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Abstract—This article studies the problem of steering a linear
system subject to state and input constraints toward a goal lo-
cation that may be inferred only through noisy partial observa-
tions. We assume mixed-observable settings, where the system’s
state is fully observable and the environment’s state defining the
goal location is only partially observed. In these settings, the
planning problem is an infinite-dimensional optimization problem
where the objective is to minimize the expected cost. We show how
to reformulate the control problem as a finite-dimensional deter-
ministic problem by optimizing over a trajectory tree. Leveraging
this result, we demonstrate that when the environment is static,
the observation model piecewise, and cost function convex, the
original control problem can be reformulated as a mixed-integer
convex program that can be solved to global optimality using a
branch-and-bound algorithm. The effectiveness of the proposed
approach is demonstrated on navigation tasks, where the goal
location should be inferred through noisy measurements.

Index Terms—Measurement uncertainty, observability, optimal
control.

I. INTRODUCTION

Model predictive control (MPC) is a mature control technology that
in part owns its popularity to developments in optimization solvers [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10]. In MPC, at each time step, an
optimal planned trajectory is computed solving a finite-dimensional
optimization problem, where the cost function and constraints encode
the control objectives and safety requirements, respectively. Then, the
first optimal control action is applied to the system and the process
is repeated at the next time step based on the new measurement.
This control methodology is ubiquitous in industry, with applications
ranging from autonomous driving [11], [12], [13] to large-scale power
systems [14], [15], [16].

For deterministic discrete-time systems, an optimal trajectory rep-
resented by a sequence of states and control actions can be computed
leveraging a predictive model of the system. On the other hand, when
uncertainties are acting on the system and/or only partial state obser-
vations are available, it is not possible to plan an optimal trajectory
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for the closed-loop system, as its future evolution is uncertain. In these
cases, the controller should plan the evolution of the system taking
into account that in the future new measurements will be available.
More formally, the controller should plan the evolution of the system
using a policy that is a function mapping the system’s state to a
control action. Unfortunately, planning over policies is computationally
intractable, even for the constrained linear quadratic regulator problem
when additive disturbances affect the system’s dynamics [17].

Several strategies have been presented in the literature to ease the
computational burden of planning over policies [18], [19], [20], [21],
[22], [23], [24], [25]. When the system dynamics are affected by
disturbances and the system’s state can be perfectly measured, the
planning problem can be simplified by computing affine disturbance
feedback policies that map disturbances to control actions [18], [19],
[25]. Another class of feedback policies is considered in tube MPC
strategies [20], [21], [22], [23], where the control actions are computed
based on a predefined feedback term and a feed-forward component
that is computed online by solving an optimization problem. Similar
strategies may be used in partially observable settings [26], [27], [28].

The abovementioned strategies are designed for unimodal distur-
bances and measurement noise. However, in several practical engi-
neering applications, uncertainties are multimodal, and it is required
to design controllers that take the structure of the uncertainty into
account to reduce conservatism. For instance, in autonomous driving, a
controller should plan a trajectory taking into account that surrounding
vehicles and pedestrians may exhibit different behaviors that can be
categorized into modes, e.g., merging or lane keeping for a car, and
crossing or not crossing for a pedestrian [29], [30], [31], [32]. Planning
over a trajectory tree, where each branch is associated with different
uncertainty modes, is a standard strategy that has been leveraged in
the literature to synthesize a controller that can handle multimodel
disturbances [30], [31], [32], [33], [34], [35], when perfect state feed-
back is available. It is also worth mentioning that adaptive dynamic
programming strategies can be used to design controllers for uncertain
systems when perfect state feedback is available [36], [37], [38].

In this work, we introduce the mixed-observable constrained linear
quadratic regular problem, where perfect state feedback is not available
for a subset of the state space. Compared with the standard LQR
problem, in our formulation, we consider state and input constraints,
and most importantly, we assume that only noisy environment mea-
surements about the goal location are available. Thus, the controller
has to compute actions also to collect informative measurements. This
problem arises in navigation tasks, where a robot has to find an object
that could be in a finite number of candidate locations, and the exact
one has to be inferred through noisy measurements. We assume that the
system’s state is fully observable and we model the partially observable
environment state, which represents the goal location, using a hidden
Markov model (HMM) [39]. The HMM is constructed based on the
system and the environment states, and it allows us to characterize
the observation model by describing the sensors’ accuracy. We con-
sider discrete-time systems and environments with continuous and
discrete state spaces, respectively. Thus, our approach generalizes Ong
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et al.’s [40] work, where they introduced the mixed-observable control
problem for discrete-time systems with discrete state spaces.

