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Abstract—In this work, we present a deterministic algorithm
for computing the entire weight distribution of polar codes. As the
first step, we derive an efficient recursive procedure to compute
the weight distribution that arises in successive cancellation
decoding of polar codes along any decoding path. This solves
the open problem recently posed by Polyanskaya, Davletshin,
and Polyanskii. Using this recursive procedure, at code length
n, we can compute the weight distribution of any polar cosets in
time O(n2). We show that any polar code can be represented as a
disjoint union of such polar cosets; moreover, this representation
extends to polar codes with dynamically frozen bits. However, the
number of polar cosets in such representation scales exponentially
with a parameter introduced herein, which we call the mixing
factor. To upper bound the complexity of our algorithm for polar
codes being decreasing monomial codes, we study the range of
their mixing factors. We prove that among all decreasing mono-
mial codes with rates at most 1/2, self-dual Reed-Muller codes
have the largest mixing factors. To further reduce the complexity
of our algorithm, we make use of the fact that, as decreasing
monomial codes, polar codes have a large automorphism group.
That automorphism group includes the block lower-triangular
affine group (BLTA), which in turn contains the lower-triangular
affine group (LTA). We prove that a subgroup of LTA acts
transitively on certain subsets of decreasing monomial codes,
thereby drastically reducing the number of polar cosets that we
need to evaluate. This complexity reduction makes it possible to
compute the weight distribution of polar codes at length n = 128.

Index Terms—Polar codes, decreasing monomial codes, weight
distribution

I. INTRODUCTION

THE weight distribution of an error correction code counts
the number of codewords in this code of all weights.

The weight distribution is one of the main characteristic of a
code, useful for analysing its performance under maximum-
likelihood decoding, and various other decoding algorithms.
However, computing the weight distribution of a general linear
code is known to be NP-hard [1]. Hence, there are very
few families of codes whose weight distribution is known.
Some families of codes with known weight distributions are
Hamming codes, Golay codes, and Reed-Solomon codes. For
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primitive Bose-Chaudhuri-Hocquenghem (BCH) codes and the
extended primitive BCH codes, their weight distributions are
known for lengths up to 128 [2]. Besides, the weight distri-
butions for primitive BCH codes of length 255 and extended
primitive BCH codes of length 256 have been computed for
code dimension k ≤ 71 and k ≥ 187 [3]–[5]. For Reed-
Muller codes, their weight distributions are known up to length
512, except for the (512,256) Reed-Muller code [6], [7]. Polar
codes, introduced by Arıkan [8], form the first explicit family
of codes that provably achieve capacity with efficient encoding
and decoding for a wide range of channels. With the brute-
force search and the MacWilliams identity [9], the weight
distribution of polar codes can be computed up to length 64.
For example, the weight distribution of a (64,32) polar code
is computed by brute force in [10] for code design purpose.
However, the weight distribution of polar codes at length 128
is currently not known.

A. Related Prior Work

Introduced by Arıkan [8], polar code is a binary linear code
generated by a subset of rows in the polar transformation
matrix, whose corresponding bit channels have the smallest
Bhattacharyya parameters. To the best of our knowledge, there
are no prior results on how to efficiently compute the entire
weight distribution of polar codes. For crude estimations, there
are probabilistic methods discussed in [11] and [12]. Although
we don’t know the weight distribution of polar codes, we do
know their minimal weight, and the number of codewords
of that weight. In the work by Bardet, Dragoi, Otmani and
Tillich [13], they look into a partial order relation for the bit
channels, and introduce a broader class of codes following the
partial order called decreasing monomial codes. This class of
decreasing monomial codes includes polar codes. They also
study the automorphism group of decreasing monomial codes
from a polynomial formalism, and provide an explicit formula
for the number of codewords of minimal weight. Besides that
result, there are also ways to estimate the first few numbers
in the weight distribution of polar codes. In the work by Li,
Shen and Tse [14], they devise an experiment that evaluates
the number of low-weight polar codewords. In this experiment,
an all-zero codeword is transmitted in the extremely high
SNR regime, and the channel output is decoded by a list
decoder [15]. With a large enough list size, the first few non-
zero numbers in the weight distribution can be estimated by
counting the low-weight codewords obtained in the list. Later
in [16], this experiment is improved for a memory constraint
computer. But still, with this approach, only the first few
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numbers in the entire weight distribution can be estimated.
This approach is also non-exact in the sense that, for a given
weight, the number of codewords obtained in the list only
serves as a lower bound for the actual number in the weight
distribution.

