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Safety-Critical Manipulation for Collision-Free
Food Preparation

Andrew Singletary ', William Guffey, Tamas G. Molnar

Abstract—Recent advances allow for the automation of food
preparation in high-throughput environments, yet the successful
deployment of these robots requires the planning and execution of
quick, robust, and ultimately collision-free behaviors. In this work,
we showcase a novel framework for modifying previously gener-
ated trajectories of robotic manipulators in highly detailed and
dynamic collision environments using Control Barrier Functions
(CBFs). This method dynamically re-plans previously validated
behaviors in the presence of changing environments—and does
so in a computationally efficient manner. Moreover, the approach
provides rigorous safety guarantees of the resulting trajectories,
factoring in the true underlying dynamics of the manipulator.
This methodology is extensively validated on a full-scale robotic
manipulator in a real-world cooking environment, and has resulted
in substantial improvements in computation time and robustness
over re-planning.

Index Terms—Industrial robots, manipulation planning, robot
safety.

I. INTRODUCTION

OBOTICS and automation have great potential to trans-

form the food industry. In the domain of autonomous
cooking, robotic manipulators like those in Fig. 1 are used to pick
up, deep fry, and dispense the food in the dynamic environment
of the kitchen. This requires motion plans that are constantly
computed, hundreds or thousands of times per day, subject to
different environmental factors and initial conditions. Due to
the extremely complex collision environments and non-trivial
kinematics, highly non-linear planning algorithms such as Tra-
jOpt [1], CHOMP [2], and several in the OMPL library [3] are
used to plan joint trajectories offline, which the manipulator then
executes. The vast majority of plans, however, deviates only
slightly from previously computed trajectories: food baskets
may move and deform slightly, workers may push the equipment,
or the robot may have slightly different configuration initially.
In these situations, rather than re-planning a trajectory with the
existing motion planner, we propose a safety filtering method
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safety filter = h(g(t)) = 0= collision-free
behavior

Fig. 1. Miso Robotics “Flippy2” robot frying food using our proposed safety-
critical framework for food preparation.

that produces collision-free trajectories from existing reference
trajectories in minimal computation time, and with formal safety
guarantees.

Minimally modifying existing trajectories is possible by opti-
mization solvers that have warm-start or hot-start options for
resolving problems with slightly modified initial conditions.
In [4], the authors introduced a method for building a dataset
of motion plans that were used to warm-start the trajectory
generator to boost the success-rate of trajectories. Similarly,
in [5], the authors proposed a dataset of expert trajectories to
warm-start a Sequential Convex Programming (SCP) problem
for solving locally optimal trajectories rapidly. In [6], the authors
used incremental solvers to update trajectories via Gaussian
processes and factor graphs.

More generally, local planners have been used for decades
to modify rough, global trajectories under new collision con-
straints [7] or dynamic environments [8]. While many of these
works could certainly be modified to tackle the robotic cooking
problem, we believe that our approach’s balance of simplicity,
computational speed, and formality of resulting safety guaran-
tees makes it the best fit for the problem at hand. Moreover,
this algorithm can be run in real-time as a feedback controller
with dynamically updating environments, offering a great deal
of flexibility in implementation.

Our approach relies on control barrier functions (CBFs) [9],
that have been proven to provide an effective means of enforcing
safety on a wide variety of robotic systems [10], including
robotic manipulators [11]-[13]. In prior works, CBFs were used
as safety filters on desired velocity commands, and obstacle
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representations were simplified. In this work, safe velocity com-
mands synthesized based on kinematics are tracked by low-level
controllers, and, unlike [11], a formal proof is given that this
method preserves safety for the full dynamics of the robot.
Moreover, it is achieved without requiring any knowledge of
the dynamics, unlike [12], [13]. Furthermore, our work utilizes
significantly more complex obstacle representations and envi-
ronments than previous works involving CBFs, which facilitates
practical implementation. The primary contribution of this work
is a rigorously tested CBF-based filtering strategy that modifies
previously generated trajectories to account for new collision
constraints in a provably safe manner. This strategy often elim-
inates the need for re-planning in updated environments, saving
computation time and providing robust safety guarantees for the
resulting trajectory. We formally prove that these trajectories
are not only valid for the kinematic model of the manipula-
tor, but also for the underlying full-order dynamical system.
The proposed novel control algorithm is implemented in the
Movelt framework [14], and applied to full-scale autonomous
food-frying in collaboration with Miso Robotics. The speed and
efficacy of this method are extensively explored in real-world
cooking environments, and the method has been shown to dra-
matically increase planning speed and reliability.

