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Abstract

We propose a flexible algorithm for feature detection and hypothesis testing in im-

ages with ultra-low signal-to-noise ratio using cubical persistent homology. Our main

application is in the identification of atomic columns and other features in transmis-

sion electron microscopy (TEM). Cubical persistent homology is used to identify local

minima and their size in subregions in the frames of nanoparticle videos, which are

hypothesized to correspond to relevant atomic features. We compare the performance

of our algorithm to other employed methods for the detection of columns and their

intensity. Additionally, Monte Carlo goodness-of-fit testing using real-valued sum-

maries of persistence diagrams derived from smoothed images (generated from pixels

residing in the vacuum region of an image) is developed and employed to identify

whether or not the proposed atomic features generated by our algorithm are due to

noise. Using these summaries derived from the generated persistence diagrams, one

can produce univariate time series for the nanoparticle videos, thus providing a means

for assessing fluxional behavior. A guarantee on the false discovery rate for multiple

Monte Carlo testing of identical hypotheses is also established.

Keywords: Cubical persistent homology; ALPS statistic; Catalysis; Persistent entropy;

Multiple Monte Carlo testing; Transmission electron microscopy

1 Introduction

Transmission electron microscopy (TEM) has become a critical tool in both physical and

life sciences for characterizing materials at the atomic level. Over the last 10 years, re-

cent advances in direct electron detectors have greatly improved sensitivity with detective

quantum efficiencies approaching the theoretical maximum of unity (Ruskin et al., 2013;

Faruqi and McMullan, 2018; Levin, 2021). As a result, the information content in signals

is now limited mostly by the Poisson shot noise associated with the quantum mechanical

processes responsible for electron emission and scattering. In principle, for a perfect detec-

tor, the fraction of noise in the signal can be made arbitrarily small by counting for longer

or by increasing the flux of the incident electron beam. However, increasing the measure-
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ment time/electron flux is simply not practical for many materials systems, as they are

irreversibly damaged by the electron beam (Egerton et al., 2004; Egerton, 2013, 2019).

The signal-to-noise ratio is also significantly limited when high temporal resolution is

required for investigations of dynamic behavior associated with kinetic processes in mate-

rials. In such experiments, the exposure time per frame is necessarily short resulting in a

high degree of shot noise in each frame. Recent efforts to understand structural dynamics

in catalytic nanoparticles have been significantly impacted by the challenges associated

with high degrees of noise (Lawrence et al., 2019; Levin et al., 2020; Lawrence et al., 2021;

Vincent and Crozier, 2021). Moreover, the large number of noisy image frames required to

fully map out the details of the spatio-temporal behavior requires the collection of large

image data sets—on the order of terabytes (Lawrence et al., 2019). As noted in Lawrence

et al. (2019), there is a continuing need for algorithms to automate the extraction of rel-

evant features from images to facilitate the assessment of dynamics, and to do so in the

presence of an immense amount of noise. Denoising methods based on convolutional neu-

ral networks trained on simulated nanoparticle configuration images have been developed

specifically to deal with such ultra-noisy nanoparticle videos (Mohan et al., 2022). How-

ever, it is not always be feasible to implement these methods in practice, frame-by-frame,

on the aforementioned terabytes of data.

In this article, we present an algorithm for detecting features in, and hypothesis testing

of, severely noisy images based off of topological data analysis (TDA)—more specifically,

cubical persistent homology (cPH) (Edelsbrunner et al., 2002; Kaczynski et al., 2006; Mis-

chaikow and Nanda, 2013). Cubical homology is more naturally suited to imaging as it

treats images and their connectivity in a natural manner, with no need for triangulation of

the inherently pixelated data (Kaczynski et al., 2006). Indeed, cubical persistent homology

(Garin and Tauzin, 2019; Rieck et al., 2020; Lawson et al., 2021; Chung and Day, 2018) has

been applied to great effect in the statistics, machine learning, and imaging communities in

recent years. Additionally, the algorithms which compute cubical persistent homology are

often much faster than their simplicial counterparts (Wagner et al., 2012). We will discuss

the background behind these concepts and provide intuition for them in Section 2.
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Topological methods as used in this paper have the advantage over traditional methods

in materials science in that they are isometry invariant. Cubical homology in particular is

invariant to translations, thus providing robustness against minor perturbations of atomic

columns and ridges across frames. In the previous few years, applications of methods

in TDA to materials science (beyond cPH) have seen greater adoption. In Motta et al.

(2018), the authors use functionals of persistent homology, such as the variance of H0

barcode lengths, to characterize the order of a nearly hexagonal planar lattice. In cluster

physics, Chen et al. (2020) examined the ability of topological features and machine learning

to predict ground-state structure-energy relationships in lithium clusters. In a similar

context, Jiang et al. (2021) examined a topological invariant called “atom-specific persistent

homology” to predict formation energy of crystal structures. Nakamura et al. (2015) used

persistence diagrams to characterize medium-range order in amorphous materials.

Here we use methods from TDA to quantify the fluxional behavior of nanoparticles.

As alluded to earlier, we identify atomic columns (see Figure 1) via their estimated per-

sistence—quantified within each individual frame as the difference in greyscale threshold

at which a given dark region appears and when it merges with another dark region that

appeared before it.1 The appearance of a connected component in our images corresponds

to the appearance of a local minima. Though methods such as Mukherjee et al. (2020);

Nord et al. (2017) use the local minima of images as initial locations for fitted Gaussians

(from which the intensity is estimated), here we estimate the intensity by the “lifetimes” of

the local minima, i.e. the concept of persistence that we defined at the start of this para-

graph. Thus, the lifetime of a local minimum (its persistence) is defined as the difference

in pixel values between the appearance of the local minimum and the pixel value at which

it merges with another longer-lived local minimum.

Recently, there have been forays into using the statistics that appear in TDA in hypoth-

esis and goodness-of-fit testing (Biscio and Møller, 2019; Blumberg et al., 2014; Fasy et al.,

2014; Robinson and Turner, 2017; Cericola et al., 2017; Vejdemo-Johansson and Mukherjee,

2022). The present article is the first to attempt this in a cubical setting and the first to
1Such a paradigm is called the elder rule and is described in detail in Edelsbrunner and Harer (2010).
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evaluate the efficacy of certain topological summaries to capture relevant topological fea-

tures in the presence of powerful noise. In particular, both persistent entropy (Chintakunta

et al., 2015; Rucco et al., 2016) and the accumulated lifetime persistent survival (ALPS)

statistic—a new topological summary—perform well and evince good statistical power. It

is our opinion that they would work well in a litany of tasks in summarizing noisy videos,

particularly the ALPS statistic when the number of features and their intensity are both

salient. On a final note, we prove a result demonstrating the false discovery rate of a certain

multiple Monte Carlo test is bounded by any α almost surely (see Supplementary Material

for the result and proof). This yields a theoretically sound—as well as computationally

efficient—means of multiple testing in persistent homology, improving on previous studies

in the area (Cericola et al., 2017; Vejdemo-Johansson and Mukherjee, 2022).

It is our hope that the algorithm and hypothesis testing framework we have devised here

can provide an off-the-shelf method of statistical detection of atomic structure in a flexible

manner for those in the material science community and others that deal with necessarily

noisy images. Our method performs well in the standard nanoparticle imaging task of

determining position and location of atomic columns (Nord et al., 2017; Levin et al., 2020)

and also performs well against the state-of-the-art (Manzorro et al., 2022). Additionally,

these topological methods do not presume a particular structure to the image data. For

example, Gaussian peak fitting and blob detection (ibid.) both assume an elliptical struc-

ture to features in the image which are present when individual columns of atoms are well

aligned. However, in many cases, the crystal may be tilted and individual columns may

not be resolved but planes of atoms may be visible. Moreover, during structural dynamics

and in the presence of high concentrations of crystal defect, the structure of the image

intensity may be complicated and rapidly changing. To elucidate structural dynamics, it

is important to have an image analysis method that can adapt to the changing structure

of the image contrast and does not presuppose a particular image form. Finally, between

the persistence entropy and the ALPS statistic, we offer a choice in how conservative a

practitioner wants to be in determining which atomic features are statistically significant.

In the following, we will discuss the cubical persistence algorithm we devised to process
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the extremely noisy videos at high time resolution in Section 3, along with the ability of said

algorithm to recover atomic features in simulated datasets before and after the application

of noise in Section 4. The main statistical contribution is in Section 5, wherein we describe

the parametric assumptions of the noise region of the data, check those assumptions, inves-

tigate various topological summaries of persistence diagrams that capture relevant atomic

features, detail our Monte Carlo goodness-of-fit test, and see the results on the data.

Before continuing to the description of our algorithm and the rest of the paper, we must

first introduce TDA and detail the concepts of cubical homology and persistence.

2 Background

Topological data analysis (TDA) is the field consisting of the methods and tools that

directly integrate shape information into the data analysis process. As one can imagine,

TDA is most often concerned with topological methods of quantifying shape, rather than

explicitly geometric content, such as location and angle. For a good up-to-date overview of

these methods, see Chazal and Michel (2021), or Carlsson and Vejdemo-Johansson (2022)

for a more in-depth treatment. In the following sections we detail methods for topological

analysis of image data.