Our contribution is twofold. First, we show how to reformulate the
optimal control problem as a deterministic finite-dimensional optimiza-
tion problem over a trajectory tree. The computational cost of solving
this finite-dimensional optimal control problem increases exponentially
with the horizon length; thus, we introduce an approximation that
can be used to compute a feasible solution to the original problem.
Then, leveraging these results, we demonstrate that through a nonlinear
change of coordinates the original optimal control problem can be
approximated by solving a mixed-integer convex program (MICP),
when the environment is static and the observation model is piecewise.
As a corollary, we show that when the observation model is constant, the
value function associated with the optimal control problem is convex.
Finally, we test the proposed strategy on two navigation examples.

Notations: For a vector b ∈ Rn and an integers ∈ {1, . . . , n}, we de-
note b[s] as the sth component of the vector b, b� indicates its transpose,
M = diag(b) ∈ Rn×n is a diagonal matrix with diagonal elements
M [s, s] = b[s], and v = 1/b is defined as a vector v ∈ Rn with entries
v[s] = 1/b[s] for all s ∈ {1, . . . , n}. For a functionT : Rn → R,T (b)
denotes the value of the function T at b. Throughout this article, we
will use capital letters to indicate functions and lower letters to indicate
vectors. The set of positive integers is denoted as Z0+ = {1, 2, . . .},
and the set of (strictly) positive reals as (R+ = (0,∞)) R0+ = [0,∞).
Furthermore, given a setZ and an integerk, we denote thekth Cartesian
product as Zk = Z × · · · × Z and |Z| as the cardinality of Z . Finally,
given a real number a ∈ R, we define the floor function �a�, which
outputs the largest integer i = �a� such that i ≤ a.

II. PROBLEM FORMULATION

A. System and Environment Models

We consider the following linear time-invariant system:

xk+1 = Axk +Buk (1)

where the state xk ∈ Rn, the input uk ∈ Rd, and k indexes over
discrete-time steps. Furthermore, the abovementioned system is subject
to the following state and input constraints:

uk ∈ U ⊆ Rd and xk ∈ X ⊆ Rn∀k ≥ 0. (2)

Our goal is to control system (1) in environments represented by par-
tially observable discrete states. The environment evolution is modeled
using an HMM given by the tuple H = (E ,O, T, Z), where
1) E = {1, . . . , |E|} is a set of partially observable environment states;
2) O = {1, . . . , |O|} is the set of observations;
3) the function T : E × E × Rn → [0, 1] describes the probability of

transitioning to a state e′ given the current environment state e and
system’s state x, i.e., T (e,′ e, x) := P (e′|e, x);

4) the function Z : E × O × Rn → [0, 1] describes the probability of
observing o, given the environment state e and the system’s state
x, i.e., Z(e, o, x) := P (o|e, x).

As the environment state ek is partially observable, we introduce the
following belief vector:

bk ∈ B =

⎧⎨
⎩b ∈ R|E|

0+ :

|E|∑
e=1

b[e] = 1

⎫⎬
⎭ .

The belief bk is a sufficient statistics, and each entry bk[e] represents the
posterior probability that the state of the environment ek equals e ∈ E ,
given the observation vector ok = [o1, . . . , ok], the system’s trajectory
xk = [x1, . . . , xk], the state x(0), and the belief vector b(0) at time
t = 0, i.e., bk[e] = P (e|ok,xk, x(0), b(0)).

Consider an example where a Mars rover has to find a science sample
that may be in one of several locations, which are identified using coarse

and low-resolution surface images [41], [42]. As the exact location is
unknown, the rover is required to collect measurements to identify the
science sample’s location. In this setting, the environment could be
represented by an HMM where the set of environment states E collects
the possible science sample locations, e.g., E = {loc1, . . . , locn} and
e = loci if the science sample is in the ith location. In the next section,
we further formalize this navigation task as a regulation problem.

