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Abstract—We gather existing methods that are used to com-
pare and rank the BECs synthesized by a polar code constructor,
compare them, and propose new methods that compare synthetic
BECs faster.

I. INTRODUCTION

The discovery of polar coding enabled 5G and other coding
tasks. The formalism introduced by Arikan [1] came with a
large panel of theoretical and practical challenges. A funda-
mental one is about the reliability of the synthetic channels
W<, where W is the underlying physical channel and « is a
binary string, and how to order the set {WW< : o € {0,1}™}.
Further, we shall write o = v when W< is favored over W7
for all W.

From general channel models (¥ being a BMS channel) to
particular ones (W being a BEC), several rules were proposed.
Rule Set A (RS-A) was initially used by Mori and Tanaka [2]
to construct polar codes over BMS channels and is generated
by 1 = 0. Later, Schurch [3] and Bardet et al. [4] added
10 = 01 over BMS channels, which we call Rule Set B (RS-
B).

Other works focus on BECs. Dragoi and Cristescu [5] intro-
duced a family of infinitely many new rules: 10001 3= 010¥10
for any integer £ > 0; they are dubbed Rule Set C (RS-
C). A recent work [6] generalizes RS-C to even more rules
that are not cataloged here. Wu and Siegel [7] conjectured
that 0F12° = 1%02" is true for any integer k > 0, which is
claimed to be proved in [8]; we call them Rule Set D (RS-D).
Kahraman [9] proposed that the first 2* terms of the Thue—
Morse sequence should be inferior to their bitwise complement
for all integer £ > 0. This family begins with (a) 0 < 1;
(b) 01 < 10; (c) 0110 < 1001; (d) 01101001 =< 10010110.
Observe that (a), (b), and (c) can be explained by RS-A, RS-B,
and RS-C, respectively. We call these Rule Set E (RS-E).

Order relations for polar codes have several applications.
Bardet et al. [4] conducted the first investigation of automor-
phism groups of polar codes that respect RS-A and RS-B.
The automorphism group then plays a role in parallelized
decoding of polar codes [10]-[16]. Another application in-
volves construction of polar codes. Mondelli, Hassani, and
Urbanke showed in [17] that the reliability of all but o(block
length) synthetic channels can be inferred using RS-A and
RS-B, hence the sub-linearity of the complexity of code
construction. (For other approaches of code construction, see
[18] for discussions on Gaussian approximation.)

As for a better understanding of W itself, the sharp
transition of I(W®) with respect to I(W) was analyzed in
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[19]. The position of the threshold was investigated in [20].
Alongside, the link between network reliability and synthetic
channels over BECs was established. The behaviors for 1(W)
very close to 0 and 1 were studied in [21], while the average
behavior of I(WW*) we studied in [5].

On a parallel track, He et al. proposed beta expansion
[22] that bypasses partial order relations but aims directly at
construction of codes. The idea is to “evaluate” a binary string
1001 to a real number 1001 :==1-B%+0-B%+0-p1+1-p°
before comparing the evaluations. Simulations over AWGN
channels determined that a good value of B is 21/,

Eventually, we could retrieve the maximum amount of
information about the poset using all the techniques and all the
total/partial/pre-order relations. Our problem can be restated as
follows: how to decide whether o and  are comparable or not
with respect to < for all pairs («,<) of binary strings with
length at most m. We attack this problem from three sides: (a)
generate as many comparable pairs as possible, (b) generate
as many non-comparable pairs as possible, and (c) generate
total orders that (almost) extend the targeted partial order.

One unusual thing we do is not to restrict the scope
to comparing bit strings of the same length, as most of
the existing works did. Instead, we study intergenerational
comparisons. Firstly, we observe that some intragenerational
inequalities are consequences of intergenerational ones; an
example is that 011 >> 10 leads to 0011 = 010 > 1000.
Secondly, intergenerational inequalities compares synthetic
channels for relaxed polar codes [23], pruned polar codes [24],
and parallelized low-latency polar codes [25].

While this paper is more of a survey than a research paper,
we still make several contributions along the way:

o We show that RS-E is true over BECs (Proposition 11).

e We show that RS-C and RS-E are compatible with
beta expansion. But RS-D becomes not compatible with
beta expansion as the string length approaches infinity
(Propositions 34 to 36).

« We propose a total preorder, ¢, that is easy to compute,
compatible with all rule sets, and only slightly different
from > (Section VI-C).

o We present evidence that the most appropriate (3 value
is related to the scaling exponent of polar codes (Sec-
tion V-B).

