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ABSTRACT

K?Wvords: _ One of the long-standing conceptual problems in digital forensics is the dichotomy between the imperative
I[\)l‘g‘taltforem‘cs for verifiable and reproducible forensic computations, and the lack of adequate mechanisms to accomplish
ugge!

these goals. With over thirty years of professional practice, investigator notes are still the main source of
reproducibility information, and much of it is tied to the functions of specific, often proprietary, tools.

In this work, we discuss the design and implementation of a domain specific language (DSL) called nugget,
which aims to enable the practical formal specification of digital forensic computations in a tool-agnostic
fashion. The core idea of DSLs, such as SQL, is to create an intuitive means for domain experts to describe
what computation needs to be performed while abstracting away the technical means of its implementation.

In the context of digital forensics, nugget aims to address the following requirements: 1) provide in-
vestigators with the means to easily and completely specify the data flow of a forensic inquiry from data
source to final results; 2) allow the fully automatic (and optimized) execution of the forensic compu-
tation; 3) provide a complete, formal, and auditable log of the inquiry.
© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

Domain specific language

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The first steps towards the professionalization of digital forensic
investigations in the US date back to the mid-1980s, and stem from
the passage of the first legislative acts on computer crime
(Comprehensive Crime Control act of 1984; 18 US Code), and the
establishment of FBI's Magnetic Media Program (Garfinkel, 2010).
Importantly, the impetus to examine digital evidence came from
law enforcement concerns and was initiated by investigators with
technical knowledge, rather than software engineers, or computer
scientists.

Over time, with the enormous growth in data volume and
complexity, it became necessary to develop specialized tools to
support the process, including a number of commercial tools.
Although these are not inexpensive, their development has largely
followed an ad-hoc “feature accumulation and GUI beautification”
approach. Given the economic incentives, it is entirely under-
standable that each vendor is working to attract and lock in as
many customers as possible to their system. The problem is that
this requires near blind trust in the deployed systems, and offers no
ready means to perform third-party verification of the results; this
becomes increasingly unacceptable as the volume and importance
of the examined data continue to grow rapidly.
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The investigator is increasingly becoming a tool operator and is
ever more detached from the (implementation of the) methods
used to process the evidence. This is the inevitable result of the
build-up in complexity of the target system; however, the lack of
proper means to specify and verify the correct forensic system
behavior is a fundamental issue that will continue to grow until
addressed directly. The first step in this process is to disentangle
the specification of the investigative inquiry from its technical
implementation. The inquiry is inherently case-specific, and is the
responsibility of the forensic analyst; the implementation is the
responsibility of researchers and/or software developers, and
there are (almost always) multiple approaches to how it can be
carried out. By having a well-defined query interface in between, it
becomes possible to directly compare the results of multiple
implementations, and to establish the ground truth. For a quick
illustration, consider the following example:

Listing 1. Example Nugget query.

recentpdfs = "file:target.dd" | extract as
ntfs[63,512] | filter ctime > "01/01/2017"

known = recent_pdfs.content | shal |
join "file:known.shal"

1742-2876/© 2018 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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Even at first sight, most forensic professionals would readily
recognize the above query as an instance of known-file filtering; in
this case, it is applied to all paf files extracted from the target .dd
source, and created after Jan 1, 2017. The main points here are:

i. the domain expert did not need to learn a general purpose
programming language in order to understand the intent of
the query (and could quickly learn to write similar ones);

ii. this is a formal specification that can readily be translated
into executable code;

iii. the query only specifies what needs to be done, and not how
it should be performed; there are numerous possible
implementations, including ones that employ the resource of
a computer cluster, or a (private) cloud service;

iv. the query itself unambiguously documents the forensic
process and allows for automated testing, verification, and
reproduction of the results.

In other words, nugget seeks to do for forensic computing what SQL
did for relational databases: establish a standard query interface that is
complete and intuitive enough for domain experts to readily under-
stand, while also providing a formal specification of the computation
that needs to be carried out. SQL allowed for numerous competing
implementations to co-exist, which allowed for fast development,
optimized execution, and autonomous GUI development.

Concept Overview. Before we dive into specifics, it is important to
place this effort in a larger context and recognize that the nugget DSL
is one component of a larger research effort to address holistically a
set of issues related to reproducibility, performance, and scalability.
As shown in Fig. 1, the language is an interface between the UI layer
(textual, or graphical) and the runtime environment & resource
manager. The DSL presents a unified means to execute forensic
computations (using the available set of tools), organize them in
processing pipelines, and store/return the results as needed.

The language runtime maps the abstract representations of
an operation, such as the extraction of a list of processes, or the

hashing of a file, to an actual command to be invoked on the
selected target. This is driven by user specifications, and allows
the incremental extension of nugget with new capabilities; in fact,
the entire current language implementation is specification driven.
The resource manager is tasked with scheduling the computations
on the available resources, ensuring their successful execution,
logging all operations performed, combining the results (if
executed on a cluster) and returning the results of the computation.