B. Control Objectives

Given the environment’s belief b(t) and system’s state x(t), our goal
is solve the following finite-time optimal control problem (FTOCP):

J(x(t), b(t))

= min
π

EoN−1

[
N−1∑
k=0

h(xk, uk, ek) + hN (xN , eN )

∣∣∣∣b(t)
]

subject to xk+1 = Axk +Buk

uk = πk(ok,xk, x(t), b(t))

x0 = x(t)

uk ∈ U , xk ∈ X ∀ k ∈ {0, . . . , N − 1} (3)

where the stage cost h : Rn × Rd × E → R and the terminal cost
hN : Rn × E → R. Note that the objective is a function of the par-
tially observable environment states ek ∈ E , and the expectation is
over the environment observations oN−1 = [o1, . . . , oN−1], which are
stochastic, as discussed in Section II-A. In the abovementioned FTOCP,
the optimization is carried out over the sequence of control policies
π = [π0, . . . , πN−1], and at each time k, the policyπk : Ok ×X k+1 ×
B → Rd maps the environment observations up to time k, the system’s
trajectory, and the initial belief b(t) to the control action uk. Note that
we focus on the solution to the abovementioned finite-time control task,
and we do not analyze the stability properties of the closed-loop system.

Computing the optimal solution to the FTOCP (3) is challenging
as i) the environment’s state is partially observable, ii) our goal is
to minimize the expected cost, and iii) the optimization is infinite
dimensional as it is carried out over the space of feedback policies,
which are functions mapping states and belief vectors to inputs. In
what follows, we show that the FTOCP (3) can be reformulated as a
finite-dimensional nonlinear program (NLP). Leveraging the discrete
nature of the set of observations O, we will show that optimizing over
feedback policies is equivalent to optimizing over a tree of control
actions. Furthermore, we show that when the environment is static,
the cost functions h(·, ·, e) and hN (·, e) are convex and quadratic,
and the observation function Z(e, o, ·) : Rn → [0, 1] is piecewise
for all e ∈ E and o ∈ O, then the FTOCP (3) can be recast as an
MICP. Finally, we show that when the observation model is constant
the FTOCP (3) can be written as a convex parametric optimization
problem.

III. EXACT SOLUTION

A. Cost Reformulation

As discussed in Section II-A, the belief bk is a sufficient statistics for
an HMM [39]. Therefore, at each time k, the belief can be computed
using the observation ok, the system’s state xk, and the belief at the
previous time step bk−1, i.e.,

bk[e] =
Z(e, ok, xk)

P (ok|xk, bk−1)

∑
i∈E

T (e, i, xk)bk−1[i]. (4)

For further details about the belief update equation, refer to [40] and
[42]. The abovementioned equation can be written in compact form as
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follows:

bk =
Ae(ok, xk)bk−1

P (ok|xk, bk−1)

where P (ok|xk, bk−1) is a normalization constant, and the matrix
Ae(ok, xk) ∈ R|E|×|E|, which is a function of the observations ok and
the system’s state xk at time k, is defined as follows:

Ae(ok, xk) = Θ(ok, xk)Ω(xk) (5)

where

Ω(xk) =

⎡
⎢⎢⎢⎢⎣

T (1, 1, xk) . . . T (1, |E|, xk)

T (2, 1, xk) . . . T (2, |E|, xk)
...

...

T (|E|, 1, xk) . . . T (|E|, |E|, xk)

⎤
⎥⎥⎥⎥⎦ (6)

and

Θ(ok, xk) = diag
([

Z(1, ok, xk) . . . Z(|E|, ok, xk)
])

.

Leveraging the abovementioned definitions, we show that the ex-
pected cost from problem (3) can be rewritten as a summation over the
set of possible observations O.

Proposition 1: Consider the optimal control problem (3). The ex-
pected cost can be equivalently written as

EoN−1

[
N−1∑
k=0

h(xk, uk, ek) + hN (xN , eN )

∣∣∣∣∣b0
]

=
N−1∑
k=0

∑
ok∈Ok

∑
e∈E

vok
k [e]h(xk, uk, e)

+
∑

oN∈ON

∑
e∈E

voN
N [e]hN (xN , e) (7)

where the unnormalized belief vok
k = Ae(ok, xk)v

ok−1
k−1 , and the matrix

Ae(ok, xk) ∈ R|E|×|E| is defined in (5).
Proof: First, we note that, as the system dynamics are deterministic,

the expected stage cost at time step k can be written as

EoN−1
[h(xk, uk, ek)|xk, x0, b0]

=
∑

ok∈Ok

EoN−1
[h(xk, uk, ek)|xk, x0, b0,ok]P (ok|xk, x0, b0)

=
∑

ok∈Ok

∑
e∈E

bk[e]h(xk, uk, e)P (ok|xk, x0, b0)

=
∑

ok∈Ok

∑
e∈E

v
ok
k [e]h(xk, uk, e). (8)

In the abovementioned derivation, we leveraged the independence of
the observations collected at each time step, i.e., P (ok|xk, x0, b0) =
P (o1|x1, x0, b0)× · · · × P (ok|xk, x0, b0), and we defined

v
ok
k [e] = Z(e, ok, xk)

∑
i∈E

T (e, i, xk)v
ok−1
k−1 [i]

which can be written in compact form as vok
k = Ae(ok, xk)v

ok−1
k−1 .