B. Our Contributions

In this paper, we present a deterministic algorithm that
computes the exact weight distribution of polar codes. We first
propose an efficient recursive procedure to compute the weight
enumerating function of polar cosets to be defined later.
Those polar cosets arise during the successive cancellation
(SC) decoding process, and their weight distribution can be
used to estimate the error probabilities of the bit channels.
In two separate works by Niu, Li, and Wu [17], and by
Polyanskaya, Davletshin, and Polyanskii [18], algorithms that
compute the weight distribution of these polar cosets along
the all-zero decoding path are proposed. However, how to
efficiently compute the weight distribution of polar cosets
along an arbitrary decoding path remains an open problem. In
this work, we solve this problem by establishing a recursive
relation followed by the weight enumerating functions of those
polar cosets. Using this recursive relation, we can compute the
weight distribution of polar cosets along arbitrary decoding
path in time O(n2).

Next, we show that we can represent any polar code as
a disjoint union of certain polar cosets. In this way, we
can obtain the weight distribution of the entire code by
summing up the weight enumerating functions of those polar
cosets. This representation also extends to polar codes with
dynamically frozen bits, which are first introduced in [19].
Since any binary linear codes can be represented as polar
codes with dynamically frozen bits [19], our algorithm applies
to general linear codes as well. However, the number of polar
cosets in this representation scales exponentially with a code
parameter introduced herein, which we call the mixing factor.
The complexity of our algorithm is largely governed by the
mixing factor of polar codes.

Representing polar codes as disjoint unions of polar cosets
works for polar codes in a general setting, where we can
select any subsets of rows in the polar transformation matrix as
generators. In a more restricted setting, where we only select
the rows whose corresponding bit channels have the smallest
Bhattacharyya parameters, polar codes fall into the category of
decreasing monomial codes [13]. To upper bound the mixing
factor of polar codes being decreasing monomial codes, and
thus give a bound on the complexity of our algorithm, we
prove that self-dual Reed-Muller codes have the largest mixing
factor among all decreasing monomial codes with rates at most
1/2.

As decreasing monomial codes, polar codes have a large
automorphism group. It is first shown in [13] that the auto-
mophism group of decreasing monomial codes includes the
lower triangular affine group (LTA). Recently in [20], this
result has been extended to the block lower triangular affine
group (BLTA). Later in [21], it has also been shown that BLTA
equals the complete automorphisms of decreasing monomial

codes that can be formulated as affine transformations. In our
work, we show that using a subgroup of LTA, we can largely
reduce the complexity of our algorithm. We prove that the
subgroup we considered acts transitively on certain subsets of
decreasing monomial codes, which implies that a lot of polar
cosets in our representation share the same weight distribution.
It allows us to drastically reduce the number of polar cosets
that we need to evaluate in our algorithm. This complexity
reduction makes it possible to compute the weight distribution
of polar codes as a decreasing monomial codes at length 128.

C. Notations

Here we specify some notation conventions we follow in
this paper. All the vectors in this paper are row vectors,
unless otherwise specified. We use bold letters like u to denote
vectors, and non-bold letters like ui to denote symbols within
that vector. We let the indices for the symbols within vectors
start from zero. We use ui to represent (u0, u1, · · · , ui), a
subvector of u with its first (i + 1) symbols. We denote the
concatenation of two vectors u and v as (u,v).

II. POLAR CODES AND POLAR COSETS

In this section, we briefly review polar codes, and give the
definition for polar cosets, an essential concept in our work.

Assuming n = 2m, an (n, k) polar code is a binary linear
block code generated by k rows in the polar transformation
matrix Gn = BnK

⊗m
2 , where Bn is the bit-reversal permuta-

tion matrix, K⊗m
2 is the m-th Kronecker power of K2, and

K2 =

[

1 0
1 1

]

.

The encoding of polar codes is given by c = uGn, where
u is a length-n binary input vector carrying k data bits, and
c is the codeword for transmission. The positions of the k
data bits in u are specified by an information index set A of
size k, with A ⊆ {0, 1, · · · , n− 1}. The remaining n− k bits
in u are set to 0, which are called frozen bits. We also use
F = {0, 1, · · · , n− 1}\A to denote the frozen index set that
specifies the positions of the frozen bits.

