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Abstract— 1 — (1 — a:M)2M > (1 -1 - a:)M)zM is
proved for all x € [0,1] and all M > 1. This confirms a
conjecture about polar code, made by Wu and Siegel in 2019,

that WomlM is more reliable than WlmoM, where W is
any binary erasure channel and M = 2™. The proof relies
on a remarkable relaxation that m needs not be an integer, a
cleverly crafted hexavariate ordinary differential equation, and a
genius generalization of Green’s theorem that concerns function
composition. The resulting inequality is optimal, M cannot be
2™ —1, witnessing how far polar code deviates from Reed-Muller
code.

I. INTRODUCTION

If there is anything that contributes to polar code’s out-
standingly low decoding complexity, it is the insistence of
the successive cancellation decoder that some information
bits are processed earlier and some later [1]. This, generally
speaking, makes bits that are processed later better protected.
For instance, if abclxyz is the binary expansion of a bit’s
index, it has been shown that it is better protected than the bit
whose index’s binary expansion reads abcOxyz. With a more
elaborated argument, it was shown that abclOzyz is better
protected than abcOlxyz [2], [3].

It is very difficult to prove otherwise, that there exists an
information bit that is processed earlier yet better protected.
We do not know, for instance, whether the bit indexed by
abcOllzyz is always better protected than the bit indexed by
abcl00xyz, despite of countless simulations that support so
(to an extent that some works advocate postponing 011 and
processing 100 first [4]-[6]). In this work, we give several
examples over binary erasure channels (BEC) where a bit
whose binary index is lexicographically earlier is always better
protected. Some examples are 011 versus 100, 00111 versus
10000, 01011 versus 10100, 001111 versus 110000, 000111
versus 100000, and the list goes on.

For any BEC W with capacity I(W) = x, let W9
be the BEC with capacity I(W°%) = z2; let W' be the
BEC with capacity I(W!) = 1 — (1 — x)% For any
binary string biby...b, € {0,1}", define Whib20n ag
(- (Whi)b... )b"', For any binary strings a € {0,1}" and
b € {0,1}", we say that the former outperforms the latter if,
for any underlying BEC W, the capacity of W is higher than
or equal to the capacity of W°. We denote this as a = b. When
there are consecutive bits in a binary string, for instance 000
and , we abbreviate it as 03 and 1°.
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The main results of this work follows. We show that, to
prove a comparison of the form 0”1™ > 1™0", it suffices to
check if the comparison holds for x = 1/2.

Theorem 1 (main theorem): Let m and n be positive
numbers. We have 0™1" = 1™0" if and only if we have
(1—1/22")2" <1/2.

Theorem 1 resolves a conjecture by Wu and Siegel, which
states that 0™12" = 1m02" [7, 45)], as (1 — 1/22")2" s
indeed < 1/2. In fact, Theorem 1 implies something stronger:
that 071270528 . 1m(2"=0528 for all m > 0. We hope
that readers are not turned away by the unexpected notion that
there are 2™ —(0.528 ones on the left-hand side and 2" —0.528
zeros on the right-hand side. We never said m, n are integers.
Making sense of non-integer amounts of zeros and ones is the
breakthrough that enables the proof of the main theorem.

This paper is organized as follows. Section II defines what
0P and 19 mean for real numbers p and ¢q. Section III
demonstrates the key idea of the main theorem using an
example—we will prove that 1707 = 0P19 for any real
numbers p, g > 0. Section IV discusses 0719 = 170° for small
p,q, 7, s. Section V generalizes Green’s theorem to discuss the
case when p, g, r, s are not small. Section VI proves the main
theorem and some consequences.

II. INTERPOLATING THE ACTION OF SQUARING

In this section, we parametrize the action of squaring a
number so it makes sense to say “I am 61.8% done with
squaring this number.”

