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ABSTRACT

Millimeter-Wave (mmWave) communication is susceptible to block-
ages, which can significantly reduce the signal strength at the
receiver. Mitigating the negative impacts of blockages is a key
requirement to ensure reliable and high throughput mmWave com-
munication links. Previous research on blockage mitigation has
introduced several model and protocol based blockage mitigation
solutions that focus on one technique at a time, such as handoff to
a different base station or beam adaptation to the same base station.
In this paper, we address the overarching problem: what blockage
mitigation method should be employed? and what is the optimal sub-
selection within that method? To address the problem, we developed
a Gated Recurrent Unit (GRU) model that is trained using peri-
odically exchanged messages in mmWave systems. We gathered
extensive amount of simulation data from a commercially available
mmWave simulator, show that the proposed method does not in-
cur any additional communication overhead, and that it achieves
outstanding results in selecting the optimal blockage mitigation
method with an accuracy higher than 93%. We also show that the
proposed method significantly increases the amount of transferred
data compared to several other blockage mitigation policies.
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1 INTRODUCTION

MmWave communication is a major component of several existing
wireless standards such as 5G (cellular) and 802.11 ad/ay (WiFi).
It is a key technology to provide very high data rates in a variety
of applications such as Industrial Internet of Things (IIoT) [1-4].
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However, mmWave systems are susceptible to high path loss, high
noise power, and blockages. To address high path loss and noise
power challenges, mmWave systems employ beamforming tech-
niques to form narrow directional beams (Fig. 1(a)) at the transmit-
ter (Tx) and/or the receiver (Rx). This significantly increases the
signal strength at the receiver but introduces additional challenges
such as beam selection. Existing mmWave standards utilize a beam
search process that occurs periodically at the beginning of each
communication interval (e.g., every 100 msec in mmWave WiFi) to
handle beam selection/search.

The other challenge associated with mmWave communication
is susceptibility to blockages, e.g., human body alone can block the
signal and significantly reduce its strength at the receiver [5-7].
Existing mmWave standards respond to blockages in a reactive
manner, and it can take them several communication intervals
until the selected beams are switched or the client is handed off to
another base station (BS). However, this can significantly reduce
the throughput. To address the issue, the research community has
introduced several methods in isolation to better handle blockages,
e.g., use model-driven methods to pro-actively switch the beams to
the same BS before blockages happen [8] or widen the beams so
that the signal passes through the blocker [9].

Our goal in this paper is to address the overarching problem: from
the plurality of blockage mitigation techniques, which one should be
employed? Specifically, we focus on three techniques: beam switch-
ing on the same BS, handoff, and beam widening. We also address
the associated sub-problem within each technique, e.g., what new
beam should be selected, which BS should the client handoff to, and
how much to widen the beam. To address the problem, we develop a
framework that proactively takes the appropriate action in order to
minimize the impact of blockages. At its core, our framework uses
Gated Recurrent Units (GRUs), a newer generation of Recurrent
Neural Networks (RNNs) suitable for learning sequential data, and
relies on periodic existing message passing in mmWave standards
to decide on the appropriate action. Our key contributions can be
summarized as follows:

¢ Data Gathering: We utilized Wireless InSite (WI) simulator
to conduct numerous experiments and model different types
of blockages in an IIoT setting. We have publicly released all
of our data and software code [10] so that other researchers
in the community can build on our work.

¢ Blockage Mitigation Framework: We develop a GRU-
based framework to mitigate blockages. We show that GRUs
have a significantly higher accuracy in selecting the optimal
action when compared to Categorical Naive Bayes and Sup-
port Vector Machines. We also show that the solution only
needs a few time series samples, which slightly increases
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Figure 1: (a): There are several beams to choose from at the BS. Beam selection typically happens through a search process at the
beginning of every communication interval; (b): BS has identified a proper beam for communication with the client. Here the
two red paths capture the multi-path nature of the communication channel; (c): In beam switching, BS switches to a different
beam when blockage happens; (d): In handoff, the network may change the BS serving the client; (¢): In beam widening, BS

widens its beam. Energy reaches the client through other paths.

its accuracy when compared to Long Short Term Memory
(LSTM) RNNSs in addition to using less memory and being
faster.

o Policies: We model alternative forms of blockage mitigation
techniques as policies, formally prove our framework pro-
vides higher throughput than them, and show through sim-
ulations that it substantially increases the average amount
of transferred data across all types of blockages.