2.1 Cubical sets

The tool that we use to assess shapes in images in this paper is cubical persistent homology

(cPH). One reason for considering a cubical representation of an image is that it is the

most natural construction for a 2-dimensional image from the perspective of topology, as

detailed in Kovalevsky (1989). Another reason is that cubical persistence algorithms run

in linear time in the number of pixels n in the image I, whereas traditional approaches

to persistent homology, such as using the Čech or Vietoris-Rips complex, can only be

computed in polynomial time in the number of points in the point cloud (Wagner et al.,

2012). To introduce cPH we must introduce the notion of cubical homology and the objects

it acts on: cubical sets. The cubical sets we consider here are collections of unit squares

6



(2-dimensional elementary cubes) of the form

[i, i+ 1]× [j, j + 1],

along with all intervals (1-dimensional elementary cubes) and vertices (0-dimensional ele-

mentary cubes) on the boundaries, where i and j are integers—i.e. (i, j) ∈ Z2. Once we

have a cubical set (or cubical complex ) X, we can calculate homology. Homology is an

algebraic method of formally characterizing connectivity in various dimensions (Edelsbrun-

ner and Harer, 2010). Given a cubical set X, we can associate a homology group Hk(X)

to it—which captures k-dimensional shape information—for each nonnegative integer k.

Of great interest are the dimensions of these homology groups, which are called the Betti

numbers of X and are denoted βk(X), or βk when the underlying cubical set is clear from

the context. The 0th Betti number β0 represents the number of connected components in

X and β1 represents the number of loops. As the relevant features we aim to capture are

darker than their surroundings, we focus on β0. One can see Figure 1 for the calculation of

β0 at various greyscale thresholds. In Figure 1 the black pixels are the ones included in our

cubical set—in this sense all cubical sets/complexes that we treat here can be considered

as binary images. For more information on cubical homology, one may refer to Chapter 2

of Kaczynski et al. (2006).

2.2 Image model

In this article, a (2-dimensional) image map is a function I : Z2 → [0, 1], where I(p) = 0

indicates that p is a black pixel and I(p) = 1 indicates that p is a white pixel. We call the

smallest rectangle [k, k+m]×[l, l+n] ⊂ R2 which contains all the black pixels—i.e. on which

1− I > 0—the image set, which we denote I. Via appropriate normalization, every image

that is bounded or has a finite image set can be modified to have pixels between 0 and 1.

We may choose to set the codomain of I to R (or the first n nonnegative integers) instead.

As previously mentioned, for the purposes of cubical homology and cubical persistence we

must identify I in some appropriate way with a collection of cubical sets. We do this

here by the construction of another function I ′ on the family of unit squares with integer
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Intensity thresholded images yield persistence diagram 

Betti numbers of 
thresholded images 

Persistence diagram PD0 

Figure 1: Thresholded images Xt of a single atomic column with greyscale values at most t

(where t = 1, 2, 3). The persistence diagram PD0 of the atomic column in the bottom left

can be seen to the right. The persistence diagram depicts the pixel values at which a given

black-connected region—a feature in H0—appears (i.e. is “born”) and when it merges or

“dies”. β0 of X1, X2, and X3 can be seen in the table in the center.

vertices. For any such τ = [i, i+ 1]× [j, j + 1] we define our filtration function

I ′(τ) := I(i, j).

For lower dimensional elementary cubes τ , such as intervals or vertices, we define the value

of I ′ to be the minimum I(i, j) such that τ ⊂ [i, i + 1]× [j, j + 1]. This is consistent with

the definition used in the persistent homology software GUDHI Python library, which we

use for our calculations throughout this article (Dłotko, 2015). We consider the homology

of sublevel set filtrations2, so darker pixel values will appear first. The cubical complex

construction we use here, treating pixels as unit squares (i.e. top-dimensional) is also known

as the T -construction and it is dual in some sense to treating pixels as points (or vertices),

rather than unit squares (Garin et al., 2020).

Remark 2.1. An important heuristic (see Figures 1, 2, and 3) is that in a binary image

black pixels p = (i, j), q = (k, l) ∈ Z2 are connected if |i− k| ≤ 1 and |j − l| ≤ 1. Thus, a
2Other filtrations could be considered here; however, besides the sublevel set filtration, all require

choosing a threshold at which to binarize the image (Turkes et al., 2021; Garin and Tauzin, 2019)–see also

the opening paragraph of Section 4.
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Cubical representation Graph representation 

Figure 2: Connectivity information in the cubical set to the left can is conveyed by the

graph to the right. Note that there is one connected component and two loops (white

regions surround by black), because the black region can connect via the diagonals and the

white region cannot.

connected component in cubical homology (contributing to β0) is a 8-connected black region

of pixels bordered by either white pixels or the edge of the image 3. The equivalence between

the notion of connectivity for the T -construction and 8-connectedness was established in

Kovalevsky (1989).

2.3 Persistent homology

Suppose now that we have the collection of cubical complexes X = {Xt}t∈[0,1], where

Xt :=
⋃

(i,j)∈I−1([0,t])

[i, i+ 1]× [j, j + 1],

or alternatively, Xt = I ′−1([0, t]). It is clear that for s ≤ t we have Xs ⊂ Xt and thus

X = {Xt}t∈[0,1] defines a filtration of cubical complexes. Given the inclusion maps ιs,t,

for s ≤ t there exist linear maps f s,t
k : Hk(Xs) → Hk(Xt) between all homology groups,

which are induced by ιs,t (see chapter 4 of Kaczynski et al., 2006). The persistent homology

groups of the filtered image X are the vector spaces im f s,t
k whose elements represent shape

features, such as connected components or loops—called cycles4—that are “born” in or

before Xs and that “die” after Xt. The dimensions of these vector spaces are the persistent
3Recall that all pixels not in the image (image set) are de facto white pixels in terms of cubical homology.
4Technically speaking these are equivalence classes of cycles, which are equivalent modulo a boundary.
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Figure 3: A simple 3 × 3 image, and the image as it is thresholded by pixel intensity I.

Note the appearance of a loop at I(p) = 0.5 and the death of the loop entering I(p) = 1.

Betti numbers βs,t
k . The kth persistent homology of X , denoted PHk, is the collection of

homology groups Hk(Xt) and maps fk
s,t, for 0 ≤ s ≤ t ≤ 1. Persistent homology keeps

tracks of the thresholds s, t at which various shapes appear and when they merge with

other shapes or disappear. All of the information in the persistent homology groups is

contained in a multiset in R2 called the persistence diagram—see Boissonnat et al. (2018);

Edelsbrunner and Harer (2010); these texts also serve as formal, yet accessible introductions

to the underlying theory of persistent homology.

The kth persistence diagram of X , denoted PDk, consists5 of the points (b, d) with

multiplicity equal to the number of the cycles that are born at Xb and die entering Xd.

For this study, we focus on PD0—see Figure 1 for an illustration of the 0th persistence

diagram associated to a filtration of a given greyscale image. In this particular setup, if

(b, d) ∈ PD0, this indicates there is a local minimum of the image X at some pixel p+

(called a positive cell ) with I ′(p+) = b and d represents the greyscale threshold at which

the connected component containing p+ merges with a connected component containing a

local minimum with birth time less than b. Furthermore, we can also find an interval τ−

that kills such a feature, i.e. I ′(τ−) = d (cf. Boissonnat et al., 2018).
5Often, the diagonal y = x is added to this diagram, but we need not consider this here.
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3 The algorithm

In this section, we describe our algorithm for extracting shape, location, and intensity

information from ultra-noisy images. To speed computation we may restrict our attention

to a rectangular subimage L ⊂ I—see Figure 6 for a depiction. Let us denote the restriction

of I to L by IL. Hence, we process our subimage p 7→ I(p) according to the following steps:

1. Identify polygonal6 nanoparticle region R ⊂ R2, which we will use to exclude pixels

that lie outside of R.

2. Smooth the image with a Gaussian filter, with smoothing parameter σ.

3. Compute PH0 for image IL , based off of the filtration function I ′L. Note that one

should have R ⊂ L.

4. If the pixel p+ associated to the creation of connected component is located outside

of R, remove point associated to p+ from PD0.

5. (Optional) Remove features with persistence lifetime at or below a threshold η ≥ 0

from PD0.

The algorithm is illustrated in Figure 4. For our image I, we denote the output of

this algorithm as A(I), which consists of the locations of atomic columns (or other atomic

features) as well as their persistence (or, intensity). As such, A(I) may be considered

as a finite subset of R × [0,∞). Equivalently, we may consider A(I) as a marked point

process on R with mark space [0,∞), as we assumed that our image I is subject to noise.

Additionally, we denote the thresholded output as Aη(I), so that the original output may

be considered as A(I) = A0(I). Formally Aη(I) = {(p, l) ∈ A(I) : l > η}, where l = d − b

are the lifetimes associated to the pixels p+. If we preprocess by restricting our image to

L, the algorithm requires only R and σ to be specified. We may choose σ based on the

elbow method; see Section S6 of the Supplementary Material.
6For specifying polygonal regions and which pixels are contained in them, we use the Shapely Python

library (Gillies, 2013).
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With this in tow, we examine the algorithm in greater detail. For step 1, as cubical

persistence does not consider the size of connected component per se, we remove image

features (corresponding to atomic columns in our application) outside of some region, which

we know either correspond to noise or the structure of which is of no interest. To smooth

the image, we consider I convolved with the spherical Gaussian kernel Gσ, which we denote

Iσ(i, j) := (Gσ ∗ I)(i, j) =
1

C

∑
(k,l)∈Z2

Gσ(i− k, j − l)I(k, l),

and

Gσ(x, y) :=
1

2πσ2
e−

x2+y2

2σ2 ,

where C =
∑

(x,y)∈Z2 Gσ(x, y). By convention let us take G0 = δ(0,0) be the Dirac delta

function at the origin, i.e. δ(0,0)(x, y) = 1 if and only if x = y = 0.

We have chosen the spherical Gaussian kernel because of various desirable properties—

see Section S4 in the Supplementary Material. We now compare the performance of the

above algorithm with other methods of finding atomic column positions and show how it

performs better in certain cases and works well as a method for finding initial positions of

atomic features.