For any real numbers p and ¢, define If(z) = z® and
I{(x) :=1— (1 —x)*". Note that I§(x) is just z, that I} ()
is just 22, and that I} (I%(z)) is just IZ*"(x). Consider real
numbers pi1, P2, .. .,Pn and q1, qa, . . ., gn. Let a realistic string
be of the form 0P*19:(0P2192 ...(0P~ 19" and correspond to the
function composition

i (g (o rp e ag @) ) o

We say 0P1191(0P2192 ... (QPn 19 = 0"11°10721%2 ... 0™ 1% if
formula (1) is greater than or equal to

1 (1 (- 12 G 0 G @) )
for all = € [0, 1].
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Fig. 1. Green’s theorem and inequality: Suppose that every small square
is such that going up-and-then-right results in a better reward than going
right-and-then-up. Then the path that travels from the southwest corner to the
northeast corner via the northwest corner yields better reward than that via
the southeast corner. That is to says, 14P(6a o o6a14p,

For all intents and purposes, we can safely ignore 0° and 1°.
We can also identify 070" as 0PT" and 191° as 1975, Through
these simplifications, the notion of realistic string covers all
possible concatenations of 0P and 19.

Immediately one sees that I} (z) < z < I{(x) for all p,q >
0 and 0 < x < 1. Accordingly, one writes 0”7 < empty string
=< 19. This is the continuous version of 0 < empty string < 1
The next section proves the continuous version of 01 < 10,
illustrating our idea for the main theorem.

III. 1707 »= 091P: A DEMONSTRATION OF IDEAS

In this section, we want to show that for any pairs of positive
real numbers (p, ¢) it holds that 170 3= 091P. This serves as
a toy example before we attack the main theorem.

To begin, we only care for very small p and g. That
encourages us to consider the Taylor expansion of I (I} (z))—
I (1i(x)) at (p, q¢) = (0,0) while treating x as a constant. The
expansion looks like

15 (17 (x)) — I{ (15 (x))
= In(2)? (1n(ac) In(1—2z) — zln(z) — (1—x) ln(l—x)) - pq
+£0(Ipf* +|af)-

Clearly the term between the big parentheses is positive
whenever 0 < x < 1. Thus, for any = € [0, 1], the difference
I§(I7(z)) — IT(I§(x)) is positive provided that p and g are
positive yet small enough.

The punchline is that p and ¢ need not be small.

Inspect Figure 1. In this figure, we want to travel from
the southwest corner to the northeast corner. Each possible
path corresponds to a realistic string. For instance, two rights,
one up, four rights, and three ups means 02¢170%913P, The
inequality 1709 = 0917 translates into a gimmick that, if a
path lies northwest to another path, for instance 170%¢13P(0%¢
is northwest to 0%*¢1%P0271P, then the former 3= the latter,
for instance 170%913P0%7 3= 0%913P0241P, Since Figure 1 can
be made arbitrarily large with arbitrarily small squares, we
conclude the following.
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Fig. 2. Green’s theorem and inequality: Similar to Figure 1 except that, here,
the assumption is that going right-and-then-up is better. Thus the path via the
southeast corner yields the highest reward among all paths. While numbers
in this figure are found by a computer, we will prove mathematically that an
ideal grid exists.

Theorem 2 (continuous version of 10 = 01): For any real
numbers p and ¢ that are positive, 1p0q >= 0917, That is,
I§(IY(z)) > IT (I (x)) forall 0 <z < 1.

The proof of the main theorem will follow the same logic.
We first work out a local necessary condition for I7(If(z)) —
I5(I7 (x)) > 0, and then we construct a big, fine grid on which
we compare paths.

IV. LOCAL POSITIVITY FOR 0717 »= 170°

This section paves the way toward Theorem 1, the main
theorem. More paving works will be done in the Section V,
whereas the proof of the main theorem will be completed in
Section VI. For the present section, our goal is to characterize
the asymptotic behavior of the quadruples (p, ¢, 7, s) such that
0P19 3= 170°.