We now give the definition for polar cosets.
Definition 1: For a vector ui ∈ {0, 1}i+1 with 0 ≤ i ≤ n−1,

we define the polar coset for path ui as the affine space

Cn(ui) !
{

(ui,u
′)Gn | u

′ ∈ {0, 1}n−i−1
}

where (ui,u′) represents the concatenation of u and u′, and
Gn is the polar transformation matrix.

Example 1: Consider polar transformation matrix G8 with
its rows denoted by g0, g1, · · · , g7 as shown in Figure 1.

Let u4 = (0, 1, 0, 1, 0), then the polar coset C8(u4) is the
affine space generated by g5, g6, g7, and shifted by g1 and g3:

C8(u4) = g1 + g3 + span{g5, g6, g7}

In Figure 1, those rows are highlighted in gray and in cyan,
respectively.

In this paper, we will mainly discuss the weight distribution
of polar cosets, which can be described by their weight
enumerating functions.
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G8 =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎦

g0
g1
g2
g3
g4
g5
g6
g7

Fig. 1. Polar transformation matrix G8 in Example 1

Definition 2: For a vector ui ∈ {0, 1}i+1 with 0 ≤ i ≤
n − 1, we define the weight enumerating function for polar
coset Cn(ui) as the polynomial

An(ui)(X) !
n
∑

w=0

AwX
w,

where Aw is the number of vectors in Cn(ui) with Hamming
weight w.

In prior works, the weight distribution of polar coset Cn(ui),
where ui = (0, 0, · · · , 0, 1) is a length-(i+ 1) all-zero vector
with a single 1 at the end, is also referred to as polar spectrum

in [17], and as the weight distribution for SC decoding of polar

codes in [18]. It has also been pointed out in [17, Sec.III.B]
and [18, Sec.II.C] that the weight distribution of such polar
coset Cn(ui) can be used to analyze the error probability of
the bit channels.

III. COMPUTING THE WEIGHT ENUMERATING FUNCTION

OF POLAR COSETS

In this section, we present the first key result of this paper:
a recursive procedure that computes the weight enumerating
function for arbitrary polar cosets. Recently, the authors in
[17] and [18] have introduced their respective algorithms that
compute the weight distribution for polar coset Cn(ui) with
ui = (0, 0, · · · , 0, 0) and ui = (0, 0, · · · , 0, 1). However, how
to efficiently compute the weight distribution for Cn(ui) with
arbitrary path ui remains an open problem. Here we present a
recursive computation procedure with time complexity O(n2)
that solves this problem.

Let us first establish some notations. We use ueven and uodd

to denote the subvectors (u0, u2, · · · ) and (u1, u3, · · · ) of u

with only even indices and only odd indices, respectively. We
use ui,even and ui,odd to denote the subvectors of ui with only
even indices and only odd indices, respectively.

Our algorithm for polar cosets is based on the following
recursive relations.

Theorem 1: Let m ≥ 0, n = 2m, and 0 ≤ i ≤ n− 1, then

A2n(u2i)(X) =
∑

u2i+1∈{0,1}

An(u2i,even ⊕ (u2i,odd, u2i+1))(X)

·An(u2i,odd, u2i+1)(X), (1)

and

A2n(u2i+1)(X) =

An(u2i+1,even ⊕ u2i+1,odd)(X) ·An(u2i+1,odd)(X). (2)

Proof: Let m ≥ 0 and n = 2m. For any u ∈ {0, 1}2n,
we have

u ·G2n = (u ·B2n)K
⊗(m+1)
2

= (ueven ·Bn, uodd ·Bn)

[

K⊗m
2 0

K⊗m
2 K⊗m

2

]

=
(

(ueven ⊕ uodd) ·BnK
⊗m
2 , uodd ·BnK

⊗m
2

)

=
(

(ueven ⊕ uodd) ·Gn, uodd ·Gn

)

(3)

We first prove equation (1). According to Definition 1, we
have

C2n(u2i) =
{

(u2i,u
′)G2n | u

′ ∈ {0, 1}2n−2i−1
}

(4)

Let us represent u′ as u′ = (u2i+1,v). By looking at the two
values u2i+1 can take, C2n(u2i) in (4) can be partitioned as:

C2n(u2i)

=
⋃

u2i+1∈{0,1}

C2n(u2i, u2i+1)

=
⋃

u2i+1∈{0,1}

{

(u2i, u2i+1,v)G2n | v ∈ {0, 1}2n−2i−2
}

(5)

