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Abstract—Complex control systems are often described in
a layered fashion, represented as higher-order systems where
the inputs appear after a chain of integrators. While Con-
trol Barrier Functions (CBFs) have proven to be powerful
tools for safety-critical controller design of nonlinear systems,
their application to higher-order systems adds complexity to
the controller synthesis process—it necessitates dynamically
extending the CBF to include higher order terms, which
consequently modifies the safe set in complex ways. We pro-
pose an alternative approach for addressing safety of higher-
order systems through Control Barrier Function Backstepping.
Drawing inspiration from the method of Lyapunov backstep-
ping, we provide a constructive framework for synthesizing
safety-critical controllers and CBFs for higher-order systems
from a top-level dynamics safety specification and controller
design. Furthermore, we integrate the proposed method with
Lyapunov backstepping, allowing the tasks of stability and
safety to be expressed individually but achieved jointly. We
demonstrate the efficacy of this approach in simulation.

I. INTRODUCTION

Safety is becoming an ever more prevalent design con-
sideration in modern control systems as these systems are
deployed in real-world environments. Control Barrier Func-
tions (CBFs) have become a popular tool for constructively
synthesizing controllers that endow nonlinear systems with
rigorous guarantees of safety [1], [2]. Originally posed such
that the input of the system directly impacted the time
derivative of the CBF, recent work has sought to extend
this to higher-order nonlinear systems in which multiple
time derivatives are required for the input to influence the
evolution of the CBF [3]–[6]. While these works allow
for the safety-critical control of higher-order systems, they
require verifying the feasibility of CBF conditions using the
full system dynamics and change the safe set in complex
ways. Alternatively, the work in [7] has explored designing
CBFs for a top-level model, and using a tracking controller
that addresses the full system dynamics.

As the complexity of systems increase, it is often desirable
to approach the control design process with a simplified top-
level model that guides design for subsystems addressing the
full system dynamics. Backstepping is a well established
design technique for addressing the robust stabilization of
layered systems of this form, i.e., nonlinear systems with
higher-order dynamics [8], [9]. It considers design for the
top-level model and recursively designs a controller using
the full system dynamics, also allowing it to address the
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challenge of mixed-relative degree, where inputs enter the
system dynamics at different levels. Using backstepping
to stabilize systems while meeting state constraints has
been studied through lens of non-overshooting control [10],
and has recently been related to CBFs [11], [12]. These
works achieve safe behavior using a structured controller
that yields a linear dynamic relationship between sequential
states in a cascade, such that a system does not overshoot a
setpoint as it stabilizes. Other work has used backstepping
in the context of Lyapunov-Barrier functions to ensure state
constraints are met [13]–[15]. These approaches couple
ensuring safety with ensuring stability, which may impose
strict structural requirements on safety constraints. To the
best of our knowledge, decoupling stability and safety
and exploring backstepping purely with safety constraints
expressed through CBFs has not been considered.

A core challenge in combining CBF-based methods with
backstepping is finding smooth controllers that ensure safety
as backstepping requires the differentiation of controllers ap-
pearing higher in the integrator chain. From the conception
of CBFs, they have typically been used as constraints in
optimization-based controllers—either paired with CLFs [1],
or filtering a desired stabilizing controller [2]—which are
inherently non-smooth. Additionally, typically one wishes
to design controllers that are not only safe, but are also
stabilizing, precluding smooth CBF controller instantiations,
e.g., using Sontag’s Universal formula [16]. While it may
be possible to address these non-smooth challenges [17],
[18], we will use approach in [19] for synthesizing smooth
controllers meeting both CLF and CBF constraints.

The goal of this paper is to to unify backstepping with
CBFs, thereby enabling safe controller design at multiple
levels with varying degrees of model complexity. To this
end, after a review of CBFs and Lyapunov backstepping, we
begin in Section III by formulating a nonlinear controller
that ensures safety of a system with a single cascade via
Barrier Functions and backstepping. A consequence of this
result is that we may constructively synthesize a CBF for
the full cascaded system using a CBF and smooth controller
designed only considering the top-level of the system, which
is often easier than directly finding a CBF for the full-order
system. Additionally, in Section IV, we demonstrate that
this approach can be generalized to the multiple-cascade
setting, and address the challenge of mixed relative-degree
systems. The main result of this paper, presented in Section
V, is the unification of Lyapunov and Barrier backstepping,
wherein we show that by designing a controller that renders
the top-level dynamics both stable and safe, we may use
backstepping to achieve stability and safety of the full cas-
caded system. Importantly, using the techniques in [19], we
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are able to design a smooth top-level controller amenable to
backstepping. These results are demonstrated in simulation
in Section VI in the context of obstacle avoidance.

II. BACKGROUND

In this section we revisit Barrier Functions, Control Bar-
rier Functions and Lyapunov backstepping as a precursor to
introducing Control Barrier Function backstepping.

Consider a nonlinear control-affine system:

ẋ = f(x) + g(x)u, (1)

with state x ∈ Rn, input u ∈ Rm, and functions f : Rn →
Rn and g : Rn → Rn×m assumed to be locally Lipschitz
continuous on Rn. A locally Lipschitz continuous controller
k : Rn → Rm yields the closed loop system:

ẋ = f(x) + g(x)k(x). (2)

As the functions f , g, and k are locally Lipschitz continuous,
for any initial condition x0 ∈ Rn, there exists a maximal
time interval I(x0) = [0, tmax(x0)) and a unique continu-
ously differentiable solution φ : I(x0) → Rn satisfying:

φ̇(t) = f(φ(t)) + g(φ(t))k(φ(t)), (3)
φ(0) = x0, (4)

for all t ∈ I(x0) [20].