Applying Taylor approximation at the neighborhood of
(p,q,r,8) = (0,0,0,0), we obtain

Iy (2) = L5 (17 (x))
=— 1n(2)ac In(z) - (s —p)
n(2)(1 —z)In(l —z) - (g —7)
+ ln(2)2xln(m’)(1 +1In(1 —2)) - pq
+1n(2)*(1 —2)In(1 — 2)(1 +1Inz) - s
£0(IpP + g’ + [r[* + |s[?).
To comprehend when the difference is nonnegative, we first
want to understand when the Taylor approximation is barely
nonnegative. That is to ask, what (p, ¢, r, s) makes A(y) =0

for some y € (0,1) and A(z) > 0 for any other x € (0,1)\y,
where

A(x) = —In(2)z In(x) - (s — p)
In(2)(1 - &) In(1 — 2) - (¢ - 7)
+ 111(2)2 In(z)(1+In(1l —x)) - pg
+1In(2)?(1 —2)In(1 —2)(1 + Inz) - rs?
To proceed further, let us limit ourselves to the case where
s —p and ¢ — r are both of quadratic order. There is no
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Fig. 3. Two of the coefficients in equation (2).

rigorous justification why this should be the case. It just feels
right, and it nevertheless leads to a rigorous proof of the main
theorem. To elaborate, s—p should be a polynomial in p, ¢, 7, s
without constant and linear term; similarly, ¢ — r should be
a polynomial in p,q,r,s without constant and linear term;
Henceforth,

rs = (p+ O(quadratic)) (¢ — O(quadratic)) = pg+ O(cubic).

We further limit ourselves to the case that s—p, ¢ —r, pg, and
rs are multiples of each other up to some cubic error. Again,
we cannot explain why it must be like that; just bear with us.

Let j be 1—(s—p)/In(2)pq. Let k be 1 — (¢ —7)/ In(2)pg.
This means that we can replace s — p by In(2)(1 — j)pq and
g—1r by In(2)(1 — k)pq. The delta we want to make zero then
simplifies to

A(z) = In(2)? In(z) In(1 — ) - pq
+n(2)z In(2); - pg
+1n(2)*(1 — 2) In(1 — 2)k - pq.
Factoring out In(2)? In(z) In(1 — z)pg, we conclude that the
quadratic approximation is zero at x = y if
7y k(1 —y)
In(1—vy) Iny
See Figure 3 for the plots of coefficients of j and k. See
Figure 4 for the plots of 5 and k
Solving A(y) = 0 for y is just the first half toward the
characterization of (p, q,r, s) such that A(z) > 0. The other

equally important half is A’(y) = 0. Together, we want to
solve

. _ — Yy
- e (g @

Iny *

14 =0.

Through this linear equation we encode the so-called first-
derivative test. But the real question is whether A" (y) > 0 or

0.8 1

0.4 B

0.2 .

Fig. 4. The solution of equation (2) as functions in y.

else it could be a local maximum. The answer is positive and
is implied by the following four lemmas.

Lemma 3 (¢"" and h"): g(y) and h(y) are strictly convex in
Y.

Lemma 4 (9’ and h'): g(y) is strictly monotonically increas-
ing; h(y) is strictly monotonically decreasing.

These two are clear from Figure 3, rigorous proofs found
in appendices A and B.

Over the unit interval (0,1), the functions g and h form
an extended Chebyshev system for the following reason: If we
consider a linear combination ag(y) + bh(y) where ab > 0,
then the convexities of g(y) and h(y) imply that ag(y)+bh(y)
has at most two roots. If we consider ag(y) + bh(y) where
ab < 0, then it is either increasing or decreasing, guaranteeing
a single root. In either case, ag(y) + bh(y) has at most two
roots. Hence the Wronskian (the determinant of the matrix in
(2)) never collapses to zero.

We hereby conclude that for any y € (0,1) there exist
numbers j and k such that equation (2) is met. We view the
solution (j, k) as functions in y.

Lemma 5 (j and k): j(y) and k(y) are positive whenever
O<y<l.

Lemma 6 (j' and k') j(y) strictly monotonically decreases
from 1 to 0 as y goes from O to 1. Meanwhile, k(y) strictly
monotonically increases from 0 to 1 as y goes from 0 to 1.

These properties are clear from Figure 4, rigorous proofs
found in appendices C and D.

