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We investigate the submerged collapse of weakly polydisperse, loosely packed cohesive
granular columns, as a function of aspect ratio and cohesive force strength, via
grain-resolving direct numerical simulations. The cohesive forces act to prevent the
detachment of individual particles from the main body of the collapsing column, reduce
its front velocity, and yield a shorter and thicker final deposit. All of these effects
can be captured accurately across a broad range of parameters by piecewise power-law
relationships. The cohesive forces reduce significantly the amount of available potential
energy released by the particles. For shallow columns, the particle and fluid kinetic
energy decreases for stronger cohesion. For tall columns, on the other hand, moderate
cohesive forces increase the maximum particle kinetic energy, since they accelerate
the initial free-fall of the upper column section. Only for larger cohesive forces does
the peak kinetic energy of the particles decrease. Computational particle tracking
indicates that the cohesive forces reduce the mixing of particles within the collapsing
column, and it identifies the regions of origin of those particles that travel the farthest.
The simulations demonstrate that cohesion promotes aggregation and the formation
of aggregates. Furthermore, they provide complete information on the temporally and
spatially evolving network of cohesive and direct contact force bonds. While the normal
contact forces are aligned primarily in the vertical direction, the cohesive bonds adjust
their preferred spatial orientation throughout the collapse. They result in a net macroscopic
stress that counteracts deformation and slows the spreading of the advancing particle front.
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1. Introduction

The collapse of a column of granular material has long served as a canonical
test case for gaining insight into the mechanisms that govern granular flows, for
identifying the different regimes and scaling laws to which they give rise (Lajeunesse,
Mangeney-Castelnau & Vilotte 2004; Lube et al. 2004, 2005, 2007; Balmforth &
Kerswell 2005; Lajeunesse, Monnier & Homsy 2005; Siavoshi & Kudrolli 2005; Staron
& Hinch 2005). Both dry and submerged collapses have been considered in the past,
in two-dimensional as well as axisymmetric configurations, and on plane and sloping
surfaces.

While the large majority of investigations to date have addressed cohesionless granular
collapses, only a few studies have considered the effect of cohesive forces but under
dry conditions (Rognon et al. 2006; Mériaux & Triantafillou 2008; Berger et al.
2016; Mandal, Nicolas & Pouliquen 2020). These authors find a significant influence
of the attractive interparticle forces on dry granular collapses, which suggests that
they may also have the potential to alter submerged collapses. Artoni et al. (2013),
Gabrieli et al. (2013), Santomaso, Volpato & Gabrieli (2018) and Zhou et al. (2019)
have performed simulations and experiments that model cohesive forces via capillary
bridges, and they observe the emergence of particle clusters. Langlois, Quiquerez &
Allemand (2015) studied particles initially held together by tensile bonds, which can
be broken irreversibly during the collapse. Bougouin, Lacaze & Bonometti (2019)
provided a diagram of the different regimes of cohesive collapse. Abramian, Staron &
Lagrée (2020) estimated the macroscopic yield stress based on the cohesive contacts
between grains. Abramian, Lagrée & Staron (2021) used the roughness of a cohesive
granular deposit surface to investigate the formation of the clusters. Compared to a
non-cohesive column, they find that the final deposit is much rougher as it contains
large aggregates, and that the internal stratigraphic structure of the column is not
preserved.

The influence of cohesion on submerged granular collapses, on the other hand,
remains poorly understood at present, in spite of their importance for numerous industrial
and environmental applications, e.g. immersed cohesive sediment flows (Kuenen 1951;
Hampton 1972; Marr et al. 2001; Baas, Best & Peakall 2011). To address this issue,
the current investigation will employ particle-resolving simulations in order to explore
how the presence of cohesive forces modifies the dynamics of cohesionless submerged
collapses. Such non-cohesive granular collapses have been studied extensively both via
experiments (Rondon, Pouliquen & Aussillous 2011; Bougouin & Lacaze 2018; Lee,
Huang & Yu 2018; Yang et al. 2021) and by means of numerical simulations (Topin
et al. 2012; Jing et al. 2018, 2019; Xu, Dong & Ding 2019; Yang et al. 2019, 2020;
Lacaze et al. 2021; Rauter 2021). These studies indicate that the dynamics of non-cohesive
collapses, as well as their final height, runout distance and deposit morphology is governed
primarily by the aspect ratio a = H;/L; of the column, where H; and L; denote its
vertical and horizontal extents. In addition, the initial particle volume fraction ¢, the
properties of the individual particles (diameter d),, density pp), and the ambient fluid
(kinematic viscosity vr, density pr) have a noticeable influence on the collapse process
as well. For cohesionless materials, two distinct modes of the initial collapse have been
observed. For a > 3 (Lee et al. 2018), the failure surface, i.e. the interface between
the static and moving particles, is buried deeply in the column, and initially the upper
portion of the column descends approximately vertically. For a < 3, on the other hand,
initially the upper part of the column slides forward along a shallow failure surface.
The final height and runout distance have been shown to follow power-law relationships
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with a (Bougouin & Lacaze 2018; Jing et al. 2018; Lee er al. 2018). Two additional
critical aspect ratios govern the final shape of the deposit profile (Lee et al. 2018).
For a < ay, where ag depends on the particle and fluid parameters, the final deposit
profile has a trapezoidal shape; for a > 8§, it is shaped like a ‘Mexican hat’, with a
steep central cone and an almost flat outer region, and otherwise it has a triangular
shape.

The role of the initial volume fraction ¢ can be understood via the pore pressure
feedback mechanism proposed by Iverson ez al. (2000). In submerged granular collapses,
dense packings (high ¢ and negative pore pressure) result in slow dynamics and short
runout distances, while loose packings (low ¢ and positive pore pressure) are associated
with more rapid dynamics and longer runout distances (Rondon et al. 2011; Topin et al.
2011; Yang et al. 2020). The transition between these two regimes occurs near a critical
value ¢ = 0.58 (Rondon et al. 2011; Yang et al. 2020). Rondon et al. (2011) and Bougouin
& Lacaze (2018) also observe the existence of an initial relaxation time in a densely
packed column before it starts to flow. Furthermore, hydroplaning can take place for
sufficiently large loosely packed columns due to the fast-moving surge front, which reduces
the frictional resistance dramatically and thereby results in a longer runout distance than
their dry counterparts (Yang et al. 2020).

Submerged granular collapses can be classified into three different categories (free-fall,
inertial and viscous), depending on the particle and fluid properties (Bougouin & Lacaze
2018; Jing et al. 2019). The relevant regime is determined by two dimensionless numbers,
the Stokes number St and the density ratio r:

1 JPr(op — pp)ed;

18v2 vr pf ’

;o \/‘T—P (12)
Pr

Courrech du Pont ef al. (2003) show that for St >> 10 and r > 4 the collapse is in the
free-fall regime, for St > 2.5r and r < 4 it is in the inertial regime, and otherwise it is in
the viscous regime.

For submerged cohesive cases, our current knowledge is limited with regard to the
formation and persistence of aggregates, and the internal structure of the final deposit.
Furthermore, we do not have scaling laws for the dependence of the front velocity,
the runout length and the deposit thickness on the cohesive force strength. The present
study aims to provide such information for different aspect ratios. The particle-resolving
simulations to be discussed below focus on the collapse of submerged granular columns
within a tank of length L, height H, and width W, as sketched in figure 1. Initially, the
lower left section of the tank contains a granular column of length L; and height H;,
composed of spherical particles that are denser than the fluid. Section 2 presents the
computational approach along with validation results. Section 3 focuses on the results
of the simulations, in terms of the spreading velocity and runout distance, as well as the
final height and structure of the deposit. The energy budget will be analysed in detail.
Subsequently, the discussion will focus on particle-scale features of the collapse process,
such as the formation and persistence of aggregates, and the role of cohesive and normal
contact force bonds. Section 4 will summarize the findings and present the key conclusions
of the investigation.