This architecture disentangles the concerns of a) specifying the
computation, b) mapping it to the available tools, and c¢) scheduling it
on the available hardware resources. This layered approach is
conceptually different from the two options currently available to
analysts: 1) a bundled (black) box of tools with a point-and-click
interface (primarily, commercial vendors), or 2) a bag of tools and
components from which the analyst must craft (i.e., code) together the
desired solution (open source tools). None of these offer a solution that
adequately addresses user needs and cost concerns, and none support
standardized independent testing and provable reproducibility.

One of the principal problems in digital forensics is the lack of
clear means for users (forensic analysts and lab managers) to
communicate functional and performance requirements to vendors.
The main point of nugget is to solve this problem by allowing analysts
to directly specify queries they can reason about, and to demand
responsive solutions; it allows users to directly compare alternatives,
and creates a best-of-breed competition among vendors. Conversely,
a formal interface allows developers to have specific targets, and to
better understand the needs of their customers.

Contributions. The work presented here is based on the ideas
presented in (Roussev, 2015); our main contributions are:

i. We provide an actual language implementation based on an
external DSL, which allows for implementations in different
programming languages to be incorporated (the original position
paper mentions an internal one, which was never published);

ii. We provide an integration framework, based on containers,
which allows for a) existing specialized tools, such as command-
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Fig. 1. Layered forensic runtime architecture.
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line utilities, to be seamlessly integrated into the forensic
process; and b) the language to be dynamically extended by
providing descriptions of the available components.

Related work

IN THIs sEcTioN, we briefly describe the most closely related work
to our own. Specifically, we offer a brief characterization of different
models of forensic computations, as well as work on DSLs relevant
to our discussion.

Models of forensic computations

There is no shortage of efforts to formally describe the digital
forensics process. Some of the more influential ones have been
Carrier's hypothesis testing model (Carrier and Spafford, 2006),
Garfinkel's differental analysis (Garfinkel et al., 2012), and Glady-
shev's finite state machine (Gladyshev and Patel, 2004). These are all
conceptually valid, and bring interesting ideas from other domains
(of mathematics). However, they start at the lowest level of
abstraction to describe the computation and, ultimately, do not lead
to practical means of specifying the computation.

At the other end of the spectrum, Roussev has proposed
[Roussev, 2016, Ch. 3] that a cognitive task model developed to
describe the work of intelligence analysts (Pirolli and Card, 2005)
could be directly adopted to describe the cognitive tasks performed
by forensic analysts. Although there are clear benefits to consid-
ering the problem from a cognitive perspective (especially for the
purposes of usability), the resulting description is not formal and
does not address the concerns of integrity and reproducibility.

In between, we find a large number of procedural models that
deal with specific investigative scenarios, such disk acquisition,
Android forensics, social media analysis etc. These are, in effect,
efforts to establish best practice guides for practitioners (e.g.,
(Scientific Working Group)). They are more specific than the
cognitive approach, and are actionable, but fall well short of being
formal, generic, and reliably reproducible.

Our work aims at the midpoint between best practices and
purely mathematical models: we define a formal model that works
at the same level of abstraction as the analyst (like best practices),
but leads to an unambiguous computational description (Fig. 2).

Forensic DSLs

The idea of DSLs for the purposes of digital forensics has been
explored by several prior systems. Most explicitly, the DERRIC
project at the Netherlands Forensic Institute introduces a language
(Bos and Storm, 2011) to declaratively specify data structures,
allowing for data processing tools to execute upon multiple vari-
ants of data types. Similar ideas appear in the design of several

Cognitive

MOST
ABSTRACT

Best
practices

nugget DSL

tools, such as binary templates supported by 010 Editor (SweetScape
Software Inc) and vtypes in Volatility [Ligh et al., 2014, p. 51].
Volatility also defines a number of Python objects with common
functionality and provides a framework for extending the func-
tionality of the system. Although somewhat constrained, it can be
viewed as an internal DSL built for the purposes of memory
forensics.

The main difference between nuggetand prior efforts is that it
seeks to be general and extensible enough to extract and query all
common types of digital evidence and to describe the flow of their
processing from source to end result. We seek to address the entire
domain, not just parts of it. At this stage, nugget does not attempt to
abstract away the source data representation; our goal is to inte-
grate existing tools (which already understand the data) rather
than define abstract layer to aid the development of generic tools
(This would be a natural extension at a later point.)

Data query DSL: Apache Pig

In the original position paper (Roussev, 2015), Apache Pig was
cited as the immediate inspiration for the proposed design.
Without attempting to be exhaustive, we offer a brief description
by example.