The layout of this paper is as follows. In Section II, CBFs
are used to enforce safety on both the kinematic model of the
manipulator and the full dynamics. Section III formulates dis-
tance functions in complex, real-world environments, which are
used in the context of CBFs for collision avoidance. Section IV
outlines the software implementation of the proposed algorithm
and the simulation environment. Lastly, Section V shows the
details and results of the extensive, real-world hardware tests in
the application of robotic cooking.

II. CONTROL BARRIER FUNCTIONS FOR SAFETY
A. Background: Control Barrier Functions

Consider a nonlinear system in control-affine form:
i = f(z) + g(z)u, )

with state = € R¥ and control input u € U € R™ to be chosen
from an admissible input set U C R™. The functions f : RF —
R* and g : R* — R**™ describe the dynamics of the system
and are assumed to be Lipschitz continuous. Given a Lipschitz
continuous control law k : R¥ — R™, u = k() we obtain the
closed-loop dynamics:

& = falz) = f(z) + g(z)k(x). (2)

For the initial condition x(tp) = z¢ € R¥, this system has a
unique solution z(t) which we assume to exist for all ¢ > tg.

Consider a safe subset of the state-space S C R* which may
represent, for example, the collision-free states of a manipulator.
To guarantee safety, we must ensure that the state of the closed-
loop system is kept within in .S for all time. This is formalized
through the notion of set invariance.

Definition 1: The set S is forward invariant if the solution
z(t) of system (2) satisfies x(t) € S, ¥Vt > tp for any =y € S.
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Control barrier functions are a common tool to synthesize
controllers that enforce forward invariance for a given set S.

Definition 2 ([9]): Let S C R¥ be defined as the 0-superlevel
set of a continuously differentiable function h : R* — R:

S ={z eR* : h(z) > 0}. 3)

Function h is a control barrier function (CBF) for (1) on S if
there exists an extended class K. function'c such that for all
re S

oh Oh
sug Ef('c) + %9(1‘3)“ j > —a(h(z)), &

ue

W

h(z,u)

where h(z, u) is the derivative of h(z) along system (1).
This definition yields the following key result for CBFs.
Theorem 1 ([9]): If his a CBF for (1), then any locally Lips-
chitz continuous controller k : R*¥ — R™, u = k(x) satisfying

h(z, k(<)) = —a(h(z))

renders the set S in (3) forward invariant for the system (2).

This condition can be incorporated into a quadratic program
(QP) to synthesize pointwise optimal and safe controllers, by
minimally modifying a desired but not necessarily safe input
uges(z,t) € U to a safe input u*(z,t) € U:

u*(z,t) = argmin [|u — uges(z, t)||3
uslU
st. h(z,u) > —a(h(z)). 5)

B. Application to Robotic Manipulators

Now let us use CBFs for controlling robotic manipulators
whose state = = (g, ¢) consists of the configuration ¢ € R" and
the joint velocities ¢ € R™. For obstacle avoidance, we define
the safe set over the configuration space:

S ={qeR" : h(q) >0}, (6)

where h : R™ — R is continuously differentiable. First, we
consider the kinematics of robotic manipulators with state q.
In particular, we consider the system:

q=uv, Q)

wherein we assume direct control over the joint velocities via
the commanded velocity v € R™. We design a velocity v by
considering it as input to system (7) and guaranteeing safety by
CBFs. In Section II-C, it will be verified that safety guarantees
extend to the full dynamics when the commanded velocity is
tracked by a low-level controller. Because each joint’s velocity
is directly controlled according to (7), we can simplify the QP
shown in (5) to:

* . 2
v*(q,t) = argmin ||v — vqes(q, )|l
veR™

oh
t. —v>—
s.t 8qv_ ah(q), (8)

la: R — R is an extended class K, function if it is continuous, strictly
monotonically increasing, and satisfies a(0) = 0, lim,_, 4, @(r) = $o0.
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Fig. 2. Manipulator trajectory resulting from the control barrier function
detailed in Example 1. The tool is marked in yellow, whereas the obstacle is
shown in green.

where a desired velocity vaes(g, t) € R™ is modified to a safe ve-
locity v*(g, t) € R™. Note that we chose the extended class K,
function to be linear with constant gradient o« > 0 for the sake
of simpler exposition of the upcoming formulas.