St = (1.1)
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Figure 1. Sketch of the computational set-up. A submerged column of height H; and length L; consisting of
spherical particles collapses within a fluid-filled tank of height H, length L, and width W. The top surface is
a free-slip boundary, while no-slip conditions are enforced along the bottom and x-facing walls. Periodicity is
assumed in the spanwise z-direction.

2. Computational model
2.1. Governing equations
The unsteady Navier—Stokes equations for an incompressible Newtonian fluid are given by

u 1
E—I—V-(uu) :_,0_ Vp+VfV2u + s> (2.1)
f

along with the continuity equation
Veu=0, (2.2)

where u = (u, v, w)T designates the fluid velocity vector in Cartesian components, p is the
pressure, ¢ is the time, and f'p,, is an artificial volume force introduced by the immersed
boundary method (IBM) (Uhlmann 2005; Kempe & Frohlich 2012). This volume force
connects the motion of the particles to the fluid phase in the vicinity of the interphase
boundaries.

Within the framework of the IBM, we calculate the motion of each individual spherical
particle by solving ordinary differential equations for its translational velocity u, =
(up» Up, Wp)T,

duy,
mp - =Fpp+Fgp+F.p, (2.3)

and its angular velocity @, = (@p.x, Wp.y, W) T,

dw
I d—t" =Thp+ Teps (2.4)
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where m,, is the particle mass, I, = n,opdg /60 is the moment of inertia, F , and T},
are the hydrodynamic force and torque, respectively, and F , is the gravitational force.
Also, F ), and T, , denote the forces and torques due to particle collisions, respectively.
These forces can be calculated as

F,= f T -ndA, (2.5)
Iy
Fep="Vplop — g (2.6)
Th,p=¢ rx(t-n)dA, 2.7)
Iy
Np
Fc,p = Z (Fl,pq + Fn,pq + Ft,pq + Fcoh,pq)

9.9 P

+Fl,pw + Fn,pw + Ft,pw’ (2.3)
Np
Tep= Y 5dpeplpg X Frpg+ 3dp.cphpw X Fipy. (2.9)
4.9 #p

where I, is the fluid—particle interface, and 7 is the hydrodynamic stress tensor. The vector
n denotes the outward-pointing normal on the interface I, V), is the particle volume, g is
the gravitational acceleration, r = x — X, is the position vector of the surface point with
respect to the centre of mass x), of a particle, ny, and ny,, are the unit vectors pointing to
particle g or the wall, dj, o, = ||(d, + §,)n|| is the particle diameter at the contact point, g,
is the gap size between two approaching particles, F; is the lubrication force, and F,, and
F; are the forces acting in the normal and tangential directions for direct particle contact,
respectively. The subscripts ,, and p,, refer to interactions of particle p with particle g or a
wall, respectively. We present the algebraic expressions for particle—particle interaction
below. Analogous formulations for particle—wall interactions can be found in Biegert,
Vowinckel & Meiburg (2017). We have

3n,ofvfd§ﬂ
A . <
Fl,pq — 2max(§n, ijn) u, gmm < gn = é‘lulh (210)
0, otherwise,
F _ —ky |;n - éﬂmin|3/2 n— dnun,cp’ Cn = Cmin, 2.11)
P 0, otherwise, ’
min(—k; ¢, — dru; cps ||MpFn pq” 0, &n =< Lmin,
F, = ; : 2.12
hra {O, otherwise, ( )
Andey 2
- ¢y — wn, in < &n < Ccohs
Fcoh’pq — 2§0§30h é‘n é:n CCO gmm é-n {CO (2.13)

0, otherwise,

where u, denotes the normal component of the relative velocity of the two colliding
particles, {pin = 1.5 x 1073d,, is a surface roughness of the particles, d,, = (dy +dy)/2
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is the mean diameter, doy = dpdy/(d, + dy) is the effective diameter, 5 = ds0/10 is
the range of the lubrication force, and dsp is the median diameter of an ensemble of
polydisperse particles. Also, u, ¢, and u; ., are the normal and tangential components of
the relative velocity at the surface contact point, respectively, k,, and d,, are the normal
stiffness and damping coefficients, k; and d; are the tangential stiffness and damping
coefficients, ¢, is the tangential displacement integrated over the time interval for which
the two particles are in contact, ¢ is the direction of the tangential force, and p, is
the friction coefficient between the two surfaces. We employ the cohesive force model
proposed by Vowinckel et al. (2019a,b) to estimate the cohesion between rough particles,
as implemented in Zhao et al. (2020, 2021). The Hamaker constant Ay is a function of the
particle and fluid properties, ¢.on = ds50/20 is the range of the cohesive force, and ¢ is
the microscopic size of surface asperities. Vowinckel et al. (2019b) provide representative
values of Ay and ¢y for common natural systems. We remark that setting the cohesive and
lubrication forces to zero when &, < i, represents a simplification of the full physics.
We have confirmed the validity of this simplification by means of test simulations.

We non-dimensionalize the governing equations by introducing characteristic scales of
the form

dso

L=dsol, u=usii, t= i, p=pulp,
Ug ’

>, ~ /T g
Sisv =8 sm:  mp =msomp,  Fpp =msog Fpp, Vp=Vs5oVp,

msog’ ~ msog ~ msog’ ~ msog’ ~ (2.14)
kn = 208 kn» dn = 08 dn» kl = 08 klv dt = 208 dt’
NAZLH Ug ds Ug
~ Ug ~
1, = msod2yl,, @, = d_sso @p, Thp=msog'dsoThp,

where dimensionless quantities are denoted by a tilde. Also, uy = \/g’ds0 is the buoyancy
velocity, where g’ = (op — pr)g/pr denotes the reduced gravity; mso = pfVso is the
characteristic mass, and Vsq is the volume of a particle with median diameter. Here, u
represents any velocity vector and L any length. In this way, we obtain the dimensionless
equations

— 4+ V. (ait) = -Vp+ — Vi + gy (2.15)
dt Ga
V-u=0, (2.16)
_ dir 9 dia,

v, d_;p = Fup+ Vpeg — — (knlZal>?1 + dyity, )

a max(g:n, gmzn)

+ min(—fctzt - 6~th‘z‘,c’[n ”Mpﬁn,pq”t)

A~y - -
— CoL (&2 = Lbeonn. 2.17)
coh
~ da, ~ 1~ . . -~ ~
I a =Thp+ 5 dp,cphp,q X min(—ki&, — ditay cp, || 1LpFn pqllt), (2.13)

where e, is the unit vector pointing into the direction of gravity. In addition to the density
ratio mentioned above, we obtain two more dimensionless similarity parameters that
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Run L; x H; (cm) dso (cm) D Ga St r a Co
Gabrieli et al. (2013) 7x8 0.5 0.53 3390 6118 45.9 1.1 0.7
Yang et al. (2019) 3x3.14 0.1 0.61 206.4 12.73 1.6 1.0 0
Yang et al. (2020) 2.5x%x2 0.1 0.58 12.1 0.8 1.6 0.8 0
Sun et al. (2020) 4x8 0.4 0.64 27.8 1.5 1.4 20 O