Via (3), we can write (u2i, u2i+1,v)G2n in (5) as

(u2i, u2i+1,v)G2n =
(

(u2i,even ⊕ (u2i,odd, u2i+1), veven ⊕ vodd) ·G2n,

(u2i,odd, u2i+1,vodd) ·G2n

)

(6)

Notice when v ranges over {0, 1}2n−2i−2, both vodd and
(veven ⊕ vodd) range over {0, 1}n−i−1 separately. Thus we
have

C2n(u2i, u2i+1) =
{

(c1, c2) | c1 ∈ Cn(u2i,even ⊕ (u2i,odd, u2i+1)),

c2 ∈ Cn(u2i,odd, u2i+1)
}

(7)

Hence for each u2i+1 ∈ {0, 1}, C2n(u2i, ui+1) in (5) can be
expressed as the direct sum of two polar cosets [22, §9 of
Ch. 2]. In other words, C2n(u2i, ui+1) consists of all vectors
(c1, c2), where c1 ∈ Cn(u2i,even⊕ (u2i,odd, u2i+1)), and c2 ∈
Cn(u2i,odd, u2i+1).

Since the weight enumerating function of the direct sum
of two polar cosets equals the product of their two individual
weight distribution functions, we obtain equation (1). Equation
(2) follows in the same way by rewritting (7) as

C2n(u2i+1) =
{

(c1, c2) | c1 ∈ Cn(u2i+1,even ⊕ u2i+1,odd),

c2 ∈ Cn(u2i+1,odd)
}

(8)
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An(ui−1, 0)(X)←
An(ui−1, 1)(X)←

An

An/2

An/2

· · ·

← 1
← XA1

← 1
← XA1

← 1
← XA1

← 1
← XA1

...

Fig. 2. The recursive procedure that computes the weight enumerating function for polar cosets

In Theorem 1, equation (1) and equation (2) can also be
written as

A2n(u2i−1, u2i)(X) =
∑

u2i+1∈{0,1}

An(u2i−1,even ⊕ u2i−1,odd , u2i ⊕ u2i+1)(X)

·An(u2i−1,odd, u2i+1)(X) (9)

and as

A2n(u2i, u2i+1)(X) =

An(u2i−1,even ⊕ u2i−1,odd, u2i ⊕ u2i+1)(X)

·An(u2i−1,odd, u2i+1)(X), (10)

respectively. In this way, equation (9) and equation (10) fall
into forms similar to the recursive relations for the bit channels
[8, Equations (22) and (23)]. Therefore, similar to the recursive
procedure that computes the probabilities for the bit channels,
we can also compute the weight enumerating functions of
polar cosets recursively with the stopping conditions:

A1(0) = 1, A1(1) = X. (11)

This recursive procedure is illustrated in Figure 2, and its steps
are shown in Algorithm 1.

We make the following remarks for Algorithm 1:

• The object for recursion in Algorithm 1 is a pair
of weight enumerating functions An(ui−1, 0)(X) and
An(ui−1, 1)(X).

• If we want to compute the weight distribution for polar
coset Cn(ui), we should run Algorithm 1 with inputs n
and ui−1, and select one of the two weight enumerating
functions from the output corresponding to the desired
ui.

Next, we prove that Algorithm 1 has time complexity O(n2).
Theorem 2: Algorithm 1 has time complexity O(n2).

Proof: In Algorithm 1, depending on the inputs i and
ui−1, we have the following three cases for the lines we need
to run:

Case 1: When i is even, we run lines 5, 6 and 7.
Case 2: When i is odd and ui = 0, we run lines 9, 10 and 12.
Case 3: When i is odd and ui = 1, we run lines 9, 10 and 14.

Algorithm 1: CalcA(n,ui−1)

Input: block length n and vector ui−1

Output: a pair of polynomials
(An(ui−1, 0)(X), An(ui−1, 1)(X))

1 if n = 1 then // Stopping conditions

2 return (1, X)
3 else
4 if i mod 2 = 0 then
5 (f0, f1)← CalcA(n/2,ui−1,even ⊕ ui−1,odd)
6 (g0, g1)← CalcA(n/2,ui−1,odd)
7 return (f0g0 + f1g1, f0g1 + f1g0)
8 // Use (1)

9 else
10 (f0, f1)← CalcA(n/2,ui−2,even ⊕ ui−2,odd)
11 (g0, g1)← CalcA(n/2,ui−2,odd)
12 if ui−1 = 0 then
13 return (f0g0, f1g1) // Use (2)

14 else
15 return (f1g0, f0g1) // Use (2)

First, the complexity of line 5 is the same as that of line 9,
and the complexity of line 6 is the same as that of line 10.
Then for line 7, we need to do 4 polynomial multiplications
and 2 polynomial additions, while for line 12 or line 14, we
only need to do 2 polynomial multiplications. So case 1 has
the highest complexity among the above three cases. Thus,
henceforth we only consider case 1.