Proposition 7: For any z,y € (0,1),

k(y)(1 — =)

|+ J(y)x
Inz

In(1 —x)
The equality holds iff x = y.
Proof: Since j and k are positive and g and h are convex,
J(y)g(x)+k(y)h(x) will be convex in x. By the definitions of
j and k, we know j(y)g(x)+k(y)h(z) has both the evaluation
and the first derivative zero at x = y. Therefore at x = y is

> 0.
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Fig. 5. The numerical solution of IVP 10. Horizontal axis is t.

a local minimum and for everywhere else, i.e., x # y, the
evaluation is positive. ]
Proposition 8: Fix any z,y € (0,1). Let p,q,r, s be such
that s —p = In(2)(1 - j(y))pg and ¢ —r = In(2)(1 - k(y))pg.
Then A(x) > 0. The equality holds iff z = y.
Proof: Put the factor In(2)?In(z) In(1 — z)pg back. M
Here is a recap of what this section has so far. We inspect
the Taylor expansion of I{ (I} (z)) — I5(I(x)) and extract
a condition, equation (2), that we believe will lead to the
positivity of A. Via analyzing the derivatives we do see that
A(y) = 0 granted that (2) is met; and if we plug-in any x
other than y then A(z) > 0. It is now time to apply these
knowledge to construct a grid.

V. GREEN’S THEOREM FOR 0P19 = 1P0¢

Local condition determined, we now want to construct a
large, fine grid that looks like Figure 1, except that every small
square represents a short inequality of the form 0P17 = 170°.

Figure 2 is a numerical example we found on a computer. In
this figure, every small square, for instance the lower left one,
corresponds to a local inequality of the form 0171511259
11:01502:566 The ideal grid must satisfy two conditions. (A)
The gap size must be infinitesimally small and the local
condition must hold. That is, the delta as defined in the last
section should be nonnegative but is zero at some point. (B)
The value y such that A(y) = 0 must aligns. Let us elaborate
on (B).

Suppose there is an inequality f(x) > g(z) and the equality
holds for = 1/3. Suppose there is g(z) > h(x) and the
equality holds for x = 2/3. Then f(z) > g(x), but the equality
never holds. In order to obtain the tightest inequality, i.e., the
equality must hold at some point, it is inevitable that we aligns
the points at which the sub-inequalities assume equality.

Since the point of equality changes continuously, it is best
described by ordinary differential equations (ODEs). To solve
ODE, we invoke the Picard-Lindelof theorem.

Lemma 9 (Picard-Lindeldf): Let n € N. Let I C R be an
open interval. Let U C R™ be an open rectangle. Let (¢o, o)
be a point in I x U. Suppose that a function F': I x U — R"

is continuous in the first argument and Lipschitz continuous
in the second argument. Then the initial value problem

Sult) = Flt,y(t)

has a unique solution for ¢t — tg € [—¢, ¢] for some very small
€ > 0. (Proofs can be found on the internet.)

Using Lemma 9 one can prove that the following initial
value problem (IVP) has a unique solution for sufficiently
small ¢. Using some continuation techniques one can prove
that the following IVP has na solution for all ¢ € R.

Initial Value Problem 10: Let (Y,Z,P,Q,J,K) be real-
valued functions in ¢ € R satisfying

y(to) = o,

Y(0) = % %Y — In(2)PY InY,

Z(0) = % %Z — In(2)QZnZ,

P(0) =1, %P — _(2)(1 - J)PQ,

Q) =1, TQ=m)(1-K)PQ,

JO) =2, —1= %;;%J;l .
n n

K(0)=1In2, OZT(ZJF)Q' —T(YJF)Q~

Translation: ¢ points to the southeast direction of the grid.
Functions P and @) are the location-dependent version of p
and ¢ as in 0P and 19. Functions J and K are the location-
dependent version of j and k as in s — p = In(2)(1 — j)pg
and ¢ — r = In(2)(1 — k)pg. Function Y will keep track of
the y value in the context of equation (2). Function Z will be
1 — Y. The last two equations are just (2).

Proposition 11: In IVP 10, Y (t) + Z(t) =
defined.

Proof: Y (t) + Z(t) satisfies a second-order ODE with
initial values Y'(0)+Z(0) = 1 and Y'(0)+ Z'(0) = 0, thereby
being constantly zero. [ |

Theorem 12: TVP 10 admits a unique solution for all t € R.