Finally, we note that the derivation in (8) holds also for the terminal
cost function hN . Therefore, we have that the desired result follows
from (8) and the linearity of the expectation in (7). �

B. Deterministic Reformulation

In the previous section, we showed how to leverage the beliefs
associated with all possible observations to express the expectation
as a summation. In this section, we show that the optimization carried

Fig. 1. Tree of trajectories for N = 3, where at each time k, there
are |O| = 2 possible observations. Each predicted control action u

ok
k

is
associated with an observation vector ok ∈ Ok. Thus, the abovemen-
tioned tree encodes a policy given by the actions that the controller
would apply depending on the observations collected up to time k.

out over feedback policies can be reformulated as an optimization over
a tree of trajectories, as the one shown in Fig. 1.

The control policy πk : Ok ×X k+1 × B from (3) maps the vec-
tor of observations ok = [o1, . . . , ok] ∈ Ok, the system’s trajectory,
and the initial belief b0 = b(0) to the control action uk, i.e., uk =
π(ok,xk, x0, b0). Note that the system dynamics from problem (3)
are deterministic, and therefore, given an initial condition x(t) and an
initial belief b(t), the control action at time k is a function only of the
observation vector ok. Thus, we define the control action u

ok
k ∈ Rd

associated with the observation vector ok ∈ Ok, and we reformulate
problem (3) as an optimization problem over the set of control actions
{uok

k ∈ Rd : k ∈ {0, . . . , N − 1},ok ∈ Ok}. This strategy allows us
to optimize over policies as at time k, the controller plans |O|k dis-
tinct actions associated with each uncertain sequence of observations
ok = [o1, . . . , ok] ∈ Ok. Basically, the controller optimizes over a tree
of control actions, as shown in Fig. 1. More formally, given the environ-
ment’s belief b(t) and the system’s state x(t), we rewrite problem (3):

J(x(t), b(t)) = min
u

N−1∑
k=0

∑
ok∈Ok

∑
e∈E

v
ok
k [e]h(x

ok
k , u

ok
k , e)

+
∑

oN∈ON

∑
e∈E

voN
N [e]hN (xoN

N , e)

subject to x
ok
k+1 = Ax

ok−1
k +Bu

ok
k

x
o−1
0 = x(t), vo0

0 = b(t)

v
ok+1

k+1 = Ae(ok+1, x
ok
k+1)v

ok
k

u
ok
k ∈ U , xok

k+1 ∈ X
∀ok ∈ Ok ∀k ∈ {0, . . . , N − 1} (9)

where the vector of observations ok = [o1, . . . , ok] for all k ∈
{1, . . . , N − 1}, and at time k = 0, we defined o0 = o−1 = b(t), and
O0 = b(t). In the abovementioned problem, the matrix of decision
variables is defined as

u =
[
uo0
0 , . . . , u

oN−1
N−1

] ∈ Rd×
∑N−1

k=0
|O|k

. (10)

Note that, for each time step k ∈ {0, . . . , N − 1}, the abovementioned
matrix collects the |O|k control actions associated with all observation
vectors from the set Ok.
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Lemma 1: Assume that X and U are compact. Let C ⊂ X be a
control invariant set for system (1) subject to constraints (2), i.e.,
∀x ∈ X , there exists u ∈ U such that Ax+Bu ∈ C. If x(t) ∈ C, then
problem (9) admits an optimal solution.

Proof: By definition, we have that for x(t) ∈ C there exists a se-
quence of N control actions that keep the system inside C. Hence,
problem (9) is feasible. Compactness of state and input constraint sets
yields the desired result. �

C. Practical Approach

FTOCP (9) is a finite-dimensional NLP that can be solved with
off-the-self solvers. However, the computational cost of solving (9)
is nonpolynomial in the horizon length, as the number of decision
variables from (10) grows exponentially with the horizon length N .
Indeed, at each time step k, the predicted trajectory branches as a
function of the discrete observation ok ∈ O, as shown in Fig. 1. In this
section, we introduce an approximation to the FTOCP (9), where the
predicted trajectory branches every Nb time steps. This strategy allows
us to limit the number of optimization variables and, for a prediction
horizon of N steps, the computational burden is proportional to the
ratio N/Nb.