This paper is organized as follows. Section II defines the
reliability poset. Section III goes over the rule sets. Section IV
discusses Bernstein basis. Section V discusses beta expansion.
Section VI studies threshold behavior.
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Fig. 1: Ordering relations for polar codes. Inspired by [5, Figure 5]. Rectangles are total preorders. Circles are partial preorders.
Arrows are implications, e.g., & < v implies o <,y . Blue for existing works; green for ours; red for conjectures. The arrow

from RS-D to < is claimed to be proved in [8].

II. THE RELIABILITY POSET OF SYNTHETIC BECs

Given a BEC W with capacity I(W) = z € [0,1], the
polar transformation synthesizes two channels, WO and W1;
they are BECs with capacities

I(WO) =Iy(z) = 2% and I(Wl) =I(z) = 1_(1_90)27

respectively. To study the recursion of polar transformations,
we define I(x) := x and

Toyasap(T) = lag.cap (Lay (7))

for any bit string ajas - - - ap € {0, 1}*. This way, I, (=) is the
capacity of W for any a € {0,1}¢. We call it the reliability
polynomial of «.

We want to study if W is no worse than W? for any BEC
W, and this for any pair of bit strings o and . We define a
binary relation >=.

Definition 1: For any o € {0,1}¢ and v € {0,1}™, where
¢ and m are nonnegative integers, we write o = v and say «
outperforms ~y if

I,(xz) > L,(x) forall z€0,1].

Many works have studied . So one might be surprised
when learning that we are the first to prove the following.

Theorem 2: = is a partial order on (J,~_,{0,1}™.

Proof: Reflexivity: since I, (x) > I,(z), = is reflexive.

Transitivity: since Io(x) > Iy(x) and I,(z) > Is(x)
implies I, (x) > Is(x), = is transitive.

Antisymmetry: this is the nontrivial part. Suppose « =
v = «, then Io(z) > I,(xz) > I,(z), which implies
Io(x) — Iy(z) = 0 for all z € [0,1]. By the fundamental
theorem of algebra, any nonzero polynomial has finitely many
roots; but I, — I, has infinitely many so it must be the zero
polynomial. Now proving antisymmetry boils down to proving
a = vy given I, = I,. We prove it as a standalone lemma,
Lemma 3. ]

Lemma 3: If 1, = I, as polynomials, ov = +y as bit strings.

Proof: We will prove the contrapositive. Suppose o =
k0A and v = k1p. That is, they both begin with « but disagree
afterward. By the fundamental theorem of algebra, there exists
a complex number z € C such that I,,(z) = —1. Now I, (z) =
Iox(Ix(2)) = Iox(—1) = In(Ip(—1)) = I,(1) = 1. On the
other hand, I, (z) = I,(Ix(2)) = Lu(—1) = [, (L1 (1)) =
I,,(—3). Note that |Io(x)| and |I;(z)| will be > 3 if |z| > 3.
So it is impossible that I, will send —3 to 1. This implies
I,(z) # 1 = I,(z); they are two different polynomials. W

See the center of Fig. 2 for the partial order 3= on {0, 1}5.

III. PREDEFINED RULE SETS

By rules we mean simple inequalities that can be used to
generate more inequalities. One conditional and two uncondi-
tional rules were known very early and they hold for a more
general context: BMS channels and channel degradation.

Proposition 4 (Concatenation [26, Lemma 4.7]): If o = ~
and K = A, then akx = yA.

Proposition 5 (Rule Set A [2]): 1 = 0.

Proposition 6 (Rule Set B [3], [4]): 10 = 01.

And then there are relations proposed with BECs in mind.

Proposition 7 (Duality [7, Corollary 4]): If o = -y, then
@ < 7. Bar denotes bitwise complement, e.g., 1000 = 0111.

Proposition 8 (Rule Set C [5, Definition 8], [6, Section
VIL.B]): 100F01 %= 010%10 for any integer k > 0.

Conjecture 9 (Rule Set D [7, (45)]): 0F12" = 1%02" for any
integer k > 0. (This is claimed to be proved in [8].)

Proposal 10 (Rule Set E [9]): T1 -+ Tor < T1---Tgr fOr
any integer £ > 0. Here, 7 = 01101001... is the Thue—
Morse sequence [27, OEIS: A010060]: 7,, is the parity of the
number of 1’s in the binary representation of n.