Denote by T (n) the time complexity of Algorithm 1. For
the recursive part in the algorithm, line 5 and line 6 both take
time T (n/2). For the non-recursive part, in line 7 we need to
do 4 polynomial multiplications and 2 polynomial additions.
Since f0, f1, g0, g1 are weight enumerating functions of polar
cosets with block length n/2, all of them have degrees at most
n/2. Assume multiplication of two degree-n polynomials takes
time O(n2), and addition of two degree-n polynomials takes
time O(n). It follows that

T (n) ≤ 2T (n/2) + 4 ·O(n2/4) + 2 ·O(n),

which by the Master theorem [23] gives us T (n) = O(n2).
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We also remark that the time complexity of Algorithm
1 may be improved assuming multiplication of two degree-
n polynomials takes time O(n log n) with the Fast-Fourier
Transform.

IV. COMPUTING THE ENTIRE WEIGHT DISTRIBUTION OF

POLAR CODES

In this section, we present a deterministic algorithm that
computes the entire weight distribution of polar codes. We first
show that any polar code can be represented as a disjoint union
of certain polar cosets. This allows us to obtain the weight
distribution of the entire code by summing up the weight
distributions of those polar cosets. However, the number of
polar cosets in this representation scales exponentially with
a new parameter that we introduce herein, called the mixing
factor. We also show that our approach naturally extends to
polar codes with dynamically frozen bits.

A. Representing Polar Codes with Polar Cosets

First, we introduce two new parameters of polar codes
that we call the last frozen index and the mixing factor,
respectively.

Definition 3: Consider an (n, k) polar code C specified in
terms of its information index set A. With F = {0, 1, . . . , n−
1}\A, we define the last frozen index of C as

τ(C) ! max{F},

and define the mixing factor of C as

MF(C) !
∣
∣{i ∈ A | i < τ(C)}

∣
∣.

Loosely speaking, the mixing factor of C counts the number
of information bits appear before the last frozen bit. It is easy
to see that MF(C) can be computed from τ(C) as follows:

MF(C) = k −
∣
∣{i ∈ A | i > τ(C)}

∣
∣

= τ(C)− (n− k) + 1
(12)

Starting with an example, we now show that any polar code
can be represented as a disjoint union of polar cosets.

Example 2: In this example, we denote the (16,11,4) ex-
tended Hamming code as CH . It can be generated by rows
in the polar transformation matrix G16. Thus we can view
CH as a polar code of length 16 with frozen index set
F = {0, 1, 2, 4, 8}. The polar transformation matrix G16 is
shown in Figure 3.

In Figure 3, the information bits of CH are highlighted in
red and blue, and the frozen bits are black. We color the
information bits appearing before the last frozen bit in red,
and color the rest of the information bits in blue. The last
frozen bit of CH is u8, so the last frozen index of CH is
τ(CH) = 8. The mixing factor of CH counts the number of
red bits, so the mixing factor of CH is MF(CH) = 4.

Consider the polar coset C16(u8). For any binary vector
u8 with u0 = u1 = u2 = u4 = u8 = 0, and u3, u5, u6, u7 ∈
{0, 1}, the polar coset C16(u8) will be a subset of CH . In total
we have 24 = 16 options to assign the values for u3, u5, u6, u7.

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 3. Polar transformation matrix G16 in Example 2

Hence there are 16 such disjoint polar cosets, and the union
of them is the entire code CH :

CH =
⋃

u8∈{0,1}9: u0=u1=u2=u4=u8=0

C16(u8)

Therefore, the entire weight distribution of CH can be obtained
by first computing the weight enumerating functions of all
those 16 polar cosets, and then taking the sum.

This polar coset representation for general polar codes can
be summarized by the following proposition.

Proposition 1: Let C be a polar code with frozen index set
F , and last frozen index τ . Then C can be represented as a
disjoint union of polar cosets as:

C =
⋃

uτ∈{0,1}τ+1: ui=0 for all i∈F

Cn(uτ )

The number of polar cosets in this representation equals
2MF(C).

