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Abstract—Modern control systems must operate in increas-
ingly complex environments subject to safety constraints and
input limits, and are often implemented in a hierarchical
fashion with different controllers running at multiple time
scales. Yet traditional constructive methods for nonlinear
controller synthesis typically ‘“flatten” this hierarchy, focusing
on a single time scale, and thereby limited the ability to make
rigorous guarantees on constraint satisfaction that hold for the
entire system. In this work we seek to address the stabilization
of constrained nonlinear systems through a multi-rate control
architecture. This is accomplished by iteratively planning
continuous reference trajectories for a nonlinear system using
a linearized model and Model Predictive Control (MPC), and
tracking said trajectories using the full-order nonlinear model
and Control Lyapunov Functions (CLFs). Connecting these
two levels of control design in a way that ensures constraint
satisfaction is achieved through the use of Bézier curves, which
enable planning continuous trajectories respecting constraints
by planning a sequence of discrete points. Our framework
is encoded via convex optimization problems which may be
efficiently solved, as demonstrated in simulation.

I. INTRODUCTION

The study and design of nonlinear control systems has
long been framed through the lens of stabilization, often
in an optimal sense. This is coupled with the fact that one
typically considers a single model, implicitly representing
a single time scale. However in most modern engineering
settings, especially in the context of autonomous and robotic
systems, the task of stabilization is complicated by the
need to meet safety-critical constraints on the system’s
state while respecting input limitations. To address this
need, implementations often utilize a hierarchical approach
that spans multiple time-scales, from the planning layer—
which typically leverages discrete-time models—to the real-
time controller layer which often considers continuous-time
representations. Thus, it is necessary to develop efficient
control synthesis techniques that provide rigorous guarantees
of stability, even in the presence of such constraints, and
across multiple time scales.

At the level of real-time control design, a rich catalog
of methods have been developed for stabilizing nonlinear
systems in the presence of unknown disturbances by uti-
lizing underlying structural properties of the system [1]—
[4]. In particular, the tools of Control Lyapunov Functions
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Fig. 1. Overview of Multi-Rate Architecture, with discrete planning
producing reference trajectories at a mid-level and continuous controllers
producing invariant sets at a low-level.

(CLFs) [5], [6] and Input-to-State Stability [7] have enabled
the joint synthesis of stabilizing controllers and Lyapunov
certificates of stability in the presence of disturbances, in-
cluding through convex optimization [8]-[10]. These meth-
ods for stabilization yield highly structured controllers, and
modifying these designs to accommodate state and input
constraints may destroy the stability properties guaranteed
by the controller. This issue is often circumnavigated the-
oretically by limiting the domain on which stability is
guaranteed, effectively ignoring constraints.

In contrast, Model Predictive Control (MPC) provides
an effective method for addressing constraints [11]-[13].
This is achieved by directly incorporating constraints a into
controller that iteratively plans a finite sequence of states
and inputs that are related through a discrete model of the
system dynamics and satisfy required constraints. Although
MPC has been successfully demonstrated in several chal-
lenging control settings [14]-[24], it is rarely implemented
in real-time using the full-order continuous time nonlinear
dynamics while accounting for unknown disturbances acting
on the system. Thus, MPC implementations for nonlinear
systems usually lack strong theoretical guarantees on con-
straint satisfaction in the presence of disturbances. This is
because (i) it is typically difficult to find a closed-form ex-
pression for the exact temporal discretization of continuous
time nonlinear dynamics [25], (ii) approximating the exact
discretization through numerical integration typically yields
a non-convex relationship between planned states and inputs,
and (iii) exactly propagating disturbances through high-
dimensional nonlinear dynamics is often computationally
intractable [26]. These challenges often preclude the com-
putational efficiency needed for real-time implementation.