A. Control Barrier Functions

We define the notion of safety in this context as forward
invariance of a set in the state space. Specifically, suppose
there exists a set C ⊂ Rn defined as the 0-superlevel set of
a continuously differentiable function h : Rn → R:

C = {x ∈ Rn | h(x) ≥ 0} . (5)

The set C is said to be forward invariant if for any initial
condition x0 ∈ C, we have φ(t) ∈ C for all t ∈ I(x0). In
this case, we call the system (2) safe with respect to the set
C, and refer to C as the safe set.

Before defining Barrier Functions and Control Barrier
Functions, we recall the following definitions. A continuous
function α : [0,∞) → [0,∞) is said to be class K∞
(α ∈ K∞) if α is strictly monotonically increasing with
α(0) = 0 and limr→∞ α(r) = ∞, and a continuous function
α : R → R is said to be extended class K∞ (α ∈ Ke

∞) if it
belongs to K∞ and limr→−∞ α(r) = −∞. We now define
Barrier Functions:

Definition 1 (Barrier Function (BF) [21]). Let C ⊂ Rn be
the 0-superlevel set of a continuously differentiable function
h : Rn → R with ∂h

∂x (x) ̸= 0 when h(x) = 0. The function
h is a Barrier Function (BF) for (2) on C if there exists
α ∈ Ke

∞ such that for all x ∈ Rn:

∂h

∂x
(x)f(x)︸ ︷︷ ︸
Lfh(x)

+
∂h

∂x
(x)g(x)︸ ︷︷ ︸
Lgh(x)

k(x) ≥ −α(h(x)). (6)

We have the following result establishing the safety of a
set C for the closed-loop system (2) through BFs:

Theorem 1 ( [21], [22]). Let C ⊂ Rn be the 0-superlevel
set of a continuously differentiable function h : Rn → R
with ∂h

∂x (x) ̸= 0 when h(x) = 0. If h is a BF for (2) on C,
then the system (2) is safe with respect to the set C.

Control Barrier Functions provide a tool for synthesizing
controllers that enforce the safety of C:

Definition 2 (Control Barrier Function (CBF) [21]). Let
C ⊂ Rn be the 0-superlevel set of a continuously differ-
entiable function h : Rn → R with ∂h

∂x (x) ̸= 0 when
h(x) = 0. The function h is a Control Barrier Function
(CBF) for (1) on C if there exists α ∈ Ke

∞ such that for all
x ∈ Rn:

sup
u∈Rm

ḣ(x,u) ≜ sup
u∈Rm

Lfh(x) + Lgh(x)u > −α(h(x)).
(7)

Given a CBF h for (1) and a corresponding α ∈ Ke
∞, we

define the point-wise set of control values:

KCBF(x) =
{
u ∈ Rm

∣∣∣ ḣ(x,u) ≥ −α(h(x))
}
. (8)

This yields the following result:

Theorem 2 ([21]). Let C ⊂ Rn be the 0-superlevel set
of a continuously differentiable function h : Rn → R with
∂h
∂x (x) ̸= 0 when h(x) = 0. If h is a CBF for (1) on
C, then the set KCBF(x) is non-empty for all x ∈ Rn,
and for any locally Lipschitz continuous controller k with
k(x) ∈ KCBF(x) for all x ∈ Rn, the function h is a BF for
(2) on C.

Remark 1. The strict inequality in (7) serves two purposes.
First, it ensures the set (8) is non-empty (as with a non-strict
inequality in (6), the supremum may hold with equality, but
there may be no input such that the supremum is attained).
Second, strictness enables proving optimization-based con-
trollers using CBFs are locally Lipschitz continuous [23].

B. Lyapunov Backstepping

Consider now a control-affine system of the form:

ẋ = f0(x) + g0(x)ξ, (9)

ξ̇ = f1(x, ξ) + g1(x, ξ)u, (10)

with x ∈ Rn, ξ ∈ Rp, and u ∈ Rm, and functions
f0 : Rn → Rn, g0 : Rn → Rn×p, f1 : Rn × Rp → Rp,
and g1 : Rn×Rp → Rp×m assumed to be locally Lipschitz
continuous on their respective domains. This system is
referred to as being in strict-feedback form. We further
assume that f0(0) = f1(0,0) = 0 and g1 is pseudo-
invertible on Rn×Rp. Given a locally Lipschitz continuous
controller k : Rn×Rp → Rm yields the closed-loop system:

ẋ = f0(x) + g0(x)ξ, (11)

ξ̇ = f1(x, ξ) + g1(x, ξ)k(x, ξ), (12)

which for any initial condition (x0, ξ0) ∈ Rn×Rp there is a
maximum interval I((x0, ξ0)) ⊆ R≥0 and a unique solution
φ = (φx,φξ) satisfying (3)-(4) ∀t ∈ I((x0, ξ0)).
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Let there exist a function V0 : Rn → R≥0 and a function
k0(x) : Rn → Rp, both twice-continuously differentiable
on Rn, and γ1, γ2, γ3 ∈ K∞ such that k0(0) = 0 and:

γ1(∥x∥2) ≤ V0(x) ≤ γ2(∥x∥2), (13)
∂V0
∂x

(x)(f0(x) + g0(x)k0(x)) ≤ −γ3(∥x∥2), (14)

for all x ∈ Rn. The function k0(x) reflects a stabilizing
controller that we would implement for the system (9) if we
could directly control ξ. As we only directly control u, we
must backstep through the state ξ to access u. Consider a
function V : Rn × Rp → R≥0 defined as:

V (x, ξ) = V0(x) +
1

2µ
(ξ − k0(x))

⊤(ξ − k0(x)), (15)

where µ ∈ R>0. We note there exist γ′1, γ
′
2 ∈ K∞ such that:

γ1(∥x∥2) + γ′1(∥ξ − k0(x)∥2) ≤ V (x, ξ), (16)
V (x, ξ) ≤ γ2(∥x∥2) + γ′2(∥ξ − k0(x)∥2), (17)

for all x ∈ Rn and ξ ∈ Rp. The time derivative of V is:

V̇ (x, ξ,u) =
∂V0
∂x

(x)
(
f0(x) + g0(x)ξ

)
(18)

+
1

µ
(ξ − k0(x))

⊤
(
f1(x, ξ) + g1(x, ξ)u

− ∂k0

∂x
(x)

(
f0(x) + g0(x)ξ

))
.

Using a locally Lipschitz continuous feedback controller k :
Rn × Rp → Rm defined as:

k(x, ξ) = g1(x, ξ)
†
(
− f1(x, ξ) +

∂k0

∂x
(x)

(
f0(x) + g0(x)ξ

)
− µ

(
∂V0
∂x

(x)g0(x)

)⊤

− λ

2
(ξ − k0(x))

)
, (19)

with λ ∈ R≥0 yields:

V̇ (x, ξ,k(x, ξ)) =
∂V0
∂x

(x)(f(x) + g(x)k0(x)) (20)

− λ

2µ
(ξ − k0(x))

⊤(ξ − k0(x)),

≤− γ3(∥x∥2)− γ′3(∥ξ − k0(x)∥2), (21)

for γ′3 ∈ K∞ defined as γ′3(s) ≜ λ/(2µ)s2. Hence V is
a Lyapunov function for (11)-(12), such that I((x0, ξ0)) =
[0,∞) for all (x0, ξ0) ∈ Rn × Rp, and φx(t) → 0 and
φξ(t)−k0(φx(t)) → 0 as t→ ∞. Furthermore, we have:

inf
u∈Rm

V̇ (x, ξ,u) < −cγ3(∥x∥2)−cγ′3(∥ξ−k0(x)∥2), (22)

for all x ̸= 0 and ξ ̸= k0(x), where c ∈ (0, 1), such that V
is a Control Lyapunov Function (CLF) [23]. This enables a
stabilizing convex optimization-based controller defined as:

k(x, ξ) = argmin
u∈Rm

1

2
∥u∥22 (23)

s.t. V̇ (x, ξ,u) ≤ −cγ3(∥x∥2)− cγ′3(∥ξ − k0(x)∥2),

that is locally Lipschitz continuous on (Rn × Rp) \ {0} if
γ3 is locally Lipschitz continuous [23].

III. CONTROL BARRIER FUNCTION BACKSTEPPING

In this section we explore how Control Barrier Functions
can be used to achieve safety for the cascaded system in (9)-
(10) when one must backstep through the state ξ. Suppose
there exists a set C0 ⊂ Rn defined as the 0-superlevel set of
a twice-continuously differentiable function h0 : Rn → R:

C0 = {x ∈ Rn | h0(x) ≥ 0}, (24)

that we wish to keep safe. We further assume that ∂h0

∂x (x) ̸=
0 when h0(x) = 0. As the input u does not show up
in the time derivative of h0, we may not directly apply
the Control Barrier Function methodology established in
Section II. Instead, motivated by the Lyapunov setting, we
take a backstepping approach using CBFs. In particular, sup-
pose there exists a twice-continuously differentiable function
k0(x) : Rn → Rp and a function α0 ∈ Ke∞ such that:

∂h0
∂x

(x) (f0(x) + g0(x)k0(x)) ≥ −α0(h0(x)). (25)

As before, k0(x) reflects a controller that renders C0 safe
that we would implement for the system (9) if we could
directly control ξ. Let us consider a twice-continuously
differentiable function h : Rn × Rp → R defined as:

h(x, ξ) = h0(x)−
1

2µ
(ξ − k0(x))

⊤(ξ − k0(x)), (26)

with µ ∈ R>0. We note that we subtracted the quadratic
error term instead of adding is as in (15). Define the set
C ⊂ Rn × Rp as the 0-superlevel set of the function h:

C = {(x, ξ) ∈ Rn × Rp | h(x, ξ) ≥ 0}, (27)

noting that C ⊂ C0×Rp. This enables the following theorem:

Theorem 3. Let C0 be the 0-superlevel set of a twice-
continuously differentiable function h0 : Rn → R with
∂h0

∂x (x) ̸= 0 when h0(x) = 0. If there exists a twice-
continuously differentiable function k0(x) : Rn → Rp and a
globally Lipschitz1 function α0 ∈ Ke∞ such that (25) holds,
then there exists a locally Lipschitz continuous controller
k : Rn ×Rp → Rp such that the function h defined in (26)
is a Barrier Function for the closed-loop system (11)-(12)
on the set C defined in (27). Moreover, if (x0, ξ0) ∈ C, then
φx(t) ∈ C0 for all t ∈ I((x0, ξ0)).