Table 1. Parameters of the validation cases.

govern the macroscopic behaviour of the submerged cohesive collapse, namely, the Galileo

number Ga, where
dsou
Ga= =22, (2.19)
vf
and the cohesive number Co, which represents the ratio of the cohesive force maximum
and the characteristic gravitational force acting on a particle of diameter dsg:

o max(|[Feons0l)  Amdso 1

- . (2.20)
msog’ 8Zconto msog’

To summarize, the simulations require as input governing parameters the Galileo number
Ga, the cohesive number Co, the density ratio r, and the aspect ratio a. Another common
dimensionless parameter in the form of a Stokes number St can be calculated from Ga and

r as

G
st= 24 2.21)

C18V2’

2.2. Numerical method

We integrate equations (2.15) and (2.16) by a third-order low-storage Runge—Kutta (RK)
scheme and a finite differencing approach in time and space, respectively. The pressure
is treated with a direct solver based on fast Fourier transforms (FFTs). We employ an RK
scheme that subdivides the three-step procedure of the fluid into a total of 15 substeps per
fluid time step to integrate the equations of particle motion (2.17) and (2.18). For a detailed
description of the RK scheme, we refer the reader to Biegert ef al. (2017).

2.3. Validation

We validate the numerical approach by comparing with previous experiments and
simulations for different initial conditions (Gabrieli et al. 2013; Yang et al. 2019, 2020;
Sun et al. 2020). The initial experimental set-up and its parameters are listed in table 1.
For the simulation domain, the top surface is set to be a free-slip boundary, while no-slip
conditions are applied along the bottom and x-facing walls. In the spanwise z-direction,
we employ periodic boundaries. A layer of particles with a uniform diameter is glued
to the bottom to mimic the basal roughness. The size of the uniform rectangular grid is
Ax = Ay = Az = ds0/20. The granular column is prepared via the following steps. First,
the particles are distributed randomly across the entire height of the lock region. The initial
particle velocity is zero, and there is no initial contact. Second, the particles settle, with
the friction coefficient u,, varying from O to 1 to achieve different initial packing densities.
Third, when all particles have settled in the lower part of the lock region, j,, is adjusted
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Figure 2. The time-dependent runout length and the free surface shape of the granular collapse for different
validation cases. Panels (a,d) show the final surface shape.

back to the real value and the collapse is initiated. The front propagation in the experiment
and simulation are compared in figure 2. We observe good qualitative and quantitative
agreement for the time-dependent runout length and the free surface shape of the granular
material, which we take as an indication that the computational model reproduces correctly
the previous experimental and simulated behaviour for a cohesion/cohesionless collapse
with different aspect ratios a, initial volume fractions @, and viscosity of ambient fluid vy.

For comparison, we run a case with identical parameters for the experiment of Yang
et al. (2019), except that the dimensionless width of the tank is set to W = 2.5, in order
to ensure that the spanwise domain size does not have a significant influence. It is found
that the front propagation shows close agreement with that for the wider domain. So we
set the computational domain width to W = 2.5 in the parametric study to be described
below. We remark that the present cohesive force implementation has been validated
carefully by Vowinckel et al. (2019b) for the settling process of polydisperse sediments in
quiescent fluid, and by Zhao et al. (2020, 2021) for the flocculation of suspended particles
in turbulence.

2.4. Computational set-up for cohesive simulations

We consider a tank of size L x H x W = 100 x 70 x 2.5, with granular columns of

L; x H; changing from 40 x 8 to 7 x 60. The corresponding aspect ratios a increase
from 0.2 to 8.6. The granular columns are composed of spherical particles of mean
diameter dso = 1, with a weak polydispersity of 10 % standard deviation following a
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Run L; x H; Ny a Co

1-3 40 x 8 860 0.2 0,5,10

4-6 40 x 12 1280 0.3 0,5, 10

7-9 30 x 12 965 0.4 0,5,10

10-12 30 x 15 1200 0.5 0,5, 10

13-15 25 x 15 1004 0.6 0,5,10

16-18 20 x 16 860 0.8 0,5, 10

19-28 20 x20 1070 1.0 0,2,3,5, 10, 20, 30, 40, 45, 50
29-31 16 x 24 1028 1.5 0,5, 10

32-34  15x30 1200 2.0 0,5,10

35-43 12 x36 1160 3.0 0, 5, 10, 20, 50, 105, 130, 170, 180
44-46 10 x40 1070 4.0 0,5, 10

47-55 9 x 45 1080 5.0 0, 5, 10, 20, 50, 90, 150, 190, 230
56-58 8 x 56 1196 7.0 0,5,10

59-69 7 x 60 1120 8.6 0,2,5,10,25,50, 100, 150, 195, 250, 290

Table 2. Overview of the cohesive simulations conducted, and the associated parameter values. For all
simulations, Ga = 200, St = 12.79 and r = 1.6.

Gaussian distribution. A layer of particles with uniform diameter 0.5 is fixed at the
bottom boundary to mimic basal roughness. We choose the coefficients of friction and
restitution as p, = 0.15 (Joseph & Hunt 2004) and ey, = 0.97 (Gondret, Lance & Petit
2002), corresponding to silicate materials. The size of the uniform rectangular grid is
Ax = Ay = Az = dsp/20. The initial granular columns are prepared similarly to the
validation case, except that we do not change w, initially. The initial volume fraction
is approximately 0.55, corresponding to a relatively loosely packed column (Rondon
et al. 2011). The Stokes number St = 12.79 and the density ratio r = 1.6 indicate that
our cases are in the inertial regime. Cohesive sediments in the ocean typically have
density of O(10> kg m™3) and particle size of O(10 jum), which yield a smaller Stokes
number that generally falls into the viscous regime (Pinzon & Cabrera 2019; Vowinckel
et al. 2019b). Our simulations were motivated by the recent development of materials
whose surface can be coated to give rise to cohesive bonds even for millimetric grain
sizes (Jarray et al. 2019; Sauret et al. 2019; Brunier-Coulin, Cuellar & Philippe 2020;
Gans, Pouliquen & Nicolas 2020). In particular, Brunier-Coulin et al. (2020) conducted
submerged laboratory experiments with such particles, which resulted in cohesive granular
flows in the inertial regime. The effects of cohesion can be observed more easily in this
inertial regime, which prompted us to focus on this regime in the present investigation. We
will discuss results from a total of 69 simulations focusing on the influence of @ and Co,
whose parameters are listed in table 2. For convenience, the tilde symbol will be omitted
henceforth.

3. Results
3.1. Observations of granular cohesive collapse

In order to set the stage for a subsequent quantitative analysis, we will initially discuss the
overall qualitative properties of several representative simulations for shallow (¢ = 1) and
tall (a = 8.6) columns.
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Figure 3. Evolution of the runout distance for: (a) shallow columns with aspect ratio a = 1 and cohesive
numbers Co = 0 to 50; (b) tall columns with aspect ratio a = 8.6 and cohesive numbers Co = 0 to 250. The
collapse proceeds through distinct acceleration, constant-velocity and deceleration stages.