Example 1: Consider a 6-degrees-of-freedom manipulator
(n = 6) with a spherical tool attachment of radius r;. The
manipulator is intended to track a desired joint velocity vges(g, t)
and we wish to avoid a spherical region centered at O € R? of
radius 3. The CBF can be written as the distance from the
spherical tool to the sphere in the surroundings:

h(q) = [|F(g) — Olly — (r1 +r2)

= \/(Fx—02)2+(F, =0, +(F,—0,)2—(ry + 1)
)]

where F : R® — R3 are the forward kinematics that give the
position of the end-effector in space, (Fy, Fy, ;) = F(q). The
gradient of the CBF can be computed as:

R e
oh  Oh OF 1 o ¢
el Wi i = rene— (IR J(g), (10)
9 OF ¢ |F(9)-Ol: | _o. L

where J : R¢ — R3 x RS, J(q) = %% is the top three rows of
the manipulator Jacobian. By enforcing the CBF-QP (8), we
obtain the path illustrated in Fig. 2.

C. Safety Guarantees: From Kinematics to Dynamics

We now establish the first theoretic contribution of the paper:
we leverage the kinematics of the manipulator to guarantee
safe behavior on the full-order dynamics. We establish that
tracking the safe velocity obtained from (8) results in safety
under reasonable conditions on the tracking controller.

Specifically, consider the full-order dynamics associated with
a robotic manipulator [15]:

D(g)¢ +C(q, )¢ + G(q) = Bu, (11
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with ¢,g € R"™, D(g) € R™" the inertia matrix, C(q,q) €
R™ ™ the Coriolis matrix, and G(gq) € R™ the gravity vector.
Here we assume full actuation: the actuation matrix B € R™*"
is invertible and = € R"™. Associated with these dynamics is a
control system of the form (1) with = = (g, ¢) (hence k = 2n).

Motivated by the approach in [16], we assume the existence
of a “good” low-level velocity tracking controller on the manip-
ulator (as is common on industrial robots). [16] only considered
smooth velocity reference signals and smooth CBFs to prove
the safety of the full system, whereas in this paper we address
nonsmoothness in both of these aspects. This is essential for
operation in complicated collision environments where nons-
moothness naturally arises.

Concretely, for a velocity command v*(g,t) consider the
corresponding error in tracking this velocity:

(12)

ée=q—v",
and assume exponentially stable tracking.

Assumption I: There exists alow-level controller u = k(x, 1)
for the control system (1) obtained from (11) such that

@)l < Me™|léoll, 13)

holds for some M, A > 0 along the solution x(t) of the closed-
loop system (2) with ¢(t0) = go, ¢(to) = go and é(tp) = ép.

Such exponentially stable tracking controller can be designed,
for example, by means of feedback linearization or by using
control Lyapunov functions. Under this assumption, we have
the first theoretic result of the paper.

Theorem 2: Consider the full-order dynamics of a robot ma-
nipulator (11) expressed as the control system (1), and the safe
set S in (6). Assume that h has bounded gradient, i.e., there
exists Cp, > 0s.t. | 52|, < Cp forall g € S. Letv*(g, t) be the
safe velocity given by &16 QP (8), with corresponding error in
(12). If Assumption 1 holds with A > a, safety is achieved for
the full-order dynamics (11) in that:

(q0,€0) € Sm = q(t) € S, Vi > to, (14)
where:
) B CpM | .
Su={(@) <R™ : hg) ~ el 20} ()
Proof: First, we lower-bound A(g, §) as follows:
oo o OR - o (OR
h(q,q) = B ¥ T
Oh
> —ah(q) — ||=—|| ||€
> ~ah(a) - | 5| el
> —ah(q) — CaMlléoll,e™,  (16)

where we used (i) the definition (12) of the tracking error; (ii) the
constraint on the safe velocity in (8) and the Cauchy-Schwartz
inequality; and (iii) the upper bound C}, on || -g% ||2 and the upper
bound (13) on the tracking error. Then, consider the following
continuous functiony : R — R:

)= (h(%) _ Otheonz) gty CaMlolla e

A—a A—a :
(17
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which satisfies:
y(t) = —ay(t) —
y(to) = h(go)- (18)

For (qo, é0) € S, we have y(t) > 0,V > ¢p, and by the com-
parison lemma we get:

h(g(t)) = y(t) = 0, Vt=>tp,

ChMléoll e ™

(19)
that implies g(t) € S, Vt > to. This completes the proof. MW

ITI. DISTANCE FUNCTIONS AND SAFETY FILTERING
A. Collisions With Environment

In order to prevent collisions with the environment, we must
ensure that any point on the robot does not come into contact
with any point in the environment. However, unlike the simple
example before, we cannot rely on the robot and environment
being represented by simple spheres.

Let us denote the set of all points on the robot as A C
R3, and the set of all points in the collision environment as
B C R3. To guarantee safety, we require that AN B = ), thus
distance( A, B) > 0. More formally, distance is defined as:

distance(A, B) = inf |pa —psll,, (20)
PacA

pREB

which can be computed in R® using the GJK algorithm [17].

This notion gives a nonnegative distance, which could be used
as CBF. However, it is advantageous to define a CBF that is
negative in the event of collision, since CBFs may also ensure
that the boundary of the set S is re-approached if k(z) < 0 [9].
In collision, penetration is defined as:

penetration(A, B) = inf |[pa —p5lly, 2D
pacA

pPeEB
where B is the complement of B, or the set of points outside
the collision scene. Penetration is often computed using the EPA
algorithm [18].
These two functions can be combined to form the notion of
signed distance. Signed distance is typically written as

sd(A, B) = distance(A, B) — penetration(A, B). (22)

When the points p4 and pp of the robot and the environment
are given in local coordinates, the following expression from [1]

can be utilized to compute the signed distance:
i (FY (9pa — Fg'p),  (23)

[Iill,=1 prEB

where FY (q) € R3*3 gives the pose of the robot in the world
frame that depends on the configurationg,and 'y € R3*3 gives
the pose of the collision environment, i.e., Fy' (q)pa and FYY pg
indicate points in the world frame.

B. Controller Synthesis With Control Barrier Functions
Given the signed distance, we propose the CBF candidate:

h(g) = sdas(q), (24)
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which defines the corresponding safe set of the system:
S={q€R" : h(q) =sdan(q) > 0}. (25)
We remark that based on (23) h can be written as:
h(g) =7(q)" (FX (9)pala) — F§'P(9).  (26)

Here 7(q) and pa(q), pr(g) denote the direction and points
that maximize and minimize the expression in (23), respectively,
which depend on the configuration q.

It is important to note thatin Euclidean space, 31gned distance,
h, is differentiable almost everywhere, and satisfies || == A 2y =1

[19]. There exists, however, a set of measure zero where % is

discontinuous, since functions 7 and p 4, pp are nonsmooth due
to the max and min operators in (23). Since the above framework
requires continuously differentiable h, we take special care in
applying the theory, and we handle nonsmoothness under the
following construction.

First, we express the gradient of h as follows:

oh

T =1(q) " Ja(q) + 6(q),

27)

where J4(q) =
sociated with the derivatives of n, p4, and pg. Importantly, note
that 7(q) " J4(q) is continuous, while &(g) is discontinuous on
a set of measure zero. The term n{q)T J4(g) can be interpreted
as a continuous approximation of 2 T’ while the approximation

error &(g) acts as disturbance. The size of the disturbance is

characterized by its essential supremum?:

[16]lo = ess sup [|6(g(2))l,-
t>to

The points where F is not differentiable and ¢ is discontinuous
occur on a set of measure zero, and therefore do not impact
the essential supremum. Now we incorporate the continuous
approximation 7(q)" Ja(g) in (27) into the control design.
The following result demonstrates that this approximation is
sufficient to maintain safety if the disturbance d(g) is properly
accounted for (in an input-to-state safety (ISSf) context [20],
[21]).

Proposition 1: Consider the kinematic model of a robotic
manipulator (7). Then, the controller expressed as the QP:

v*(g,t) = argmin [|v — vaes(g, 1)l
veR™
s.t. 7(q)" Ja(q)v > —ah(q) + 2JmaxGmax,
(28)

With gmax = [|4]|ec and Jmax = maxger= ||Ja(g)|[5. renders
the set S in (25) forward invariant for the resulting closed-loop
system. That is, the controller (28) keeps system (7) safe.