Proof. We observe that:[∂h
∂x (x, ξ)
∂h
∂ξ (x, ξ)

]
=

[
∂h0

∂x (x) + 1
µ (ξ − k0(x))

⊤ ∂k0

∂x (x)

− 1
µ (ξ − k0(x))

⊤

]
, (28)

from which we may conclude that if ∂h
∂ξ (x, ξ) = 0 and

h(x, ξ) = 0, we must have h0(x) = 0, and thus ∂h
∂x (x, ξ) =

1We note this assumption permits linear extended class K functions, i.e,
α0(r) = kr for some k ∈ R>0, which are often used in practice
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∂h0

∂x (x) ̸= 0 by assumption. Furthermore, taking the time
derivative of h yields:

ḣ(x, ξ,u) =
∂h0
∂x

(x)
(
f0(x) + g0(x)ξ

)
(29)

− 1

µ
(ξ − k0(x))

⊤
(
f1(x, ξ) + g1(x, ξ)u

− ∂k0

∂x
(x)

(
f0(x) + g0(x)ξ

))
.

Using a locally Lipschitz continuous feedback controller k :
Rn × Rp → Rm defined as:

k(x, ξ) = g1(x, ξ)
†
(
− f1(x, ξ) +

∂k0

∂x
(x)

(
f0(x) + g0(x)ξ

)
+ µ

(
∂h0
∂x

(x)g0(x)

)⊤

− λ

2
(ξ − k0(x))

)
, (30)

with λ ∈ R≥0 yields:

ḣ(x, ξ,k(x, ξ)) =
∂h0
∂x

(x)(f(x) + g(x)k0(x)) (31)

+
λ

2µ
(ξ − k0(x))

⊤(ξ − k0(x)),

≥− α0(h0(x)) +
λ

2µ
∥ξ − k0(x)∥22. (32)

Letting L be the Lipschitz constant of α0 and choosing λ ≥
L yields:

ḣ(x, ξ,k(x, ξ)) ≥ − α0(h0(x)) +
L

2µ
∥ξ − k0(x)∥22, (33)

and the global Lipschitz property of α0 yields that:∣∣∣∣α0

(
h0(x)−

1

2µ
∥ξ − k0(x)∥2

)
− α0(h0(x))

∣∣∣∣
≤ L

2µ
∥ξ − k0(x)∥22. (34)

Noting the definition of (26), rearranging (34) yields:

α0(h(x, ξ)) ≥ α0(h0(x))−
L

2µ
∥ξ − k0(x)∥22. (35)

Negating both sides of this expression and combining with
(33) allows us to conclude that:

ḣ(x, ξ,k(x, ξ)) ≥ −α0(h(x, ξ)). (36)

Thus, h is a BF for the closed-loop system (11)-(12) on the
set C. Hence, by Theorem 1, C is safe, i.e., (x0, ξ0) ∈ C =⇒
φ(t) ∈ C =⇒ φx(t) ∈ C0 for all t ∈ I((x0, ξ0)).

Remark 2. The preceding result establishes the safety of
the set C, rather than the set C0. We do not necessarily have
that x0 ∈ C0 implies φx(t) ∈ C0 for all t ∈ I((x0, ξ0)).
This requirement on the initial condition ξ0 appears in other
results studying safety for higher-order systems [3]–[5].

We now make the following observation. Suppose that
h0(x

∗) = 0, ξ = k0(x
∗) and:

∂h0
∂x

(x∗)(f0(x
∗) + g0(x

∗)k0(x
∗)) = 0, (37)

for some x∗ ∈ C0. Then, we have that:

sup
u∈Rm

ḣ(x∗,k0(x
∗),u) = 0 = −α(h(x∗,k0(x

∗))), (38)

for any α ∈ Ke∞. Thus, we do not have that there exists an
extended class K∞ function α such that the strict inequality
in (7) is met, and hence we may not conclude that h is a
CBF for the system (9)-(10) on C. The primary reason that
h is not a CBF lies in the fact that when ξ = k0(x

∗), the
input does not have an effect on the time derivative of h. In
this situation, the evolution of h is entirely dependent on the
design of the controller k0. Instead of (25), suppose that:

∂h0
∂x

(x) (f0(x) + g0(x)k0(x)) > −α0(h0(x)). (39)

Considering any x ∈ Rn now, if ξ = k0(x), we have that:

ḣ(x,k0(x),u) > −α0(h0(x)) = −α0(h(x,k0(x))), (40)

for all u ∈ Rm. Noting that if ξ ̸= k0(x), ḣ can be made
arbitrarily large through input, we may conclude that:

sup
u∈Rm

ḣ(x, ξ,u) > −α0(h(x, ξ)). (41)

This is summarized in the following theorem:

Theorem 4. Let C0 be the 0-superlevel set of a twice-
continuously differentiable function h0 : Rn → R with
∂h0

∂x (x) ̸= 0 when h0(x) = 0. If there exists a twice-
continuously differentiable function k0(x) : Rn → Rp and a
function α0 ∈ Ke∞ such that (39) holds, then the function h
defined in (26) is a Control Barrier Function for the system
(9)-(10) on the set C defined in (27).