The difficulty in realizing MPC based controllers at a
fast enough rate to allow for real-time implementation
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is often resolved by using an approximate model of the
system dynamics that is amenable to efficient planning,
typically through reduced-order models or via linearization
and temporal discretization of the continuous time nonlinear
system dynamics [13], [22]-[24], [27]. The use of such
approximations creates a gap between the system which is
being planned for and the actual evolution of the nonlinear
system, requiring an additional measure of robustness to en-
sure constraint satisfaction. This robustness is often achieved
by tightening the constraint sets by the maximum devia-
tion between the approximate model and the continuous
time nonlinear system dynamics [28]—-[35]. Approximating
worse-case deviations is typically done using properties
of the dynamics which may be difficult to compute, such
as Lipschitz constants for which over-approximations yield
conservativeness, or by solving computationally intensive
optimization programs. More recently, hierarchical control
frameworks have been proposed that plan with an approxi-
mate model and address nonlinear dynamics with a low-level
controller [36], [37]. However, this work does not address if
the low-level controller respects state and input constraints
as it follows the planned trajectory under disturbances.

In this work we propose a novel multi-rate control ar-
chitecture that unifies the planning capabilities of Model
Predictive Control with the ability to directly address non-
linear dynamics provided by Control Lyapunov Functions.
The fundamental tool that allows our framework to explicitly
address the relationship between a planner and controller
operating at different time scales are Bézier curves [38],
[39]. By directly planning over the control points that pa-
rameterize Bézier curves, we capitalize on a critical convex
hull property to ensure that state and input constraints are
met by the nonlinear system evolving under an optimization-
based CLF controller. While Bézier curves have been used
in motion planning, or to verify constraint satisfaction after
solving an MPC problem [40], this is to the best of our
knowledge the first result directly planning over Bézier con-
trol points in an MPC formulation, and using the resulting
continuous trajectories to ensure constraint satisfaction for
a nonlinear system with disturbances.

We begin in Section II by reviewing nonlinear dynamics,
and how structural properties can be used to synthesize
CLFs and optimization-based controllers for stabilizing a
class of dynamically admissible reference trajectories. These
controllers yield a description of how accurately a reference
trajectory is tracked in the presence of disturbances that
is amenable to being incorporated into planning. Next, in
Section III we provide a review of Bézier curves, and show
how they may be used to synthesize reference trajectories
for the disturbed nonlinear system such that state constraints
are satisfied. Section IV uses the properties of Bézier curves
in conjunction with the structure of the low-level controller
to formulate constraints on Bézier control points that en-
sure the low-level controller satisfies input constraints. In
Section V we integrate the preceding constructions into an
MPC formulation that plans over Bézier control points and

synthesizes continuous reference trajectories using a locally
linearized and discretized model while ensuring recursive
feasibility. We conclude in Section VI with simulation
results. Space constraints prevent the inclusion of proofs;
these can be found in the extended version [41].

II. Low-LEVEL CONTROLLER DESIGN

In this section we review nonlinear dynamical systems
and discuss the design of nonlinear feedback controllers
that provide a measure of disturbance rejection. Importantly,
these controllers will yield a description of reference trajec-
tory tracking that is amenable to being directly incorporated
into the synthesis of the reference trajectory itself.

Consider the nonlinear control-affine system:

5= {8 (H X+ [f("x)] +[i8,‘llu Fwlt), ()

£(x)

g(x)

with state x € R"”, input u € R, piecewise continuous! dis-
turbance signal w : R>¢o — R", and functions f: R” — R
and g : R™ — R, assumed to be continuously differentiable
on R"™. Furthermore, we make the following assumption:

Assumption 1. The function f satisfies f(0) = 0 and the
function g satisfies g(x) # 0 for all x € R™.

The first assumption takes the origin to be an unforced
equilibrium point of the undisturbed system. The second
assumption amounts to the system (1) possessing a relative
degree [1]. We note that while we consider a single-input,
single-output system, this is purely to simplify the presen-
tation of our contributions, with our results being easily
extended to the multiple-input, multiple-output setting under
an equivalent assumption of a vector relative degree.

Lett,t € R>o witht < ¢, and letk : R" x [t,{] — R be a
feedback controller that is locally Lipschitz continuous with
respect to its first argument® and piecewise continuous with
respect to its second argument on R™ x [¢, ¢]. This controller
yields the closed-loop system:

x = f(x) + g(x)k(x,t) + w(t). 2

As the functions f, g, and k are locally Lipschitz continuous
with respect to x and k is piecewise continuous with respect
to ¢, for any initial condition xy € R™ and any piecewise
continuous disturbance w : R>g — R", there exists an
interval I(t, %o, w) 2 [t,t+0(x0, w)) with §(x0, w) € Ryg
such that the system (2) has a unique piecewise continuously
differentiable?® solution ¢ : I(t,xo, w) — R” satisfying:

@(t) = £(p(t) + &) k(p(t), 1) + w(t), ()
¢(t) = xo, 4)

I'This definition is taken as in [3], with piecewise continuity requiring
the existence of one-sided limits at points of discontinuity.