B. Representing Polar Codes with Dynamically Frozen Bits

We now show that our polar coset representation in Propo-
sition 1 extends to polar codes with dynamically frozen bits.
Polar codes with dynamically frozen bits, first introduced in
[19], are polar codes where each of the frozen bits ui is
not necessarily fixed to be zero, but can be set as a linear
function of its previous bits as ui = fi(ui−1). For frozen
bits with indices in F , we refer to those boolean functions
{fi | i ∈ F} as the dynamic constraints for the code. Examples
of polar codes with dynamically frozen bits are polar codes
with CRC precoding [15], polar subcodes [24], polarization-
adjusted convolutional (PAC) codes [25], etc. In fact, since
any binary linear code can be represented as a polar code
with dynamically frozen bits [19], our representation extends
to all binary linear codes, as well.

The concept of last frozen index and mixing factor in
Definition 3 naturally extends to polar codes with dynamically
frozen bits. We again illustrate our polar coset representation
with an example, in which the Hamming code in Example
2 is slightly modified so its frozen bits become dynamically
frozen.

Example 3: Denote by C′
H a (16, 11) polar code with frozen

index set F = {0, 1, 2, 4, 8}, where u0, u1, u2 are frozen as 0,
and u4 and u8 are dynamically frozen as u4 = u3 and u8 =
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u0

u1

u2

u3

u4 = u3

u5

u6

u7

u8 = u5 + u6

u9

u10

u11

u12

u13

u14

u15

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 4. Polar transformation matrix G16 in Example 3

u5 +u6, respectively. We have τ(C′
H) = 8 and MF(C′

H) = 4
the same as in Example 2.

Consider the polar coset C16(u8). For any binary vector u8

with u3, u5, u6, u7 ∈ {0, 1}, if we let u0 = u1 = u2 = 0,
u4 = u3 and u8 = u5 + u6, then the polar coset C16(u8) will
be a subset of C′

H . Thus similar to Example 2, with 24 = 16
options to assign the values for u3, u5, u6 and u7, C′

H can be
represented as a disjoint union of 16 disjoint polar cosets as

C =
⋃

u8∈{0,1}9: u0=u1=u2=0, u4=u3,
u8=u5+u6

C16(u8)

In general, Proposition 1 extends to polar codes with dy-
namically frozen bits as follows.

Proposition 2: Let C be a polar code with dynamically
frozen bits, with frozen index set F , last frozen index τ ,
and the dynamic constraints {fi | i ∈ F}. Then C can be
represented as a disjoint union of polar cosets as:

C =
⋃

uτ∈{0,1}τ+1: ui=fi(ui−1) for all i∈F

Cn(uτ )

The number of polar cosets in this representation equals
2MF(C).

C. Computing the Entire Weight Distribution

This polar coset representation directly gives us a way
to compute the weight distribution of polar codes. We can
compute the weight enumerating function of each polar coset
in the representation using Algorithm 1, and then take their
sum to obtain the weight distribution of the entire code. This
procedure is shown in Algorithm 2, in which conventional
polar codes are considered as special cases of polar codes
with dynamically frozen bits.

For a polar code C, the number of polar cosets in the
representation equals 2 to the power of MF(C). For each
polar coset, both the computation of its dynamically frozen
bits and the computation of its weight enumerating function
via Algorithm 1 have complexity O(n2). Thus without parallel
computation, Algorithm 2 has time complexity O(2MF(C) n2).
It is clear that this complexity is largely governed by the
mixing factor of the code. For reference, we list the mixing
factors of several rate 1/2 polar codes from length 8 to length

Algorithm 2: Compute the weight enumerating func-
tions of polar codes with dynamically frozen bits

Input: block length n, frozen index set F , and
dynamic constraint {fi | i ∈ F}

Output: weight enumerating function AC(X) of polar
code C

1 τ ← max{F}
2 AC(X)← 0
3 for uτ ∈ {0, 1}τ+1 : ui = fi(ui−1) for all i ∈ F do

// Use Algorithm 1

4 (f0, f1)← CalcA(n,uτ−1)
5 uτ ← fτ (uτ−1)
6 if uτ = 0 then
7 AC(X)← AC(X) + f0
8 else
9 AC(X)← AC(X) + f1

10 return AC(X)

TABLE I
MIXING FACTOR OF RATE 1/2 POLAR CODES CONSTRUCTED USING THE

RELIABILITY SEQUENCE IN 5G [26]

code length n 8 16 32 64 128 256 512 1024

MF(C) 1 2 9 17 34 73 161 385

1024 in Table I. Those polar codes are constructed using the
reliability sequence in the 5G technical specification [26].