Apache Pig is a dataflow language designed to describe the in-
cremental steps in the processing of large datasets. Its primary
users are data researchers and programmers, so it is designed to
support interactive exploration. The actual computation is trans-
lated into (Java) MapReduce jobs that execute on a Hadoop (Apache
Hadoop) cluster. The inspiration for Pig comes from Sawzall-a
similar language (Pike et al., 2015) developed at Google to serve as
an abstraction layer over the company's MapReduce infrastructure.

The basic abstractions in Pig are fields, tuples, bags, and relations:

a field is a piece of data.

a tuple is an ordered set of fields;
a bag is a collection of tuples;

a relation is a bag;

Each Pig statement specifies a relation transformation based on

a previous relation and stores the result in a new variable. For
example, the following code (Roussev, 2015) loads data in three-
column format, groups it by the first one, and outputs a histogram:

A = LOAD ’data’ USING PigStorage()

AS (f1:int, f2:int, f3:int);

B = GROUP A BY f1;

C = FOREACH B GENERATE COUNT ($0);

DUMP C;
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Fig. 2. Nugget vs. Other models of forensic computation.
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Although both Pig and SQL are both data query languages, there
is a notable difference between them. Unlike SQL, the Pig query is
constructed step by step. This approach is a reflection of the fact
that the language is designed to facilitate the ad-hoc exploration of
semi-structured data sources—a scenario quite similar to a lot of
digital forensic analyses. It is also worth noting that the main
abstraction is the collection, which can be manipulated as a first-
class object.

The case for digital forensic DSL

As per Fowler (2010), a domain-specific language is a computer
programming language of limited expressiveness focused on a
particular domain. The following are the critical components of this
definition:

i. Formality. A DSL is a formal language, with established
grammar and semantics, that is translated into executable
code.

ii. Fluency. A good DSL allows its users—practitioners within the
domain—to express the computation in a manner that is
“fluent”; i.e., it feels natural and appropriate to a human
expert.

iii. Limited expressiveness. A DSL is not designed to replace a
general-purpose programming language; its purpose is to
simplify development with respect to its domain.

iv. Ease of use. A DSL is focused entirely on its target domain and
makes specifying computations in the domain substantially
easier than a corresponding solution in a general-purpose
language. That is, the DSL trades generality for simplicity,
which makes it valuable to the user.

In sum, a DSL gives domain experts the constructs necessary to
describe a problem, or solution, succinctly and efficiently, and ab-
stracts away all (or most) references to the actual implementation.
End-users can accomplish significant, complex tasks with a small
number of keywords and phrases. This common vocabulary makes
the language feel more natural to end-users, resulting in a lower
learning curve (Ghosh, 2010).

Examples of popular and robust DSLs are plentiful: SQL is the
lingua franca of the database world (even after a decade of the
“noSQL” movement); the runaway success of the web is, in part, due
to HTML and CSS — two DSLs whose users do not even perceive
writing in those languages as coding. Unix/Linux shell scripts have
been a mainstay of system and network administration, and have
been in widespread use by forensic analysts since the very beginning.

Over the last two decades, we have seen an accelerated trend
towards the development of programming languages, and domain-
specific ones, in particular. This is, in part, driven by the needs for
much higher levels of automation in large-scale (cloud) environments,
as well as the necessity to increase the level of reliability by means of
formalizing the state and state transitions of complex systems. For
example, in the area of automated configuration management, we
have seen the rapid adoption of Puppet, Ansible, Chef, and Salt, along
with container/VM configuration languages by Docker and Vagrant.

Why develop a forensic DSL now?

Viewed in a narrow light, development of a DSL is a costly
endeavor. It requires significant knowledge of both programming
techniques and of the particular domain in question. Further, when
a DSL reaches a large user base, there should be an expectation
for upkeep costs as bugs are fixed, training materials are produced,
and new features are introduced (Mernik et al., 2005). Finally,
performance could be a concern as it is another layer of computing.

In this section, we briefly justify the need for a comprehensive DSL
for digital forensics.

Bridge the semantic gap. Generally, a well-designed and effi-
ciently implemented DSL can dramatically expand the number of
users that can autonomously solve problems within their domain
of expertise, especially problems which previously presented sig-
nificant technical hurdles. This major usability gain comes from
the fact that DSLs are concise (Ghosh, 2010), which reduces the
semantic distance between the program and the problem. In other
words, the language allows users to employ abstractions using
natural terms and phrases.

The reduction of the semantic gap is a pressing concern in
digital forensics as investigators work with ever more complex
targets and cannot be expected to understand in depth the technical
implementation of the tools utilized. They still need to understand
the methods conceptually, and be familiar with the reliability and
error characteristics of the methodology, but it is highly unrealistic
to expect the average forensic analyst to be an expert researcher
and code developer.