2This definition is taken as in [3], with local Lipschitz continuity holding
with a Lipschitz constant that is uniform in the function’s second argument.

3Piecewise continuous differentiability is taken to mean a continuous
function with a derivative defined on the open intervals of a finite partition
with one-sided limits.
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for almost all ¢ € I(t,xo, w) [3].
With a view towards controller design, the system (1) may
also be used to define a class of reference trajectories:

Definition 1 (Dynamically Admissible Trajectory). A piece-
wise continuously differentiable function x4 : [¢, ] — R"
is a dynamically admissible trajectory for the system (1) if
there is a piecewise continuous ug : [t,t] — R such that:

x4(t) = £(xa(t)) + g(xa(t))ua(t), (5)
for almost all ¢ € [t, t].

Given a dynamically admissible trajectory x4 : [t,t] —
R™ for (1), let us denote: Xq(t) = [&5(t) id”(t)]—r,
and define a error function ey, : R™ x [t,{] — R™:

ex,(x,t) = x — x4(t), (6)
and its derivative éx, : R™ X [t, ] x R — R™ as:
(.6, 10) = £(x) + g()u + W(t) — %a(t). (]
Denoting:
]:Xd (X’ t) = f(X) - -’ijg(t% 3
the structure of the system (1) implies that:
fxd (x,t)
. 0 I 0
eusnti) =g g e+ [ Gy] O
+g(x)u + wib).

This structure with the assumption that g(x) # 0 for any
x € R™ enables a controller kI : R™ x [t,f] — R:

k,f(g}(x7 t) = g(x)_1 (—.7-',%()(7 t) — KTexd (%, t)) , (10)
where K € R" is selected to yield the relationship:
éx, (X, t, km1(x,t)) = Fex, (x,t) + w(t), (11)

with F € R™ " a Hurwitz matrix. For any Q € S,
(symmetric positive definite matrices) there exists a unique
P € ST, solving the Continuous Time Lyapunov Equation:

F'P+PF=-Q. (12)

For a particular Q, the corresponding solution P may be

used to define a function Vi, : R x [t,t] — R>q:
Viey (%, 1) = ex, (x,1) " Pey, (x,1). (13)

Denoting VV;y, (x,t) = 2ey,(x,t) P, we have that:

Anin(P)lex, (%, 1)[[3 < Vi, (%, 1) < Amax(P)lex, (x,1)[[3, (14)

VVaey (%, ) (B (%, 1) + 8(x)kicy (x, 1)) (15)

< —unin (Q)lex, (x, 1) 13,
forall x € R™ and ¢ € [t,?]. Let ¥ = 4\ max (P)?/Amin (Q)?
and for a given disturbance signal w : Ry — R” de-

fine |W| o = sup;>q [W(t)[|2. The preceding construction
yields the following result:

Lemma 1. Let W € R, and for t € [t,1] define the set:

Oy, (t,W) = {x €R" | Vi, (x,1) <yw°}.  (16)
Let the controller k : R™ X [t,t] — R satisfy:
Vi, (x,8)(fx, (x,1) + g(x)k(x,1)) (17)

< —Amin(Q)lex, (x, )13,

for almost all t € [t,t] and all x € Q,(t,w). Then for
initial time t, any xo € Qx,(t, W), and any w satisfying
Wlleo < W, we have that 1(t,xq,w) = [t,t), and
p(t) € Qx,(t, ) for all t € [t,t), and lim, 7 p(t) exists
and satisfies lim, 7 p(t) € Qx, (t,0).

The preceding result follows by a standard input-to-state
stability argument [7]. For any ¢ € [t, ], the set Qy, (¢, W)
captures how accurately the nonlinear closed-loop system
(2) tracks x4 under disturbances. Importantly, for a given
t € [t,t] the set Qx, (¢, W) is convex — as we will see later,
this will allow us to efficiently synthesize a dynamically
admissible trajectory x; knowing how accurately it will be
tracked and ensuring state and input constraint satisfaction.