4 Noise experiment

In this section, we assess the ability of the algorithm we introduced in Section 3 to perform

as well as the combined blob detection/gaussian peak fitting (GPF) method from (Manzorro

et al., 2022) in recovering the number, location, and intensity of the atomic columns in a

nanoparticle image corrupted by Poisson noise. Images were simulated and Poisson noise

was added according to the method described in the section entitled “Generation of the

Simulated Dataset” in Manzorro et al. (2022). Persistent homology is purported to be

robust to noise; in Skraba and Turner (2020), the authors offer a cubical version of the

classical persistence stability theorem (Cohen-Steiner et al., 2007), stating that if two image

maps are close, then their persistence diagrams are close as well. There have been other

efforts to quantify experimentally the noise robustness of cPH. In Turkes et al. (2021), the
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Figure 4: Illustration of our algorithm, applied to a cerium oxide (CeO2) nanoparticle as

described in Lawrence et al. (2019). Persistence in colorbar measured as proportion of

longest barcode.

authors demonstrated the empirical robustness of sublevel set (greyscale) filtrations for cPH

under affine transformations and additive noise (such as the Poisson noise encountered in

our application). Their results buttress our argument that pre-smoothing and thresholding

an image can faithfully recover the underlying topology.

Here, we assess the mean and standard error of three statistics related to the recovery

of the homology of simulated nanoparticle images based on the output of our algorithm.

Let us denote our smoothed noisy simulated images as Isσ,j, j = 1, . . . , 10. Let Iσ be the

σ-smoothed version of the noise-free simulated image I. We assess the ability of our cubical

homology algorithm applied to the noisy images, to recover atomic column position and

intensity that the algorithm outputs on the noise-free image. The three statistics are the
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number of columns output by the algorithm; the mean (Pearson) correlation ρ̂(Iσ, I
s
σ,j) of

the intensity of the derived columns in the noisy output A(Isσ,j) compared to the output of

the noise-free image A(Iσ); and the Hausdorff distance

dH(Iσ, I
s
σ,j) := max

{
max

(x,l)∈A(Iσ)
min

(y,lj)∈A(Isσ,j)
∥x− y∥ , max

(y,lj)∈A(Isσ,j)
min

(x,l)∈A(Iσ)
∥y − x∥

}

between the locations of the columns in the algorithms output. In this section, if the death

time equals d = ∞, we set d to be the largest finite death time in the persistence diagram

(if we chose d to be the largest pixel value in the image, the death time for the longest

barcode is a significant outlier). To assess the performance of each algorithm A (i.e. cPH

vs. blob detection/GPF), we assess the output of A with the same parameter set Θ (such as

Θ = {σ}, using our algorithm) on both the noisy and noise-free simulated images. For the

combined blob detection/GPF method7, the mean correlation was 0.9816 with standard

error 0.0046 and the mean Hausdorff distance was 2.319 with standard error 1.088. The

corresponding results for our cubical homology algorithm can be seen in Table 1.

For appropriate σ the mean Hausdorff distance was much better using our method,

though this could be attributed to the fact that a variety of σ smoothing values (50 different

values from 6 to 9) were used to find the best blobs in blob detection, whereas σ remained

fixed for the ground truth image as well as the noisy image in our method. As one can see,

the mean correlation performs similarly to blob detection, though for lower values of σ the

actual intensities of the 25 true atomic columns are retained to a much higher degree, owing

to less influence from surrounding pixels attenuating their signal. Setting the threshold η

such that we choose the 25 largest persistence values, we achieve correlations of 0.893 (0.042)

when σ = 2 and 0.961 (0.015) when σ = 4 between the derived intensities of Iσ and Isσ,j,

but the Hausdorff distances are larger, at 4.46 (0.59) and 2.52 (0.92) respectively.

Besides the blob detection/GPF method described here, there are similar methods in the

transmission electron microscopy community for finding atomic locations that iteratively

fit Gaussian peaks with initial means often chosen to be local minima/maxima: Atomap
7The locations of the blobs/atomic columns was initially calculated using the blob_log function in the

Python skimage library, as in Manzorro et al. (2022). The algorithm was applied in the same fashion as

Manzorro et al. (2022) to ensure optimality of parameters chosen and a fair comparison of the methods.
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Redness, indicating low persistence, 
quantifies the high uncertainty of this atomic column 

Apply atomic column pipeline

Add noise

Figure 5: Recovery of the 0th homology (i.e., atomic columns) in the presence of noise.

Note that persistence in these images is measured in terms of the proportion of longest

barcode.

(Nord et al., 2017), TRACT (Levin et al., 2020) and mpfit (Mukherjee et al., 2020). That

local minima and their “intensities”, are used fruitfully in this instance (and stated to have

limited value in Levin et al., 2020) is a testament to the efficacy of the global notion of the

size of local minima here, rather than a local one.

Comparing these methods with ours yields mean Hausdorff distances of 4.76 (0.94)

for the TRACT algorithm and 3.58 (1.39) for Atomap. This is perhaps unsurprising as

these algorithms, along the blob detection/GPF approach of Manzorro et al. (2022), yield

subpixel precision for the atomic column position. There is perhaps either not enough noise

or sufficient smoothing, so that our algorithm does not shift atomic column positions too

drastically from the ground truth, which demonstrates a form of spatial stability of the

positive cells of persistent homology. The comparison of output intensities of TRACT and

blob detection/GPF was done in Manzorro et al. (2022) so we do not replicate it here.

Blob detection using the Laplacian of Gaussian, used as part of the algorithm in Man-

zorro et al. (2022) and described in Lindeberg (1998) yields images seen in Figures S4a and
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σ 0 2 4 6 8 10 12

N(Isσ,j)

#Columns recovered

3055

(22.08)

55

(5.02)

25.2

(0.4)

25

(0)

25

(0)

25

(0)

24.5

(0.5)

dH
(
Iσ, I

s
σ,j

)
Hausdorff distance

26.61

(0.35)

23.82

(1.02)

5.16

(5.68)

1.74

(0.88)

2.21

(1.15)

4.19

(2.39)

21.52

(17.26)

ρ̂(Iσ, I
s
σ,j)

Pearson correlation

N/A N/A 0.961∗

(0.016)

0.962

(0.023)

0.929

(0.052)

0.843

(0.116)

0.721∗

(0.212)

Table 1: In each cell is the mean (standard error) of the summary described in the row

label for the smoothing parameter σ seen in the column label, across all 10 noisy frames.

An asterisk (*) means that mean/standard error was only taken over the (less than 10)

frames where all 25 columns were recovered—respectively 8 and 5 out of 10 instances for

σ = 4 and σ = 12. N/A indicate that in none of the 10 frames were the correct number of

columns identified. The Hausdorff distance is measured here in pixels.

S5 in the Supplementary Material, after tuning parameters optimally. Even in the case of

Image I10,281 (see below for notation), where there are approximately circular blobs present,

the method we present here yields results for atomic features that are very similar to the

case of blob detection. More information on this comparison of methods can be seen in the

Section S5 of the Supplementary Material.

5 Signal detection with hypothesis testing

As can be seen in the initial image of Figure 4, Figures 7a and 8a and Figures S8–S10 of the

Supplementary Material, the images we aim to analyze are extremely noisy. This necessi-

tates a goodness-of-fit test for a pure noise model. Here we use real-valued summaries of

cubical persistence as test statistics for this hypothesis for the primary reason that it allows

one to easily visualize dynamics as a univariate time series and thus aids interpretability

for practitioners.
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In many circumstances, such as the initial image of Figure 4 or Figure 7a, there are a

natural number of atomic features present in the image that an algorithm should be able

to retrieve. However, we are often required to choose a threshold η to return the correct

cardinality |Aη(I)|, which corresponds to the number of atomic features (be they columns

or planes). This might bias our result across the whole video due to the myriad different

crystal structures that the detector may capture. Hence, we desire real-valued summaries

which yield the same statistical conclusion as the number of thresholded columns but which

are continuous rather than discrete (so p-values retrieved do not require adjusting for ties)

and which do not require any parameter such as η to be tuned.

We concentrated our analysis on a N = 1124 frame video of a small area of a catalyst

consisting of Pt nanoparticles supported on a larger nanoparticle of CeO2
8. In the following

sections we discuss the relative merits of the various topological summaries and derive time

series for our 1124 frame video based on two summaries that seemed to work the best:

the persistent entropy and the ALPS statistic. We finish with detailing and applying our

hypothesis testing framework to these output time series.

5.1 Setup and assumptions

Let us denote I1, . . . , IN as the original image sequence with the same image set I. For our

basic setup, we consider a series of m ≥ 1 images summed

Im,ℓ :=
m−1∑
k=0

Iℓ+k, ℓ = 1, . . . , N −m+ 1.

Throughout, let us fix a subimage L ⊂ I and let us suppose that our unsmoothed pixels

take values on the nonnegative integers. We want to test whether or not the output of

the algorithm above produces noise or a definitive signal. We assume that in each image

Ik, k = 1, . . . , N there is some subset Vk ⊂ I that represents the vacuum, and as such,

is purely constituted of Poisson shot noise, as has been assumed in Levin et al. (2020)—

heuristically verified using plotting heuristics for the vacuum region of Pt nanoparticles in
8More information on this data and how it was collected can be found in Section S1 of the Supplementary

Material.
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Mohan et al. (2022). There is still the question of how to choose R. We have done this by

choosing a polygonal region R bounding the summed nanoparticle IN,1, which is tenable

as the nanoparticle experiences minimal movement from its initial location in the video.

In other imaging contexts we could estimate a null hypothesis of i.i.d noise by sam-

pling from the empirical distribution of pixel values within each Vk. However, a Poisson

assumption should hold, so we will more rigorously check the Poisson assumption here. If

we suppose that p ∈ Vℓ+k for all k = 1, . . . ,m so that Iℓ+k(p) is Poisson µℓ+k, then Im,ℓ(p) is

exactly Poisson with parameter
∑m−1

k=0 µℓ+k if Iℓ+k(p) are independent for each k. Thus, we

assume in our null model that each value Im,ℓ(p) has a Poisson distribution for pixels in the

vacuum region. It suffices to show that each value I1,ℓ(p) has a Poisson distribution, which

we will investigate shortly. Throughout this section, identify R with R ∩ L—adding any

8-connected elementary 2-dimensional cubes lying outside of R, so that we may compute

cPH. By convention if d = ∞, we set the death time d to be the largest pixel value in the

rectangular subimage of Ik, such as in Chung and Day (2018).