Improve reliability and reproducibility. As already discussed, two
broad categories of (digital) forensic tools have evolved — (mostly
proprietary) integrated forensic environments that provide a point-
and-click interface, and a large collection of (mostly open source)
specialized tools that address specific problems. Each category
presents different problems: integrated tools provide few, if any,
means to log and verify individual steps in complex scenarios,
which makes it impractical to test and validate them; specialized
tools provide better visibility but require custom integration, which
is both costly from an operational perspective, and leads to the
development of bespoke environments that are difficult to test in a
standardized, automated manner.

A widely supported DSL would allow for a unified means to
specify, log, and systematically test both individual forensic func-
tions and integrated implementations. It also helps address the
traditional tension between proprietary implementations and the
need for testing and the need to independently establish the val-
idity of tools via third-party testing. In this scenario, a vendor needs
only to support a standard means of specifying the query, a (simple)
standard format of returning the results, and a standardized log
format. A community standards body, such as NIST, could perform
independent testing which would go a long way towards allevi-
ating reliability and reproducibility concerns.

Facilitate tool integration. As conceived, the specific proposed
DSL solution — nugget— and its specification-driven implementa-
tion, provides an additional benefit in that it allows the integration
of a group of tools to accomplish the necessary task. Clearly, this
would greatly benefit the open source toolset, and would combine
the advantages of open code with those of an integrated environ-
ment. However, it also allows the incorporation of proprietary tools
in the forensic environment; experience from other domains where
open source tools are a major presence shows that we still need
vendors to develop more advanced/specialized components.

Integrate big data analytics & Al Looking slightly ahead, we can
expect a growing fraction of the evidence to be sourced from online
services rather than physical devices [Roussev, 2016, Ch. 6]. This
shift will all but eliminate many of the issues related to acquisition
from physical devices, and will bring to the fore the critical need to
employ big data techniques and resources to analyze the huge
volume of data. As pointed out in (Roussev et al., 2016), most
current tools’ implementation is tied to the filesystem API; a DSL
will provide a seamless transition by allowing the tool imple-
mentation to be replaced without modifying the forensic queries.

Volume growth will also necessitate the utilization of machine
learning/Al methods to raise the level of abstraction of the analysis.
For example, we can expect the use of computer vision systems to
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index and analyze the content of photo and video artifacts. A DSL
can seamlessly integrate such advances by incrementally expand-
ing the language.

Streamline education and training. Just like SQL allows the
(relational) database-related education and training courses to
provide meaningful skills without understanding the database
engine implementation, we expect a language like nugget to pro-
vide the medium for training competent investigators without
overwhelming them technical details. Over time, we would expect
that basic investigative functions that are entirely sufficient for
educational purposes to be available in an open source format,
whereas a more advanced processing would likely require more
specialized training.

Utilize mature DSL development tools. There has never been a
better time to develop a new DSL; after four decades of evolution,
language development tools are mature and reliable, and modern
IDEs provide real-time help and feedback to users (based on the
formal language specification). The latter considerably reduces the
length and steepness of the learning curve.

Nugget DSL

In this section, we describe the design and development of
nugget. To facilitate the introduction of the language, we preface it
by providing a brief introduction to DSL construction.

Internal vs external DSL

Domain specific languages can be classified as internal or
external. Internal languages are an extension of their host language
— that is, they add constructs to an existing general-purpose lan-
guage and are supported by the host language toolset. In particular,
all input is parsed with the host language's constructs and results in
the generation of code in the host languages. One popular example
of an internal language is Rails, a web development DSL whose host
language is Ruby.

Internal language advantages include the ability for end-users to
call upon the full power of the host language. Modern languages,
such as Scala (Odersky et al., 2016) have advanced built-in support
for developing internal DSL. The major disadvantages are that a)
valid syntax for the DLS must conform to the syntax and semantics
of its host language, and b) integration with tools written in other
languages is not readily available.

External languages are completely independent insofar as
lexical analysis, parsing, compilation, and code generation are
concerned. The advantage here is that developers are free to create
(and extend) their own syntax and semantics; however, the
disadvantage is the loss of direct access (from the DSL) to the host
language's features.

Overall, internal DSLs, which are faster to develop, are appro-
priate where the scope is expected to be limited, and tight inte-
gration with the host language is a requirement. External DSLs are
needed whenever a more general solution is sought, and one that is
implementation language independent.

One illustration of the tradeoff is the development of Puppet,
which originally had a Ruby DSL, which was later abandoned in
favor of an external solution (Puppet Labs, 2015). Our work also
started as an internal DSL; however, we quickly reached its limi-
tations and switched to an external DSL that can be dynamically
extended.

Nugget concepts

The basic data unit of nugget are collections of objects in the
style of JSON; each object consists of a series of key-value pairs.