In contrast to cancelling the nonlinear dynamics to
achieve linear dynamics as in (11), which may be unneces-
sary and inefficient [8], Control Lyapunov Functions (CLFs)
provide a method for synthesizing stabilizing controllers via
convex optimization. In particular, (15) implies that:

iIelﬂfQ VVi, (%, 1) (fx, (x,t) + g(x)u) (18)

< —Amin(Q)llex, (x, 1)|3-
forall x € R™ and ¢ € [t, ¢]. Define a feed-forward controller
K CR™ x [t,7] — R as:
it (%, 1) = —g(%) ™ Frg, (%, ). (19)
This feed-forward controller is incorporated into a controller
specified via a convex quadratic program (QP):

o1
kfclg (x,t) = argmin §||u — kifd(x,t)Hg
u€ER

8.t VWi, (%,1) (£, (%, ) + 8(¥)u) < = Amin(Q)]lex, (x,1) 3

Note that the constraint in this controller ensures that kgt
satisfies the condition in (17).

(CLF-QP)

III. BEZIER CURVES & STATE CONSTRAINTS

In this section we present the first main contribution of
this work by addressing how the properties of the low-level
tracking controller can be used to place requirements on a
dynamically admissible trajectory x,. These requirements
ensure state constraint satisfaction by the closed-loop non-
linear system (2) using the controllers k5 and kg,

We first make the following assumption regarding the
state constraints for the system:

Assumption 2. The state constraint set X C R™ is a
compact, convex polytope, with the existence of L; € R"
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and {; € R for j = 1,...,¢q such that X = {x €
R™ | ¥y, L;—X < {;}. Furthermore, we have that 0 € Int(X').

Given the above state constraints, it is not the case — even
for a dynamically admissible trajectory satisfying x,4(t) €
X for all ¢ € [t,¢] — that the state will remain inside the
set X, as we may have that Q,(t,w) ¢ X for some t €
[t, €]. To ensure that these constraints are met by the closed-
loop system without directly modifying the low-level control
design, we will incorporate information about the low-level
controller when constructing x4. The tool that will enable
incorporating this information is Bézier curves [38].

Let T € Rsq. A Bézier curve 7 : [0,7] — R of order p
is defined as:

r(r) = & 2(7),

where & = [£0,0 fo,pf € R+l g a vector with
elements consisting of the p + 1 control points, £y ; € R, of
the curve and z : [0,7] — RP*! is a Bernstein polynomial
defined elementwise as:

s = (1) (3) (1-3) i=ow

The curve r is smooth, and there exists a matrix* H €
RPH1XPF1 quch that the 5 derivative of r is given by:

r@)(7) = %ggsz(T) 2 ¢l a(n).

Consequently, () : [0,T] — R is a Bézier curve of order
p with the elements of &; (which are uniquely and linearly
defined by &y) as control points. Define the function r :
[0,T] — R™

r(r) = [r(r) rW(r)

There exists a matrix* D € R?"%2" such that for any two
vectors Xg,x; € R", the unique Bézier curve r of order
2n — 1 satisfying r(0) = xo and r(T") = x; with a vector
of control points & € R?" is given by:

&;r = [XJ XIT] DL
The following result (proven in [41]) shows how a se-

quence of points may be used to construct a set of Bézier
curves that yield a dynamically admissible trajectory for (1):

(20)

2n

(22)

re=D(] T (@23)

(24)

Lemma 2. Let N € N, ¢t € Rx, and define t =t + NT.
For k = 0,...,N, consider a collection of points {x}
with x;, € R" and define t,, € R>g as t,, = t + kT.
For k = 0,...,.N — 1, let 7y [0, 7] — R be a
Bézier curve of order 2n — 1 with control points (€x)o =

[(€k)o0 (fk-)o,zn_ﬂ—r € R?" given by:
(&) = [x{ x[,,]D7"

Defining the functions ry, : [0,T] — R™ as in (23), we have

(25)

4The matrices H and D are uniquely defined by the order of the Bézier
curve p and can be constructed as shown in the extended version [41].