Given the current state x(t), the environment’s belief b(t), the con-
stant Nb ∈ Z0+, and the prediction horizon N = PNb with P ∈ Z0+,
we solve the following FTOCP:

Ĵ(x(t), b(t))

= min
a

N−1∑
k=0

∑
ōj(k)∈Oj(k)

∑
e∈E

v̄
ōj(k)

k [e]h
(
s
ōj(k)

k , a
ōj(k)

k , e
)

+
∑

ōj(N)∈Oj(N)

∑
e∈E

v̄
ōj(N)

k [e]hN

(
s
ōj(N)

N , e
)

subject to s
ōj(k)

k+1 = As
ōj(k−1)

k +Ba
ōj(k)

k

s
ō−1
0 = x(t), v̄ō0

0 = b(t)

v̄
ōj(k+1)

k+1 = Ce

(
ōj(k+1), s

ōj(k)

k+1 , k
)
v̄
ōj(k)

k

a
ōj(k)

k ∈ U , sōj(k)

k+1 ∈ X
j(k) = �k/Nb�
∀ōj(k) ∈ Oj(k)∀k ∈ {0, . . . , N − 1} (11)

where for P = N/Nb ∈ Z0+ and j(k) = �k/Nb� the matrix of deci-
sion variables

a=
[
aō0
0 , . . . , aō0

P , . . . , a
ōj(k)

k , . . . , a
ōj(N−1)

N−1

]
∈Rd×

∑P−1

k=0
Nb |O|k

(12)

the vector of observations ōj(N−1) = ōP−1 = [ō1, . . . , ōP−1], and the

matrix Ce(ōk, s
ōj(k−1)

k , k) is defined as

Ce

(
ōj(k), s

ōj(k−1)

k , k
)

=

⎧⎨
⎩
Ae

(
ōj(k), s

ōj(k−1)

k

)
If �k/Nb� = t/Nb and k > 0

Ω
(
s
ōj(k−1)

k

)
otherwise

(13)

where Ω(·) is defined as in (6).
Compare the FTOCP (9) with the FTOCP (11). In the FTOCP (9),

we optimize over the tree of trajectories shown in Fig. 1; therefore,
the complexity of the problem grows exponentially with the horizon
length N . On the other hand, in the FTOCP (11), we optimize over a

tree of trajectories that branches every Nb time steps, and the matrix
of optimization variables (12) grows exponentially with the ratio P =
N/Nb. Therefore, in the FTOCP (11), the user-defined constant Nb

may be used to limit the computational complexity when planning over
a horizonN . As a tradeoff, the optimal value function Ĵ associated with
the FTOCP (11) only approximates the value functionJ associated with
the FTOCP (9).

IV. STATIC ENVIRONMENTS, PIECEWISE OBSERVATION MODEL, AND

QUADRATIC COST: THE EXACT SOLUTION

In this section, we consider problems with static environments, piece-
wise observation model, and convex quadratic cost function. Under
these assumptions, we show that problem (9) can be reformulated as
an MICP. In what follows, we first introduce the problem setup. Then,
we show how to reformulate problem (9) as an MICP.

Assumption 1 (Static environment): The environment is static, which
in turns implies that the transition function T is defined as follows:
T (e, e) = 1, T (e,′ e) = 0, ∀e ∈ E and ∀e′ ∈ E such that e �= e′.

Assumption 2 (Piecewise observation model): The observation
model is a piecewise function of the system state x. In particular,
given R disjointed polytopic regions {Xi}Ri=1 such that ∪R

i=1Xi = X ,
we have that Z(e, o, x) = Mi(e, o) if x ∈ Xi, for a set of functions
Mi : E × O → [0, 1].

Assumption 3 (Convex quadratic cost function): For a fixed environ-
ment state e ∈ E , the stage costh(·, ·, e) : Rn × Rd → R and the termi-
nal costhN (·, e) : Rn → R are convex and quadratic, i.e.,h(x, u, e) =
||x− x

(e)
g ||Q + ||u− u

(e)
g ||R, hN (x, e) = ||x− x

(e)
g ||QN

, where the
weighted square norm ||x||Q = x�Qx for the positive semidefinite

matrix Q, and the vectors x(e)
g ∈ Rn and u

(e)
g ∈ Rd are user defined.