Unfortunately, this approach turns out to be inefficient for
polar codes with CRCs. For a polar code concatenated with
a CRC outer code [15], since all the CRC parity bits are
located at the end of the data vector, the mixing factor of
the code would be the same as the code dimension. In this
case, Algorithm 2 will have complexity higher than that of
the brute-force search.

For PAC codes [25], their mixing factors are determined by
the rate profiles. For PAC codes with polar rate profiles, their
mixing factors will be the same as polar codes. For PAC codes
with Reed-Muller rate profiles, which show better performance
under sequential decoding and list decoding [25], [27], [28],
their mixing factors will be the same as Reed-Muller codes. As
will be shown in Section V, Reed-Muller codes have relatively
larger mixing factors compared with polar codes.

We also list the mixing factors of several extended BCH
codes represented as polar codes with dynamically frozen bits
in Table II. Those codes are obtained by extending some of the
primitive narrow-sense BCH codes listed in Table A-1 in [29,
Appendix A]. Note that for a given binary linear code, its rep-
resentations as polar codes with dynamically frozen bits will
be different for different codeword bit orders. Since it is known
that primitive BCH codes contain as subcodes punctured Reed-
Muller code of the same designed distance [22, Ch. 13. §5.
Theorem 11], we permute the bit positions of those extended
BCH codes from the cyclic order to the standard order [30],
such that heuristically, their representations as polar codes
with dynamically frozen bits have smaller mixing factors. This
standard order is also used in [24] to construct polar subcodes
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TABLE II
MIXING FACTORS OF EXTENDED BCH (EBCH) CODES AS POLAR CODES

WITH DYNAMICALLY FROZEN BITS. THE DISTANCES OF THE CODES ARE

OBTAINED FROM [31] AND FROM [2].

EBCH(n, k) distance d mixing factor MF(C)

EBCH(8, 4) = RM(1, 3) 4 1

EBCH(16, 7) 6 4

EBCH(32, 16) = RM(2, 5) 8 9

EBCH(64, 30) 14 23

EBCH(64, 36) 12 29

EBCH(128, 57) 24 50

EBCH(128, 64) 22 57

from extended BCH codes. In Table II, we also specify the
extended BCH codes that are equivalent to Reed-Muller codes
RM(r,m) of order r and length n = 2m.

Note that the weight distribution of extended BCH codes at
length 128 have already been computed by Desaki, Fujiwara
and Kasami in [2]. Here, we only list those mixing factors
as a reference. Compared with polar codes, we can see that
the mixing factors for extended BCH codes that have large
code distances are also much larger, which indicates that our
approach is less applicable here.

V. MIXING FACTOR OF POLAR CODES

Note that the approach described in Section IV applies to
polar codes in a general setting where: (1) the frozen bits
can be dynamically frozen; (2) the information index set can
be arbitrary. Hereforth, we focus on conventional polar codes
where: (1) the frozen bits are all frozen to zero; (2) for code of
dimension k, the information index set A is chosen such that
the corresponding bit channels are the “best” k bit channels.
In Arıkan’s definition, the k bit channels with the smallest
Bhattacharyya parameters are selected. Two alternative criteria
for picking the best k bit channels are mutual information
and error probabilities. If we follow either one of these
three criteria, polar codes fall into the category of decreasing
monomial codes, first introduced in [13].

In this section, we briefly review the definition of decreasing
monomial codes. Then, to upper bound the complexity of
Algorithm 2, we prove that self-dual Reed-Muller codes have
the largest mixing factors among all decreasing monomial
codes with rates at most 1/2.

A. Decreasing Monomial Codes

We start by reviewing the definition of monomial codes. Let
n = 2m, and let the polynomial ring given by

Rm = F[x0, x1, · · · , xm−1]

/(x2
0 − x0, x

2
1 − x1, · · · , x

2
m−1 − xm−1).