3.1.1. Collapse of shallow columns

Figure 3(a) shows the evolution of the normalized front location (xf —L;)/L; as a
function of time. Here, x; denotes the location of the rightmost particle centre. Previous
investigations (Meruane, Tamburrino & Roche 2010; Lee ef al. 2018) had observed that the
collapse of submerged, loosely packed, non-cohesive granular columns proceeds through
three distinct stages: the acceleration or collapse stage, the constant front velocity stage,
and the deceleration stage. Figure 3(a) demonstrates that these three stages also exist for
cohesive granular collapse, and that the front velocity decreases monotonically as the
cohesive force increases.

Snapshots of the magnitude of the angular and translational particle velocities, ||, || and
l@p|l, are shown in figure 4. Figures 4(d,j) show that the magnitude of the velocity vectors
in the x- and y-directions remains very small in the lower left corner of the columns,
which reflects the fact that the particles remain approximately at rest in this region. They
demonstrate that for both cohesive and non-cohesive (Sun et al. 2020) columns, during
the acceleration stage, particles near the upper right corner slide down along an inclined
failure surface (indicated by a red line in figures 4d.j). The failure surface is defined as the
contour where [up|| = 0.05[|up || nax (Lacaze & Kerswell 2009), with [[u, || mqx denoting
the maximum translational velocity at the same time. By comparing figures 4(d,j), we
note that cohesive forces corresponding to Co = 30 elevate the location of the failure
surface, resulting in the growth of the region of stationary particles in the lower left
corner. Interestingly, the angular velocity of the particles remains quite small near the
failure surface (cf. figures 4a,b,g,h), which indicates that the particles slide, rather than
roll, past each other (Xu et al. 2019). The cohesive forces do not modify significantly the
angular velocity field of the particles.

During the constant-velocity stage, particles slide continuously towards the front of the
collapsing column (figures 4e.k). The cohesive forces prevent particles from detaching and
result in the formation of aggregates. We remark that the cohesive forces furthermore cause
small fluctuations of the front velocity during the approximately constant-velocity stage;
cf. figure 3(a). During the deceleration stage, the granular flow becomes increasingly
shallow, and it forms a thin tip in the frontal region. For Co = 30, the final deposit profile
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Figure 4. Evolution of granular collapse for a = 1 and Co = 0 and 30, for (a,d,g.j) t = 5, (b,e,h.k) t = 20, and
(c.f.i,]) t = 30. (a—c) Magnitude of the angular velocity [|@p|| for Co = 0. (d—f) Magnitude of the translational
velocity ||uy || for Co = 0. (g—i) Magnitude of the angular velocity [w,|| for Co = 30. (j—I) Magnitude of the
translational velocity [|uy|| for Co = 30. The red lines indicate the location of the failure surface. The black
arrows represent vectors of the average particle velocity.

is shorter and thicker; cf. figures 4(f,/). The surface of the deposit takes a rougher and
more irregular shape, reminiscent of observations for dry cohesive granular collapse by
Langlois et al. (2015). Furthermore, Figure 3(a) indicates that cohesive flows decelerate
more abruptly, compared to the non-cohesive case. For Co = 50, the cohesive force is
sufficiently large so that the column no longer collapses. This is similar qualitatively
to previous experimental and numerical observations for dry cohesive granular collapse
(Artoni et al. 2013; Langlois et al. 2015; Santomaso et al. 2018).

3.1.2. Collapse of tall columns

Similar to shallow columns, the collapse of tall columns also displays an initial
acceleration stage, a subsequent constant-velocity stage, and finally a deceleration stage;
cf. figure 3(b). However, during the acceleration stage, the influence of Co is much
less pronounced than for shallow columns. This is a consequence of the fact that the
early stages of the collapse of tall columns are dominated by the nearly solid-body
free-fall motion of the upper column sections, which is largely unaffected by cohesive
forces. Similarly to shallow columns, the runout distance for tall columns decreases with
increasing Co.
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Images of the angular and translational velocity magnitudes in figure 5 demonstrate the
early solid-body free-fall motion of the upper column sections over a wide Co range (Jing
et al. 2018). Only in the bottom left corner do the particles remain at rest, e.g. figures 5(d.j).
For Co = 0, most of the lower section of the column moves towards the right and forms
a current head. In this region, the translational particle velocity |[u,|| has a strong vertical
gradient from the upper surface to the interior. We also notice that the rotational particle
motion near the failure surface is much more pronounced than for shallow columns. For
Co > 100, the cohesive forces slow down the horizontal spreading of the particles near
the bottom significantly (figure 5k), which in turn decelerates the free-fall motion of the
upper sections, so that the acceleration stage terminates earlier (figure 3). Furthermore,
figure 5 demonstrates that for larger Co values, the duration of the constant-velocity stage
decreases gradually. While a number of individual particles detach from the collapsing
column in the cohesionless case (figures 5b,e), the cohesive forces largely prevent the
detachment of individual particles; cf. figures 5(/,k).

3.2. Front velocity and internal velocity profile

3.2.1. Front velocity

We now proceed to describe the quantitative dependence of the quasi-steady front velocity
us on Co, for different aspect ratios a. With ugy denoting the quasi-steady front velocity
for Co =0, Lee et al. (2018) observed that usy/ /g’Tl depends on the aspect ratio in a
piecewise power-law fashion. Specifically, for a < 3 they found uso/ \/ﬁ ~ a2, while
for a > 3 they obtained ufo/\/@ ~ a'/3. Figure 6(a) shows our current simulation
results for the normalized front velocity as a function of the aspect ratio a for different
Co values. For Co = 0, we find that it is well approximated by the power laws

0.274'2%, a <3,

3.1
0.394'4, a>3. G-

uro/v/8'Li = {

For a < 3 our exponent is identical to that of Lee er al. (2018), while for a > 3 it is
somewhat smaller than the value found by those authors. We suspect that this discrepancy
may be due to differences in the simulation approach, such as the details of the particle
collision model. Also, note that Lee er al. (2018) employ a continuum two-phase flow
model. In the presence of moderate cohesive forces, the front velocity continues to
follow a power-law dependence, although for all but the largest aspect ratios the front
velocity is somewhat smaller than for the cohesionless case. For those large aspect ratios,
gravitational forces dominate over moderate cohesive forces during the early stages, so that
cohesion does not slow down significantly the spreading of the collapsing column. This is
confirmed by figure 6(b), which presents the normalized spreading velocity us/./g'L; as a
function of Co for different aspect ratios a. It shows that for a > 3, the effect of cohesion

is felt only above a certain value of Co.
We now focus on the ratio us/usy, where uyg is calculated by (3.1). Close inspection of

the data suggests that uy/uyo can be well approximated by a power law of the form Coliat,
Specifically, the relationship us/urg =1 — 0.07 Co*3a=1/2 results in the coefficient of
determination (‘goodness of fit’) R> = 0.96 as shown in figure 6(c). By combining this
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Figure 5. Sequences of snapshots for a = 8.6, with Co =0 and 100, at different times, for (a,d,g.)
t=35, (behk) t =20, and (c,f.i,]) t =60. (a—c) Magnitude of the angular velocity [w,| for Co = 0.
(d—f) Magnitude of the translational velocity ||u, || for Co = 0. (¢—i) Magnitude of the angular velocity ||w, || for
Co = 100. (j—I) Magnitude of the translational velocity [|u,|| for Co = 100. The red lines indicate the location
of the failure surface. The black arrows represent vectors of the average particle velocity. In (/), the particle
velocity is zero.
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Figure 6. (a) Normalized quasi-steady front velocity uy/ \/ﬁ as a function of the aspect ratio a for different
cohesive numbers Co. The solid and dashed lines represent power-law fits for cases Co = 0 and Co = 10,
respectively. The black and blue data points are nearly identical to the red data points for @ =5 and 8.6.
(b) Normalized quasi-steady front velocity uf/\/@ as a function of the cohesive number Co for
different aspect ratios a. (c) Ratio ug/ury as a function of Co*3a='/2. The dashed line represents

urfugo = 1 — 0.07 Co*3a=1/2.

expression with (3.1), we obtain as empirical fit for the normalized front velocity

0.274'%, a <3,

3.2
0.394'4, a>3. (3-2)

up/v/g'Li = (1 —0.07 Co*3a=1/?) x

3.2.2. Internal velocity profile

Figure 7(a) shows the velocity profile uﬁ’f (), for different Co values and a = 1, at location
x = 20 and time ¢ = 20. Here, u)’z’f () is the horizontal fluid velocity at locations occupied
by fluid, and the horizontal velocity of the particle centre at locations inside a particle.