(Ck)a = xq(trg1)

rN-1

Fig. 2. A depiction of the proposed method, where the control points of
the Bézier curve are constraint tightened by the size of the robust invariant
tube coming from the low-level controller.

that the function x4 : [t,t] — R" defined as:

Xd(t) =T (t — tk) , T € [tk,tk+1) R

xq(t) = xn, (26)

is a dynamically admissible trajectory for the system (1).

We note that the preceding result reduces planning of
an (infinite dimensional) continuous time trajectory to plan-
ning a finite sequence of points. This aligns with planning
dynamically admissible trajectories online in a multi-rate
approach. While other classes of functions (such as general
polynomials) may similarly be used to construct dynamically
admissible trajectories for (1), the motivation for using
Bézier curves lies in the convex hull relationship between the
curve r; and the control points (&), - ., (€)n—1. More
precisely, for ¢ = 0,...,2n — 1 denote:

(Ck)i = [(Er)osi (E)n_14] €R™

The points (§); can be viewed as the control points in time

for the curve r,(f ), while (Cr); reflects the control points for
the curve ry in the state space. This enables the following:

27

Fact 1 ( [38] §4). We have that r(7) € conv({(¢x):}) for
all 7 € [0, 7).

We may immediately use this property to establish the
following result (proven in [41]) regarding state constraints:

Lemma 3. Define the convex, compact set £ C R"™ as:
E={veR" | vI'Pv <~w?}. (28)

If (Cp)i e X&E fori=0,...,2n—1land k=0,...,N—1,
then we have that Qy,(t,w) C X for all t € [t,1).

This result states that by constraining the Bézier curve
control points, we can ensure the evolution of the system
under the low-level controller satisfies state constraints. The
requirement that (x); € X©E can be expressed as an affine
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inequality constraint as in the following (proven in [41]):

Lemma 4. We have that for j =1,...,q:

(Cr)i € X0 & & L] ()i < 4; — \/yw’L]P~'L;. (29)

IV. INPUT CONSTRAINTS

In this section, we present the second main contribution
of this work. We show how the structure of a low-level
tracking controller can be used to place requirements on a
dynamically admissible trajectory x4 to ensure input con-
straint satisfaction. We will make the following assumption
regarding input constraints for the system:

Assumption 3. The input constraint set &/ C R is given by
U = [~ Umax, Umax] fOr some upax € Rg.

Neither of the controllers k' or kg are necessarily
required to take values in the set U. Thus, satisfying input
constraints may require violating the inequality constraint
in (17), potentially invalidating the claim that ¢(t) €
Qx,(t,w) for all t € [t,¢]. To address this limitation,
knowledge of how much control action is required by the
controller to track the reference trajectory under disturbances
should be incorporated when synthesizing x,.

To this end, we state the following definitions. For «, 8 €
R>, define the matrix M, 3 € S, and the functions
Nog: X > RE and Tpp: X — Ryp as:

M, = Tpsp <[2%5 g]) , (30)

— ga— 71 —
N s(%) — {204&2 +|jl%()>§)ll Jl;eBKHQG] C6n
Lo p(X) =2(Be+ [g(x) ) (a+ |K]2), (32)

where mpgp : S? — SZ, denotes the projection from sym-
metric matrices to symmetric positive semidefinite matrices,

€ = /YW /Amin(P), and K is defined in (10). Given these

definitions, we state one of our main results (proven in [41]):

Theorem 1. There exists constants o, 3 € R>q such that
fa>a B>08 and Qx,(t,w) C X for all t € [t,1],
then for any collection of points {X} with X, € X for
k=0,...,N —1, we have that for all t € [ty tx41):

1
155 (%, )l < gﬂxd(t)TMa,and (t) (33)

+Na7/3(ik’)—raxd (t) + F(%/B (ik)7
for all x € Qy,(t,W), where oy, : [t,t] — R is defined
as:
T lxalt) = Rz
125 () — f(Xn)ll2)
This result is motivated by the key observation that the

upper bound achieved in (33) is convex in the quantity
ox,(t) for each t € [t,t], such that the constraint:

oy, (1) t € [ty trs1).  (34)

1 _ _
59%4 (t) " Ma,p0x, (t) + Na s(Z) 0y (1) + Tap(Ke) < Unmax.