Assumption 4 (Strictly positive belief): All entries of the be-
lief vector b(0) are strictly positive, i.e., b(0) ∈ B+ = {b ∈ R|E|

0+ :∑|E|
i=1 b[e] = 1}. Furthermore, we cannot observe the true environment

state e ∈ E from any state x ∈ X , i.e., P (o = e|e, x) = Z(e, o, x) :
E × O × Rn → (0, 1).

Given the system’s state x(t) and the inverse belief vector z(t) =
1/b(t) ∈ R|E|, we define the following FTOCP:

V (x(t), z(t)) = min
u,δ

N−1∑
k=0

∑
ok∈Ok

∑
e∈E

h(x
ok
k , u

ok
k , e)

zok
k [e]

+
∑

oN∈ON

∑
e∈E

hN (xoN
N , e)

zoN
N [e]

subject to x
ok
k+1 = Ax

ok−1
k +Bu

ok
k

x
o−1
0 = x(t), zo0

0 = z(t)

uok
k ∈ U , xok

k ∈ X

z
ok+1

k+1 =
R∑

i=1

Di(ok+1)z
ok
k δ

ok
k,i

δok
k,i = 1Xi

(xok
k ) ∀i ∈ {1, . . . , R}

∀k ∈ {0, . . . , N − 1} (14)

where the indicator function 1Xi
(xok

k ) = 1 if xok
k ∈ Xi and zero,

otherwise, and the optimization variables

u = [uo0
0 , . . . , u

oN−1
N−1 ] ∈ Rd×

∑N−1
k=0 |O|k ,

δ = [δo0
0,1, . . . , δ

oN−1
N−1,R] ∈ {0, 1}R

∑N−1
k=0 |O|k . (15)

Note that at each time k for the vector of observations ok, we have that
the integer variable δok

k,i equals one if and only if the state xok
k ∈ Xi.
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In the abovementioned problem, for all i ∈ {1, . . . , R}, the entries of
diagonal matrices Di(o) ∈ R|E|×|E| are defined as follows:

Di(o)[e, e] = 1/Mi(o, e) ∀e ∈ E ∀o ∈ O. (16)

The following theorem shows that, under Assumptions 1–4, prob-
lem (14) is equivalent to problem (3). Furthermore, problem (14) can
be recast as an MICP.

Theorem 1: Consider problems (3) and (14). Let Assumptions 1–4
hold. Then, for z(t) = 1/b(t), we have that

J(x(t), b(t)) = V (x(t), z(t))

for all x(t) ∈ X . Furthermore, for all z(t) ∈ R|E|
+ and x(t) ∈ Rn,

problem (14) can be recast as an MICP.
Proof: First, we show that zok

k = 1/v
ok
k for all k ∈ {0, . . . , N −

1}. From Assumptions 1–2, we have that forxk ∈ Xi, the unnormalized
belief update is

vok
k [e] = Z(e, ok, xk)

∑
i∈E

T (e, i)v
ok−1
k−1 [i]

= Z(e, ok, xk)v
ok−1
k−1 [e]

= Mi(e, ok)v
ok−1
k−1 [e]. (17)

From the abovementioned equation and definition (16), we have that
z
ok
k [e] = 1/v

ok
k [e]∀e ∈ E , which in turns implies that the optimal cost

from problem (14) equals the one from problem (9); therefore,

J(x(t), b(t)) = V (x(t), z(t))

for all x(t) ∈ X .
Note that the objective function in problem (14) is convex, as it

is given by a convex quadratic function over a strictly positive linear
function [43]. Furthermore, given the initial condition z(t), we can
compute an upper bound zmax

k [e] for each eth entry of the unnormalized
belief zok

k , i.e.,

zmax
k [e] =

(
max

o∈O,i∈{1,...,R}
Di(o)

)k−1

zo0
0 [e] ≥ z

ok
k [e]. (18)

Finally, we have that the piecewise model from Assumption 2 is a
mixed logical dynamical systems [44]. Thus, following the procedure
presented in [44], problem (14) can be recast as an MICP using the
upper bound from (18). �

Corollary 1: Consider problem (14) and let Assumptions 1–4 hold.
If the observation model is not a function of the system’s state, i.e., for
some G : E × O → [0, 1], we have that

Z(e, o, x) = G(e, o) ∀x ∈ X .