The rest of this paper is organized as follows. We discuss the
related work in Section 2. Section 3 describes the system model and
our GRU-based blockage mitigation method. We present the policy-
based definition of our approach along with alternative policies
in Section 4. Section 5 presents our data gathering process and
performance evaluation results. Finally, we conclude the paper in
Section 6.

2 RELATED WORK

There is a rich body of work to model and mitigate blockages in
mmWave systems. Here, we discuss three of the most prominent
techniques to mitigate blockages.

Beam Switching. Beam switching/adaptation is one of the key
techniques to mitigate blockages [11]. It refers to switching the
beam to another direction that is not blocked (Fig. 1(c)). This tech-
nique has been studied in several prior works optimized through:
(i) leveraging an out-of-band radio [12], (ii) sensing the reflective
environment [13], (iii) using model-driven methods [8], and (iv)
employing deep learning based on a given client’s location and
environment [14, 15]. Beam switching can be a reliable blockage
mitigation technique in some scenarios and environments. On the
other hand, it may fail when the blocker is large (e.g., a truck) or
when there are few reflectors in the environment.

Handoff. Handoff (BS adaptation, Fig. 1(d)) is another widely
used technique to mitigate blockages. It involves handing off the
client to another BS when blockage is detected. Several research

works (e.g., [16-21]) have optimized the handoff decision making
process by using Reconfigurable Intelligent Surfaces (RIS) or em-
ploying deep learning models based on channel state information,
the client location, and other network parameters. Handoff is an ef-
ficient blockage mitigation technique in many scenarios. However,
there are many instances in which handoff may fail. For example,
when the time to complete handoff is more than the duration of the
blockage event, then handoff would be unnecessary. The problem
can worsen in higher mobility environments, where the handoff
frequency may become too high.

Beam Widening. Beam widening refers to increasing the half-
power beamwidth of the currently selected beam (Fig. 1(e)). Several
works have shown the benefits of beam widening to mitigate block-
ages [9]. However, beam widening reduces the beamforming gain.
Further, beam widening may still fail when blocker is large or close
to the client or BS.

While previous works have attempted to tackle blockages, they
have generally optimized only one technique at a time. Although
a technique may work well in certain scenarios, it may fall short
in others, suggesting the need to address the problem holistically.
Our goal in this paper is to integrate the above techniques into one
system. The resulting framework handles various scenarios and
blockage types effectively, providing a more robust approach to
mitigating blockages.

3 GRUS FOR MMWAVE BLOCKAGE
MITIGATION

In this section, we present our GRU-based blockage mitigation
framework. We first briefly discuss GRUs and their distinction from
LSTM RNNs. Then, we introduce our system model and how we
use GRU models to tackle blockages.
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3.1 Gated Recurrent Units (GRUs)

GRU [22] is a type of RNN architecture that is commonly used for
modeling sequential data. It was introduced as an alternative to the
more popular LSTM architecture.

Like LSTM, GRU is designed to address the vanishing gradient
problem that can occur in traditional RNNs. The vanishing gradient
problem refers to the issue where gradients can become extremely
small as they propagate through the network, which can make it
difficult for the machine learning (ML) model to learn long-term
dependencies.

GRU accomplishes this by using gating mechanisms to selectively
update and reset the hidden state of the network. Specifically, GRU
has two gates: a reset gate and an update gate. The reset gate helps
the network decide how much of the past information should be
forgotten, while the update gate helps the network decide how
much of the current information should be used to update the
hidden state.

One of the advantages of GRU over LSTM is that it has fewer
parameters, which makes it faster to train and more efficient to
store. Additionally, GRU has been shown to perform comparably to
LSTM on a wide range of tasks, including language modeling and
speech recognition.

3.2 System Model

We consider an IIoT setup [1, 2] with fixed BSs and clients, and
mobile blockers. Each BS uses a phased array antenna of size M
and has access to a set of B directional beams to cover a horizontal
range of x degrees. Client devices are much simpler IoT devices
and each client device uses a single omni (or quasi-omni) beam
for both transmission and reception. The BSs and clients operate
at a mmWave band and blockage mitigation is done on the BS or
network side.

Our work builds on prior work [23], which leverages an innova-
tive deep learning technique to proactively determine if a blockage
is likely to occur in the future time interval. Their proposed solution
shows high accuracy in the near future time interval and only relies
on undergoing communication between the BS and client without
incurring additional communication overhead. This is achieved by
leveraging a sequence of in-band wireless data measurements and
jointly employing recurrent and convolutional neural networks.
The work in [23] makes the assumption that the current connection
is line-of-sight (LoS), which can be accurately predicted in mmWave
systems. For example, the work in [24] can accurately classify LoS
and nLoS channel conditions at the beginning of each communica-
tion interval by only using information from the messages that are
exchanged between BS and client during the beam search interval
(thus incurring no additional overhead).