Values are of several familiar primitive types, such as 8/16/32/64-
bit integers, strings, and dates, as well as several specialized data
types, such as binary/hexadecimal/base64 strings and standard
kilo/mega/giga/ ... notation for data units.

With the exception of output statements, each line in the code is
a variable assignment. The right-hand side starts with a data
source, which is either a named external source (such as a disk
image) or a variable name (a reference to an existing collection).
The pipe symbol, “|”, serves to concisely connect the multiple
operations in a single flow statement.

There are four types of operators that are used to describe the
computation: extractors, filters, transformers, and serializers. We use
the example code in Listing 2 to concisely explain their intended
use.

Listing 2. NTFS file extraction, filtering (by size), and hashing.

1 files = file:target.raw |

extract as ntfs[63,512]
big_files = files | filter size > 1M
hashes = big_files.content | sha1, md5
big_files = big_files |

drop ctime | add hashes
print big_files

NOoO o~ WON

The main function of extractors is to shield the rest of the system
from the particulars of the data format and method of ingesting the
source. Extractors are operations that take as input a data source,
such as disk/RAM image, and produce as output collections of
data items, such as files, processes, packets, etc. In other words,
extractors parse raw data input and produce entities with known
(to the system) logical structure. In this terminology, data carvers
are considered extractors, and so are operations that obtain the
data via an API to a live system (such as a running kernel, or a cloud
service). Reading from a supported forensic container also falls
under the category of extraction.

In our example, we use an NTFS extractor (from the Sleuthkit),
which parses a raw disk partition and extracts the filesystem
metadata. In the specific case, we supply two additional parame-
ters, 63 and 512, which provide the starting block and block size,
respectively. Implicitly, each object is created with a set of known
attributes, such as name, size, and ctime (creation time). One special
attribute, content, references the data content of the file. To avoid
unnecessary I/O operations the content is retrieved only when
explicitly required.

Filters are data reduction/expansion operations that manipulate
the result set by means of removing (filtering out) objects, and
adding/dropping of object attributes. Line 3 of the example query
filters out all files 1 MB in size and smaller (the condition specifies
which objects should be kept in the result; the keyword “filter” is
optional). Line 6 instructs the runtime to remove the ctime attribute
(mostly for illustrative purposes) and to add two more attributes,
shal and md5 containing the eponymous hashes of the content.

Transformers are functions that produce output, such as a hash
value, for each object in the input collection. On line 4, two values (a
tuple) is produced based on the content of each file in the input set.

Serializers are functions that produce an external representation
for a collection; for example, print yields a textual representation
suitable for shell environments. Different versions of save can
produce json/xml output suitable for storage. Subsequent work will
integrate specialized evidence containers like AFF (Garfinkel et al.,
2006; Cohen et al., 2009).

Nugget delays execution until resolution of variables is required,
exhibiting lazy evaluation. This allows our analysts to lay out their
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logical sequence of steps without concern for the optimality of
execution time. Later iterations of the implementation will feature
query optimizations, much like those supported by SQL engines.

Nugget's grammar

The standard means of describing the grammar of formal lan-
guages is the Extended Backus-Naur Form (EBNF) (Wirth, 1977;
Scowen, 1998). The essential concepts are those of terminal sym-
bols, such as the literal numerals “1”, “2”, and “3”, and a non-ter-
minal production rules, or sequences. Production rules, often nested
or chained together, govern the valid sequences of terminal sym-
bols, and thus the legal syntax of a language. For instance, the
following definition describes the syntax for a simple calculator
capable of addition and subtraction.

Operation: Number (Symbol Number)+;
Symbol: "+ | "o

3

Number: CO’..’9)+ (C.” CO’..’9°)+)7?;

Nugget employs a context free grammar described with ANTLR's
version of the EBNF notation. Each of the statements in our sample
code are assignment statements, which in EBNF looks as follows:

assign: (ID ’=’ STRING (’|’ nugget_action)* |
ID ’=" ID (’|’ nugget_action)* );

ID : [azAZ]+;

nugget_action :
“filter’ filter_term (’°,’
‘extract’ asType |
‘sort’ byField |
‘sha1’ |

filter_term)*;

The assign rule states that an assignment can occur to an ID from
either a literal string (used for references to local files) or another
ID, followed by an action. In practical terms, IDs are limited to valid
variable names. Nugget_action is an optional and repeatable
construct following a required |.

Similarly, the nugget_action rule defines the syntax for a variety
of actions (where an action can be a transformer, filter, or an
extractor). In conjunction, these quickly allow for complex queries
to be described (see Fig. 3).

It is impractical to attempt to exhaustively explain every nugget
clause; however, it is important to note that we define valid actions
within the grammar itself. That is, if we attempt to provide input to
nugget with an undefined action, there will be a syntax error at the
parser level. This is a stricter scheme that allows early error detec-
tion; the alternative is to allow any valid string, and leave all syntax
checking handling to the consuming application.