(33)

is a convex quadratic inequality constraint in the quantity
0x,(t). As the function oy, is defined by Bézier control
points, we seek to express this constraint with control points.

Remark 1. We note that the proof of Theorem 1 in [41]
establishes the existence of values of a and S through
Lipschitz properties of the dynamics. In practice, it may
be difficult to compute these values, and they may not
necessarily be the minimum values for which this result
holds. Moreover, choosing very large values of « and (3
may lead to conservative behavior, as the constraint in (35)
will constrain the dynamically admissible trajectory x4 to
a small neighborhood of Xj. With this result we seek to
highlight an important monotonic structural property of the
system that permits a well-posed and practical approach for
achieving input constraint satisfaction. In particular, one may
begin with small values of o and 3 and increase them until
the closed-loop nonlinear system meets input constraints.
We will demonstrate this type of procedure in Section VI.

Before relating Theorem 1 to the Bézier control points
defining x4, we state the following lemma (proven in [41]):

Lemma 5. For any x € R™, we have that:
(36)
37

[ (7) = x[l2 < sup;[[(€r)i — %[2,
I (7) = FOllz < sup|(€)ni = F () o
for all T € [0,T].

With this result, we now state one of our main results
(proven in [41]) for tractably enforcing input bounds:

Lemma 6. If given a collection of points {Xy.} with X, € X
for k=0,...,N — 1, there exists sj, € R%O such that:

[(Ck)i — Xkll2
”(fk)n,i - f(ik)”2
1

§S;—Ma,,6’sk + Nos(Zr) sk + T 5(Xn) < Umax, (39)

fori=0,....2n—1and k=0,...,N — 1, then we have
that the inequality (35) is satisfied with ox,(t) defined as
in (34) for all t € [t,1].

< Sk, (38)

A consequence of this result is that for sufficiently high
values of a and (3, meeting the conditions of Lemma
6 implies [[kP/(x,t)]l2 < Umax for all ¢ € [t,7] and
x € Qx,(t,w). Moreover, the constraint (38) is a second-
order cone constraint and the constraint (39) is a convex
quadratic constraint (which may be written as a second-order
cone constraint [41]), and thus they may be used in a convex
program for determining Bézier control points. Lastly, the
following corollary relates bounds on k! and kg

Corollary 1. If the function kP! is bounded as in (33) for
all t € [ty trr1) and x € Qx,(t, W), then we have that:

(40)
+Na,5(ik)—r0'xd t)+To5(Xk),
forall t € [ty,tx+1) and all x € Qy, (t, ).

1
sea (6, D)2 < 50, (1) T Ma o, (1)

d
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V. MULTI-RATE CONTROL ARCHITECTURE

Utilizing the developments presented in the previous
sections, we now construct a multi-rate control architecture
which iteratively produces dynamically admissible trajecto-
ries for the system (1) and tracks them with the low-level
controller designed in Section II. By achieving robustness
to disturbances with the low-level controller, the trajectory
planning can be done with a disturbance-free system.

A. Model Predictive Control

In this section we establish how to compute the collection
of points {xy} used to define x4 in Lemma 2 while meeting
the desired constraints on the Bézier control points. Consider
a collection of points {X;} with X; € X and {u} with
ur € R for Kk = 0,... N — 1. To incorporate information
about the system dynamics when synthesizing x4 as in
Lemma 2, we will use linearizations of the system dynam-
ics (1) around these collections of points. This approxima-
tion of the dynamics will provide constraints on sequential
state points (and the corresponding Bézier control points as
defined by (25)) defining x4. We neglect the disturbances
w in this approximation as the low-level controller rejects
these disturbances and provides a robust invariant set around
x4. Consider a linear, temporal discretization of (1):

Xk+1 = A(ik,ﬂk)xk + B(ik)uk + C(ik,ﬂk), 41

where A : Y xR - R B: X - R, and C: X xR —
R™ come from linearizing and taking the exact temporal
discretization® (with sample period T') of the dynamics in
(1). For notational simplicity let us define:

A, £ A(ik,ﬂk), B £ B(ik), C, £ C(ik,ﬂk)
(42)
Given these, let us denote the state at a time ¢ € R>( by

x(t). Building upon the previous two sections, we propose
a Finite Time Optimal Control Problem (FTOCP):