Furthermore, uﬁ’f (y) represents the z-averaged value, and it increases from approximately
zero at the lower wall to a maximum near the upper particle boundary. Cohesion reduces
the propagation velocity of the fluid—particle mixture, which is consistent with our earlier
observations regarding the front velocity. Immediately above the particles, the fluid moves
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Figure 7. (a) Plots of uﬁ’f (y) atlocation x = 20 and time ¢ = 20, for aspect ratio a = 1 and various Co values.

(b) Plots of uﬁ‘f (y) at x = 15 and ¢ = 20, for aspect ratio a = 8.6 and different Co values. The dashed lines
indicate the location of the upper boundary of the particles.

even faster than the mixture. As y increases further, the velocity profile exhibits a sharp
transition to the leftward counterflow in the upper part of the domain.

For a = 8.6, the maximum of uﬁ’f (y) occurs inside the fluid—particle mixture, and the
uppermost layer of this mixture is already retarded by the counterflow; cf. figure 7(b). We

note that cohesionless collapses give rise to small-scale fluctuations of uﬁ’f () in the fluid
region above, due to the influence of detached particles.

3.3. Runout distance, final deposit height and deposit morphology

3.3.1. Runout distance and final deposit height

We now shift our focus to the final runout distance /s and the maximum deposit height
hy. These two quantities were also employed by Bougouin & Lacaze (2018) in order to
characterize the deposit. Several previous studies of submerged non-cohesive granular
collapses found their values for Co = 0, i.e. lrp and hyp, to depend on the aspect ratio
a in a piecewise power-law fashion (Bougouin & Lacaze 2018; Jing et al. 2018; Lee et al.
2018).

Figure 8(a) shows current simulation results for the normalized runout distance (I —
L;)/L; as a function of the aspect ratio a, for different Co values. Bougouin & Lacaze
(2018) as well as Lee et al. (2018) observed that for cohesionless collapses with a < 2-3,
this normalized runout distance varies linearly with the aspect ratio. On the other hand, for
a > 2-3, they found (lro — L;)/L; ~ A3a*, where A4 changes from 0.56 to 0.67, depending
on other parameters such as the particle size and density. The present simulation results
show that for Co = 0, the normalized runout distance behaves as

24a, a <2,
(lpo — L) /L; = { (3.3)

3a*3, a>2,

which is consistent with the earlier findings. In the presence of cohesive forces, the
normalized runout distance decreases gradually for a given aspect ratio, as can be seen
in figures 8(a,b). A similar trend was also observed for dry cohesive granular collapses by
Langlois et al. (2015), Santomaso et al. (2018) and Artoni et al. (2013).

In order to obtain the quantitative dependence of the runout distance on Co, we follow
the strategy that had been successful for the front velocity, and normalize the runout
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Figure 8. (a) Normalized runout distance (lr —L;)/L; as a function of the aspect ratio a for different
Co values. The solid and dashed lines represent power-law fittings for Co = 0 and Co = 10, respectively.
(b) Normalized runout distance (/s — L;)/L; as a function of the cohesive number Co for different aspect ratios

a. (¢) Normalized runout distance ([r — L;)/(lro — L;) as a function of Co'/3a=1/5 . The dashed line represents
(I — L)/ (o — L) = 1 —0.25Co'Ba=!/.

distance as (Ir — L;)/(lyo — L;). The simulation data are well captured (R? = 0.97) by
(r —Lj)/(o— L) =1-0.25 Co'3a=1/3, as shown in figure 8(c). By combining this
expression with (3.3) for the cohesionless runout length /¢, we obtain as empirical fit for
the runout distance,

24a, a<?2,
3a23, a>2. 3-4)

(f —L)/Li = (1 —0.25Co'Pa7) x {
Equation (3.4) shows that Co and a affect the front velocity and runout distance in
corresponding fashion, with larger Co reducing the runout distance in a way that is more
pronounced for smaller a. Note that the scaling law Co'/3 in (3.4) is similar to Bo~!/3
in Artoni et al. (2013). This is because the cohesive number Co is the reciprocal of the
bond number Bo, which is calculated as the gravitational force divided by the capillary (or
cohesive) force. This indicates the quantitative similarity of the effect of cohesive force
between dry and submerged cases.

Simulation results for the dependence of the normalized final deposit height /17 /L; on the
aspect ratio a are presented in figure 9(a). For Co = 0, we find that hsy/L; varies linearly
with a for small a. Note that in this region, the black and blue data points coincide with
the red data points, which indicates that for small aspect ratios, the deposit height does
not depend on Co. This reflects the fact that for these small aspect ratios, the leftmost
part of the column top does not participate in the collapse, so that a trapezoidal deposit
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Figure 9. (a) Normalized final deposit height /s /L; as a function of the aspect ratio a for different Co values.
The solid and dashed lines represent power-law fittings for Co = 0 and 10, respectively. (b) Normalized final
deposit height /s /L; as a function of the cohesive number Co for different aspect ratios. The tick marks along

the right vertical axis indicate /iy /L; = a. (c) Plots of (hy — hyo)/L; as a function of Co*3a3/*, The dashed line
represents (hy — hyo)/L; = 0.02 Co*/a’/4.

shape evolves, as was also observed by Bougouin & Lacaze (2018) and Lee et al. (2018).
For larger values of a, we find that for non-cohesive collapses, hyo/L; varies as

a a < 0.53,

' 3.5
0.7a'4, a>0.53. (3-5)

heo/Li = {

This is reasonably close to the observations of Bougouin & Lacaze (2018) and Lee et al.
(2018), who found that for non-cohesive collapses, the transitional value of a between the
regimes varies from 0.6 to 0.75, while the exponent ranges from 0.33 to 0.48. For larger
aspect ratios a, the final deposit height is seen to increase with Co; cf. figure 9(a). The
transitional value of a between the regimes increases slightly with Co, which indicates that
in the presence of cohesive forces, the final deposit profile maintains a trapezoidal shape
for larger aspect ratios. Figure 9(b) confirms that for sufficiently large cohesive forces, the
leftmost section of the column does not collapse, so that h¢/L; = a.

In order to quantify the dependence of the final deposit height on Co, we focus on those
collapses that affect the entire top layer of the original column, so that i¢/L; < a, i.e.
the maximum final deposit height is lower than the original column height. Figure 9(b)
shows that for these cases, hy/L; varies with both Co and a. The simulation data are

well captured (R? = 0.992) by the relationship (hy — hyo)/L; = 0.02 Co*Pa’/* shown
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Figure 10. Deposit profiles for different aspect ratios a and cohesive numbers Co: (a) Co =0, (b) a = 1,
(¢)a=3,and (d) a = 8.6.

in figure 9(c). Together with (3.5) for Ay, we thus obtain the empirical fit

0.02Co*%a** 4+ 0.7a'/*, a > 0.53 and Co*> < 50a'/* — 35471/2,

he/Li = { o N (3.6)
a, otherwise.