The proposed framework in this paper builds upon [23] by using
their model to predict if a blockage is going to happen, and then
decides on the best course of action to eliminate the negative impact
of the oncoming blockage.

3.3 Blockage Mitigation Framework

Our objective is to mitigate blockages by proactively minimizing
their impact, which can lead to increased throughput and reduced
latency of communication. Blockages can exhibit similar shapes,
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velocities, and patterns of trajectories. To address this issue, we
propose a model that learns similar features from a sequence of
reported signal-to-noise ratio (SNR) values to determine the best
action to take. The action space consists of three main actions: beam
switching, beam widening, and handoff. Each main action includes
multiple sub-actions (e.g., beam switching includes the selection
of new beam from all available beams at the BS, and handoff could
be to any of the surrounding BSs). Therefore, the total number
of actions include the sum of the total number of beams at a BS!,
total levels of beam widening, and all surrounding BSs that a client
can be handed off to. Let W be the total number beam widening
levels and H be the number of surrounding BSs. Therefore, the total
number of actions will be equal to B+ W + H.

GRU Model. We employed a GRU model consisting of four lay-
ers of GRU cells. The first two layers consist of 128 units each, while
the latter two layers have 64 units each. The four GRU layers are fol-
lowed by a dense output layer with the size equal to the number of
actions. The input to the model is a sequence of length N time steps
each of which consists of SNR values of the current BS’s beams
along with the SNR value of the best beam of each surrounding BS
and each BS’s ID. Formally, let S be a sequence of time steps, and s
€ S a time step where s = {{b, by, ...,bg}, {BS1, BSsnRr,s - - -» BSH, BSsNRy }}-
Here, by shows the SNR of beam one of the current BS, and BS1, BSsn R,
shows the ID of BS one and the SNR value of the best beam (mea-
sured at the client) of BS one. Therefore, the time steps sequence will
be S = {s1,2,53,..., SN} We refer to the time step sequence S as a
sample. All SNR values of current and surrounding BSs (stemming
from different beams at each BS), of each time step, are measured
at the client side and reported to the serving BS during the periodic
measurement report (MR) interval. We feed the GRU with these
MRs. We optimized the training of our neural network by using
the Adam optimizer with a learning rate of 0.001, cross-entropy
loss function, a batch size of 32, a dropout rate of 0.2, and L2 regu-
larization with a coefficient of 0.01 to prevent overfitting. Table 1
summarizes our GRU model structure and configuration.

Table 1: GRU Model Structure and Configurations.

Parameter Value
GRU layer1 128 Units
Dropout 0.2
GRU layer2 128 Units
Dropout 0.2
GRU layer3 64 Units
Dropout 0.2
GRU layer4 64 Units
Dropout 0.2
Output dense 46 classes
GRU activation tanh
Output activation Softmax

Action Selection Metric. The dataset samples that are fed to
the GRU model must be labeled with the best action, which is not
trivial to define. For example, selecting the best action based on

Note that we assume each BS has access to B beams.
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the highest reported SNR value can be inefficient. For example, let
the handoff action take 1 second to complete and let the human
blockage last for 0.4 seconds. Therefore, if the handoff action is
selected because of the the highest expected SNR, there will be
0.6 seconds during which no data is transferred. Thus, we need
to choose a metric that not only takes into account the SNR but
also both the duration of the blockage event as well as the duration
needed to perform the blockage mitigation action. To do this, we
first define the average throughput of a client associated with a BS
with a given SNR value as:

R= % x log, (1 + SNR) 1)

here, w is the communication bandwidth and U is the total num-
ber of clients associated with the BS.

Next, we choose the amount of transferred data (D) as the metric
based on which we select the best blockage mitigation technique.
This metric combines the average throughput metric (R) defined
in Eq. 1 and both the duration of the blockage event (T) and the
duration of a given blockage mitigation technique (C) according to
the following formula:

D =max{(T - C),0} xR (2)

here, T and C are in seconds. The duration of blockage mitigation
technique (C) can also be considered as the cost associated with
taking that action. We can also estimate T through T = L where
L is the length of the blocker and V is the blocker velocity. In
our simulations, we let the cost associated with handoff, beam
switching, and beam widening be equal to 1, 0.01, and 0.015 seconds,
respectively.