Proof: Thanks to symmetry it suffices to consider ¢ >
0. Throughout the entire course of the dynamic system, the
following bounds are maintained

Y(tye 272 1-272"], z@)e[2?,1-27%],
P(t) e [t 1], Q(t) € [1,2'],
J(t) € [k(2727),527%)), K@) € [k(272),52727)].

Hence Picard-Lindelof always applies. Every time Picard—
Lindelof is applied, the domain of definition (DoD) extends
by a small but positive amount. By Zorn’s lemma, the greatest
DoD exists. If the greatest DoD is bounded, apply Picard—
Lindelof again to extend that DoD and get a contradiction. The
greatest DoD, thereby, must cover the real line in its entirety.
|

Forgive us for pausing here and appreciating how much
trouble the preceding theorem has bypassed. When we applied
the standard Runge—Kutta method to IVP 10, the solution

1 whenever
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Fig. 6. Three loops that yield interesting results. Here, m = [3' P(t) dt = fE# Q(t)dt and M = [} Q(t) dt = ffu P(t) dt. Same for n, N, and v.

explodes at about ¢ = 7.5. This, as we perceive it, is
because Q(t) is about 1.4% and so Y (¢) decays to zero doubly
exponentially fast, which causes the machine to struggle with
InZ(t).

Definition 13 (path is the new string): Suppose I'(s) =
(u(s),v(s)) € R? is a piecewise smooth path parametrized by
s €[0,S]. Treat t as a function in s via t(s) == u(s) — v(s).
Treat P and @) as functions in s via P(t(s)) and Q(t(s)).
Consider this initial value problem of X (s):

X(0) =2 €[0,1],
dX du dv
I =PXIn(X)- = (1-X)QIn(1 _X)'E'

Define It (z) to be X (95).

In plain text, the function X is defined as follows. Suppose
I is a path on the u—v plane. Suppose at any point I'(s) € R?
on the path there associates a value X (s) € (0,1). The values
are such that, every time I' goes rightward by a tiny amount du,
the associated value X (s) evolves as X (s+ds) = I[¢%(X(s)).
And every time I' goes upward by a tiny amount dv, the
associated value X (s) evolves as X (s + ds) = I{V(X(s)).
Let It be the function composition of the infinitesimal I’s.

Proposition 14 (travel with Y): Let T'(s) = (u(s),v(s)) €
R? be a piecewise smooth path parametrized by s € [0,S].
Let t(s) = u(s) — v(s). Then it holds that I+(Y (¢(0))) =
Y (¢(S)). In particular, if T' is such that ¢(0) = ¢(S) = 0, then
Ir(1/2) =1/2.

Proof: X (s) and Y (t(s)) satisfy the same ODE and share

the same initial condition. ]

Theorem 15 (“Green’s theorem”): T'(s) = (u(s),v(s)) €
R? is a piecewise smooth path that returns back to where it
starts, i.e., I'(0) = T'(S), but does not self-intersect elsewhere.
Then Ir(xz) > x (respectively, Ir(z) < x) if I" goes coun-
terclockwise (respectively, clockwise). Moreover, the equality
holds if z =Y (u(0) — v(0)).

Proof: Imagine a grid that looks like Figure 2 but the gap
size 0 is so small that we can safely ignore the cubic error
term. Put 07(“=")% on the vertical edge centered at (u,v) and
1Q(u=v)% on the horizontal edge centered at (u,v). Then, for
any small square with south edge 07, east edge 19, west edge
17, north edge 0°, we know I} (I (I, °(I;"(x)))) > 0 (up
to cubic error), and the equality holds if = equals the value
of Y at that point. Now I (z) is just the grand total of all

IN(IH Iy ° (17" (2)))). So Ir(z) > 0 and the equality holds if
x equals the value of Y at the starting point. [ ]

VI1. PROOF OF THE MAIN THEOREM (THEOREM 1) AND
THREE MORE CONSEQUENCES

The main theorem states that, if m and n are positive real
numbers, 01" = 1™0" if and only if (1 —1/22")?" < 1/2.
Below is the proof.