N-1
min Z h(xp, up) + J(xn) (FTOCP)
sk,&k k=0

S.t. Xgg1 = Apxy + Brug + Cg, (43a)
xp € x(t) B E, (43b)
XN = 07 (43C)
(&) = [x{ x,]D7, (43d)
k)i € XSE, VieI  (43e)
1(Ck)i — Xkll2 ,
- <sp, Viel 43
(& — F®i)ll2) =% 30
1 _
§S;Ma,,8sk + No 5(Xr) sk
+ Fa,ﬁ(ik‘) S Umaxy
(43g)
where h : & x R — R3¢ is a convex stage cost, J : X —
R> is a convex terminal cost, and Z = {0,...,2n — 1}.

5See [41] for a formula for these linearizations and discretizations.

The constraint in (43a) requires that the sequence of discrete
points defining x4 satisfy a linear, discrete time approx-
imation of the system dynamics. The constraint in (43b)
requires that the beginning of x4 is close to the current
state x(t), such that x(¢t) € Q(t,w) as required by Lemma
1. The constraint in (43c) requires the end of x4 to be placed
at origin. The constraints in (43d)-(43g) relate the discrete
points xj to Bézier control points, and consequently the
continuous trajectory x4 tracked by the low-level controller.
Note that as in Fact 1, the coefficients (&) and ({x)q
are linearly related for ¢ = 0,...,2n — 1, a constraint
implicitly assumed in (FTOCP). If h and J are positive
definite quadratic functions, (FTOCP) is a second-order cone
program (SOCP), which can be efficiently solved [42].

Remark 2. Note that we do not explicitly enforce input
constraints on the decision variables u. Instead, constraints
are induced on these decision variables through the linear
dynamics constraint (43a) and the constraints on the Bézier
coefficients in (43d) and (43f)-(43g). Moreover, these con-
straints ensure that the low-level controller will satisfy input
constraints as desired.

B. The Multi-Rate Architecture

We now present the multi-rate architecture that integrates
the low-level controller design posed in Section II with the
preceding trajectory planner encoded in (FTOCP).

We first recall the role 71" plays in dynamically admis-
sible trajectories synthesized through Bézier curves as in
Lemma 2, as well as its role as a sampling period for the
temporal discretization established in (41). Let us denote
T = U2,{iT'}. This set serves to index the discrete points
in time (separated by 7") at which a dynamically admissible
trajectory for the system will be replanned by solving the
(FTOCP). The multi-rate architecture is initialized at time
t = 0 with collections of points {Xy|o} and {7y} Wwith
X0 € X and uyg € R for k= 0,..., N —1. Let us denote
the linearized and discretized dynamics computed around
these collections by {Lin o} = {(Ayjo, Brjo, Crjo) }-

Assumption 4. Given an initial condition x(0) € X,
(FTOCP) is feasible using {Linyo}.

Algorithm 1 v = C-MPC(x, t)

1. ift € T =U2y{iT} then

2 Compute {Liny;} in (41) about {Xj;} and {%y; };
3 Solve (FTOCP) with {Liny|,};

4: if (FTOCP) is infeasible then

S: {Lil’lk‘z} — {Lin1|i_1,...,LinN_w_l,Lino};
6: Solve (FTOCP) with {Liny; };

7 end if

8: {Xkjit1} {XT\N e ’X*N—l\i7X7V|i};

9: {ﬂk\i+1} — {UTW‘..,UTV_lli,O};

10: end if

11: Calculate x,4[i from {lei}, as in (25)—(26);