To test whether or not the observed output A(Im,ℓ) coincides with the null hypothesis

that the probability distribution Pℓ ≡ Pm
ℓ which generated the pixel values {Im,ℓ(p)

}
p∈R

in the polygonal region R is equal to the noise distribution Pℓ,0 ≡ Pm
ℓ,0, it will help to have

some idea of the distribution of A(I∗m,ℓ) when the random image I∗m,ℓ is generated from

the noise distribution, i.e. Pℓ = Pℓ,0. (Note that Pℓ and Pℓ,0 are considered as probability

measures on the set NR
0 of R-tuples of nonnegative integers). When the null hypothesis

H0 : Pℓ = Pℓ,0 holds, for each p ∈ R ⊂ I, I∗m,ℓ(p) are sampled i.i.d according to Fℓ,0.

As we may not know for certain the entire vacuum region (or the boundary of the

vacuum region may change) we may select a subregion Uℓ ⊂ Vℓ+k, k = 1, . . . ,m that we are

confident is entirely vacuum for every image Iℓ+k—see Figure 6. For simplicity, we suppose

that Uℓ = U for all ℓ = 1, . . . , N . In the following we identify U with U ∩ Z2. We assume

Fℓ,0 to be the Poisson distribution with parameter λm,ℓ. However, there is no evidence that

this mean changes (see Figure S1 of the Supplementary Material), so that λm,ℓ ≡ λm = mλ

where the maximum likelihood estimate of λ is

λ̂ =
1

|U |N

N∑
k=1

∑
p∈U

Ik(p),
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Subimage 

Vacuum 
region 

Image 

Figure 6: Depiction of selection of a subimage and vacuum region for an image I. Image

depicted here is Im,1 with m = 400. That is, it is the sum of the first 400 frames in a video

of in situ TEM with 3 Pt nanoparticles. Performing such summing is useful to help idenitfy

an important subimage L and region R which correspond to interesting atomic structural

dynamics.

assuming independence across frames. In other words, we assume that Pℓ,0 ≡ P0 and

Fℓ,0 ≡ F0. It is worth mentioning that we could have chosen to estimate λm from the mean

intensity in R instead, though the intensity would typically be lower, which would indicate

a lower variance given the (Poissonian) nature of the data. Therefore, the average lifetimes

in the persistence diagrams would be lower and it would reduce the power of the hypothesis

tests below. It is also more natural to estimate vacuum behavior from a known vacuum

region, rather than treating the data as if it were a vacuum region.

Let us denote F̂m
0 to be the Poisson distribution with parameter λ̂m = mλ̂ and denote

P̂m
0 to be the product measure induced by F̂m

0 on NR
0 . Denote Fℓ,U to be the empirical cdf

of the vacuum pixels in frame ℓ and Fm
U to be the empirical cdf of{

Im,ℓ(p) : ℓ = mk + 1, k = 0, . . . , ⌊N/m− 1⌋, p ∈ U},

where FU ≡ F 1
U . Let F̂0 := F̂ 1

0 be Poisson with mean λ̂. In practice, we have taken U to
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be the black rectangular region seen in Figure 6, which is 400 pixels by 250 pixels. Here

we use the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (see DasGupta, 2011; Massart,

1990),

P(sup
k∈N0

|FU(k)− F̂0(k)| > ϵ) ≤ 2e−2|U |ϵ2 ,

to test the Poisson assumption in the vacuum region. Noting that λ̂ is a sufficient statistic

and that the Kolmogorov-Smirnov (KS) distance is hn = 0.00329, we apply this inequality

with ϵ = hn and refute the assertion that the data in the vacuum frame are i.i.d. Poisson

random variables.

Though the Poisson assumption may fail to hold precisely over this massive sample,

there is little practical and theoretical evidence for doing away with it. Indeed, there are

no substantive changes in the Monte Carlo p-values when sampling from the empirical

distribution Fm
U (see Tables S1, S2, and Section S3 in the Supplementary Material). Fur-

thermore, were we to have a perfect detector, the rate of arrival of electrons at each pixel

in the vacuum would follow a Poisson distribution (Levin, 2021); thus, we maintain our

initial assumption that the marginal distribution for pixels for the noise distribution in

each frame is Poi(λ).

Section S2 of the Supplementary Material dives deeper into whether the assumptions

mentioned above were satisfied for the vacuum regions in our primary image series. An

assumption of independence between frames shows a minor violation, yet only a maxi-

mum mean autocorrelation of 10−3 across the first 50 lags. Nonetheless, there is robust

evidence supporting independence of pixels within frames and stationary and ergodicity

across frames. In conclusion, it seems as if the parametric approach we have outlined

above is tenable, given the theoretical properties of the materials and the physics, even in

spite of the fairly minor violations of the assumptions in practice.

5.2 Empirical results: hypothesis testing and time series

Assume we believe that the number of (thresholded) columns output by our algorithm

for the summed image Im,ℓ is higher for an image with a strong signal in contrast to an

image that is composed entirely of noise. In other words, we are interested in the quantity
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nℓ := |Aη(Im,ℓ)|, and in particular the evidence of nℓ against H0. We follow Davison

and Hinkley (1997) in constructing a p-value for our Monte Carlo hypothesis test. First,

we generate pixel values in L (hence R as well) according to P̂m
0 to yield an image Î∗m,ℓ.

We proceed by generating a number of i.i.d. instances of Î∗m,ℓ denoted Î1, . . . , În. There

is precedent to the idea of using generated simulated smoothed images (which can be

considered as discrete random fields) for hypothesis testing—an example of which can be

seen in Taylor et al. (2007). The initial p-value we aim to estimate is

P0

(
|Aη(I

∗
m,ℓ)| ≥ nℓ

)
, (1)

where P0 is a probability measure under which the null hypothesis holds. The p-value (1)

is valid when we condition on λ̂. In practice, we estimate the true p-value (1) by the rank

of nℓ amongst the simulated value |A(Îk)|. As nℓ is discrete (integer-valued), such a rank

is not unique, so we utilize the Monte Carlo p-value

1

n+ 1

(
1 +

n∑
i=1

1
{
|Aη(Îk)| ≥ nℓ

})
.

This is reasonable if both |Uℓ| and n are sufficiently large, by (1). For our particular setting,

let m = 10, σ = 2, 4, 6, η = t(σ) and set n = 9999, U to be the black region in Figure 6, and

R to be the polygon in Figure 7—where t(σ) is a function calibrated by the user to recover

relevant atomic features in an image. Here we chose t(2) = 1, t(4) = 0.4, and t(6) = 0.1.

For σ = 4 and ℓ = 241, we estimate that

P0

(
|Aη(I

∗
m,ℓ)| ≥ nℓ

)
= 0.0001

which yields very strong evidence against H0 for the pixels in R in Figure 7a, where nℓ = 6.

This method worked well because there are many “significant” features in the nanoparticle

image; this would also work with any algorithm A which outputs a (marked) point process,

such as blob detection (Lindeberg, 1998; Kong et al., 2013). However, if there is only one or

two highly persistent features, this test will be decidedly underpowered. Additionally, there

is issue of choosing a threshold η—there are many other values of η that would lead to the

anticipated rejection of H0; also, manually inspecting thousands of images to find relevant

features is infeasible in practice. In general, we may consider a real-valued functional f of

21



a marked point process on R, such that larger values of f
(
A(Im,ℓ)

)
for our summed image

would lead us to reject H0. We can proceed with the exact same framework as the above,

but what sort of function would yield useful information? In principle, we could use any

method that can be used with a point process, see Illian et al. (2008). But such methods

could be used with the output of methods such as blob detection (as in Manzorro et al.,

2022), as well. As such, let us consider a real-valued function of the marks of A(I)—i.e. the

lifetimes of the points in the persistence diagram PD0—called persistent entropy (Rucco

et al., 2016; Atienza et al., 2020). Because we consider output of the algorithm in the case

of noise to be associated with more disorder, we actually take the negative of the persistence

entropy, or

H
(
A(I)

)
:=

∑
(p,l)∈A(I)

l/L log(l/L) =
∑

(b,d)∈PD0

(
(d− b)/L

)
log

(
(d− b)/L

)
,

where L =
∑

(p,l)∈A(I) l =
∑

(b,d)∈PD0
d− b. Higher values of H

(
A(I)

)
, i.e. values closer to

zero, signify smaller entropy. Using the negative of persistent entropy yields a Monte Carlo

p-value of

P0

(
H
(
A(I∗m,ℓ)

)
≥ Hℓ

)
= 0.0317,

where Hℓ = H
(
A(Im,ℓ)

)
is again the observed value for image depicted in Figure 7a. One

may also consider the longest barcode (or, the infinity norm), i.e.

L
(
A(I)

)
:= max{l : (p, l) ∈ A(I)} = max{d− b : (b, d) ∈ PD0}

as well as the sample mean persistence E(A(I)) =
∑

(p,l)∈A(I) l/|A(I)|. We also introduce

the ALPS (accumulated lifetimes of persistence survival) statistic, ∆(A(I)), defined by

∆(A(I)) :=

∫ ∞

0

logU(η) dη, (2)

where U(η) =
∑

(p,l)∈A(I) 1
{
l > η

}
=

∑
(b,d)∈PD0

1
{
d− b > η

}
. We can easy generalize this

to any persistence diagram PDk, just as one can with any of the aforementioned summaries.