Equation (3.6) indicates that the increase of the final deposit height due to cohesion is

more pronounced for larger aspect ratios a.

3.3.2. Deposit morphology

Figure 10(a) shows the final deposit profiles of non-cohesive collapse simulations for
different values of the aspect ratio a. For a = 0.3, the profile has a trapezoidal shape,
with a flat top towards the left that has essentially remained unaffected by the collapse
process, and an approximately uniform slope towards the right. As a increases, the top
of the sloping section moves closer and closer to the left wall, and between ¢ = 1 and 3,
the deposit has a nearly triangular shape. For a = 8.6, the final deposit shape resembles a
‘Mexican hat’, characterized by an approximately flat outer region with steep central cone.
These observations are consistent with previous findings (Rondon et al. 2011; Lee et al.
2018).

The presence of cohesive forces modifies the surface shape of the final deposit
significantly; cf. figures 10(b—d). The formation of larger aggregates during the collapse
process causes the surface to be rougher than for cohesionless collapses, and the steepness
of the final profile increases with Co. For moderate values of Co, both convex and concave
deposit surfaces can form, while sufficiently strong cohesive forces suppress the collapse
nearly entirely.
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Figure 11. (a) The deposit surface slope As/(lf — x.) as a function of a for different values of Co. The solid
and dashed lines represent power-law fittings for the cases Co = 0 and 10, respectively. () The deposit
surface slope //(lr — x.) as a function of Co for different values of a. The dashed lines indicate linear
fittings. (¢) Normalized slope hy(lro — xc0)/hso(lf — xc) as a function of Co. The dashed line represents
hf(lf() — xco)/hf()(lf —xc) =14 0.12 Co.

For deposits with a trapezoidal or triangular shape, we evaluate the magnitude of the
uniform slope as hy/(ly — x.), where x. denotes the leftmost point on the uniform slope.
Figure 11(a) shows the slope hs/(lf — x.) as a function of the aspect ratio for different
values of Co. Similar to the runout distance and the final deposit height, the surface slope
has a piecewise power-law dependence on a. For Co = 0, the best fit is given by

hpo/(Ipo — x0) = 0.15a2/°, (3.7)

where x.o denotes the value for Co = 0. The critical value of a for the transition of the
piecewise function is 1. While figure 11(a) indicates that the slope increases with Co, it
also suggests that the exponent of the power law may be sensitive to the exact value of Co.

Figure 11(b) presents the surface slope as a function of Co for moderate cohesive
forces that do not suppress the collapse: /¢ /(lf — x.) increases approximately linearly with
Co, and its dependence on Co becomes weaker for larger aspect ratios. If we normalize
hy/(ly — x.) by the cohesionless slope Ko/ (lro — xc0), then figure 11(c) suggests that this
normalized slope varies with Co approximately as 1+ 0.12 Co, with R*> = 0.965. By
combining this relationship with (3.7), we obtain the slope of trapezoidal and triangular
deposits:

he/(r — xc) = 0.15(1 4 0.12 Coya™ />, (3.8)
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3.4. Energy budget

In the following, we analyse the temporal evolution of the various particle and fluid
energy components (Vowinckel et al. 2019b) during the submerged granular collapse, for
different cohesive force strengths. The potential energy stored initially in the granular
column represents the source that drives the collapse. This energy is converted into
kinetic energy of the particles and fluid, potential energy of the fluid, and elastic potential
energy stored at the contact points between particles. Energy is dissipated primarily due
to fluid viscosity, particle—particle friction, and inelastic collisions. Here, we focus on the
dominant components of the energy budget, which are given by the potential and kinetic

energy of the particles, E, and E‘Z , and the kinetic energy of the fluid, E,{ . These are
defined, respectively, as

Np
Ey()) =Y (pp — pp)Vp.ighe.i. (3.9)
i=1
| &
EQ@) =5 ) mpilup.il, (3.10)
i=1
TR
E[(1) = 5 Vie D 0y @peatt® + dyevv® + Bpow®), (3.11)

i=1

where V), ; and h.; denote the volume and centre height of particle i, respectively. We
note that we use (p, — pr) because it is associated with the available potential energy
that can be released by a particle. Also, V. is the volume of a grid cell, N is the total
number of grid cells, and ¢y, ¢fev and ¢y, represent the fluid volume fractions in the grid
cells for velocity components u, v and w, respectively. Note that these volume fractions
can be different for the different velocity components, due to the staggered grid approach
employed in our simulations. The rotational kinetic energy of the particles is small enough
that we can neglect it (Jing et al. 2018). We remark that we keep track of the separate
kinetic energy components associated with the u- and v-velocities of the particles (E‘Zx and

E‘;Zy) and the fluid (E,{x and E,{y), so that we can distinguish how kinetic energy associated

with the vertical falling motion is redirected in the horizontal direction during the collapse
process:

N,
1 P
Ep (0 = 5 ) mpity . (3.12)
i=1
1 &
By =3 > mpivs i, (3.13)
i=1
T
EL(D) = SVie ) propeutt. (3.14)
i=1
| &
EL(0) = SV ) propev’ (3.15)

i=1
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Figure 12. Time history of the largest components of the energy budget, for different cohesive numbers Co
and a = 1: (a,b) Co = 0, (¢,d) Co = 10.

We note that the partial kinetic energy associated with the w-velocity component is
negligible (Jing et al. 2018).

Figure 12 shows the time history of the energy budget for different Co values and a = 1.
Here, we normalize all energy components by the initial available potential energy of
the particles, E,(0); AE, = E,(0) — E,(?) indicates the amount of potential energy that
has been released by the particles up to time 7. The presence of cohesive forces reduces
significantly the amount of available potential energy released by the particles, as shown
in figure 12(c). This reflects the fact that cohesive collapses result in shorter runouts and
thicker deposits, so that they retain more of their potential energy; cf. figure 5. We note
that the kinetic energy of the particles decreases much more strongly than that of the
fluid, compared to the cohesionless case, as the cohesive forces prevent the particles from
moving freely; cf. figures 12(b,d). Interestingly, the fluid retains a significant amount of
kinetic energy long after the particles have come to rest. Figures 12(b,d) show the evolution
of the kinetic energy components associated with the u- and v-velocity components for a
shallow column, with Co = 0 and 10, respectively. We notice that the peak kinetic energy
values are reduced greatly by the cohesive forces, and much more so for the horizontal
component than for the vertical one, which suggests that for stronger cohesive forces, less
and less of the particle kinetic energy associated with the free fall is redirected in the
horizontal direction. The x-components of the particle and fluid kinetic energies also peak
earlier for larger Co values, reflecting an earlier onset of the deceleration stage.