4 BLOCKAGE MITIGATION TECHNIQUES AS
POLICIES

In the previous section, we chose and defined the amount of trans-
ferred data as the metric to optimize when selecting the best block-
age mitigation technique. In this section, we give a formal definition
of our action selection mechanism as a policy. We also define alter-
native policies that model other blockage mitigation mechanisms
from the literature.

Assume that there are K types of blockages. Denote the proba-
bility of occurrence of blockage type i by P;. Further, assume there
are M blockage mitigation techniques, and the cost of each tech-
nique j is denoted by C;. Let T; be the the duration of blockage
type i, and let R; j be the rate of a blocked user when the blockage
is type i and the used mitigation technique is j. Then, we define
the amount of transferred data, when the blockage type, selected
blockage mitigation technique, and rate are known as:

Djj = max{(T; — Cj),O} X Ry,j 3)

Policy 1. Choose the best mitigation technique when the block-
age type and the value of R;; are given, i.e., use the mitigation
technique j with the maximum amount of transferred data as esti-
mated by Eq. 3. This policy is the one that we implemented in our
approach. The expected amount of transferred data when policy 1
is employed is:
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K
E[D;,j policy 1] = Z Pi X Dimax (4)
i=1

where D max = max(Dj1, D2, ..., Dim) and Dj max = E[Djmax].
The expectation in E[D; max] is to account for user specific R; j,
which in addition to blockage type i and mitigation technique j,
depends on the client channel.

Policy 2. Choose a fixed best mitigation technique for each type
of blockage. For example, if the mitigation technique j provides on
average the maximum amount of transferred data for blockage type
i, use this mitigation technique for the specific blockage type i. We
use the notation j = (i) to distinguish this mitigation technique j.
The expected amount of transferred data when policy 2 is employed
is:

K
E[Di,j policy 2] = Z P; x Di,ﬁ(i) (5)
i=1

where
D s(i) = E[D;s5(;)] = max(E[D; 1], E[Di2], ..., E[Dim])
,Dim)

Note, blockage type is assumed to be known.

Policy 3. Unlike policy 2, this policy chooses a single fixed
technique for all type of blockages. The chosen technique, which
we denote as jx, is the technique that provides on average the
maximum amount of transferred data across all types of blockages.

We can compute the expected amount of transferred data when
policy 3 is employed as follows:

=max(D;1,Djz, ...

K
E[Di,j policy 3] = Zpi X Di’j* (6)
i=1

where Z{i] PiXDi,j* = max(zgil P,'XDI"I, Z{il PiXDi,z, ey Z{i] Pix

D,"M) and Di,j =E[D;;].

Policy 4. Choose an arbitrary mitigation technique for all type
of blockages, i.e., choose and always use a fixed randomly selected
technique j for all of the blockage types. The expected amount of
transferred data when policy 4 is employed is:

K
E[Di’j policy 4] = ZP,' X Di,j 7)
i=1

We have the following proposition on the theoretical perfor-
mance of these four policies. In the following section, we quantify
these theoretical results through simulations.

Proposition. The order of performance (in terms of the aver-
age amount of transferred data) among the four aforementioned
policies is as follows:

E[D;; policy 1] > E[D;; policy 2] > E[D;; policy 3] >
E[D;,j policy 4]

with policy 1 being the best policy in mitigating the blockages
and providing the maximum average amount of transferred data.
The degree of difference between these policies measured in terms
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of the average amount of transferred data depends on the distri-
bution of R; js for various cases of i and j, the value of T;, and the
value of C;.

Proof. From the definition, Dj max

E[Dimax] = E[D;5(1y] = Dy s(i)-

Dis@iy = Dimax

>

E[Di,j policy 1] = Zfil P; x Di,max > Zf(:l P; x Di,&(i) =
E[D;,j policy 2].

Next, based on the definition of §(i), D; 5(;) = Di,jx, hence

E[Dij policy2] = £K, PixD; 51y = ¥, PixDj j = E[Dy policy 3]
Finally, from the definition of jx,

E[Dj policy 3] = XX | PixDj jx > X PixD; j = E[Dy ; policy 4].

5 PERFORMANCE EVALUATION

In this section, we discuss our performance evaluation results. First,
we discuss our simulated environment and our methodology to
gather and label data. Next, we discuss the performance of our ML-
based blockage mitigation technique considering both ML metrics
(e.g., accuracy, F1 score) and networking metrics (e.g., transferred

data, throughput).

5.1

Simulator. We used a commercially available wireless simulator
named Wireless InSite (WI) to simulate an IIoT use case scenario
with a size of 350 x 150 m?. IIoT is a cutting-edge technology that
connects Internet-connected devices, sensors, and machines with
industrial processes and systems. It is considered as one of the
critical technologies for the development of Industry 4.0 [25, 26].
MmWave wireless technologies play a significant role in IIoT by
providing high data rates and assisting with positioning [1, 2, 27, 28],
among others.

