an obstacle centered
at xo € R? with radius Rg € Rq. Collision avoidance is
captured by the safe set Cy with:

1
ho(x) = 5 (Ix — %ol — R3) .

2
that satisfies ho(x) =0 = 22(x) = (x —x0)' #0.

To reach the goal x,, we rely on the desired smooth

(76)

position, z,
velocity, ||€]|

position,

0.5 B
0=0.1

nput, Ju]

20

time, ¢ time, ¢

Fig. 1. Obstacle avoidance with double integrator model via backstepping.
The system successfully avoids the obstacle and reaches the goal, while
the conservatism of the route can be tuned by the smoothing parameter.

controller ko 4(x) = —K,(x — x4) which is used to define
ko through the smooth safety filter in (73). This is used to
define h as in (26), which is used with the desired controller
ka(x,€) = —K,(€ — ko(x)) in the safety filter (43).

The closed-loop system is simulated in Fig. 1 for
K,=02 K,=08, p=1, ap(s) =ai(s) =s, 0 =0.1
(purple) and o = 0.4 (blue). The system safely reaches the
goal without colliding with the obstacle. As the smoothing
parameter o is increased, the system takes a more conserva-
tive route farther from the obstacle. This reduces the peak
in the control input.

Example 2. Consider the planar unicycle model:

T =wvcosy, y=wsiny, Y=uw. o))
where x,y, 1, v,w € R. This system can be written as:

. p T

x=Cup=w, £=[-& & w, (78)

with x = [Jc y]T and £ = [cosz/J sin ’(/J]T. Our goal is
obstacle avoidance like in Example 1, via the CBF (76).
The unicycle model is in the form of (44) with an
additional nonlinearity, the product of the heading direc-
tion £ and the speed wu that gives the velocity vector
w = £ug, which can be handled as follows. First, notice
that (78) is affine in both w and wug. Thus, a safe value
ko(x) for the velocity w can be designed such that it
satisfies (25), which is the same as ko(x) in Example 1.
We convert the safe velocity ko(x) into a safe head-
ing direction ko ¢(x) = ko(x)/|/ko(x)||2 and safe speed
ko.u(x) = |ko(x)||2 by restricting to ko(x) # 0. Then,
ko ¢(x) is incorporated into the composite barrier function
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start ' '
/ no backstepping

position, ,
L

0.5 F -

CBF, hy
input, u

0=0.1

1
0 10 20 0 10 20
time, ¢ time, ¢

Fig. 2. Obstacle avoidance with unicycle model via backstepping. The
unicycle is able to drive around the obstacle, while a standard safety filter

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

without backstepping makes the unicycle stop in front of the obstacle. [10]
[11]
h in (46). Denoting the safe heading angle as ¥y(x), i.e.,
writing ko ¢ (x) = [cos tho(x) sin wo(x)]T, yields: 2]
h(x,€&) = ho(x) — %(1 —cos(¢y — ¢0(X))>, (79) 03]
that penalizes unsafe heading directions. Then, we synthe- [14]
size the controller u = [up w1 T = k(x, &) via backstep-
ping based on (56), where we use the desired controller
ka(x,€) = [Kplx — xgll2 —Ky(sing — sinwo(x))]T [15]
The behavior of the closed-loop system is shown by
simulation results in Fig. 2 for K, = 0.2, Ky = 3, p =1,
ap(s) =ai(s) =s, 0 =0.1 (purple) and o = 0.4 (blue). [1¢]
Again, safety is guaranteed and more conservative smooth-
ing makes the unicycle take a longer route. We remark (7]
that safety could also be enforced without backstepping, by
relying on the input ug (speed) only. Then, the input u; [18]
(angular velocity) would not be constrained and could be
chosen freely. This would result in the unicycle stopping in 19
front of the obstacle and not reaching the goal (see black
trajectory). As opposed, backstepping synthesizes a barrier
. . o [20]
function h such that inputs at all levels are utilized for
safety. Such barrier synthesis is nontrivial, and backstepping  [21]
provides a systematic solution.
VII. CONCLUSION 221
In conclusion, we have proposed a novel approach for
using backstepping with Control Barrier Functions to design (23]
safety-critical controllers for nonlinear systems. Moreover,
we unified this approach with Control Lyapunov Functions [24]
to achieve both stability and safety. Future work includes
considering methods for the smooth design of top-level |25
controllers that are stabilizing and safe, and exploring the
robustness to parameter uncertainty seen with backstepping.
5782
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