Figure 13 shows corresponding energy conversion results for tall columns with a = 8.6.
In the presence of cohesive forces, the sediment gives up a substantially smaller fraction
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Figure 13. Time history of various energy components for different cohesive numbers Co when a = 8.6:

of its initial potential energy, e.g. about 60 % and 90 % for Co = 100 and 0, respectively.
Interestingly, while for moderate cohesive forces the kinetic energy peak of the fluid
remains approximately unchanged, the peak of the particle kinetic energy increases
compared to the cohesionless case; cf. figure 13(c). Only for strongly cohesive collapses
does the peak of the particle kinetic energy decrease; cf. figure 13(e). The explanation for
the increase in the particle kinetic energy under moderate cohesive forces can be found in
figures 13(b,d), which show that it is primarily the kinetic energy component associated
with the vertical particle velocity that increases under mild cohesion. Cohesion holds
the upper section of the column together during its free fall, which allows it to reach a
larger vertical velocity than for the cohesionless case. For large cohesive forces, on the
other hand, the entire free-fall motion slows down much earlier, so that the particles never
acquire a large vertical velocity.
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Figure 14. The internal structure of the final deposit for different Co values and aspect ratios. Colour indicates
the original horizontal particle layers. The 100 particles nearest to the front of the final deposit and their initial
locations are marked in opaque colour. Values are: (@) Co = 0 anda = 1; (b) Co = 0 and a = 8.6; (¢) Co = 20
and a = 1; (d) Co = 50 and a = 8.6. (See also supplementary movies 1-4, available at https://doi.org/10.1017/
jfm.2022.404.)

3.5. Internal structure of the deposit

In figure 14, we employ different colours in order to mark five horizontal particle layers in
the initial column, which we then track until the end of the collapse process for different
Co. We also identify the 100 particles that have travelled the farthest at the end of the
collapse process. Both the initial and final locations of these particles are then marked
in opaque colour. For both cohesive and cohesionless columns with @ = 1, the layers
stay mostly intact towards the left of the final deposit, whereas there tends to be more
mixing towards the tip of the deposit on the right. The particles initially at the base of
the column are slowed down by bottom friction, whereas those initially at the top are
somewhat retarded by the ambient counterflow. The particles that travel the farthest are
mostly from the second- and third-highest layers. These particles all originate in a thin
vertical slice at the right of the initial column that extends over nearly the entire height of
the column for Co = 0 (cf. figure 14a), and from the top to about 3/4 of the way down for
Co = 20 (cf. figure 14c¢).

For collapses with a = 8.6, on the other hand, there is more pronounced mixing between
the layers for the non-cohesive case, whereas for Co = 50, the layers tend to retain their
identities. Interestingly, the particles that travel the farthest now originate in the second
layer from the bottom and in a thin vertical slice at the right of the initial column. For a =
8.6 and Co = 0 (cf. figure 14b), this thin slice along the right edge of the initial column
does not extend all the way to the top, because the particles near the very top move down
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Figure 15. The evolution of four particle clusters, each of which is initially centred around a red particle, for
a = 1, with (a) Co = 0, and (b) Co = 10. At time ¢ = 0, the particle clusters are identical for both simulations.
Those neighbours that initially have a cohesive bond with the red particle are shown in green. The initial clusters
remain more compact for Co = 10, whereas they become more disperse for Co = 0. (See also supplementary
movies 5 and 6.)

primarily, rather than towards the right. For Co = 50 (cf. figure 14d), the slice is somewhat
thicker, but it occupies only about 1/6 of the column height.

3.6. Formation and persistence of aggregates in the interior of the granular collapse

In order to demonstrate the formation and persistence of aggregates in the interior of the
granular collapse, figure 15 focuses on collapses with aspect ratio a = 1, and compares
the two cases Co = 0 and 10. The initial configurations are identical, and the figure tracks
the same four distinct particles A, B, C and D (marked in red) for both flows. For each
of these four particles, we furthermore keep track of those neighbours (marked in blue)
that are initially separated from them by a distance smaller than 0.5 unit lengths. For
Co = 10, if these neighbouring particles are sufficiently close to A, B, C or D to form
a cohesive bond with them at the initial time, they are marked in green. Figures 15(a,b)
show the initial and final locations of all these neighbours. Particles A and C and their
neighbours travel a relatively short distance during the collapse, so that they remain close
to their initial neighbours for both Co = 0 and Co = 10. On the other hand, particles B and
D travel much larger distances, and their neighbours become much more separated from
each other during the collapse for Co = 0 as compared to Co = 10. This demonstrates that
for Co = 10, the cohesive forces result in the formation and persistence of aggregates of
primary particles that tend to remain close to each other throughout the evolution of the
flow.

In order to quantify the tendency of aggregates to persist, we now introduce an x, y-grid
with uniform spacing of 1. For each grid point, we consider the group of particles whose
centres are initially located within a 2 x 2-cell centred around this grid point. We then
take the locations of this group of particles at the final time, find their centre of mass, and
evaluate the average distance A of the particles in this group from their centre of mass at
the final time. The value of Ay is then assigned to the grid point. Contours of Ay, shown
in figure 16, then provide a measure of the tendency of the particles to get separated from
their initial neighbours in the course of the collapse process.

For both @ = 1 and a = 8.6, we find that, on average, cohesion reduces the tendency
of particles to get separated from their initial neighbours. In the absence of cohesion
(figures 16a,c), the initial columns can be divided into two zones. The zone boundaries are
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Figure 16. Contours of Ay, which reflect the tendency of neighbouring particles to get separated from each
other during the course of the collapse. The cohesive forces generally reduce this tendency. It also results in
the generation of a region near the upper right corner of the column where neighbouring particles stay close to
each other. Values are: (a) a = 1 and Co = 0; (b) a = 1 and Co = 10; (c) a = 8.6 and Co = 0; (d) a = 8.6 and
Co =125.

presented qualitatively by visualization. In zone I near the lower left corner of the column,
Ay =~ 0 since the particles in this zone hardly move at all. In zone II, particles flow along
the failure surface and tend to get separated from each other, which results in large values
of A,. The region near the right edge of zone II, whose particles we earlier observed to
travel the farthest, has the largest values of A;. The presence of cohesive forces gives rise
to a new zone III towards the upper right, where neighbouring particles tend to stay close
to each other and travel as aggregates; cf. figures 16(b,d). The previous study by Dizaji,
Marshall & Grant (2019) provides an explanation for this observation. Their simulation
results indicate that cohesive particle aggregates tend to break up when sheared. As shown
in figures 4, 5 and 16, the particles in zone II are subject to the largest velocity gradients
in the direction perpendicular to the failure surface, so we expect the shear to promote the
breakup of cohesive bonds between particles; cf. figure 18.

Figure 17 shows the averaged values of Ay for the initial column (written as Ay) as a
function of the cohesive number Co for different aspect ratios a. Here, A has a larger
value for smaller Co and higher a due to the longer separated distance between the initial
neighbouring particles. The graph suggests that A; depends on the cohesive number Co in
a power-law fashion. As we increase the aspect ratio a, the effect of cohesive number Co
is stronger, i.e. Ag ~ Co~ V10 when a = 0.3, while A; ~ Co~ /% when a = 8.6.