Simulation Setup. Our simulation scenario consists of six BSs
and one hundred clients. BSs are distributed along both sides of the
environment with three BSs at each side with 75 m distance between
them (see Fig. 2). Each BS has access to a uniform linear array (ULA)
that consists of 16 antennas, which provide 36 beams and cover a
horizontal range of 120°. Clients are randomly distributed within
the environment. Each client has access to a single beam with an
omni-directional radiation pattern. All BSs and clients operate at 28
GHz band and are on a LoS channel condition prior to blockage. BS
height is 2.5 m, while the client height is 1.5 m. Table 2 summarizes
the simulation parameters.

We included four different types of blockers: human, cart, truck,
and pickup. These particular blockage types are the most commonly
encountered blockers in a factory setting. We modeled a human as
a cylinder with radius of 30 cm that can move at 1.4 m/s speed. The
size of carts, pickups, and trucks are 2.70x1.21x1.8 m3,5.4x2.1x1.9
m3, and 12.3 x 2.7 x 2.3 m3, respectively. We assumed the velocity
of each of these three blockers can range from one to five miles per
hour (mph), which equals to 0.89 to 2.2 m/s.

Data Gathering. As discussed in Section 3.3, our GRU-based
model takes a sequence of data as input to decide on what action

Measurement Campaign
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Table 2: Simulation Setup.

Parameter Value
BS antenna array size 16 (ULA)
Client radiation pattern Omni
Number of beams at the BS 36
Frequency 28 GHz
Bandwidth 1 GHz

Figure 2: IIoT scenario with six BSs on the two sides, clients,
and different types of blockers. We included four different
types of blockers: human, cart, truck, and pickup, which are
the most commonly encountered blockers in an industrial
IoT (e.g., factory) setting.

to take as an output. This data consists of multiple time steps each
of which contains SNR values for all the beams of the current BS
along with best SNR (stemming from the best beam) of each of
the surrounding BSs along with BS IDs. We run our simulation
based on the above setup and record the SNR measurements at
the clients side every 75 ms. In other words, the difference in time
between two consecutive time steps is 75 ms. The run continues
as the blockers move until the current connection is completely
blocked. At the end of each run, we extract the measured SNR
values of the current BS and surrounding BSs’ best SNR values and
their IDs for every time step, including the time step in which the
connection is blocked. The last time step (when the connection
is blocked) is repeated with varying number of antennas at the
current BS to get information about how beam widening performs
when the connection is blocked?. This information is used when we
label the dataset samples. Through these simulation, we gathered
a dataset comprising 20,000 samples, each consisting of nine time
steps. Within each time step, there are 36 SNR values that represent
the current BS’s 36 beams along with the best SNR values for the
five surrounding BSs and the BS IDs. The dataset has been evenly
distributed across the four different types of blockages, with 5,000

%In a uniform linear array (ULA) with M antennas and % spacing distance (A is the
carrier wavelength), the main lobe beamforming gain is equal to 10><log11\0/[ (in dB)
with % (in degrees) half power beamwidth. Thus, we varied the number of active
antennas from 16 to 14, 12, 10, and 8 to provide five different levels of beam widening.
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samples collected for each blockage type. We use 70% of dataset for
training and 30% for test.

Data Labeling. Labeling refers to determining the best action
that could have mitigated each blockage occurrence. In order to
label our dataset samples, we began by determining the number of
classes, or actions, which totaled 46. These 46 actions are distributed
as follows: 36 classes (ranging from 0 to 35) were assigned to the
current BS’s 36 beams to accommodate the beam switching action,
5 classes (ranging from 36 to 40) were assigned to the number
of surrounding BSs to which a client can be handed off to, and 5
classes (ranging from 41 to 45) were assigned to beam widening. As
detailed in Section 3.3, we labeled each sample in our dataset based
on the optimal action that would result in the highest amount of
transferred data during a blockage event. To do this, we utilized
Eq. 3 to label each sample appropriately.

To gain a deeper insight into our labeled dataset, we conducted
two distinct analyses. First, we calculated the percentage of samples
labeled with each action across the entire dataset, regardless of the
type of blockage. Fig. 3(a) shows the corresponding result. We
observe that handoff was the best action for 43% of our samples,
beam widening was the best action for 30% of our samples, and
beam switching was the best action for 27% of our samples.