As such, collision-free behavior is enforced for the kinematic
model of the manipulator, since the disturbance in (27) is handled
by the last term of (28). The feasibility of (28) in singular

The function § is essentially bounded if ||5(t)|l is bounded by a finite
number foralmost all ¢ > tq (i.e., |[§(t)]|, is bounded except on a set of measure
zero). The quantity |||, is then defined as the least such bound.
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configurations can be guaranteed by increasing o or decreasing
gmax by reducing the desired speed.

Proof: First, we bound the essential supremum ||d]| of the
disturbance. Recall that the points where & is not differentiable
are on a set of measure zero and do not impact the essential
supremum, thus we construct the bound on ||d]|« by picking
generic points where the h is differentiable. For an arbitrary
point on the robot p4 € A where h is differentiable:

319,4

H Opa |l
S 1.z Jma.x-
This leads to the bound:

g—z — ﬁ(Q)TJA(G‘)”m

2
(29)

l9llee =

oh

i (q) " Ja(q)

A

2

7]

< a—qHZ 4@ T Ta@)],

-

S Jma.x 1= ”-}A(Q)HQ S 2--;‘rrna.:l(-
Then, we differentiate the CBF h in (24) and use (27):

(30)

Kl g—’;”@ =Tl

> 71(q) " Ja(q)d — [|6]|codmax- 31)

Substituting ¢ with the solution v*(g, ) to (28) and incorporating
the bound on ||§||, the result is:

h(g,v*(g,t)) > 7u(q) " Jalg)v"(g,t) —
= _ah(Q) + 2Jmax‘j'max - ||5[|QOQmax
—ah(q).

Thus, the condition in Theorem 1 holds almost everywhere
except on a set of measure zero, which yields thatset S is forward
invariant based on Lemma 2 of [22]. |

(11l o0 Grman

(32)

C. Self-Collisions

Self-collisions are defined as collisions between any two links
of the robot that are not explicitly allowed to collide. For these
types of collisions, we still use the signed distance function, but
now Fg also depends on the configuration g:

sdag(g) = max min 7 - (Ff(q)pf; - Fg(q)pg) . (33)
ficR® pacA
I7ll.=1ppreB
Thus, the gradient of h(g) = sdap(q) becomes:
Oh
g — M@ (Jala) = J5(@) +6(0)- (34)

Proposition 1 can again be applied to self-collisions, with slight
modifications. The analysis results in the QP:

v*(g,t) = argmin  [v — vaes(z, 1|13
veR™

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

(q)" (Ja(g) — IJ5(g)) v > —ah(g) + 4JmaxGmax-

(33)

D. Safety Guarantees for the Full-Order Dynamics

The safety guarantees of Proposition 1 are valid for the
kinematic model (7). However, like in Theorem 2, the controllers
(28) and (35) lead to collision-free motion also on the full-order
dynamics—assuming good velocity tracking.

Theorem 3: Consider the full-order dynamics of a robot
manipulator (11) expressed as the control system (1), and the
safe set .S in (25) associated with the signed distance sd 4 5(gq)
between the robot and the environment in (23). Let v*(g,t) be
the safe velocity given by the QP (28), with corresponding error
in (12). If Assumption 1 holds with A > «, safety is achieved
for the full-order dynamics (11) in that:

(g0, €0) € Spr = q(t) € 5, Vit > tp, (36)

where:

. - J,
Sy = {(q, é) e R™ : sdsp(q) —

M e > 0.
(37)

Note that the selection of a must satisfy A > «. The same
safety guarantees can be stated for self-collision avoidance with
the QP (35), and changing environments can be treated similarly
if the resulting safe velocity is tracked well. Moreover, a practical
advantage of this approach is that robust tracking yields safety
robust to those disturbances.

Proof: The proof follows the same steps as in the Proof of
Theorem 2 with the substitution Cj, = Jyax, Which is justified
by [| || < Jimax based on (29). Furthermore, note that 22 BV 2
—ah(q} stlll holds due to (32). u

With this result, we achieve guarantees of safety that could
not be achieved with traditional methods utilizing the kinematics
and/or signed-distance approximations only.