Remark: the significance of Proposal 10 is that it generalizes
RS-A, RS-B, and RS-C in an interesting way but, concerning
the chaotic nature of 7,, it is not obvious how to prove it. We
succeed in finding a proof.

Proposition 11: T, - - - T4, < T1 - - T4k for any integer k > 1.

Proof: Let o:= 0110 and ¢ := 1001. Use brute force to
verify (a) o < ¢, (b) ot < to, and (c) ot < too. Next use the



(a) All rule sets

(b) Bernstein (Ber(256))  (c) Standard comparison

(d) Fast preorder (e) Beta expansion

Fig. 2: Binary relations visualized via incidence matrices. Each picture has 256 rows and 256 columns indexed by {0, 1}%
lexicographically. Blue means row index > column index. Green means row index < column index. Red means incomparable.
Dimmed pixels are those that agree with (c). Note that (b) contains sixteen red pixels not dimmed. But as the n in Ber(n)

increases, all pixels will eventually agree with (c).

fact that 7 is cube-free (it does not contain ¢.¢) to infer that
T = ow oL 0 ott 0 or --- can be written as a product of o,
ot, and out. Hence (a), (b), and (c) are all we need to prove
TLTak N T1- - Tak. u
Proposition 12 (Rule Set F): 011 = 10.
Proof: Ini1(z) — Iio(x) = 23(z — 1)2(4 + 2 — 222 — 23);
which is nonnegative over x € [0, 1]. ]
See Fig. 3 for how progressively adding new rules unlocks
more comparable pairs. Notice how RS-F, despite of its
simplicity, manages to make a difference on top of all other
rules.

IV. BERNSTEIN BASES

Bernstein bases and Bernstein coefficients for polar codes
were studied in [5], [21], [28], [29]. Bernstein coefficients
form the closest representation of the shape of a function as
they are the ‘“control points” of a Bézier curve [30]. They
are also studied in the context of reliability polynomials [31],
[32]. In this section, we discuss the relation between Bernstein
coefficients and the partial order =.

Definition 13 ([33], [34]): The Bernstein basis of degree n
is the set {(7)z’(1 —2)"~":i=0,...,n}. It is a basis for
polynomials of degree at most n.

Definition 14: Let f be a polynomial with degree at most n.
Let Ber(n, f) be the expansion of f in terms of the Bernstein
basis of degree n:

f(z) = ; B; (?) 2 (1= 2)"

B; are called the Bernstein coefficients. The collection of
rescaled coefficients N; = B;(7) is called the N-form of

f.
A. Coefficient-wise partial order

We define an approximation of = using Bernstein basis.

Definition 15: Let a € {0,1}¢ and v € {0,1}™. Suppose
n > max(2,2™). We say a =per(n) 7 if the coefficients in
Ber(n, I, — I,) are all nonnegative.

Proposition 16: & =per(n) ¥ Iff & <Ber(n) -

Proposition 17: So long as n > max(2¢,2™), we have
O FBer(n) Y implying a 3= 7.

Proposition 17 indicates that we can use =ge;(r,) to generate
some comparable pairs. Fig. 2 shows that it almost enumerates
all pairs. This, as we see it, is because the converse is almost
true.

Theorem 18 ([35]): Given I, (z) > I,(x) forall z € (0, 1),
we have a =pe(n) 7 for sufficiently large n.

Proof: This is a direct consequence of the classical
results regarding whether a positive polynomial over (0, 1)
has positive Bernstein coefficients. Bernstein proved that this
is indeed true if n is made large enough. Subsequent works
addressed how large n needs to be. See [35, Section 1] for
discussion. ]

There is another (in fact, more effective) approach to prove
inequalities using Bernstein basis: subdivision.

Theorem 19 ([36]): If f is a degree-n polynomial positive
over [0, 1], then there are division points 0 = dy < ... < dy =
1 such that the Bernstein coefficients of f with respect to each
subinterval [d;, d;11] are all positive.

In [36], Theorem 19 is extended to an algorithm that outputs
(a) the division points to certify that f > 0, or f < 0 or (b)
a subinterval [a, b] plus a factor g | f such that g(a)g(b) <0
to witness that f has roots in [0,1]. This is a very reliable
method to prove or disprove any inequality of the form « = v
in finite time, and is the very method used to produce Fig. 2
and the proof of Proposition 11.