Then, the value function V (x(t), z(t)) from problem (14) is convex in
its arguments.

Proof: As the observation model does not dependent on the system’s
state, we have that the belief update in problem (14) can be rewritten
as follows: z

ok+1

k+1 = F (ok+1)z
ok
k , where F (o)[e, e] = 1/G(o, e) for

all e ∈ E and o ∈ O. Therefore, problem (14) is a convex parameteric
program and V (x(t), z(t)) is a convex function [45]. �

V. EXAMPLES

We tested the proposed strategy on two navigation problems, where
a linear system has to reach a goal location that may be inferred only
through partial observations. The goal location represents an object to
be retrieved and whose location is only partially known. We consider

Fig. 2. Optimal trajectory computed solving the MICP (14) for N = 60
and assuming that an observation is collected every Nb = 30 time steps,
as discussed in Section III-C. In this scenario, p1 = p2 = 0.85; therefore,
the optimizer computes a trajectory that first steers the system toward
the goals and then commits to one of the two goal locations depending
on observation measured at time t = Nb.

the following discrete-time unstable point mass model:

xk+1 =

⎡
⎢⎢⎢⎣
1 0 1 0

0 1 0 1

0 0 1.1 0

0 0 0 1.1

⎤
⎥⎥⎥⎦xk +

⎡
⎢⎢⎢⎣
0 0

0 0

1 0

0 1

⎤
⎥⎥⎥⎦uk (19)

where the state vector xk = [Xk, Yk, v
x
k , v

y
k ] collects the position of

the system (Xk, Yk) and the velocity (vxk , v
y
k) along the X–Y plane.

In the abovementioned system, the input uk = [ax
k, a

y
k] represents the

accelerations along the X and Y coordinates.

A. Mixed Observable Regulation Problem

In this example, the constraint sets are defined as follows:

U = {u ∈ R2 : ||u||∞ ≤ 10}
X = {[X,Y, vx, vy]� ∈ R4 : −5 ≤ X ≤ 15, ||Y ||∞ ≤ 10}

and the cost matrices from Assumption 3 are

Q = 10−5In, R = 10−3Id, and QN = 102In

where In ∈ Rn×n represents the identity matrix.
The set of partially observable states E = {0, 1} and the associ-

ated goal locations x(0)
g = [14, 8, 0, 0]� and x

(1)
g = [14,−8, 0, 0]�, as

shown in Figs. 2 and 3. The environment state, and consequently the
goal location, is inferred through partial observations. Given the true
environment state e ∈ E and the system’s state x ∈ Rn, the probability
of measuring the observation o = e is given by the following piecewise
observation model:

Z(o = e, e, x) = P (o = e|e, x) =
{
p1 If x ∈ X1

p2 = 0.85 If x ∈ X2

(20)

where

X1 = {[X,Y, vx, vy] ∈ R4 : −1 ≤ X ≤ 15, ||Y ||∞ ≤ 10}
X2 = {[X,Y, vx, vy] ∈ R4 : −5 ≤ X < −1, ||Y ||∞ ≤ 10}.
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Fig. 3. Optimal trajectory computed solving the MICP (14) for N = 60
and assuming that an observation is collected every Nb = 30 time steps,
as discussed in Section III-C. In this scenario, p1 = 0.7; therefore, the
controller steers the system backward to reach region X2 to collect a
measurement that is correct with probability p2 = 0.85, before commit-
ting to a goal location.

TABLE I
OPTIMAL COST V (x(0), b(0)) AND SOLVER TIME FOR DIFFERENT VALUES

OF Nb AND CONSEQUENTLY OF P = N/Nb

We implemented the finite-dimensional MICP (14) using
CVXPY [46] and Gurobi [47]. In order to limit the computational
burden, we leveraged the strategy discussed in Section III-C for
N = 60, and Nb ∈ {12, 15, 20, 30}. All computations are run on a
2015 MacBook Pro and the code can be found at github.1

We tested the proposed strategy for two different scenarios. In the
first scenario, we set the probability p1 of the observation model (20)
equal to 0.85, and in the second one, we set p1 = 0.7. In both cases,
we considered as initial condition x(0) = [0, 0, 0, 0]�, an initial belief
b(0) = [0.5, 0.5]�, and a prediction horizon N = 60, and we assumed
that an observation is collected every Nb = 30 time steps. In the first
scenario shown in Fig. 2, the probability p1 = p2 = 0.85 and the
observations collected in regions X1 and X2 are equally informative.
Thus, the optimizer steers the system forward, and after collecting
an observation at time t = Nb commits to a goal location. On the
other hand, when p1 = 0.7, the observation collected in region X1 is
not as informative as the one collected in region X2. Therefore, the
optimizer plans a trajectory that moves backward and visits region X2

to collect an observation that is correct with probability p2 = 0.85,
before committing to steer the system toward a goal location, as shown
in Fig. 3.