IV. SOFTWARE IMPLEMENTATION AND SIMULATION
A. CBF Implementation on Precomputed Trajectories

Assuming the knowledge of a reference trajectory, we now
detail the trajectory safety filter algorithm. The most straight-
forward implementation of the QPs (28) and (35) is to run them
in real-time paired with a desired joint velocity controller that
tracks the reference. This can be achieved with a P controller to
the next waypoint i:

v4es(q,t) = Kp (qges ! Q) B (38)

For the best results, the error gl., — ¢ is heavily saturated to
avoid large values of vges(g,t) far from the goal. The tracked
waypoint is iterated forwards when the robot gets sufficiently
close ([|gkes — gll2 < €g) or stuck (|[vacs(q, ) — ll2 > € fora
certain amount of time).

However, due to the large (~200 ms) time delay of many
industrial manipulators, it is often desired to instead send pre-
computed time-stamped trajectories, rather than attempting to
track a trajectory online with feedback. The basic algorithm for
generating these safe trajectories, given a cache of previously
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Algorithm 1: Trajectory Generation in Modified Collision
Environments With Safety Filters.

Require: C, the cache that contains behaviors C%,
planning scenes C'}, and trajectories C'%
for each C" s.t. B== C% do  >Search through cache
T = f(Cp,C%,,P,q) >Compute suitability metric
if T < T} then >Reference is extremely similar
X + CBF(C%, P,q)

return
end if
end for
[Tmin, idx] <~ min(T") >Find best reference
if Tiyin < T3 then >Close match
X « CBF(C}?", P,q) >Safety filter

return

else if Tiin < T3 then
X + CBF(Ci¥&*, P, q)
C+ X
return

else >>Best reference is very dissimilar
X < Re-plan from scratch
C+ X

end if

t>Suitable match

©>X gets added to cache

computed reference trajectories, is detailed in Algorithm 1.
The cache is filled with hand-picked trajectories that reach the
goal, avoid obstacles, and are visually pleasing, as the public
perception of this robot matters.

There are three fields of interest in the cached trajectories:
the desired behavior B, the manipulator’s trajectory 7', and the
collision environment used by the original planner, referred to
as the planning scene P.

The algorithm first assesses the suitability of previously com-
puted trajectories in the cache. There are two major considera-
tions: the difference in initial conditions and the similarity of the
planning scene. The suitability of the i member of the cache
C'" is evaluated by the function:

T' = f (Cp,Ck,, P.q) = 0 + 0p, (39)

where

5 = [[Cx, =4l

2 9 =D [|Ch, — Py

o0

(40)

assess the differences in the initial conditions of the robot and
the collision objects o € O making up the planning scene. There
are three threshold values (74, T3 and T3) for this suitability
metric. If 7% < T4, then the search stops, as the trajectory in
the cache is so close that it is not worth searching, and the CBF
filter is applied. After searching through all cache members,
if T* < Ty, then the filter is applied, but the trajectory is not
added to the cache to prevent it from growing unnecessarily
large. If T, < T < T3, then the filter is applied and the resulting
trajectory is added to the cache. Finally, if 7% > T3, then the
original motion planning algorithm is used, and the result is
added to the cache.
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Fig. 3. The simulation environment, which shows the collision objects and
their representations as mesh files. The same mesh representations are used on
the hardware system.

To obtain the joint trajectory X via the CBF, we simply utilize
a trajectory tracking controller like (38) along with the CBF-QP,
and integrate its solution throughout the behavior.

B. Software Implementation and Simulation

Fig. 3 shows the simulated cooking environment. The robot
and obstacle representations are a series of meshes described by
URDF and SRDF files. The position and orientation of objects
are updated before each planning attempt. we

To implement the CBF filter, we require three values to be
computed: the signed distance to the obstacles and other links
sd(g), the normal vectors corresponding to the points with
minimal signed distance 7i(g), and the manipulator Jacobian at
these points J(g). The Movelt framework [14], an open-source
robotics software package for motion planning, is able to com-
pute all three of these values. Specifically, the distanceR-
obot () and distanceSelf () functions of the Colli-
sionEnv class provide the signed distances and normal vectors
needed for environmental and self-collisions. Moreover, the
getJacobian () function in the RobotState class returns
the manipulator Jacobian. Thus, no other external libraries are
required to implement this algorithm. Once these three values
are computed, the OSQP quadratic program solver [23] is used
to calculate the safe velocity commands, and integration is done
manually.