Let us order the lifetimes of PD0 as l(1) ≤ · · · ≤ l(K) where K = |A(I)| is the number of

points/barcodes in the persistence diagram. There is another convenient representation of

(2) which is worth mentioning.
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Test statistic
Number of columns Persistent entropy Longest barcode Mean persistence ALPS statistic

|At(σ)(I10,241)| H
(
A(I10,241)

)
L
(
A(I10,241)

)
E
(
A(I10,241)

)
∆
(
A(I10,241)

)
σ = 2 0.0001 0.0001 0.0595 0.2303 0.0008

σ = 4 0.0001 0.0317 0.0063 0.0013 0.0001

σ = 6 0.1140 0.7966 0.5573 0.2660 0.1032

Table 2: Monte Carlo p-values pn for various real-valued topological summaries of

I10,241, Î1, . . . , Î9999 smoothed with varying values of σ. Images were generated according to

P̂ℓ,0. With at least 95% confidence the true p-value lies in pn ± 0.0137, truncating at 0 or

1—see Supplementary Material for more information.

Proposition 5.1.

∆(A(I)) = −
K−1∑
i=1

l(i) log

(
1− 1

K − i+ 1

)
,

We offer a short proof in Section S7 of the Supplementary Material. Based on Propo-

sition 5.1 there is no need to consider how to treat the infinite barcode, if it is present in

R. The ALPS statistic is similar in spirit to the accumulated persistence function (Biscio

and Møller, 2019), and aims to balance the information content of the longest barcode with

that of the lifetime sum, or 1-norm,
∑K

i=1 l(i) of the persistence diagram.

Other summaries contain useful information but fluctuate wildly9, such as the sample

skewness of the persistence lifetimes, or never yield a significant signal—e.g. the p-norms

of persistence (Cohen-Steiner et al., 2010) and the signal-to-noise ratio (of mean lifetime

divided by standard deviation of lifetimes). The persistent entropy was found to be most

stable to whether or not we were in parametric or nonparametric setting. The ALPS

statistic p-values decreased across the board in the nonparametric setting, which is what

one would expect as in both images I10,221 and I10,241 there appears to be some signal. The

summary of the Monte Carlo p-values for each of these five test statistics can be seen in

Table 2 and 3.

In the image in Figure 7a, as there is an extremely robust nanoparticle structure present,
9Tables S3–S6, supporting this conclusion, can be seen in the Supplementary Material.
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(a) Output A0.4(I10,241) (colored

points) superimposed over the ob-

served subimage.

(b) Output A0.4(Îk) (colored points)

superimposed over a pure noise subim-

age.

Figure 7: The output A0.4(I), σ = 4, for an observed subimage (left) and a pure

noise/simulated subimage (right). Here I10,241 can be seen to have a strong signal cor-

responding to various atomic features.

we would expect to reject the null hypothesis of an the image consisting of i.i.d. Poisson

random variables. If we examine a different summed image, as in Figure 8a, we can see

upon thresholding the image with η = 0.4 that there are only two columns. Hence the

larger estimated p-value in this case. However, both persistence entropy H and longest

barcode L indicate that it is reasonable to reject the null hypothesis that Pℓ = P0—see

Table 3.

Based on the output of the tables above, it seems that the ALPS statistic and persistent

entropy are the best metrics of the five that we’ve considered. The ALPS statistic has the

smallest variance across the p-values; it additionally seems to correlate fairly strongly with

the p-value associated to the thresholded number of columns. Furthermore, it does not

require any tuning of the threshold parameter η. Both the ALPS statistic and the persistent

entropy seems to yield the best “separation” between an observed image with clear signal

and noisy simulated images—see Figure 9. Persistent entropy also corresponds with known

changes in atomic configurations (see Figure 10) and enjoys various stability properties

(Atienza et al., 2020). Hence, for smoothing parameters σ in any compact interval bounded

away from zero, it can be shown that σ 7→ Iσ is a smooth function as well, thus persistent
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(a) Output A0.4(I10,221) (colored

points) superimposed over the ob-

served subimage.

(b) Output A0.4(Îk) (colored points)

superimposed over a pure noise subim-

age.

Figure 8: The output A0.4(I), σ = 4, for an observed subimage (left) and a pure

noise/simulated subimage (right). Here I10,221 can be seen to have a weak signal corre-

sponding to various atomic features.

entropy does not fluctuate too rapidly for small changes in σ (one can use the stability

theorem for cubical persistence from Skraba and Turner, 2020). Experimentally, it appears

this holds with the ALPS statistic too—see Figure 9.

In Figures 10 and 11, we derive time series by calculating the topological summaries

persistent entropy and ALPS statistic, respectively, for the two nanoparticle regions seen

in the lower right portion of Figure 10). The summaries were calculated framewise. To

choose σ we have used the elbow method described in Section S6 of the Supplementary

Material. We applied this method and σ = 2 was chosen as it appeared at the elbow of the

plots in Figure S6 and therefore led to a high degree of correspondence with “stable” states,

meaning presence of visible nanoparticle structure10. Such structure began to disappear as

σ increased, and the association of the statistic between low values (persistent entropy) or

high values (ALPS) and high order reversed when σ was too large. Part of the reason for

this is that noisy images with a sufficiently large degree of smoothing will have fewer total

output points in A(I), which typically leads to less variation and entropy–see Figure 9.
10Figure 9 illustrates this for I10,241, suggesting that σ ≈ 3 is appropriate for said image.
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Test statistic
Number of columns Persistent entropy Longest barcode Mean persistence ALPS statistic

|At(σ)(I10,221)| H
(
A(I10,221)

)
L
(
A(I10,221)

)
E
(
A(I10,221)

)
∆
(
A(I10,221)

)
σ = 2 0.0916 0.0604 0.1485 0.3523 0.0851

σ = 4 0.2015 0.0213 0.0378 0.0051 0.0531

σ = 6 0.2888 0.2040 0.1620 0.0328 0.1762

Table 3: Monte Carlo p-values pn for various real-valued topological summaries of

I10,221, Î1, . . . , Î9999 smoothed with varying values of σ. Images were generated according to

P̂ℓ,0. With at least 95% confidence the true p-value lies in pn ± 0.0137 (truncating at 0 or

1)—see Supplementary Material for more information.
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Figure 9: Persistent entropy (left) and ALPS (right) for various smoothing parameters σ

for image I10,241, compared with same series for 19 simulated images.

5.3 Multiple testing using persistent entropy

and the ALPS statistic

Using the extension of the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995;

Benjamini and Yekutieli, 2001), we test each of the frames in the summed series I5,5k+1,

k = 0, 1, . . . , 223 versus the null hypothesis that they were generated according to Pℓ,0,

with m = 5. We use m = 5 here instead of the individual frames, because very few

frames (only for the top region, using persistent entropy) are significant. We proceed

by generating n = 9999 images according to the same recipe outlined at the start of
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Right: nanoparticle
regions superimposed
over summed image
frames

Figure 10: Time series of persistent entropy over all 1124 frames for the nanoparticle regions

depicted in lower right. Selected nanoparticle frames corresponding to high/low values of

persistent entropy are depicted along with binarized images derived from PD thresholding

Chung and Day (2018)—see Supplementary Material for how this was implemented.

Section 5.2. A detailed description of our testing framework can be seen in Section S8

of the Supplementary Material. Again we make the assumption that Pℓ,0 = P0, or that

the same noise hypothesis is shared by each frame. This is not unreasonable based on

what we have found so far. Our approach is at least somewhat similar to the framework

described for multiple testing using persistent homology described in Vejdemo-Johansson

and Mukherjee (2022). However, in said article, they are concerned with point cloud-based

rather than cubical homology and potentially different null distributions for each test. Here

our hypotheses are H0 : P5k+1 = P0, for each k = 0, 1, . . . , 223.

As we generate so few images owing to the stationarity assumption of our time series

of topological summaries, the computational costs are significantly less than that of other

hypothesis testing settings using persistent homology (Vejdemo-Johansson and Mukherjee,
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Figure 11: Time series of ALPS statistic over all 1124 frames for nanoparticle regions

depicted in lower right of Figure 10.

2022; Robinson and Turner, 2017). We also guarantee that our multiple testing framework

has asymptotic false discovery rate less than α, almost surely—see Proposition S8.1 in the

Supplementary Material.

Figures 12a and 12b indicate that the persistent entropy has much greater power than

the ALPS statistic, though depending on the application it may be a bit overzealous. For

researchers that are more conservative in their desire to detect atomic features, the ALPS

statistic may be preferable. It is also possible to normalize the time series and consider the

convex combination λH(A(I))+(1−λ)∆(A(I)) for λ ∈ (0, 1). One may verify that for the

values of k surrounding 200 for the top region and values of k around 25 for the bottom

region, there is a significant nanoparticle structure present—see Supplementary Material

Section S9, and Figures S8b and S8c.

6 Discussion

In this paper we have discussed a novel means of detecting atomic features in nanopar-

ticle images, which compares favorably to existing methods and is nonparametric in its

estimation of intensity. We have also investigated means of hypothesis testing the pres-
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Figure 12: Persistance summaries I5,5k+1, k = 0, 1, . . . , 223 image sequence for top and

bottom regions with non-noisy frames at the α = 0.05 level marked by points. Runs of

significant frames for each region depicted above and below the plotted curves.
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ence of signals in images with ultra-low signal-to-noise ratio and detailed a useful method

for deriving time series from noisy videos. We have also introduced the ALPS statistic,

which conveys much of the same information content in a hypothesis testing context as the

number of columns present after appropriate thresholding.