Theorem 4 does not explicitly require the assumption of
global Lipschitz continuity on α0, which was needed to
achieve (36) when using the particular controller (30). As
CBFs are typically used in the context of control synthesis
(beyond purely verification), we notice that (41) implies that:

sup
u∈Rm

ḣ(x, ξ,u) > −α1(h(x, ξ)), (42)

for any α1 ∈ Ke∞ such that α1(s) ≥ α0(s) for all s ∈
R. Thus we may view α1 as an design parameter we may
specify. For any such locally Lipschitz2 α1 ∈ Ke∞ and any
locally Lipschitz continuous kd : Rn × Rp → Rm, we can
synthesize an optimization-based controller:

k(x, ξ) = argmin
u∈Rm

1

2
∥u− kd(x, ξ)∥22 (43)

s.t. ḣ(x, ξ,u) ≥ −α1(h(x, ξ)),

that is locally Lipschitz continuous on Rn × Rp [23] and
renders h a BF for (11)-(12) on C.

2Though it is not necessary for α0 to be locally Lipschitz continuous to
imply the existence of such an α1, it is a sufficient condition.
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IV. MULTI-STEP CBF BACKSTEPPING

In this section we extend the preceding CBF backstepping
approach to higher-order mixed-relative degree systems via
a recursive design process typical of backstepping.

Consider the nonlinear system3 in strict feedback form:

ξ̇0 = f0(ξ0) + g0,ξ(ξ0)ξ1 + g0,u(ξ0)u0, (44a)

ξ̇1 = f1(ξ0, ξ1) + g1,ξ(ξ0, ξ1)ξ2 + g1,u(ξ0, ξ1)u1, (44b)
...

ξ̇r = fr(ξ0, ξ1, ξ2, . . . ξr) + gr(ξ0, ξ1, . . . , ξr)ur, (44c)

with states ξi ∈ Rpi and inputs ui ∈ Rmi for i =
0, . . . , r. The functions fi, gi,u for i = 0, . . . , r and gi,ξ
for i = 0, . . . , r − 1 are assumed to be smooth on their
respective domains. We further assume that the functions
gi = (gi,ξ,gi,u) for i = 1, . . . , r − 1 and the func-
tion gr are pseudo-invertible on their respective domains.
Let us denote qi ≜

∑i
j=0 pj , Mr ≜

∑r
j=0mj , and

zi ≜ (ξ0, ξ1, . . . , ξi) ∈ Rqi for i = 0, . . . , r. We seek to
construct a controller k : Rqr → RMr such that setting
u = (u0, . . . ,ur) = k(zr) achieves safety.

Suppose the set C0 is defined as the 0-superlevel set of a
smooth function h0 : Rq0 → R as in (24), with ∂h0

∂ξ0
(z0) ̸= 0

when h0(z0) = 0. Let smooth functions k0,ξ : Rq0 → Rp1
and k0,u : Rq0 → Rm0 , and a globally Lipschitz continuous
function α0 ∈ Ke∞ with Lipschitz constant L satisfy:

∂h0
∂ξ0

(z0)
(
f0(z0) + g0,ξ(z0)k0,ξ(z0) (45)

+ g0,u(z0)k0,u(z0)
)
≥ −α0(h0(z0)),

for all z0 ∈ Rq0 . Consider smooth functions (to be defined)
ki,ξ : Rqi → Rpi+1 for i = 1, . . . , r − 1 and ki,u : Rqi →
Rmi for i = 1, . . . , r, and the smooth function h : Rqr → R:

h(zr) = h0(z0)−
r∑
i=1

1

2µi
∥ξi − ki−1,ξ(zi−1)∥22, (46)

with µi ∈ R>0 for i = 1, . . . , r. Define the set C ⊂ Rqr as:

C = {zr ∈ Rqr | h(zr) ≥ 0}, (47)

noting that C ⊆ C0×Rp1×· · ·×Rpr . Given this construction,
we have the following result:

Theorem 5. Let C0 be the 0-superlevel set of smooth
function h0 : Rp0 → R with ∂h0

∂ξ0
(z0) ̸= 0 when h0(z0) = 0.

If there exist smooth functions k0,ξ : Rp0 → Rp1 and
k0,u : Rp0 → Rm0 and a globally Lipschitz function
α0 ∈ Ke∞ such that (45) holds, then there exists a smooth
controller k : Rqr → RMr and functions ki,ξ : Rqi → Rpi+1

for i = 1, . . . , r − 1 such that the function h : Rqr → R
defined in (46) is a Barrier Function for the closed-loop
system (44) on the set C defined in (47). Moreover, if

3We do not notate a closed-loop system, but assume it is understood
that when we refer to this system as closed-loop, it is operating under a
controller.

the initial condition zr,0 ∈ C, then φξ0
(t) ∈ C0 for all

t ∈ I(zr,0).

Proof. We observe that:
∂h

∂ξ0
(zr) =

∂h0
∂ξ0

(z0) (48)

+
r∑
j=1

1

µj
(ξj − kj−1,ξ(zj−1))

⊤ ∂kj−1,ξ

∂ξ0
(zj−1),

and for i ∈ {1, . . . , r}, we have that:

∂h

∂ξi
(zr) = − 1

µi
(ξi − ki−1,ξ(zi−1))

⊤ (49)

+
r∑

j=i+1

1

µj
(ξj − kj−1,ξ(zj−1))

⊤ ∂kj−1,ξ

∂ξi
(zj−1).