3.7. Cohesive and contact force bonds

We now proceed to analyse cohesive and contact force bonds from a more global
perspective, for Co = 10 as well as @ = 1 and 8.6, respectively. For the initial time # = 0,
figures 18(a,c) indicate all cohesive bonds between individual particles by straight-line
segments that connect the particle centres. Figures 18(b,d) show those of the initial
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Figure 17. The averaged values of A for the initial column as a function of the cohesive number Co for
different aspect ratios a. The dashed lines are power-law fittings for ¢ = 0.3 and a = 8.6. Larger cohesive
forces tend to hold the cluster of particles together throughout the collapse of the column.

cohesive bonds that have survived until the end of the collapse. We observe a few clear
differences between the two aspect ratios. As discussed earlier, for a = 1, the particles in
the lower left corner hardly move at all, so that many of the initial cohesive bonds between
them survive the entire collapse process. Near the left wall, and in the entire upper (pink)
layer, quite a few of the bonds also survive, whereas this is not true for the lower sections
of the deposit near the front. For the particles in that section, the collapse process destroys
most of their initial cohesive bonds. For a = 8.6, on the other hand, cohesive bonds survive
primarily in a very small section in the lower left corner, and along the entire top layer of
the deposit, including at the very front. For the entire interior section of the final deposit,
almost all initial cohesive bonds are destroyed during the course of the collapse.

Figure 19 presents the strongest 10 % of the instantaneous cohesive bonds at different
times, for a = 1 and Co = 10. The strength of the bonds is indicated by the thickness of the
corresponding line segments. The near-static area in the lower left corner (indicated by the
dashed red lines) contains very few strong cohesive bonds, as the particle interaction in this
region is dominated by direct contact forces. Outside this region, strong cohesive bonds
can be found nearly anywhere in the flow, including near the free surface. Figures 19(c,d)
indicate the directional distribution of the cohesive bonds, by showing the number N, (6.5)
of cohesive bonds whose angle 6., with the horizontal falls into a given range. For
t =5, we find that the direction of the cohesive bonds is preferentially aligned with the
horizontal. This tendency becomes somewhat more prominent throughout the collapse,
as can be seen for + = 20. This suggests that the cohesive bonds essentially cause a
macroscopic stress tensor that counteracts the deformation tensor and hence limits the
runout distance of the collapse.

The situation is somewhat different for a = 8.6; cf. figure 20. Figure 20(d) indicates
that the cohesive bonds are approximately uniformly distributed across all angles early on
during the collapse. However, figure 20(a) shows strong local differences. The particles
in the upper part of the column are in near free-fall motion, and the cohesive bonds point
mainly in the vertical direction. In the lower part of the collapsing column, on the other
hand, the particles move predominantly in the horizontal direction, and the cohesive bonds
are aligned in this direction as well. As the upper part of the collapsing column slows its
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Figure 18. Cohesive bonds at the initial time for (@) a = 1, Co = 10, and (¢) a = 8.6, Co = 25. For the same
two flows, (b,d) show those cohesive bonds that have stayed intact during the entire collapse process until the
final time # = 60. (See also supplementary movies 7 and 8.)

free fall and more particles are being redirected in the horizontal direction, the angular
distribution of the cohesive bonds skews in this direction as well.

Figure 21 shows the strongest 10 % of the normal direct contact forces between particles
for Co =0 and 10, at different times. The force magnitude is again indicated by the
thickness of the line segment. The initial configurations are identical for both Co values,
and as long as the particles are at rest, the normal contact forces are preferentially aligned
with the vertical direction. They increase towards the bottom, as they have to support the
weight of the overlying particles (Yang et al. 2020); cf. figure 21(a). Shortly after the
gate removal, the number of normal contact force connections is reduced greatly, due to
the excess pore pressure that forms as the particle column begins to move and contracts
(Rondon et al. 2011; Vowinckel et al. 2019a; Yang et al. 2020); cf. figures 21(b,c). During
this stage, much of the particle weight is supported by dynamical pressure, rather than by
direct contact force chains. At later times, branched-out contact force chains re-emerge,
primarily towards the left and near the bottom wall, where particles come to rest and have
to support the weight of the overlying grains once more; cf. figures 21(d,f). Near the
upper surface, the particles move rapidly, so that particle—particle collisions can generate
considerable contact forces. However, these local contact forces do not constitute part of a
larger network; cf. figures 21(e,g).
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Figure 19. (a,b) The strongest 10 % of all cohesive bonds for a = 1 and Co = 10 at r = 5 and 20, respectively.
The thickness of the connecting lines denotes the strength of the cohesive force. The area in the lower left corner
outlined by a dashed red triangle contains relatively few cohesive bonds, since direct contact forces dominate
here. The black dashed lines indicate the instantaneous deposit shape. (¢,d) The directional distribution of the
cohesive bonds at t = 5 and 20, respectively.

4. Summary and conclusions

We have analysed the submerged collapse of weakly polydisperse, loosely packed cohesive
granular columns. Towards this end, we have employed fully coupled, grain-resolving
direct numerical simulations. As the two dominant dimensionless parameters governing
this problem, we focus on the influence of the aspect ratio a of the initial particle column,
as well as a cohesive number Co that provides the ratio of cohesive to gravitational forces
acting on the particles. The simulations demonstrate that for both shallow and tall columns,
the cohesive forces largely prevent the detachment of individual particles from the main
body of the collapsing column. Furthermore, it reduces the front velocity, and it results in
a shorter and thicker final deposit. We show that the effect of the cohesive force and the
aspect ratio on the quasi-steady front velocity, the runout distance, and the final deposit
height can be captured accurately across a broad range of Co and a values by piecewise
power-law relationships.

The energy budget analysis shows that the presence of cohesive forces reduces
significantly the amount of available potential energy released by the particles, due to
the shorter runout distance and thicker final deposits. For shallow columns, the particles
and fluid acquire less kinetic energy as Co increases. For tall columns, on the other hand,
moderate cohesive forces increase the maximum particle kinetic energy since it accelerates
the initial free fall of the upper column section. Only for larger cohesive forces does the
peak kinetic energy of the particles decrease.
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Figure 20. (a—c) The strongest 10 % of the cohesive bonds for a = 8.6 and Co = 10 at r =5, 10 and 15,
respectively. The thickness of the connecting lines denotes the magnitude of the cohesive forces. The dashed
lines indicate the instantaneous deposit shape. (d—f) The directional distributions of the cohesive bonds at
t =5, 10 and 15, respectively.

By tracking the individual particles, we obtain insight into the Lagrangian dynamics
and mixing behaviour of the granular collapse. In general, the cohesive forces are seen to
reduce the mixing of particles within the collapsing column. Furthermore, the simulations
enable us to identify the region within the initial column from where those particles
originate that travel the farthest. We find that for all aspect ratios and Co values, this
region represents a narrow slice along the collapsing edge, although the vertical location
of this slice varies with Co and a. Bottom friction generally prevents the particles at the
base of the column from travelling very far.
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Figure 21. The strongest 10 % of the normal contact forces for @ = 1 and various Co values at different times:
(a) t = 0 before the lock gate removal; (b) Co =0 and 1 = 0.5; (¢) Co = 10and t = 0.5; (d) Co =0 and t = 5;
(e) Co=0andt = 30;(f) Co=10and r = 5;(g) Co = 10 and t = 30. The thickness and colour of the contact
segments denote the magnitude of the normal contact force. The dashed lines indicate the instantaneous deposit
shape.

The simulations demonstrate clearly that larger cohesive forces tend to keep initial
neighbour particles together throughout the evolution of the flow, i.e. they promote the
formation of aggregates. Furthermore, the simulations provide complete information on
the temporally and spatially evolving network of cohesive and direct contact force bonds.
The normal contact forces are aligned primarily in the vertical direction, as they support
the weight of the overlying particles. The cohesive bonds, on the other hand, adjust their
preferred spatial orientation throughout the evolution of the collapse. They give rise to a
net macroscopic stress tensor that counteracts the deformation tensor and hence slows the
spreading of the advancing particle front.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.404.
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