As topological data analysis is such a young field, there is no shortage of directions along

which the methods in this article could be expanded. For example, one could employ a

functional version of |Aη(I)|; alternatively, some another functional summary of persistence

diagrams may hold promise, especially used in conjunction with a global rank envelope test

as in Biscio and Møller (2019) and Myllymäki et al. (2017). Furthermore, using persistent

homology for point clouds such as the Vietoris-Rips filtration (Boissonnat et al., 2018),

would utilize the location information derived from the above algorithm in an essential

way. Using a weighted Vietoris-Rips filtration may even furnish more precise results (Anai

et al., 2020), as the marked point process output of the algorithm naturally yields weights

for each point. After deriving an additional persistence diagram from the output A(I), one

may choose an appropriate functional summary (see Berry et al., 2020) and proceed from

there.

Furthermore, other choices of filtrations that are more suited to capturing geometric

information, may be considered in future studies. Examples include treating the locations

of black pixels as embedded into Euclidean space, and then applying a Vietoris-Rips or

density-based filtration (Garin and Tauzin, 2019; Turkes et al., 2021). As mentioned ear-

lier, these methods require the choice of a threshold and hence multi-parameter persistent

homology may be a more appropriate tool—see Chung et al. (2022). In sum, our hope is

that this study can find adoption in the microscopy community and also be used as point

of departure for future studies at the intersection of image processing, statistics, and TDA.

Supplementary Material

The Supplementary Material contains additional derivations and simulations pertaining to

the main text. Every section of the Supplementary Material is referenced in the text above.

Python code and the videos can be found in DataAndCodeForPaper.zip.
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S1 Details on the collection of the primary image series

By the primary image series, we mean the sequence of 1124 images in Section 5 of the paper.

The data is a subset of a large dataset recorded as part of an in situ electron microscopy

investigation of the behavior or Pt nanoparticles during catalysis, specifically CO oxidation

(Vincent and Crozier 2021). The in situ TEM experiments explored the behavior of 1–

5 nm Pt nanoparticles supported on CeO2 cubes in a variety of different atmospheres.

The experiments were performed on an FEI Titan environmental transmission electron

microscope operating at 297 keV and were mostly carried out with an electron fluence

1



of 600 e-/Å2/s. High resolution images were recorded with a Gatan K3 direct electron

detector operating in CDS counting mode. Movies were recorded at up to 75 frames

per second. In many cases the Pt particles were observed to randomly undergo dynamic

structural reconfiguration. For this particular image sequence employed here, the catalyst

was exposed to a CO partial pressure of 3× 10−2 Torr at room temperature. The video is

entitled “PtCeO2_6.tif”.

S2 Assumptions of the primary image series

It is reasonable to believe that there may exist auto- and/or cross-correlation of pixels

between frames, owing to the high temporal resolution. Indeed, the mean autocorrelations

over all pixels in the vacuum region ρ̄(h) = 1
|U |
∑

p∈U ρ̂p(h) are negative for the first 1093

lags, i.e. h = 1, . . . , 1093. If we consider h ≪ N , under the assumption of independence

of each pixel along both spatial and temporal axes, ρ̂p(h)
i.i.d.∼ N(0, 1/1124) for all p ∈ U .

Therefore,

ρ̄(h) ≃ N

(
0,

1

1.124× 108

)
.

Under our hypothesized spatio-temporal independence the probability that at least one

of the first 50 mean correlations ρ̄(h), h = 1, . . . , 50 is less than its observed value has an

upper bound of 2.55×10−10, by using the standard probability union bound. Therefore, we

can conclude there is strong evidence against temporal independence of the frames in the

nanoparticle videos. These negative correlations are small however, with minimum value

−0.001003 and maximum value −0.000007, so summing a small number of frames (such as

10) does not deal a forceful blow to the Poisson assumption of the summed pixels.

The vacuum means for each frame in the primary image series of 1124 images are con-

sonant with a stationary white noise series—see Figure S1. Further reinforcing this notion

is that the means of these frames are essentially normally distributed (after standardizing),

as displayed in the q-q plot in Figure S2. This follows if independence holds across frames.

Setting m = 1, the p-values

min

{
1, 2 exp

(
− 2n sup

k∈N0

|Fℓ,U(k)− F̂0(k)|2
)}

,

2



0 200 400 600 800 1000

0.452

0.454

0.456

0.458

0.460

0.462

Vacuum means of all 1124 frames

Figure S1: Vacuum means for all 1124 frames.

can be shown to be valid for each ℓ = 1, . . . , N and thus can be used to construct a

level α test. Because of the near independence of the frames, we can use the Bonferroni

method; there are 2 frames out of 1124 which reject the null hypothesis that the vacuum

pixels in frame ℓ,
{
I1,ℓ(p)

}
p∈U , ℓ = 1, . . . , N are i.i.d. Poi(λ) when the significance level

α = 0.05. For practical purposes each frame seems to be identically distributed and very

nearly independent, with some distribution that is very close to a Poisson; the KS distances

supk∈N0
|Fℓ,U(k)− F̂ℓ,0(k)| also have mean nearly hn, and thus satisfy

1

N

N∑
ℓ=1

sup
k∈N0

|Fℓ,U(k)− F̂0(k)| ≈ sup
k∈N0

|FU(k)− F̂0(k)|.

This is accordant with supk∈N0
|Fℓ,U(k)− F̂0(k)| being a stationary and ergodic sequence—

suggesting the same for the pixels in the vacuum region of each frame.

An analysis of the semivariograms of the vacuum regions (Figure S3) of the two images

I10,221 and I10,241 indicates no violation of independence of the pixels within frames. Indeed,

the empirical semivariogram Cressie [1993],

γ̂(l) =
1

2|N(l)|
∑

(pi,pj)∈Nl

(Im,ℓ(pi)− Im,ℓ(pj))
2,

3



Figure S2: Q-Q Plot of vacuum means for all 1124 frames.

with l = 0, . . . , 14 and

N(l) :=
{
(pi, pj) ∈ U × U : ∥pi − pj∥ ∈ [4l/3, 4l/3 + 4/3), i ̸= j

}
,

indicates a robustly satisfied i.i.d. assumption for the vacuum region in both summed

images—see Figure S3 below. At the very least, there is no evidence of correlation. The fact

that the plots are nearly indistinguishable lends credibility to the assumption of stationarity

across frames as well. Even looking at

γ̂(1) =
1

2|N(1)|
∑

(pi,pj): ∥pi−pj∥=1

(Im,ℓ(pi)− Im,ℓ(pj))
2,

where N(1) is the set we sum over, we see that in the case of I10,221 the difference between

γ̂(1) and the variance is |4.4983− 4.4743| = 0.024 and |4.45− 4.441| = 0.009 in the case of

I10,241.
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Figure S3: Plots of empirical semivariograms for the vacuum regions of I10,221 and I10,241,

along with plotted estimated spherical model—see Cressie [1993]. The histograms are equal

as the binning is the same and the collection of pairwise distances for the two 250 × 400

vacuum regions U are identical.

S3 Further results of the experiments

and nonparametric setup

For the p-values seen in the tables we used an earlier image series, consisting of the first

400 frames of the primary image series, and modulo some minor transformations—e.g.

rotation, translation, etc. This video was entitled “010402_stk_400fr.tif”. We used F 10
U

for the empirical cdf of pixel values. We see that there is little difference in Tables S1 and

S2 from their parametric counterparts in the main document, especially with regards to

the persistent entropy and ALPS statistic.

For completeness, we conduct our Monte Carlo hypothesis test with a few different real-

valued summaries of persistence diagrams, i.e. functionals f
(
A(Im,ℓ)

)
, from the ones seen

in the main document. The first is signal-to-noise ratio (SNR), a summary that appears

often in materials science, and defined as

SNR
(
A(I)

)
:= E(A(I))/

√
M2(A(I)),

where more generally we have

Mk(A(I)) =
1

|A(I)|
∑

(p,l)∈A(I)

(l − E(A(I)))k.
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With this in mind, we can define the sample skewness as

S
(
A(I)

)
:=

M3(A(I))

M2(A(I))3/2
.

It seems that perhaps the negative of SNR and the skewness both perform well for small

levels of smoothing, but the association breaks down as σ goes from 2 to 4—see Tables S3–

S6.

We also considered two more standard summaries, the lifetime sum (degree-1) and

degree-2 total persistence [Cohen-Steiner et al., 2010]. These are generally defined (for

k ≥ 1) as

Lk

(
A(I)

)
:=

∑
(p,l)∈A(I)

lk.

Both the lifetime sum and the longest barcode were used in Rieck et al. [2020], with the

longest barcode performing better in their prediction task.

The functionals Lk have desirable properties, such as stability in the sense that small

perturbations of the underlying filtration yield small perturbations of Lk–see Cohen-Steiner

et al. [2010]. However, the k-norms Lk(A(I))
1/k decay at the rate O(1/σ) for k ⪆ 5 [Chen

and Edelsbrunner, 2011] which may explain the lack of utility (or consistency) of L1 and L2

across a wide range of σ. Furthermore, in the case of a cubical complex, the lifetime sum

obeys a central limit theorem (cf. Theorem 2.13 in Hiraoka and Tsunoda 2018). Hence,

future studies could investigate multiple testing using the lifetime sum in an ANOVA type

setting.

With that being said, the associations are quite sensitive to the smoothing parameter

σ, just like the SNR and sample skewness. Hence, they were not considered in the paper.

The Monte Carlo p-values using these summaries can be seen in Tables S3–S6.

S4 Justification of the Gaussian kernel

With respect to a suitably large class of kernels and signals, the Gaussian kernel is the

only kernel that increases (first-order) local minima in continuous 1-dimensional signals as

σ increases—see Babaud et al. [1986] for more details. In other words, the value of a signal
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Test statistic |At(σ)(I10,241)| H
(
A(I10,241)

)
L
(
A(I10,241)

)
E
(
A(I10,241)

)
∆
(
A(I10,241)

)
σ = 2 0.0001 0.0001 0.0587 0.1993 0.0007

σ = 4 0.0001 0.0328 0.0056 0.0017 0.0001

σ = 6 0.1017 0.8109 0.5365 0.2476 0.093

Table S1: Monte-Carlo p-values for various real-valued summaries I10,241, Î1, . . . , Î9999, with

images generated F 10
U . That is, generated according to the product empirical pixel distri-

bution.