We can see recursively that if ∂h
∂ξi

(zr) = 0 for i = 1, . . . , r,
then we must have ξi = ki−1,ξ(zi−1) for i = 1, . . . , r,
and thus h(zr) = h0(ξ0) and ∂h

∂ξ0
(zr) = ∂h0

∂ξ0
(z0). As

∂h0

∂ξ0
(z0) ̸= 0 when h0(z0) = 0, we have that ∂h

∂ξ0
(zr) ̸= 0

when h(zr) = 0, such that ∂h
∂zr

(zr) ̸= 0 when h(zr) = 0.
Using k0,ξ and k0,u, we define the smooth functions:[
k1,ξ(z1)
k1,u(z1)

]
= g1(z1)

†
(
− f1(z1) + µ0

(
∂h0
∂ξ0

(z0)g0,ξ(z0)

)⊤

+
∂k0,ξ

∂ξ0
(z0)

(
f0(z0) + g0,ξ(z0)ξ1 + g0,u(z0)k0,u(z0)

)
− λ1

2
(ξ1 − k0,ξ(z0))

)
. (50)

For i = 2, . . . , r − 1, recursively define smooth functions:[
ki,ξ(zi)
ki,u(zi)

]
= gi(zi)

†
(
− fi(zi) (51)

− µigi−1,ξ(zi−1)
⊤(ξi−1 − ki−2,ξ(zi−2))

+
i−1∑
j=0

∂ki−1,ξ

∂ξj
(zi−1)

(
fj(zj) + gj,ξ(zj)ξj+1

+ gj,u(zj)kj,u(zj)
)
− λi

2
(ξi − ki−1,ξ(zi−1))

)
,

and lastly define the smooth function:

kr,u(zi) = gr(zr)
†
(
− fr(zr) (52)

− µrgr−1,ξ(zr−1)
⊤(ξr−1 − kr−2,ξ(zr−2))

+
r−1∑
j=0

∂kr−1,ξ

∂ξj
(zr−1)

(
fj(zj) + gj,ξ(zj)ξj+1

+ gj,u(zj)kj,u(zj)
)
− λr

2
(ξr − kr−1,ξ(zr−1))

)
,

Letting the controller k : Rqr → RMr be defined as:

k(zr) =
[
k0,u(z0)

⊤ · · · kr,u(zr)
⊤]⊤ , (53)

a sequence of (laborious) calculations yields:

ḣ(zr,k(zr)) ≥ −α0(h0(z0))+

r∑
i=1

λi
2µi

∥ξi−ki−1,ξ(zi−1)∥22.
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Choosing λi ≥ L for i = 1, . . . , r and following the same
argument as in (31)-(36), we arrive at:

ḣ(zr,k(zr)) ≥ −α0(h(zr)). (54)

Thus, h is a BF for the closed-loop system (44) on the set
C. Hence, by Theorem 1 we may conclude the set C is safe,
i.e., zr,0 ∈ C =⇒ φ(t) ∈ C =⇒ φξ0

(t) ∈ C0.

If instead of (45) we suppose that:
∂h0
∂ξ0

(z0)
(
f0(z0) + g0,ξ(z0)k0,ξ(z0) (55)

+ g0,uk0,u(z0)
)
> −α0(h0(z0)),

we have the following result:

Theorem 6. Let C0 be the 0-superlevel set of a smooth
function h0 : Rq0 → R with ∂h0

∂ξ0
(z0) ̸= 0 when h0(z0) = 0.

If there exist smooth functions k0,ξ : Rp0 → Rp1 and k0,u :
Rp0 → Rm0 and a globally Lipschitz continuous function
α0 ∈ Ke∞ such that (55) holds, then the function h defined
in (46) is a Control Barrier Function for the system (44) on
the set C defined in (47).

Consequently, for any locally Lipschitz α1 ∈ Ke∞ such
that α1(s) ≥ α0(s) for all s ∈ R and any locally Lipschitz
continuous kd : Rqr → RMr , we can synthesize a controller:

k(zr) = argmin
u∈RMr

1

2
∥u− kd(zr)∥22 (56)

s.t. ḣ(zr,u0, . . . ,ur) ≥ −α1(h(zr)),

that is locally Lipschitz continuous on Rqr [23] and renders
h a BF for (44) on C.

V. JOINT CLF AND CBF BACKSTEPPING

In this section we use joint Lyapunov and CBF back-
stepping to achieve both stability and safety of a cascaded
system. For simplicity, let us consider the system (9)-
(10). Suppose there exists functions V0 : Rn → R≥0,
h0 : Rn → R and k0 : Rn → Rp with k0(0) = 0, all twice-
continuously differentiable, and functions γ1, γ2, γ3 ∈ K∞
and a globally Lipschitz continuous function α0 ∈ Ke∞ such
that (13)-(14) and (25) are satisfied. Furthermore, let us
define the set C0 ⊂ Rn as in (24). As before, we wish to
stabilize the state to the origin while ensuring it remains in
the set C0. Let us construct twice-continuously differentiable
functions V : Rn × Rp → R≥0 and h : Rn × Rp → R as:

V (x, ξ) = V0(x) +
1

2µV
(ξ − k0(x))

⊤(ξ − k0(x)), (57)

h(x, ξ) = h0(x)−
1

2µh
(ξ − k0(x))

⊤(ξ − k0(x)), (58)

with µV , µh ∈ R>0. The time derivatives for V and h are
given in (18) and (29), using their respective values µV and
µh. We express them compactly here as:

V̇ (x, ξ,u) = bV,1(x, ξ) +
1

µV
a1(x, ξ)

⊤u (59)

ḣ(x, ξ,u) = bh,1(x, ξ)−
1

µh
a1(x, ξ)