Proof: Consider the path on the left of Figure 6. Applying
Green’s theorem’s generalization (Theorem 15) to this path
yields inequalities of the form 0™1M0~M1=™ = empty
string. Here, m = [} P(t)dt and M = [;" Q(t) dt. By Propo-
sition 14, (1—1/22")2" = 1/2. Thus, (1-1/22")%" < 1/2iff
n > M iff 0™1"0~"17"™ = empty string iff 01" > 1™0".
This finishes the proof of the main theorem, Theorem 1. N

In the remainder of this section, let us list three more
consequences.

Corollary 16 (square): 0™ 1M = 1™0M for any positive real
number m and M := 2™ + log,(In 2). Note that log, (In2) =~
—0.528.

Proof: (1 —1/22")2" < exp(—2M /22") < 1/2 n

Corollary 17 (lightning): Suppose m > n > 0 are real
numbers. Let M be a function in m determined by the equation
(1 —1/22")2" = 1/2. Let N be a function in n determined
by the equation (1 — 1/22")2" = 1/2. Then 0m1M 170N 1
071N 1™0M, which implies 0" 1M+7 o | N+moM=N,

Proof: Use the path at the center of Figure 6. [ |

Corollary 18 (Dyck Path): Let n > 1 be an integer. Suppose
aj € {0,1} and b; =1 —qa; for all j € [n]. Then a; - - - a, =
by by if Iy, (1/2) < 1/2 for any m € [n — 1] and
Toy.a, (1/2) > 1/2.

Proof: Use a diagonally-symmetric path that looks like
the right one in Figure 6. [ |

Mentioned in the introduction, 011 »= 100 and 001111 =
110000 are consequences of Corollary 16; 00111 > 10000
and 000111 >= 100000 are consequences of Corollary 17; and
01011 > 10100 is a consequence of Corollary 18.

VII. CONCLUSIONS

We confirms a conjecture that concerns how to compare
bit channels in the construction of polar code. The technique
is quite novel as we use the existence of solution, not the
solution per se, of an IVP. Our results give quantitative



characterizations of how far away polar coder is from Reed-
Muller code [8]-[12].
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APPENDIX A
PROOF OF LEMMA 3

Lemma 3 states that ¢”(y) > 0 and A" (y) > 0.

Proof: Differentiate y/ In(1—y) twice, it remains to check
whether — In(1—y) > y/(1—y/2). Compute the Taylor series
of both sides at y = 0 and compare coefficients. The left-
hand side is 1/2,1/3,1/4,1/5, etc. The right-hand side is
1/2,1/4,1/8,1/16, etc. That will conclude the convexity of
g. For the convexity of h, invoke h(y) = g(1 — y). |

APPENDIX B
PROOF OF LEMMA 4

Lemma 4 states that ¢'(y) > 0 and h/(y) < 0.
Proof: As y — 0 from the right, ¢’(y) — 1/2 and is
ever increasing. Hence ¢’ is positive. For the positivity of A/,
invoke h(y) = g(1 — y). [ |

APPENDIX C
PROOF OF LEMMA 5

Lemma 5 states that j(y) > 0 and k(y) > 0
Proof: Look at equation (2). In the second row of
the matrix, the derivatives ¢’(y) and h'(y) are positive and

negative, respectively. Hence j and k assumes the same sign.
Now look at the first row; both g(y) and h(y) are negative.
Hence j and k are both positive. ]