Test statistic |At(σ)(I10,221)| H
(
A(I10,221)

)
L
(
A(I10,221)

)
E
(
A(I10,221)

)
∆
(
A(I10,221)

)
σ = 2 0.0782 0.0572 0.1372 0.3118 0.0705

σ = 4 0.1890 0.0230 0.0329 0.0027 0.0509

σ = 6 0.2825 0.2104 0.1512 0.0294 0.1681

Table S2: Monte-Carlo p-values for various real-valued summaries I10,221, Î1, . . . , Î9999, with

images generated according to F 10
U . That is, generated according to the product empirical

pixel distribution.
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Test statistic SNR(I10,241) S
(
A(I10,241)

)
L1

(
A(I10,241)

)
L2

(
A(I10,241)

)
σ = 2 0.9802 0.0241 0.9999 0.2071

σ = 4 0.8655 0.3939 0.0038 0.0025

σ = 6 0.3250 0.8391 0.0838 0.1869

Table S3: Monte Carlo p-values pn for various real-valued topological summaries of

I10,241, Î1, . . . , Î9999 smoothed with varying values of σ. Images were generated according to

P̂ℓ,0. With at least 95% confidence the true p-value lies in pn ± 0.0137 (truncating at 0 or

1). These summaries where not considered in the main document.

Test statistic SNR(I10,221) S
(
A(I10,221)

)
L1

(
A(I10,221)

)
L2

(
A(I10,221)

)
σ = 2 0.7440 0.0357 0.9006 0.5246

σ = 4 0.1681 0.4042 0.2817 0.0523

σ = 6 0.1532 0.6417 0.2733 0.157

Table S4: Monte Carlo p-values pn for various real-valued topological summaries of

I10,221, Î1, . . . , Î9999 smoothed with varying values of σ. Images were generated according to

P̂ℓ,0. With at least 95% confidence the true p-value lies in pn ± 0.0137 (truncating at 0 or

1). These summaries where not considered in the main document.

8



Test statistic SNR(I10,241) S
(
A(I10,241)

)
L1

(
A(I10,241)

)
L2

(
A(I10,241)

)
σ = 2 0.9812 0.0231 0.9995 0.1573

σ = 4 0.8701 0.3795 0.0026 0.0013

σ = 6 0.3311 0.8375 0.0713 0.1784

Table S5: Monte-Carlo p-values for various real-valued summaries I10,241, Î1, . . . , Î9999, with

images generated according to F 10
U . That is, generated according to the product empirical

pixel distribution. These summaries where not considered in the main document.

Test statistic SNR(I10,221) S
(
A(I10,221)

)
L1

(
A(I10,221)

)
L2

(
A(I10,221)

)
σ = 2 0.7500 0.0368 0.8758 0.4552

σ = 4 0.1692 0.4069 0.2527 0.0402

σ = 6 0.1566 0.6462 0.2564 0.1433

Table S6: Monte-Carlo p-values for various real-valued summaries I10,221, Î1, . . . , Î9999, with

images generated according to F 10
U . That is, generated according to the product empirical

pixel distribution. These summaries where not considered in the main document.
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at local minima increases as smoothing increases—local minima can only be destroyed and

not created. This is particularly relevant because the locations of the pixels which create

connected components—that correspond to locations of atomic columns—represent local

minima [Robins et al., 2011]. Such stability may not strictly be the case for 2-dimensional

discrete signals for low-levels of smoothing [Lindeberg, 1990]. However, when σ ≥ 1 (as

is the case for all practical settings in this article), the ideal “Lindeberg” kernel (which

does not increase local minima) and the discrete Gaussian kernel coincide to a large degree

[Getreuer, 2013].

Furthermore, the discretized Gaussian kernel does not increase the number of local

minima from the unsmoothed image [Lindeberg, 1990]. Therefore, in theory, tuning the

σ parameter appropriately will allow for cubical persistence to recover the precise number

of relevant atomic columns—their location as well as an estimate of their intensity. Ad-

ditionally, the Gaussian kernel has been empirically shown to introduce the fewest “image

artifacts” [Levin et al., 2020]. Another option would be to convolve our image with an

elliptical Gaussian kernel, such as in Kong et al. [2013] or to apply our cubical homology

algorithm directly to a scale-space representation [Lindeberg, 1998]. Decay rates of the

norms of persistence diagrams after convolution with a Gaussian kernel have also been

established [Chen and Edelsbrunner, 2011] (see Section S3).

S5 Comparison of blob detection versus our algorithm

Before our discussion, we note that PD thresholding [Chung and Day, 2018] was used

to threshold our images for visualization. PD thresholding was shown (ibid.) to more

accurately represent the topology of the underlying image than traditional histogram-based

thresholding methods. Here we chose the t which maximizes the objective function specified

at (11) on p. 1172 of Chung and Day. We chose to only weight 0-dimensional topological

features and ignore PD1. Our work indicates that higher levels of σ, such as σ = 4, may

yield more topologically faithful thresholded images.

Continuing on, in Figure S4a we see the output of LoG blob detection on an image

which shows various ridges, or Miller planes, in the 2-dimensional nanoparticle image; in
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(a) (b) (c)

Figure S4: Comparison of the output of Laplacian-of-Gaussian blob detection (Figure S4a)

with our algorithm (Figure S4b), along with segmented image using the output of our

algorithm (Figure S4c).

Figure S4b we see the same but for our cubical persistence algorithm. In Figure S4c we see

the output of PD thresholding (on the unthresholded image). Though LoG blob detection

and our algorithm only output points, and Miller planes are visible, there is a one-to-one

correspondence between these ridges and points in the case of our algorithm. Thirty values

of σ from 4 to 8 and a threshold of 0.4 were chosen for blob detection. The values of σ = 2

and η = 1 were chosen for our algorithm in S4b. It did not seem possible to recover 4

planes with blob detection, even after tuning the parameter σ and the threshold.

S6 Elbow method for the selection of σ

The method that we have used for determining the best σ is the elbow method depicted in

Figure S6. For a single image (as in I10,221 and I10,241) we can apply the elbow method to

our desired summary to choose the best σ to be located near the point where the derivative

of the curve of our topological summary vs. σ stabilizes—that is, our topological summary

no longer experiences a rapid decrease1 (see Figure S7). This method can be made more

rigorous than the elbow method in the case of k-means clustering, because of the fact

we can choose our mesh of σ to be arbitrarily fine and thus calculate derivatives to a
1We know these summaries do eventually decrease based off the work of Chen and Edelsbrunner [2011].
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Figure S5: Image I10,281 overlaid with output of Laplacian of Gaussian (LoG) blob detection

centers (left) and same output of the cubical homology algorithm overlaid over smoothed

σ = 2 version of I10,281. For such a high noise regime (see left image), LoG blob detection

and our cubical persistence algorithm convey much of the same information. The algorithms

(using blob_log in scikit-image) run in roughly the same time, though the cubical homology

algorithm is marginally faster. Colors in left image correspond to the bandwidth of the

convolved Gaussian kernel.

precise degree2. For a single image I, the topological summary (e.g. persistent entropy or

ALPS) may be calculated on smooth versions of I, in particular for the nanoparticle region

R. However, for a large image sequence I1, . . . , IN we plot the value of the topological

summary in R for smoothed versions of the summed image IN,1 in Figure S6. The summed

image IN,1 can be used to capture the average dynamics of the nanoparticle and can thus

be used as a rough estimate of shape. Another idea is to use to some representative subset

of Ikm ,m = 1, . . . ,M ≤ N of the image series and use the ensemble of elbow plots as a

guide, so as to base the choice of σ off the unaggregated images themselves. Another point

is that it seems useful to be a little more conservative about where to identify the elbow (as

we have done in Figure S6), as we would like to diminish the noise and capture large-scale

features as much as possible.

S7 Proof of Proposition 5.1

He we offer a proof of an alternate representation of the ALPS statistic.
2As mentioned in the main article, σ 7→ Iσ can be shown to be smooth for σ bounded away from 0.

12



0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

H
(A

(I)
)

Persistent entropy elbow plot

0 1 2 3 4 5 6 7 8

0

100

200

300

400

500

(A
(I)

)

ALPS Statistic elbow plot

Figure S6: Persistent entropy elbow plot (left) and ALPS statistic elbow plot (right) for

summed main primary image series, i.e. I1124,1. Values of σ here ranged from 0 to 7.8 in

increments of 0.2.

Proof of Proposition 5.1. Let l(0) ≡ 0. By definition of Lebesgue integral and Tonelli’s

theorem, we have∫ ∞

0

logU(η) dη =

∫ ∞

0

log

( ∑
(x,l)∈A(I)

1
{
l > η

})
dη

=

∫ ∞

0

n−1∑
i=0

log(K − i)1
{
l(i) < η ≤ l(i+1)

}
dη

=
n−1∑
i=0

(
l(i+1) − l(i)

)
log(K − i)

= log

(K−1∏
i=0

(K − i)l(i+1)

)
− log

(K−1∏
i=0

(K − i)l(i)
)
.

As l(0) = 0, the product within the logarithm of the second term equals

K−1∏
i=1

(K − i)l(i)(K − i+ 1)l(i)

(K − i+ 1)l(i)
=

K−1∏
i=1

(
1− 1

K − i+ 1

)l(i) K∏
i=1

(K − i+ 1)l(i)

=
K−1∏
i=1

(
1− 1

K − i+ 1

)l(i) K−1∏
i=0

(K − i)l(i+1) ,

which finishes the proof.
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Figure S7: Persistent entropy (left) and ALPS (right) for various smoothing parameters σ

for image I10,241, compared with same series for 19 simulated images. Same observed curve

as in Figure 9 of the main article. As with the Figure 9, values of σ ranged from 0 to 7.8,

in increments of 0.2.