⊤u, (60)

for functions bV,1, bh,1 : Rn×Rp → R and a1 : Rn×Rp →
Rm. As we saw in the individual backstepping cases, it was
possible to design (different) controllers such that the bounds
on the derivatives in (20) and (31) were met, implying that:

inf
u∈Rm

bV,1(x, ξ) +
1

µV
a1(x, ξ)

⊤u (61)

≤ −γ3(∥x∥)− γ′3(∥ξ − k0(x))∥2),

inf
u∈Rm

−bh,1(x, ξ) +
1

µh
a1(x, ξ)

⊤u (62)

≤ α0(h0(x))−
λ

2µh
∥ξ − k0(x)∥22,

We can rewrite these two inequality constraints as:

a1(x, ξ)
⊤u ≤ cV,1(x, ξ), (63)

a1(x, ξ)
⊤u ≤ ch,1(x, ξ), (64)

for functions cV,1, ch,1 : Rn × Rp → R. A key observation
is that these constraints are mutually satisfiable, i.e, if we
design a controller k : Rn × Rp → Rm such that:

a1(x, ξ)
⊤k(x, ξ) ≤ min{cV,1(x, ξ), ch,1(x, ξ)}, (65)

for all (x, ξ) ∈ Rn × Rp, then both (63) and (64) are met.
Thus under this controller, V is a Lyapunov function and h
is a Barrier Function on C for the closed-loop system (11)-
(12), such that we may conclude both stability and safety.
An optimization-based controller achieving this is given by:

k(x, ξ) = argmin
u∈Rm

1

2
∥u∥22 (66)

s.t. a1(x, ξ)⊤u ≤ min{cV,1(x, ξ), ch,1(x, ξ)}.

The intuition behind the joint feasibility of these constraints
is that the controller k0 has been designed to provide both
stability and safety, and we are using the input u to drive
ξ to k0(x), thus benefiting both stability and safety. The
challenge is then to design a continuously differentiable
controller k0 satisfying both (14) and (25). To accomplish
this, we will use the techniques presented in [19]. We note
that designing smooth stabilizing controllers via Lyapunov
functions often faces challenges at the origin [16]. With a
cascaded system, we may encounter the origin of the top-
level state without the entire state being at the origin. Thus,
in this work we slightly relax (14) to ensure smoothness,
in which case we achieve practical stability as opposed to
asymptotic stability.

Suppose that we are given a smooth desired top-level
controller k0,d : Rn → Rp that is not necessarily stable
nor safe. Consider the top-level constraints:
∂V0
∂x

(x)(f0(x) + g0(x)(k0,d(x) + v)) ≤ − γ3(∥x∥2)

+ δψ(∥x∥2),
∂h0
∂x

(x) (f0(x) + g0(x)(k0,d(x) + v)) ≥ − α0(h0(x)).

with δ ∈ R>0 and ψ : R → R≥0 a bump function:

ψ(s) =

{
exp

(
− 1
ϵ2−s2

)
, s ∈ (−ϵ, ϵ),

0, otherwise,
(67)
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with ϵ ∈ R>0. We can rewrite these constraints as:

aV,0(x)
⊤v + bV,0(x) ≤ 0, (68)

ah,0(x)
⊤v + bh,0(x) ≤ 0, (69)

for functions aV,0,ah,0 : Rn → Rp and bV,0, bh,0 : Rn → R.
Assuming V0 is a CLF and h0 is a CBF on C0 for (9) implies
the set-valued functions UV ,Uh : Rn → P(Rp) defined as:

Ui(x) =
{
v ∈ Rp | ai,0(x)⊤v + bi,0(x) ≤ 0

}
, (70)

with i ∈ {V, h} satisfy Ui(x) ̸= {∅} for all x ∈ Rn. More-
over, for simplicity let us assume that UV (x)∩Uh(x) ̸= {∅}
for all x ∈ Rn, such that there exists a v that satisfies both
(68) and (69) simultaneously. If this is not possible, this
construction can be done relaxing stability and enforcing
safety as is common with combined CLF-CBF methods [2].

For a set U ⊆ Rp, define the Gaussian weighted centroid
function µ : Rn → Rp as:

µ(x;U) ≜
∫
U vϕ(x,v)dv∫
U ϕ(x,v)dv

, (71)

where ϕ : Rn × Rp → R≥0 is defined as:

ϕ(x,v) =
1√
2π

e−∥v∥2
2/(2σ(x)), (72)

with a smooth function σ : Rn → R≥0. As in [19], we may
synthesize a controller:

k0(x) = k0,d(x) + ζ(ρ(x))(µ(x;UV ) + µ(x;Uh))
+ (1− ζ(ρ(x)))µ(x;UV ∩ Uh), (73)

where ζ : R → [0, 1] is a smooth partition of unity function
with ζ(s) = 0 for s ≤ 0 and ζ(s) = 1 for s ≥ 1, and:

ρ(x) =
aV,0(x)

⊤ah,0(x)

∥aV,0(x)∥2∥ah,0(x)∥2
, (74)

encodes the angle between aV,0 and ah,0. The Gaussian
weighted centroid functions in (73) have closed-form so-
lutions [24], [25]. The controller in (73) respects both
constraints, i.e., (k0(x) − k0,d(x)) ∈ UV (x) ∩ Uh(x). In
addition, k0 is smooth if the functions aV,0,ah,0, bV,0 and
bh,0 are smooth.

VI. SIMULATION

In this section we demonstrate CBF backstepping with
two examples.