Before hardware implementation, the algorithm was tested
in simulation. The resulting behaviors are described in the next
section, and the simulation results are shown along with the
hardware trajectories in Fig. 4.

V. HARDWARE RESULTS
A. Experimental Testing Environment

We apply the approach described in this paper to one of
the Miso Robotics robotic cooking environments. Specifically,
we utilize a FANUC LR Mate 200iD/7LC robotic manipulator
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(b) hanger_to_fryer with adjacent basket hanging.

Fig. 4.

Two examples behaviors implemented on the Flippy2 robot. See https://youtu.be/nmkbya8XBmw for video. The large spikes in signed distance h(g)

come from enabling and disabling collision objects when required for interaction, like the basket when gripping and the fryer when hanging. At the maximum
value of h(g), the robot is only 11 cm away from the frame around it during these behaviors.

wrapped in a sleeve, and we send joint trajectories from an Intel
19-9900KF running ROS.

The cooking environment used in the testing is fully modeled
using high-quality meshes used for collision checking. There are
36 collision objects in total, each represented by tens to hundreds
of mesh triangles. The primary collision objects of concern
are the six baskets, three industrial fryers, the hood vent over
the fryers, and the glass pane separating the manipulator from

the human workers. Of these objects, the baskets and fryers are
the most commonly displaced.

As shown in the figures, the workspace of the manipulator is
very densely crowded with obstacles. To complete a behavior,
it is common to have less than a few centimeters of clearance
between the robot and the surrounding environment. For this
reason, planning methods must be minimally conservative, and
there is no room for any collision buffer.
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For experiments, a minimal cache was utilized to highlight the
role of CBFs in re-planning around obstacles. In a commercial
setting, with a more populated cache, the CBF would have many
more prior trajectories to choose from, meaning that the path
modifications would be much smaller. In practice, we find that
the cache size saturates at around 200 stored behaviors, and we
used roughly 10% of that.

B. Hardware Results

We test our framework’s ability to safely re-plan on
the two most volatile behaviors: fryer to hanger and
hanger to_ fryer, described below. These behaviors see
the most change in obstacle position and initial conditions, and
are the most commonly re-planned behavior.

Fryer to hanger: The fryer_to_hanger behavior moves
a basket from the dipped state to the hanging state. The manip-
ulator picks up a basket that has finished cooking and hangs it,
allowing the oil to drip off the basket before serving.

Hanger to Fryer: The hanger_to_fryer behavior is the
reverse of fryer to_hanger, transitioning a basket from
the hanging state to the frying state.

Each behavior is tested in two primary configurations: one
where the adjacent basket is submerged, and one where it is
hanging. For the purpose of this paper, each of the four testing
configurations were run 25 times, each with different cached
trajectories and planning environments, for 100 total executions.
The testing methodology was simple: for each setup, we first
run the CBF on the best matching reference trajectory in the
limited cache, and then we re-plan using TrajOpt for comparison
purposes. Along with the true noise of the localization of the
robot and environment, small amounts (several mm) of noise
was further injected into the initial conditions and obstacles to
ensure that the new trajectory differed significantly from the
cache.

The CBF was able to produce a successful, collision-free
trajectoryin all 100 cases, even with the artificially limited cache
size. The average computation time per CBF call was 2 ms,
and the average computation time for the entire behavior was
223 ms. This is a significant improvement compared to TrajOpt’s
average computation time of 5923 ms. The CBF’s trajectory
computes waypoints every 10 ms compared to TrajOpt’s 64 ms,
thus no additional local planner needs to be used. Two example
trajectories from the CBF are visualized in Fig. 4 with the value
of h(gq) throughout the motion.

VI. CONCLUSION

In this work, we showcased control barrier functions (CBFs)
for utilization in complex, real-world collision environments in
the case of robotic cooking applications. First, we demonstrated
how CBFs applied to the kinematics of robotic manipulators
guarantee safety for the full-order dynamics. Then, we described
the construction of these CBFs for very complex collision ob-
stacle representations. We proposed an algorithm for filtering
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reference trajectories via CBFs to achieve safety and demon-
strated these capabilities in the real-world application of frying
foods.
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