S8 Multiple Monte Carlo testing guarantees

Fix a probability space (Ω,F ,P). We consider the problem of multiple testing in a Monte

Carlo setting where H0,1, . . . , H0,N are null hypotheses under which there exist distribu-

tion functions (F0,k)
N
k=1 satisfying F0,k = F0 for all k, for F0 some continuous cdf on R.

Here N is considered fixed but arbitrary. Denote our (i.i.d.) Monte Carlo sample of test

statistics under F0 as T1, . . . , Tn, which we assume are also independent from the observed

(random) test statistics t1, . . . , tN . Let pn,1, . . . , pn,N denote our Monte Carlo p-values and

pn,(1) ≤ · · · ≤ pn,(N) to be their order statistics. We specify H0,(1), . . . , H0,(N) to be the

hypotheses corresponding to the ordered p-values. We suppose that all of our test statistics

are nonnegative. Let us define

pn,k :=
1

n+ 1

(
1 +

n∑
i=1

1
{
Ti ≥ tk

})
,

and rn,k to be the rank of pn,k among all of the values of pn,1, . . . , pn,N , e.g. rn,(k) = k. We

construct a test (a Monte Carlo version of the one in Benjamini and Yekutieli, 2001), based

off of the inequalities

pn,k ≤
rn,kα

NCN

, (1)
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where CN =
∑N

k=1 1/k. Let FDRn be the false discovery rate for the test based on (1).

That is, FDRn is the expected proportion of falsely rejected hypotheses over the total

number of rejected hypotheses due to the criterion in (1) (equal to 0 if no hypotheses are

rejected). Note that FDRn is conditional on (Ti)
n
i=1. Let FDR denote the false discovery

rate based on the true p-values pk = P(Ti ≥ tk). We specify the exact nature of test—along

with a theoretical guarantee—in the next proposition.

Proposition S8.1. Suppose T1, . . . , Tn are test statistics sampled i.i.d. according to con-

tinuous cdf F0. If the (tk)
N
k=1 have continuous distributions under the alternative hypotheses

as well, then the test which rejects H0,(1), . . . , H0,(ℓ) if

ℓ = sup
{
k = 1, . . . , N : pn,(k) ≤ kα/(NCN)

}
satisfies FDRn

a.s.→ FDR, n → ∞. Thus,

lim sup
n

FDRn ≤ α, a.s.

The proof of Proposition S8.1 can be seen below. We are also able to consider the test

statistics ti, i = 1, . . . , N as random as well. Our result is an improvement on Corollary 1

in Gandy and Hahn [2014] for the Benjamini-Hochberg procedure, in that our results holds

with probability 1, rather than probability 1− ϵ, for n large enough.

Proof of Proposition S8.1. We let FN be the empirical cdf of t1, . . . , tN—hence we may

restate the test corresponding to Proposition A.1 as

pn,k ≤
FN(tk)α

CN

.

If Fn is the empirical cdf of the Ti, it is straightforward to show that

sup
t∈R

∣∣Fn(t)− F (t)| a.s.→ 0, n → ∞, (2)

implies that

sup
t∈R

∣∣∣∣∣P(T ≥ t)− 1

n+ 1

(
1 +

n∑
i=1

1
{
Ti ≥ t

})∣∣∣∣∣ a.s.→ 0, n → ∞. (3)
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The equation (2) holds because of the Glivenko-Cantelli theorem. Suppose we denote

pk := P(Ti ≥ tk).

Then (3) implies that

max
k

|pk − pn,k|
a.s.→ 0,

as n → ∞. Additionally,

max
k

|pk − pn,k|
FN(tk)

≤ N max
k

|pk − pn,k|
a.s.→ 0, n → ∞.

As P(∪k{pk/FN(tk) = α/CN}) = 0, we have that

P
(
∩k { lim

n→∞
1
{
pn,k/FN(tk) ≤ α/CN

}
= 1

{
pk/FN(tk) ≤ α/CN

})
= 1.

This implies that for P-almost every ω ∈ Ω that there exists some M = M(ω) such that if

n ≥ M then

1
{
pn,k/FN(tk) ≤ α/CN

}
= 1

{
pk/FN(tk) ≤ α/CN

}
, for all k = 1, . . . , N.

Let FDP be the false discovery proportion3 based on the test using pk, k = 1, . . . , N and

let FDPn be the corresponding quantity for pn,k. Note that the false discovery rate satisfies

FDR = E[FDP] (and FDRn = E[FDPn]). Based on the definition of FDP, for such an ω,

FDPn = FDP as the tests are identical. Hence,

FDPn
a.s.→ FDP, n → ∞.

If we let Tn be the natural filtration with respect to T1, . . . , Tn we have by the dominated

convergence theorem for conditional expectations

FDRn = E
[
FDPn | Tn

] a.s.→ E
[
FDP | Tn

]
= FDR.

Therefore based on the results of Benjamini and Yekutieli [2001] for the false discovery rate

FDR, we have

lim sup
n→∞

FDRn ≤ α, a.s.

3The ratio of falsely rejected nulls over the total number of rejected nulls. It is defined to be 0 if no

null hypotheses are rejected.
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We now derive the confidence intervals for the p-values in the Tables S3 and S4 above

and seen in Tables 2 and 3 in the main document.

Proof. Let t be our observed quantity of a test statistic T , and T1, . . . , Tn i.i.d. simulated

values of the test statistic T under then null hypothesis. Then if

pn(t) =
1

n+ 1

(
1 +

n∑
i=1

1
{
Ti ≥ t

})
,

pn(t) is consistent estimator of the p-value p(t) := P (T ≥ t). In the case of a continuous

T , we have that the empirical survival function

F̄n(t) :=
1

n
1
{
Ti > t

}
,

is also an unbiased estimator of p(t), and we can use the DKW inequality to see that if

qα =

√
− 1

2n
log(α/2),

then

P
(
sup
t∈R

|F̄n(t)− F̄ (t)| ≤ qα
)
≥ 1− α. (4)

Therefore, with at least confidence level 1− α, we have that

F̄n(t)− qα ≤ p(t) ≤ F̄n(t) + qα,

or

F̄n(t)±
√

− 1

2n
log(α/2).

Now, if T is discrete, say on the integers, fix a δ ∈ (0, 1] and suppose that t is an integer.

Then F̄n(t − δ) is a consistent estimator of p(t). Thus, for T discrete on the integers, we

have

F̄n(t− δ)±
√

− 1

2n
log(α/2),

is an at least (1− α)% confidence interval for p(t). It is not difficult to show that

F̄n(t) ≤ pn(t) + 1/n
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and likewise F̄n(t−δ) ≤ pn(t)+1/n in the discrete case. Similarly, we can establish a lower

bound for those terms of pn(t) − 1/n. Hence, with at least (1 − α)% confidence p(t) lies

within the interval [
max{0, pn(t)− qα,n

}
,min{1, pn(t) + qα,n

}]
,

where qα,n := qα +1/n. The same interval estimate holds in the case that Ti are generated

according to some distribution with using a sufficient statistic for a parameter θ instead of

θ due to invariance of (4) when conditioning on a sufficient statistic for θ.

S9 Frames of interest in multiple testing demonstration

Here we show a few frames corresponding to Figure 12 in the main document. We display

the lowest negative entropy and highest ALPS statistic frames with k = 35 and k = 201,

respectively for the top region and the highest negative entropy and lowest ALPS statistic

frames for the bottom region with k = 20 and k = 172, respectively. These figures can be

seen in Figure S8.

Note that a frame is considered significant by our Benjamini-Hochberg procedure if

in the top region the persistent entropy is ≤ 4.7537 or the ALPS statistic is ≥ 2.3747.

The same values corresponding to the bottom region are ≤ 3.7868 and ≥ 1.8943. We

now examine two frames which are significant with respect to persistent entropy but not

with respect to the ALPS statistic. The first is I5,761 (k = 152) for the top region, where

H
(
A(I5,761)

)
= 4.6924 ≤ 4.7537 and ∆

(
A(I5,761)

)
= 2.1725 ̸≥ 2.3747, which can be seen in

Figure S9.

The second is the image I5,501 (k = 100) for the bottom nanoparticle region; it is an

image which shares significance with respect to persistent entropy H
(
A(I5,761)

)
= 3.7654 ≤

3.7868 and non-significance with respect to the ALPS statistic. However, it is quite closer

in absolute terms to the ALPS statistic threshold ∆
(
A(I5,501)

)
= 1.8728 ̸≥ 1.8943. The

intuitive interpretation is perhaps the ALPS statistic is closer to capturing the “intuitive”

nature of significance better than persistent entropy. Indeed, there seems to be more signal

in Figure S10 than in Figure S9.
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(a) I5,176 (k = 35), top region.

Lowest negative entropy frame.

(b) I5,1006 (k = 201), top region.

Highest ALPS statistic frame.

(c) I5,101 (k = 20), bottom region.

Highest negative entropy frame.

(d) I5,861 (k = 172), bottom region.

Lowest ALPS statistic frame.

Figure S8: Examples of frames in the image series I5,5k+1 that illustrate how the nanopar-

ticles look when they take on low and high values of the ALPS statistic and persistent

entropy.
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Figure S9: Barely significant at α = 0.05 level with respect to persistent entropy and non-

significant with respect to the ALPS statistic, one can make out some faint atomic features

in I5,761 for the top region. Boundaries of polygonal region R have been superimposed on

the image.

Figure S10: Barely significant at α = 0.05 level with respect to persistent entropy and

barely non-significant with respect to the ALPS statistic, one can make out some faint

atomic features in I5,501 for the bottom region. Boundaries of polygonal region R have

been superimposed on the image.
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