Next, we conducted an analysis to examine the relationship
between the best action and the type of blockage. Fig. 3(b) demon-
strates the corresponding result. Our results indicate that beam
switching and beam widening are commonly best actions for smaller
blockers (e.g., human or cart), whereas handoff is a better action for
larger blockers (e.g., pickup or truck). Additionally, we discovered
that beam switching and beam widening could sometimes better
handle large blockages compared to handoff. However, handoff
was never a good solution to handle small blockers due to its cost
exceeding the blockage event time.

5.2 Results

We next discuss the performance of our blockage mitigation frame-
work considering both ML and networking metrics.

GRU Evaluation. Accuracy is a popular metric to evaluate the
performance of a machine learning model. It is defined as the ratio
of correct predictions made by the model to the total number of
predictions made. Since our model takes a sequence of data as input
to make a decision, we need to determine how many sequences
(number of time steps) the model needs to give the optimal accu-
racy result. To achieve this, we evaluate our model over the last
3,5, 7, and 9 time steps. We observed that the model gives similar
accuracy results for all number of time of steps. Hence, to reduce
the computational complexity and increase memory efficiency, we
consider the least number of time steps, which is 3.

Fig. 3(c) shows the accuracy of our GRU model across all samples,
which is 93% and demonstrates that the model has learned to make
accurate predictions.

Next, to obtain a more complete picture of the model’s accuracy,
we consider Top-K accuracy. Top-K accuracy is a more informative
metric that measures the proportion of instances in which the
correct label is among the top K predicted labels. For instance, Top-1
accuracy measures the proportion of instances in which the correct
label is the top prediction made by the model. In our case, the Top-1
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accuracy of our GRU model is 93%. This result is a testament to the
effectiveness of our model, as it is making accurate predictions in
majority of cases.

Moreover, our model has achieved a Top-2 accuracy of 98%
(Fig. 3(c)), meaning that the correct label is among the top two pre-
dictions for 98% of instances. Furthermore, our model has achieved
a Top-3 accuracy of 99%, which indicates that the correct label is
among the top three predictions for 99% of instances. Note that to
be counted as a correct action, details of the action must be correct
too. For example, when beam switch to a particular beam is the
correct action, the model not only has to select beam switching
as the appropriate blockage mitigation technique but it must also
correctly select the beam to switch to (out of 36 available beams)
to match the label.

Table 3: Recall and Precision of Beam Switching, Beam
Widening, and Handoff.

Recall Precision
Beam Switching 86.6% 86.7%
Beam Widening 96.3% 96.9%
Handoff 92.6% 92.1%

In order to gain a better insight into the performance of our
model, we analyzed each action using recall and precision metrics.
For every action, we calculate both recall and precision scores.
The beam switching action yielded recall and precision scores of
86.6% and 86.7%, respectively. Beam widening demonstrated a recall
score of 92.6% and a precision score of 92.1%. However, the highest
recall and precision scores among all actions were achieved by the
handoff action, with recall and precision scores of 96.3% and 96.9%,
respectively.

Despite the fact that beam switching has the lowest recall and
precision scores compared to other actions, it is still performing
well with over 85% accuracy. The lower scores are due to the action
comprising a much larger number of sub-actions (36 actions corre-
sponding to 36 beams), which increases the confusion between the
sub-actions. Table 3 shows a summary of these results.

Comparison with Other ML Models. To demonstrate the ef-
fectiveness of GRUs, we compared it with four baseline techniques:
random selection, Categorical Naive Bayes (CategoricalNB), sup-
port vector machine (SVM), and LSTM.

Random selection is a simple technique that randomly assigns
class labels to the data, making it a useful baseline for determin-
ing the performance of a model by chance, while CategoricalNB
is a popular ML algorithm that works well for text classification
tasks and assumes that the features are categorical. SVM works by
finding the best possible boundary that separates data points into
different classes. In other words, it tries to find the hyperplane that
maximizes the margin between the different classes in the dataset.
We evaluated each technique on the same dataset and considered
accuracy as the performance evaluation metric.