Table I tabulates the optimal cost and the computational time to solve
the MICP for different values of Nb and for N = 60. As discussed
in Section III-C, as P = N/Nb gets larger, the optimization tree has
more branches and, consequently, the problem complexity increases.
In particular, the number of optimization variables v =

∑P−1
k=0 Nb|O|k

grows exponentially as a function of P .

1[Online]. Available: https://github.com/urosolia/mixed-
observable-LQR

Fig. 4. Optimal trajectory computed solving the MICQ for N = 30 and
Nb = 10. The objective is to steer the system to the goal location that is
a function of the partially observable state e ∈ {0, 1}, while avoiding the
two obstacles (black rectangles). In this scenario, the initial belief b(0) =
[0.8, 0.2]�, and the observation model is piecewise over the regions X1,
X2, X2, and X4.

Fig. 5. Optimal trajectory computed solving the MICQ for N = 30 and
Nb = 10. The objective is to steer the system to the goal location that is
a function of the partially observable state e ∈ {0, 1}, while avoiding the
two obstacles (black rectangles). In this scenario, the initial belief b(0) =
[0.5, 0.5]�, and the observation model is piecewise over the regions X1,
X2, X2, and X4.

B. Partially Observable Navigation Problem

We test the proposed strategy on the navigation task shown in Figs. 4
and 5. In this example, there are two obstacles (black regions), and the
objective is to reach a goal location that can only be inferred through
partial observations. The observation model is piecewise and is defined
as follows:

Z(o = e, e, x) = P (o = e|e, x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p1 = 0.5 If x ∈ X1

p2 = 0.7 If x ∈ X2

p3 = 0.85 If x ∈ X3

p4 = 0.85 If x ∈ X4

(21)

where regions X1, X2, X3, and X4 are shown in Figs. 4 and 5. Less
formally, the observation function in (21) models the accuracy of the
sensors that are more accurate when the system is close to the candidate
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goal location and there is no occlusion caused by the obstacles. Indeed,
observations collected in region X1 are not informative; on the other
hand, in region X2, the probability that an observation is correct is
p2 = 0.7, and the most informative observations are collected in regions
X3 and X4. Finally, we consider the unstable point mass model (19)
and the cost function is defined by the matrices Q = 10−4In, R =
10−2Id, and QN = 10In, where In ∈ Rn×n represents the identity
matrix.

We implemented the MICP using CVXPY [46]. Note that the feasible
regions are nonconvex as there are two obstacles in the environment.
For this reason, at time k, we introduced integer variables to constraint
the state of the system xk to lie in either X1, X2, X3, or X4. For
implementation details, refer to the source code available at github.2

We tested the proposed strategy for two initial belief vectors. In
both scenarios, we set a prediction horizon N = 30 and the parameter
Nb = 10. Therefore, the computed optimal trajectory is solving the
MICP branches at time t = 10 and time t = 20. Fig. 4 shows the optimal
trajectory tree when the initial belief b(0) = [0.8, 0.2]�. Note that, as
we have a strong belief that the environment state e = 0, the controller
plans a trajectory tree that goes through region X2 to reach the goal
location associated with the state e = 0. On the other hand, when the
initial belief b(0) = [0.5, 0.5]�, the optimizer plans a trajectory that
collects observations only in regionsX3 andX4, as shown in Fig. 5. This
result is expected as when we do not have any prior knowledge about
the goal location—in this example, b(0) = [0.5, 0.5]�—an optimal
strategy should maximize the number of informative observations that
are collected in regions X3 and X4.

VI. CONCLUSION

In this work, we introduced the mixed-observable constrained linear
quadratic regulator problem, where the goal of the controller is to
steer the system to a goal location that may be inferred only through
partial observations. We showed that when the system’s state space is
continuous and the environment’s state is discrete, the control problem
can be reformulated as a finite-dimensional optimization problem over
a trajectory tree. Leveraging this result, we showed that under mild
assumptions, the control problem can be recast as an MICP through a
nonlinear change of coordinates.
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