This design decision was made deliberately — embedding valid
actions within the grammar itself makes extending the language
more complicated, which runs contrary to one the design goals of
nugget. However, the benefit of this approach — error handling at
the parsing level, and syntax checking prior to compile time — are
more important from a usability perspective. Further, syntax

checking can be extended to support code completion — a critical
feature which has become common in development environments.

To retain relative ease of extensibility, we provide users with an
automated build tool that allows them to rebuild the language
based on simple function specifications, as illustrated later in our
discussion.

Generating language constructs with ANTLR

Nugget relies on ANTLR for lexical analysis, parsing, and building
an abstract syntax tree (AST), which is “walked” to execute indi-
cated operations. ANTLR (ANother Tool for Language Recognition)
(Parr, 2013) is an open source parser-generator. It is capable of
taking an input grammar and producing the appropriate lexical and
parser functions necessary to consume legal inputs. ANTLRv4 is
capable of generating these functions in a variety of output lan-
guages: C++, C#, Go, Java, Python, JavaScript, and Swift.

The AST. Like other programming models, the end result of the
lexing operation is an abstract syntax tree (AST). ASTs are a useful
structure which allow compilers to walk across the tree. As the tree
is walked (from left to right), it recursively descends into children
nodes, executing corresponding functions within the application
source code. For example, the AST representing our sample nugget
code listed in Listing 1 is shown in Fig. 4.

Nugget runtime

Recall that one of the primary design goals of nugget is to pro-
vide a common interface for interaction with a variety of forensic
tools. The runtime integration of forensic tools is based on our prior
work in (Stelly and Roussev, 2017), which employs a combination of
remote procedure calls (RPC) and Linux containers via Docker.

Containers and Docker. Containers provide encapsulation of a
process’ runtime by providing access to the set of resources—CPU
cores, RAM allocation, file systems, and networking—needed to
perform a computational task. All containers share a common OS
kernel but, by default, are isolated from each other; it is also
possible to setup sharing of resources where needed, e.g., software
installations. Generally, containers have a much smaller resource
footprint than full-stack VMs, and the overhead to startup/shut-
down a container is comparable to that of a regular process.

For our proof-of-concept integration, we have built three
separate tool-specific containers: a Sleuth Kit container for hard
disk forensics, a tshark container for network forensics, and a
Volatility container for memory forensics. We should emphasize
that it is very easy to both containerize existing tools and to inte-
grate them into nugget. Thus, the specific containers we use here
can be replaced by similar tools; alternatively, multiple versions of
the computation could be run in parallel (e.g., a Volatility container
and a Rekall container) to increase confidence in the results.

Utilizing containerized tools with RPC. Nugget interacts with these
service containers via remote procedure calls (RPC). Upon receipt of
an RPC connection, a container executes its particular set of forensic
tools on the given data input. In the current implementation, this
means that nugget uploads the data to a Docker container via an RPC
function; the container caches the data locally, and subsequent RPC
calls issued by nugget operate on the cache.

Fig. 3. A railroad diagram of assignment clauses.
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Fig. 4. Sample AST generated by nugget.

A sample protocol diagram is shown in Fig. 5, and represents
initial forensic steps when investigating an NTFS image — namely,
retrieving a listing of all files using TSK's fIs tool. Nugget parses the
response, storing resulting data structures in memory.

Utilization of container-based RPC has at least two significant
advantages. First, it is readily extensible: new commands can be
integrated into containers by defining a function that conforms to a
single standard, and adding a reference to it in Nugget's source code.
Second, it allows for scaling of the forensic operation. As shown in
(Stelly and Roussev, 2017), networked containers can be configured
to distribute expensive forensic tasks, yielding a near-linear increase
in throughput-per-container for many typical forensic tasks.

Dynamically extending nugget

Nugget provides a mechanism that allows for it to be extended
itself, providing a way for developers to easily add extractors, filters,
transformers, and serializers into the base language.

The process for extending nugget with new functionality is: 1)
identify the type(s) of data which the function will consume and
produce, 2) incorporate the new functionality into a container
(using a provided template), and 3) run a provided build tool build-
nugget. build-nugget generates and inserts into the defined nugget
grammar appropriate terminal nodes corresponding to the inten-
ded functionality. Further, it generates template code for accessing
the Docker container via RPC, allowing even novice developers to
extend functionality.

The build tool, executed at the user's discretion, will look in a
subdirectory and parse all json files — one for each transform. A

Nugget

sample is given in 3, which illustrates how shal is added to the
grammar.

Listing 3. Extending Nugget-shal.json.