We used scikit-learn, the open-source ML library, to implement
CategoricalBN and set the hyperparameters alpha and fit_prior to
1 and true, respectively. We used the same scikit-learn library to
implement an SVM model with “radial basis function (rbf)" kernel
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Figure 3: (a): Fraction of samples in the dataset labeled with each action; (b): Fraction of samples labeled with each action for
each blockage type; (c): Top-1, Top-2, and Top-3 accuracy results of our GRU-based blockage mitigation framework. The correct
label is the predicted label in 93% of instances and is among the top three predictions for 99% of instances.
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Figure 4: (a): Accuracy of different ML models. GRU achieves the highest accuracy; (b): Increase in total transferred data for
different actions. Here BeamS, BeamW, and HF denote beam switching, beam widening, and handoff, respectively; (c): The
average drop in throughput when selected action is not optimal. Y-axis shows the true label and x-axis shows the incorrect
predicted label. When the true and predicted label are the same, the selected sub-action is not optimal. The overall average

drop in throughput across all actions is 92%.

and parameter gamma set to “scale”. We implemented the LSTM NN
with the same structure and hyperparameters of GRU as described
in Section 3.1.

Fig. 4(a) shows the accuracy results. The results show that the
GRU model outperforms all baseline techniques, achieving an accu-
racy of 93%. In comparison, random selection achieves an accuracy
of only 2.2%, CategoricalNB 19.7%, and SVM 70%. LSTM, which is
very similar to GRU, gets a very close accuracy at 91.8%.

We chose the GRU model over LSTM for several reasons. First,
GRU models require fewer parameters, which reduces the training
time and improves computational efficiency. This is especially im-
portant when working with large datasets or when there are time
constraints for model training. Additionally, we found that the GRU
model has a slightly higher accuracy than the LSTM model, further
supporting our decision to choose GRU.

Network Evaluation. We next evaluate our model performance
in terms of increase in the amount of transferred data when an ac-
tion is taken compared to the blocked connection. Note that we
measure throughput according to Eq. 1, which depends on the
client SNR. When blockage happens, SNR drops, which reduces
the throughput (but is non-zero due to Eq. 1). Fig. 4(b) shows the
corresponding results where beam switching, beam widening and

handoff are denoted by BeamS, BeamW, and HF, respectively. Beam
switching increases the total amount of transferred data by x16,
while beam widening increases that by x14. Handoff increases the
total amount of transferred data by about x600, much higher than
beam widening and beam switching. Note, that the results do not
mean that beam switching and beam widening are not effective ac-
tions. Handoff is commonly used when blocker is large (e.g., with a
pickup or truck), which has the most negative impact on the under-
lying connection. Therefore, the gap between the new throughput
(as a result of handoff) and baseline throughput (throughput of the
connection blocked by a large blocker) is very large. Additionally,
with handoff, the new BS will likely observe no negative impact
from the current blocker. Beam switching and beam widening are
still efficient actions when the blocker is small (e.g., human or cart
as we showed in Fig. 3(b)). They also result in more increase in
throughout than handoff when blocker is small, due to the shorter
duration of the blockage event and high cost of handoff.

Drop in Throughput when Selected Action is not Optimal.
Our results in Fig. 3(a) showed that the GRU model selects the
optimal action in 93% of the times. We next study the drop in
performance (in terms of throughput) when the selected action is
not optimal, which has a 7% probability. To do so, we calculate the
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client throughput during the blockage event had we selected the
optimal action as well as the action selected by the GRU model.
We then calculate the percentage drop in performance (from the
previous two calculations) and find its average value across all
clients and blockage events and found that to be equal to 92%. This
shows that there is a large average penalty when the optimal action
is not taken, or in other words optimal action can result in a very
high increase in throughput. Note that while this analysis is specific
to our GRU model, other methods also have a similar performance,
as we will show through average throughput results later in this
section.

To gain more insights into this average number, we extend our
examination to compare the percentage drop in performance for
each specific action. Fig. 3(c) shows the corresponding results. Here
the y-axis shows the true label and the x-axis shows the incorrect
predicted label. For example, when the optimal action is identified
as BeamS (top row in Fig. 3(c)), we derive the average percentage
drop in throughput that would be achieved if the selected action is
BeamsS to a non-optimal beam ID, BeamW, or HF.

By examining the results across all combinations, we observe
that when the true label is BeamS, handoff (HF) would result in
the highest (99%) drop in throughput. Further, if BeamS is the true
label, BeamW would result in the lowest (40%) average drop in
throughput. This type of a cost analysis could also be used by a
network operator to devise more sophisticated blockage mitigation
policies by associating different costs to different actions.

Average Throughput Across Different ML Models. Through-
put is a critical metric for evaluating overall network performance.
To assess the effectiveness of our model, we conducted an evalua-
tion based on the average throughput across all ML models (GRU,
LSTM, SVM, CategoricalNB, and Random). We measure throughput
for the duration of the blockage event taking into account blockage
type and velocity, and action delay, among others.

Table 4: Average throughput across all clients, BSs, and block-
age events achieved by different ML models.