Example 1. Consider the planar double integrator system:

ẋ = ξ, ξ̇ = u, (75)

with x, ξ,u ∈ R2, and the goal of bringing the system to
the position xg ∈ R2 while avoiding an obstacle centered
at xO ∈ R2 with radius RO ∈ R>0. Collision avoidance is
captured by the safe set C0 with:

h0(x) =
1

2

(
∥x− xO∥22 −R2

O

)
, (76)

that satisfies h0(x) = 0 =⇒ ∂h0

∂x (x) = (x− xO)
⊤ ̸= 0.

To reach the goal xg, we rely on the desired smooth

0

p
o
si

ti
o
n
, 
x

2

1

3

position, x1

0 321 4

1

0

0.5

C
B

F
, 
h

0

1 1

0

time, t

0 10 20

time, t

0 10 20

time, t

0 10 20

1

2

0.5

0

0.5

avoid

0.4

0.1

0.1

0.4



0.1

0.1

0.4

start

goal

Fig. 1. Obstacle avoidance with double integrator model via backstepping.
The system successfully avoids the obstacle and reaches the goal, while
the conservatism of the route can be tuned by the smoothing parameter.

controller k0,d(x) = −Kp(x− xg) which is used to define
k0 through the smooth safety filter in (73). This is used to
define h as in (26), which is used with the desired controller
kd(x, ξ) = −Kv(ξ − k0(x)) in the safety filter (43).

The closed-loop system is simulated in Fig. 1 for
Kp = 0.2, Kv = 0.8, µ = 1, α0(s) = α1(s) = s, σ ≡ 0.1
(purple) and σ ≡ 0.4 (blue). The system safely reaches the
goal without colliding with the obstacle. As the smoothing
parameter σ is increased, the system takes a more conserva-
tive route farther from the obstacle. This reduces the peak
in the control input.

Example 2. Consider the planar unicycle model:

ẋ = v cosψ, ẏ = v sinψ, ψ̇ = ω. (77)

where x, y, ψ, v, ω ∈ R. This system can be written as:

ẋ = ξu0 ≜ w, ξ̇ =
[
−ξ2 ξ1

]⊤
u1, (78)

with x =
[
x y

]⊤
and ξ =

[
cosψ sinψ

]⊤
. Our goal is

obstacle avoidance like in Example 1, via the CBF (76).
The unicycle model is in the form of (44) with an

additional nonlinearity, the product of the heading direc-
tion ξ and the speed u0 that gives the velocity vector
w = ξu0, which can be handled as follows. First, notice
that (78) is affine in both w and u0. Thus, a safe value
k0(x) for the velocity w can be designed such that it
satisfies (25), which is the same as k0(x) in Example 1.
We convert the safe velocity k0(x) into a safe head-
ing direction k0,ξ(x) = k0(x)/∥k0(x)∥2 and safe speed
k0,u(x) = ∥k0(x)∥2 by restricting to k0(x) ̸= 0. Then,
k0,ξ(x) is incorporated into the composite barrier function
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Fig. 2. Obstacle avoidance with unicycle model via backstepping. The
unicycle is able to drive around the obstacle, while a standard safety filter
without backstepping makes the unicycle stop in front of the obstacle.

h in (46). Denoting the safe heading angle as ψ0(x), i.e.,
writing k0,ξ(x) =

[
cosψ0(x) sinψ0(x)

]⊤
, yields:

h(x, ξ) = h0(x)−
1

µ

(
1− cos(ψ − ψ0(x))

)
, (79)

that penalizes unsafe heading directions. Then, we synthe-
size the controller u =

[
u0 u1

]⊤
= k(x, ξ) via backstep-

ping based on (56), where we use the desired controller
kd(x, ξ) =

[
Kp∥x− xg∥2 −Kψ

(
sinψ − sinψ0(x)

)]⊤
.

The behavior of the closed-loop system is shown by
simulation results in Fig. 2 for Kp = 0.2, Kψ = 3, µ = 1,
α0(s) = α1(s) = s, σ ≡ 0.1 (purple) and σ ≡ 0.4 (blue).
Again, safety is guaranteed and more conservative smooth-
ing makes the unicycle take a longer route. We remark
that safety could also be enforced without backstepping, by
relying on the input u0 (speed) only. Then, the input u1
(angular velocity) would not be constrained and could be
chosen freely. This would result in the unicycle stopping in
front of the obstacle and not reaching the goal (see black
trajectory). As opposed, backstepping synthesizes a barrier
function h such that inputs at all levels are utilized for
safety. Such barrier synthesis is nontrivial, and backstepping
provides a systematic solution.

VII. CONCLUSION

In conclusion, we have proposed a novel approach for
using backstepping with Control Barrier Functions to design
safety-critical controllers for nonlinear systems. Moreover,
we unified this approach with Control Lyapunov Functions
to achieve both stability and safety. Future work includes
considering methods for the smooth design of top-level
controllers that are stabilizing and safe, and exploring the
robustness to parameter uncertainty seen with backstepping.
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controllers for a class of nonlinear systems,” in Nonlinear Control
Sys. Design 1992. Elsevier, 1993, pp. 431–436.

[9] R. Sepulchre, M. Jankovic, and P. V. Kokotovic, Constructive non-
linear control. Springer Science & Business Media, 2012.

[10] M. Krstic and M. Bement, “Nonovershooting control of strict-
feedback nonlinear systems,” Trans. on Automatic Control, vol. 51,
no. 12, pp. 1938–1943, 2006.

[11] I. Abel, D. Steeves, M. Krstić, and M. Janković, “Prescribed-time
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