APPENDIX D
PROOF OF LEMMA 6

Lemma 6 states that j'(y) < 0 and k'(y) > 0 and that
j(0)=K(1)=1 and j(1) = k(0) = 0.
and k(y) >0
Proof: Look at equation (2). Differentiating the first equa-
tion with respect to y, we get g5’ +hk’+h'j+h'k = 0. Since
g'j + h'k = 0, we infer that gj' + hk’ = 0. As an aftereffect
of g and h assuming the same sign (they are both negative),
4’ and k' assume opposite signs. Differentiating the second
equation with respect to y, we get ¢’ +h'k' +¢"j+h"k = 0.
As we know that ¢”j + "k > 0 and (¢'j")(R'K") > 0, it
must be the case that ¢’j’ and h'k’ are both negative. This
proves that j is strictly monotonically decreasing and k is
strictly monotonically increasing. To finalize the proof, notice
that (j,k) = (1,0) aty =0 and (j,k) = (0,1) aty=1. MW
APPENDIX E
MORE DETAILS OF PROPOSITION 11
It is clear that (Y + Z)(0) = 1 and (Y + Z)'(0) =
(In(2)PYInY — In(2)QZ1In Z)(0) = 0 by the given initial
values. It remains to find a relation between (Y + Z)” and
(Y +Z) and (Y + Z). To begin,
Y” = (n(2)PY InY)
=In(2)P’YInY +In(2)(PInY + P)Y’
=1n(2)?(J - 1)PQYInY +In(2)(PInY + P)Y’,
7" = —(In(2)QZIn Z)
=-In(2)Q'ZInZ —In(2)(QInZ + Q)Z’
=In2)*(K - 1)PQZInZ —In(2)(QInZ + Q)Z'.
We are to add Y” and Z” together. The sum will contain a
sub-formula JY InY + K ZIn Z, which can be replaced by
—InY In Z thanks to the fifth equation in IVP 10. Afterward,
we will replace Y’ by (Y + Z)' +In(2)QZInZ and Z' by
(Y+2Z) —In(2)PY InY. Let us see what those steps lead us
to.
(Y + Z)/I
=mn2)?PQJYInY + KZInZ —-YInY — ZInZ)
+In(2)(PlnY + P)Y' —In(2)(QInZ + Q)Z’
=In(2)?PQ(—InYInZ -YInY — ZInZ)
+In(2)(PInY + P)Y' —In(2)(QInZ + Q)Z’
=In(2)’PQ(—InYInZ —YIY — ZInZ)
+In2)(PInY +P—-QInZ - Q)Y + Z)
+In(2)*(PlnY + P)QZIn Z
+In(2)*(QInZ + Q)PY InY
=In(2)*PQYY +Z —-1)lnYInZ
+In(2)(PnY +P—QInZ — Q)(Y + Z)'.
So (Y + Z) does satisfy a second-order ODE.
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APPENDIX F
MORE DETAILS OF THEOREM 12

With an assumption that ¢ > 0, the claimed bounds
Y(tye[272,1-2"2"], z@)e[2?,1-27%],
P(t) € [t 1], Q(t) € [1,2'],

J(t) € [k(2727),527)], K1) € k(27,527 )]

is obtained in the following order.

Lower bound on @): The starting point is Q(0) = 1 and the
derivative is positive, hence Q(t) > 1.

Upper bound on P: The starting point is P(0) = 1 and the
derivative is negative, hence P(t) < 1.

Upper bound on Q: Note that @’ < In(2)Q. By Gronwall’s
inequality, Q(t) < 2°.

Lower bound P: Note that P’ > — In(2) PQ > —In(2)2!P.
By Gronwall’s inequality, P(t) > el =2,

Lower bound on Y: Rewrite Y/ > In(2)Y InY as In(Y")’ >
In(2)InY. By Gronwall’s inequality, InY > — In(2)2". That
is to say, Y (t) > 272"

Lower bound on Z: Rewrite Z' > —1In(2)ZInZ as
In(Z) > —1In(2)InZ. By Gronwall’s inequality, InZ >
—1n(2)2"". That is to say, Z(t) > 272",

Upper bound on Z: This one is as simple as Z(t) = 1 —
Y(t)<1-—272"

Upper bound on Y: This one is as simple as Y (¢t) = 1 —
Z(t)<1—2"2",

Upper bound on .J: Invoke J(t) = j(Y (£)) < j(272")
Lower bound on K: Invoke K (t) = k(Y (t)) > k(2~2'
Lower bound on J: Invoke J(¢) = j(Y (t)) = k(Z(t)) >

k272",
Upper bound on K: Invoke K (t) = k(Y (t)) = j(Z(t)) <
je=).
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