{"name": "sha1",
"consumes": ["bytes"],
"produces": "strings",
"RPCPort": 2000}

Test case: M57

To test the viability of nugget, we have used it to perform a token
digital investigation using the realistic M57 patents scenario
dataset (Woods et al.,, 2011). What follows are walkthroughs of
three common scenarios: 1) analysis of a hard disk, 2) analysis of a
network capture, and 3) analysis of a memory capture. In our
prototype implementation, we have incorporated three common
tools: The Sleuth Kit, Volatility, and tshark.

As per the original description (Garfinkel): “The 2009-M57-
Patents scenario tracks the first four weeks of corporate history of
the M57 Patents company. The company started operation on
Friday, November 13th, 2009, and ceased operation on Saturday,
December 12, 2009.”

The data includes daily snapshots of the hard disks and memory
of four Windows computers, a (nearly) complete network capture,
and images of USB devices.

TSK Container

ESTABLISHED
connection Icsgr::rrl;\e%lt-ilgvHED
Fo .
Upload [— 7SI Targe;
\, STORE
ACK store locally
Receive Ack /
Issue GetFilesC DMm
and Meta
data
\ Execute
FLS command
Parse Response /

Fig. 5. Sample protocol for retrieving file metadata.
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Storage analysis: Integrating TSK

Analysis of hard drive partitions is performed via integration
with TSK (Carrier). To understand this process, consider the sample
nugget code in Listing 4. The goal is to read a local file (disk image),
extract it as an NTFS image, filter files, perform some hashing, and
compare it to a list of known (bad) hashes.

Our first line of code establishes a new variable files, which refer-
ences a local file named jo-1124 . raw. We then must instruct nugget
how to consume this file — that is, we explicitly state that this is an
NTEFS partition starting at byte offset 63 with a sector size of 512 bytes.
The results of this extraction is the metadata for all files within the
partition, and is obtained with tools from TSK - specifically, the RPC
command instructs the container to run fls on the uploaded image file
and return the resulting bodyfile, which nugget then parses.

As previously discussed, this will occur via an RPC to a TSK
container (Fig. 5). In this case, the RPC is configured when nugget
parses the syntax "extract as ntype”, where ntype can be one of a
variety of supported types. Further parameters for the RPC are
established using other elements of the AST - namely, the byte
offset and sector size parameters.

The next line of code requires no external tool call, but rather
establishes a local set of filters which will be applied to any pre-
ceding actions (recall that nugget utilizes lazy evaluation). In this
case, our filter will iterate through the results of the files variable
and yield those files whose name ends with the jpg extension.

Next, the jpghashes variable will iterate through the results of
the jpgs variable, and establish the configuration of an RPC call to a
SHA1 container due to the shal statement.

This is a good opportunity to show how the shal statement is
integrated into the language using the provided build tool, build-
nugget. Specifically, when build-nugget runs, it first reads a
shal.json specification file and inserts the specified keyword
shal into the ANTLR grammar. Next, it generates a shal.go file
containing a shal action type, which conforms to an interface
definition; that is, several specific functions are exposed.

All transforms within nugget are coded to an interface. Pro-
gramming to an interface allows nugget code to call generic base
functions. For example, one of the exposed functions is GetResults
which executes an RPC against the designated Docker container.
Because all transformers must expose a GetResults method, nugget
can reliably call it on any transform — md>5, shal, TSKGetFile, etc.
Notably, this is all generated for the user based on a few simple
lines of JSON. The only task remaining (to the user) is to build a
function-specific container which has a forensic tool installed. Once
the container is built, the user runs generated code to expose an
RPC method, specifying only how to run the forensic tool on the
data provided via RPC.

The penultimate line of code establishes a join operation,
whereby a newline delimited file is compared to the results of the
jpghashes variable. Our final line presents results to the user with a
print operation 5. It relies upon the results of matched, which in
turn relies upon the results of jpghashes, etc., causing all de-
pendencies to resolve.

Listing 4. Join operation to find known files.

files = "file:jo-1124.raw" |

extract as ntfs [63,512]
jpgs = files | filter name=="+JPG"
Jjpghashes = jpgs.content | sha1
matched = jpghashes | join file:kitty.sha“
print matched

O WON -

Listing 5. Nugget NTFS Analysis Results.

..J/Jol.../hr—_patent19.JPG 3a42793...
.../Jo/.../hr—_patent20.JPG 34ad6bs8...
.../Jo/.../hr—_patent21.JPG 17329c9...
..J[Jol.../hr—_patent22.JPG 426fe7d...

.. [80 further results omitted] ...

Network analysis: Integrating tshark

Another critical component of forensic work is investigating
network traffic sent and received by a suspect network. Here,
network analysis is accomplished with the use of tshark. We will
look at an example searching for suspicious HTTP GET request,
referencing the nugget code in listing 6.