Random| CatNB| SVM | LSTM | GRU |

Throughput

0.52 4.62 16.32 21.8 22.
(Mbps) 7

Table 4 summarizes the average throughput results for each
model. Note that these throughput results are averaged across all
clients, BSs, and blockage events. Our evaluation shows that the
GRU model outperforms all the baselines with an average through-
put of 22.7 Mbps. The ratio of increase in throughput compared to
different schemes is 43.7 with respect to (w.r.t.) Random, 4.91 w.r.t.
CatNB, 1.39 w.r.t. SVM, and 1.04 w.r.t. LSTM.

Comparison with Other Policies. The GRU-based blockage
mitigation framework exhibits a high level of performance, as ob-
served in terms of both ML-based and networking metrics. We next
compare the performance of our approach with three alternative
policies (policies 2, 3, and 4 from Section 3.3) using the average
amount of transferred data as metric. For this purpose, we utilized
the same dataset that was used for both training and testing the
GRU model. Subsequently, we computed the average amount of
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transferred data for each of the policies. Table 5 summarizes the
decline in performance when implementing policies 2, 3, and 4 in
comparison to our approach, which employs policy 1.

Table 5: Comparison of GRU based model against three alter-
native policies (policies 2, 3, 4) in terms of average percentage
drop in the amount of transferred data.

Human Cart Pickup | Truck
Policy 2 -25% -5% -29% -16%
Policy 3 -27% -5% -99% -99%
Policy 4 -100% -100% -29% -16%

In Policy 2, a fixed best technique is employed to maximize the
average amount of data for each blockage type. Specifically, we
found that the optimal technique for blockage type “human" is beam
switching, while the best technique for “cart" is beam widening. For
“pickup” and “truck," the ideal approach is handoff. To determine
the average amount of data transferred for each blockage type, we
applied the corresponding best technique and compared the results
with our own approach.

The first row in Table 5 depicts the results. Our results show
that when employing only beam switching for human blockage,
the average amount of transferred data decreases by 25% compared
to our approach. Similarly, for cart, the use of beam widening only
resulted in a 5% decrease in the average amount of transferred data.
For pickup, using handoff only, resulted in a 29% decrease in the
average amount of transferred data. Finally, for a truck blocker, the
average decrease is 16%.

In Policy 3, a fixed technique is employed to maximize the aver-
age amount of transferred data across all blockage types. To deter-
mine the optimal technique, we calculated the average amount of
transferred data for the three techniques for each type of blockage
and compared the results to identify the technique that provided
the maximum performance across all blockage types. Our analysis
revealed that beam widening was the optimal technique that pro-
vided the maximum average amount of transferred data across all
blockage types.

To further evaluate the effectiveness of Policy 3, we compared
its performance with our approach in the same manner as we did
for Policy 2. The results of our analysis (depicted in second row of
Table 5) indicates a substantial reduction in the average amount
of transferred data for larger blockers, i.e., pickups and trucks.
Specifically, the average amount of transferred data for pickups
and trucks decreased by approximately 99%, while the performance
drop for the cart blocker remained at the same level as in Policy
2. Finally, for the human blockage type, the average amount of
transferred data decreased by 27%, which was 2% less than the
decrease observed in Policy 2.

For policy 4, where an arbitrary technique is chosen for all types
of blockages, we found that the results of the chosen technique
might do well with some blockage types and poorly with other. For
example, handoff works well with larger blockages, but decreased
the performance by 100% for smaller blockages since the cost of
taking the handoff exceeds the small blockage duration. Therefore,
if all of the blockages in an environment are small (e.g., carts or
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humans), handoff provides no gains. Hence, handoff decreased the
performance for carts and human blockages by 100% and stayed at
the same level of policy 2 for the other blockages. The last row in
Table 5 captures these results.

6 CONCLUSION AND FUTURE WORK

In this paper, we addressed the following problem: From the plurality
of blockage mitigation techniques, which blockage mitigation method
should be employed? and What is sub-selection within that method?
We then introduced a GRU-based framework to solve the problem.
We showed that the model provides a high level of accuracy by
using only SNR values that are readily available as part of the
underlying communication. We also showed substantial increase
in throughput compared to alternative policies and ML models.

This paper focused on IIoT scenarios with low cost/power com-
munication chips on fixed clients, which gives them access to a
single omni/quasi-omni beam. For our future work, we plan to
extend the work to support client mobility as well as when the
client also has access to many communication beams. We will also
investigate the possibility of taking paired/joint actions (e.g., when
one action is taken by the BS and the other action is taken by the
client) to address these more challenging network settings.
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