There is a library worth of literature that studies Bernstein
coefficients, especially when they play the role of the number
of size-7 subsets in an upward-closed family. The following
nontrivial fact, in particular, adds one more reason to why we
should study them.

Theorem 20 (Sperner and Kruskal-Katona [31, Section 5]):
Bernstein coefficients B; are non-decreasing in <.

B. The first nontrivial coefficient

Definition 21: Let f be a nonzero polynomial of degree at
most n. Let N; be the N-form of Ber(n, f). The exponent of
f is the smallest index 4 such that IV, is nonzero. The mantissa
of f is Nie exponent of f-



(a) RS-A and B (b) RS-A, B, and C

(c) RS-A, B, and D

(d)RS-A, B, C,and D (e) RS-A, B, C, D, and F

Fig. 3: Same setting as Fig. 2. As more rule sets are considered, less incomparable pairs wander.

Notice that f(¢) = mantissa-e*P°""(14+O(e)) when e — 0.
Theorem 22 ([21, Theorem 3]): Let a € {0,1}*. Let n > 2°.
Let N; be the N-form of Ber(n,I,). Then the exponent of
I, is 27, where z is the number of zeros in «; moreover, the
mantissa of I, is such that
b—z
10g2 (Ngz) — Z 2 number of 0’s to the right of the kth 1 in o )
k=1

Sketch: Note that In(x) = 22 and I1(z) = 2z + O(z?).

So I doubles the exponent and /; maintains it. Moreover, [
squares the mantissa and I; doubles it. ]

Studying exponents and mantissas gives us the leverage to
determine whether W or W7 is better when the underlying
W is very reliable. This is the theme of [21, Section IV-C].
On the other hand, it can also be used to generate necessary
conditions for the comparability of o and ~. The following
proposition gives an easy class of incomparable pairs.

Proposition 23: If o has more ones than v does and « has
more zeros than « does, then o and ~ are incomparable by =,
ie, a ¥ yand a £ .

Proposition 23 is not useful if one wants to compare « and
v having the same length. So in the next subsection we are
going to craft some examples leveraging the knowledge of
mantissas.

C. Use knowledge of coefficients to construct incomparables

Definition 24: We write o >a@o v if I, — I, = 0 or the
mantissa of I, — I, is positive. We write v ~ap 7 if I, and
I, share the same exponent and mantissa. We write o >aq v
if I, has a smaller exponent than I, does, or they have the
same exponent but the former has a higher mantissa.

>a@o, ~ao, and >ao imply that lim,_,¢ I (x)/I,(z) is > 0,
=1, or > 1, respectively. There are also “@1” versions, which
ask for the same criteria at the neighborhood of = = 1.

Definition 25: We write a >a1 v if & <ag 7. We write
a ~aq 7y if @ ~ap 7. We write a >a@1 v if @ <ag 7.

Proposition 26: If o =~ then a >@o v and o >a1 -

Example usage of Proposition 26: 100001 and 011000 are
incomparable under > because 100001 >g¢ 011000 and
100001 <@ 011000.

Proposition 27: If & >ap v and k ~ag A, then ak >ag YA
and Ka >ag Y.

Constructing more incomparable pairs becomes easy thanks
to Proposition 27. For instance, (k100001 k011000) is an
incomparable pair for arbitrary « and A.

V. BETA EXPANSION

Beta expansion [22] was defined not to partial-order the
channels, but to give, for each block length, a totally-ordered
list so a user will simply take the first k strings to construct
a code of dimension k. This is essentially a curve-fitting
problem. In [37] the authors models this with more parameters.

In this paper, we discuss whether beta expansion is com-
patible with the rule sets covered in Section III. We also try
to “explain” beta expansion using scaling exponent.

Definition 28: Let 3 be a positive real number. The beta
expansion of any string o = a; - - - ag € {0, 1}* is defined as

Y4
ap = Z aif)ziz.
i=1

Definition 29: We say a >g v if ag > ~yp for the beta
value understood from the context.