The ANLTR-generated parser builds an AST for the input,
allowing nugget to walk the tree's nodes and execute corresponding
functions along the way. For example, the ‘filter’ phrase in lines 2—3
cause a function named ‘EnterFilter’ to be called when it is
encountered during the walk. Within the function, there are
exposed methods to access terminal nodes, such as the string ‘tcp
and dst port 80 and http’, allowing nugget to parse the input and
setup an internal representation of the indicated filter. In this case,
the filter is using the Berkeley Packet Filter syntax. It is applied to its
preceding operation (an extraction) when the results of the pre-
ceding operation are required. The result will be a collection of all
packets which match the filter, and stored in the variable http.

Functions exist for every type of node possible in the AST. Lines 4
and 7 are represented in the grammar as a SingletonOperation as it is
the name of the EBNF production which matches the input. As such,
the resulting function call is EnterSingletonOperation, with access
methods for the term ‘http’ and ‘gets’. Within this function, nugget
first obtains the evaluation of the indicated variable and prints
results using the type's specific print routine.

Listing 6. Nugget and HTTP.

packets = "file:nov-19.pcap" | extract as pcap
http = packets | filter
packetfilter=="tcp and dst port 80 and http"
print htip
gets = http | filter
packetfilter=="http.request.method=="GET"™"
print gets

NOoO b WN-

Listing 7. GET Requests.

patft.uspto.gov /netacgi/...time+machine
patft.uspto.gov /netacgi/...immortality
www.google.com /search?qg=steganography...
... [6560 further results omitted] ...

Memory analysis: Integrating volatility

In our prototype implementation, memory analysis is per-
formed by Volatility (Ligh et al., 2014). To examine this more closely,
we will obtain the list of running processes by issuing a pslist
command - a common initial step when inspecting memory.

In the first line of listing 8, we establish an extraction operation
on a memory dump. When the AST walk encounters such a node,
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an internal representation of the extraction is configured and
cached until its evaluation is necessary.

On line 3 of the input, we indicate that the results of the
extraction (memory) should be given to a pslist operation. Inter-
nally, this consists of creating an object to store information about
the operation. In this case, it needs to track that its input will be the
memory variable. As this object represents a transform and is
implemented as an interface, the object exposes a GetResults
function. This function is of particular importance to the lazy
evaluation process as subsequent evaluations will rely on calling it.

When the final line of code is executed, the variable procs is
retrieved. Because the variable has yet to be evaluated (an attribute
tracked on every transform and extraction), procs’ GetResults
function is evaluated. In turn, the variable memory is evaluated, and
the GetResults process repeats.

Memory's GetResults function, having previously been config-
ured as an extraction operation for memory, is finally executed. In
the case of memory extractions, this involves uploading the spec-
ified file to a Docker container with Volatility installed via RPC. This
function returns a simple acknowledgment to its caller - in this
case, from the evaluation of procs. As a pslist operation, it is
configured to make an RPC to the same container. Specifically, the
executed command runs a Volatility operation to return the list of
running processes. This list of processes is then consumed by
nugget into an internal representation, allowing for the print
command to access the subfields name and pid.

Listing 8. Nugget Memory Analysis.

1 memory = "file:pat-1203.ram" |
2 extract as memory

3 procs = memory | pslist

4 print procs.name procs.pid

Listing 9. Nugget Memory Analysis Results.
System 4
smss.exe 828
csrss.exe 924
winlogon.exe 948
services.exe 992
Isass.exe 1004
svchost.exe 1168
ToolKeylogger.exe 2360
... [24 further results omitted] ...

Conclusion

In this work, we presented the concept and initial prototype
implementation of the first domain-specific language (DSL), called
nugget, aimed at providing a practical and formal description of
digital forensic investigations as a computation. Nugget uses ideas
from data flow and functional languages to provide high-level
domain abstractions that allow forensic analysts to fluently and
succinctly express the forensic process in a step-by-step fashion.

Nugget provides a declarative, tool-independent means of
specifying the necessary processing steps of a forensic case from
source evidence to final results. This allows for multiple competing
implementations to be employed and compared. Our prototype
implementation integrates the language with Docker's cluster
runtime to enable parallel execution.

Importantly, nugget is designed as an extensible platform for
tool integration; new functions can be added seamlessly, and the
language can continue to grow to match the needs of analysts.

The widespread adoption of nugget would provide a multitude
of benefits long sought in the forensics community. Specifically, it
would: a) greatly facilitate tool testing and validation; b) enable
seamless cross-tool integration (among tools supporting it); c)
provide a common language for educational and training purposes;
and d) open up the field to the use of big data and Al methods, and
high-performance (cloud) services.

Future work. Nugget is still early in its development and there is a
long list of needed improvements on our agenda. The short list
includes IDE support (syntax highlighting and code completion),
integration of more functions out of the box, query optimizations,
and enhancements to the cluster execution runtime.
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