12: return u = kSF (x,1);
ali
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We now describe our multi-rate framework as summarized
in Algorithm 1. As in Line 1, let ¢ € T such that ¢t = iT
for some ¢ € Z. In Line 2, the linearized and discretized
dynamics are computed around the collections {Xj;} and
{@);}, and are denoted by {Liny;} = {(Ay);, Byji; Cipi) }-
In Line 3 these dynamics are used to solve the (FTOCP)
using the state at the current time, x(t), in (43b). If the
(FTOCP) is feasible, it returns collections of points {x};}
with xj; € & for k = 0,..., N and {u,} with uj;, € R
for k =0,...,N — 1. If (FTOCP) is infeasible, in Line 5
we set the linearized and discretized dynamics {Lin;} to
the previous linearization shifted by one and appending the
linearization and discretization around the origin, denoted
Linp = (A(0,0),B(0),C(0,0)). In Line 6 we solve
(FTOCP) and similarly return collections of points {x},}
and {uj.}. As we will show in Theorem 2, our assumption
about feasibility at time ¢ = 0 will ensure that switching
to this set of linearizations will always ensure (FTOCP) is
feasible. In Line 8-9 the collection {x};} is shifted and the
collection {uj;} is shifted and appended with 0 to define
collections {X;+1} and {y);41} used for linearization and
discretization in the next iteration. In Line 11 the collection
{x};} is then used to define a dynamically admissible
trajectory x4|¢ as in Lemma 2, which yields a corresponding
low-level controller k;’g‘z that defines the output of our
algorithm. We may view our algorithm as a time-varying
controller that yields a closed-loop system (2). Importantly,
our algorithm ensures state and input constraints are satisfied
as the continuous time system evolves under this controller,
as stated in the following theorem (proven in [41]):

Theorem 2. Suppose that o > « and 8 > B are such
that T, 3(0) < Umax. Let (FTOCP) be defined with o and
B, and consider the closed-loop system (2) with a feedback
controller given by C-MPC in Algorithm 1 and a disturbance
signal satisfying |w||cc <@. If 0 € X ©& and (FTOCP) is
feasible at to = 0 with initial condition x(0) € X, then C-
MPC is well-defined for all time, and the closed-loop system
(2) satisfies state and input constraints.

VI. SIMULATION

We consider the following nonlinear system in simulation:

=)

The goal is to drive the system to the origin while satisfying
state and input constraints for all time. Fig. 3 demonstrates
that at different time scales, both with and without added
disturbances, using only either a low-level or mid-level
controller results in state and/or input violation, whereas the
proposed combined approach is able to satisfy both for all
time. Fig. 4 shows the behavior of the system for increasing
values of o and 3. As the parameter values increase, the
planned MPC points become closer to reduce deviation from
the linearization points, and the deviation of the low-level
controller from the planned input uj decreases as the system
evolves from x; to x; . Simulation code is given at [43].

0 0] L]+ [ o) = [ it

1 Hz, No Disturbance

—CLF e
——MPC on Linearization with No Low Level
—— C-MPC on Linearization, CLF Low Level

10 Hz, With Disturbance

MPC Planned State (zj_,,)
= === MPC Planned Input (uj,,)
Low-Level Input (k(t))

0.5 0.6
X e~
0
o 0.5
0.5 5
5
1 o
15 ceccsccccccccsccsccsdpee
0.3
9 15 1 0.5
-3 -2 -1 0

Fig. 3. Comparison of three control methods: only using a low level
controller (CLF), applying MPC with no low-level controller, and applying
the proposed C-MPC with a CLF at the low-level. In both scenarios, just
using the low-level or mid-level controller separately yields both state and
input violation.

Increasing o and (8

_—

Fig. 4. The proposed C-MPC for increasing user parameter values o and
(3. Notice that as the parameters increase, the planned MPC points become
spatially closer to reduce the linearization error, resulting in the deviation
of the low-level controller from the planned control input decreasesing.

VII. CONCLUSION AND FUTURE WORK

In conclusion, we have presented a multi-rate control
architecture for nonlinear systems that utilizes MPC in
conjunction with Bézier curves to iteratively plan continuous
time trajectories that are tracked using Control Lyapunov
Function based controllers. Our approach allows us to ensure
that the low-level controller satisfies state and input con-
straints as it tracks the desired trajectory. We believe there
are a number of meaningful directions for future work. First,
in the pursuit of a truly multi-rate scheme, the low-level CLF
control design could be adapted to the sampled-data setting
[44]. Next, our work uses the origin as the terminal set,
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but constructive approaches to synthesize terminal sets using
the ideas in [45] could greatly improve the feasible domain
of our method. Lastly, we believe that underactuation and
unstable zero-dynamics may be best approached through
joint planning and low-level control, and that our work is a
first step in this direction [46].
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