A. Compatibility of beta and rule sets

Proposition 30: If o > 7 and K > A while x and A
sharing the same length, then ax >g Y.
Proposition 31 ([22, Proposition 3]): 1 >g 0if > 0.
Proposition 32 ([22, Proposition 3]): 10 >g 01 if $ > 1.
Proposition 33 ([22, Proposition 1]): For o and « of the
same length, o > v iff & <pg 7.
Proposition 34: 10001 > 010%10 for all k if B > 1.
Proof: (100%01) — (010¥10)g = (B — 1)(B**2 — 1),
which is nonnegative as 3 > 1. ]
Proposition 35: 0%12" >p 102" implies p < 2-1/*,
So beta expansion and RS-D are not compatible due to
limy 00 271/F = 1.
Proof: 1 < (0712")/(1%0")g < p~F 4+ B2 + =3 4
= pB7*/(1 — B=F). This implies =% > 1/2. [ |
Proposition 36: Ty -+ Tor <p T1 -+ 7Tor if B > 1.
Proof: (Ti=31)p— (11 -+ 1ot)p = (¥ =1)(B* —1) x
---([32“1 — 1), which is nonnegative as B > 1. ]
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Fig. 5: Matchings among four total orders on {0, 1}%. The string 11110000 is shorthanded as f0. The Kendall tau distances

(the numbers of crossings) are marked on the right.

B. A theoretical connection between beta and scaling

Scaling exponent is the answer to the following ques-
tion: at block length 2¢, how many synthetic channels “stay
mediocre”? That is, how many v € {0,1}"™ are such that
e < HW?7) < 1—e. As it turns out, this number is about
2m=m/4 for AWGN channels and 2™~™/3-627 for BECs [38],
[39].

In beta expansion, the ith bit of o is endowed with an
“influence” of strength B‘~* (see also Fig. 4). But, it is very
clear that a; is influential only if W® %-1 is mediocre.
Hence, a hand-waving argument is that ‘% should be in
proportion to the fraction of mediocre channels, which is 2~%/4
for AWGN channels. This suggests f ~ 21/4, coinciding with
the value recommended in [22].

To prove our point, we turn to BECs. Since the fraction
of mediocre channels is now 27%/3:627 we hypothesize that
p = 21/3:627 should be “more suitable” than p = 21/4. We
measure the Kendall tau distance [40] among four total orders:
>p using B = 24 or B = 21/3627 and >, and >pi
defined in Section VI. We see in Fig. 5 that 21/3-627 avg, and
hif lead to similar total orders while B = 2'/% leads to an
outlier. This indicates that it is appropriate to sync 3 with the
scaling exponent.

VI. THRESHOLD—AREA OR HALFWAY POINT?

Inspired by beta expansion, we define total orders so that
the first k& strings will likely form a good polar code. Or, a
more conservative approach is to include the first k/2 strings
and carefully examine the next k strings (cf. [41]). For either
goal, a representative total order is in need.

A. Average

Definition 37 ([5, Definition 10]): Define avg(a) to be
fol I, (z) dz. We write o >,,5 7 when avg(a) > avg(7y).

Proposition 38 ([5, Proposition 7]): o >ave v if o 2= 7.

Proposition 39 ([5, Lemma 5]): o >ayg 7 T & <py 7.

Proposition 40: avg(a0) + avg(al) = 2avg(a).

Proposition 40 implies that, if A;, Ao, ... are iid random
bits, then avg(A; --- A;) is a martingale as ¢ increases. This
martingale is bounded and hence converging. The limit is the
¥ function in [20, Proposition 3] and the z* function in [39,
Lemma 11]. Hence avg(A;--- A;) can also be seen as the
Doob martingale of z*.

B. Halfway point

Definition 41: Define hlf (o) :== I;1(1/2). We say a >p1¢ 7y
if hlf(«) < hlf(y).

Proposition 42: « = v implies o >pyf 7.

Proposition 43: o >pi¢ v iff & <yt 7.

The halfway point was studied in [7], [20]. It and avg are
eventually the same function as the length of string goes to
infinity because the reliability polynomials experience hard
thresholds [19]. Halfway point outshines average because it is
as easy to compute as beta expansion (cf. [29]).

C. A Fast preorder

We conclude this paper with an intersection of three pre-
orders inspired by Section I'V-C.

Definition 44: We say « =g 7y if all three bullets are met:

e & >@p Y OF & ~ao Vs

e & >@1 7 O & ~a17;

o Q Znif 7.

Proposition 45: « = v implies « =gt 7.

Proposition 46: o =gt 7y iff & st Y-

=tst 1S easy to compute as >aq, ~ao, >a1, ~a1 involve
only counting 0 and 1 and >y, is a matter of chaining Iy !
and [, ! The fast partial order is empirically a very successful
approximation of »>. See Fig. 2 for how unnoticeable the
difference is.
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