Each polynomial p ∈ Rm can be associated with a binary
vector in Fn

2 as the evaluation of p in all the binary entries
x = (x0, · · · , xm−1) ∈ Fm

2 . In other words, polynomial p
is associated with ev(p) = (p(x))x∈Fm

2
where ev : Rm →

Fn
2 is a homomorphism from the polynomials to the binary

n-tuples. In this work, we specify the order of x in vector

f [f ] [[f ]]

x0x1x2x3 (0, 0, 0, 0) 0
x1x2x3 (0, 0, 0, 1) 1
x0x2x3 (0, 0, 1, 0) 2
x2x3 (0, 0, 1, 1) 3

x0x1x3 (0, 1, 0, 0) 4
x1x3 (0, 1, 0, 1) 5
x0x3 (0, 1, 1, 0) 6
x3 (0, 1, 1, 1) 7

x0x1x2 (1, 0, 0, 0) 8
x1x2 (1, 0, 0, 1) 9
x0x2 (1, 0, 1, 0) 10
x2 (1, 0, 1, 1) 11

x0x1 (1, 1, 0, 0) 12
x1 (1, 1, 0, 1) 13
x0 (1, 1, 1, 0) 14
1 (1, 1, 1, 1) 15

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Fig. 5. Polar transformation matrix G16 in Example 4

(p(x))x∈Fm
2

such that from left to right, the number
∑m−1

i=0 zi2i

is in ascending order from 0 to 2m−1, where the binary vector
(z0, z1, · · · , zm−1) is defined by:

(z0, z1, · · · , zm−1) = (1− xm−1, 1− xm−2, · · · , 1− x0)

Denote the set of all the monomials in Rm as

Mm =
{

xb0
0 xb1

1 · · ·xbm−1

m−1

∣
∣
∣ (b0, b1, · · · , bm−1) ∈ F

m
2

}

.

The monomial codes can be defined as follows.
Definition 4: Let n = 2m and I ∈Mm, the monomial code

C(I) generated by I is the linear space

C(I) ! span{ev(f) | f ∈ I}.

Since every row in the polar transformation matrix Gn can
be obtained as ev(f) with some f ∈Mm, polar codes can be
viewed as monomial codes. For a monomial f ∈Mm given
by f = xi1xi2 · · ·xid , we write:

deg f = d,

ind(f) = {i1, i2, . . . , id},

[f ] = (am−1, am−2, . . . , a0) ∈ {0, 1}m,

[[f ]] =
m−1
∑

i=0

ai2
i =

m−1
∑

i=0

(1−bi)2
i,

where the two binary vectors (am−1, am−2, . . . , a0) and
(bm−1, bm−2, . . . , b0) are defined by:

f = x1−a0

0 x1−a1

1 · · ·x1−am−1

m−1 = xb0
0 xb1

1 · · ·xbm−1

m−1

Following this notation, if we label the rows in the polar
transformation matrix Gn with indices from 0 to n − 1, the
evaluation ev(f) for a monomial f ∈Mm has row index [[f ]]
in Gn, and [f ] contains the digits in the binary expansion of
[[f ]]. When the underlying Gn is clear from the context, we
simply refer [[f ]] as the row index for f .

Example 4: Consider the polar transformation matrix G16.
The monomials in M4 whose evaluations are rows in G16 are
shown in Figure 5.

Henceforth, whenever we write a monomial as f =
xi1xi2 · · ·xid we assume that i1 < i2 < · · · < id, unless
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stated otherwise. A partial order on the monomials in Mm is
introduced in [13] as follows:

Definition 5: If f = xi1xi2 · · ·xid and g = xj1xj2 · · ·xjd

are two monomials of the same degree d, we write f " g if

i1 ≤ j1, i2 ≤ j2, · · · , id ≤ jd

If deg f < deg g, we write f " g if there exists a divisor g∗

of g, such that g∗ has the same degree as f and f " g∗. If
f " g and f ̸= g, we write f ≺ g.

It has been shown by Bardet, Dragoi, Otmani, and Tillich
in [13], and by Schürch in [32] that polar codes satisfy the
following property.

Theorem 3: Let Cn(A) be a polar code, specified in terms
of its information index set A. If [[g]] ∈ A and f " g, then
also [[f ]] ∈ A. Equivalently, if [[f ]] ∈ F and f " g, then also
[[g]] ∈ F .

Therefore, the authors in [13] call the family of all codes
having this property as decreasing monomial codes.

Definition 6 (Decreasing monomial codes [13]): Decreas-
ing monomial codes inclues all monomial codes that satisfy
Theorem 3.

Besides polar codes, the family of decreasing monomial
codes also includes Reed-Muller codes. A simple lemma about
the partial order of two monomials, and their row indices that
is easy to verify is the following:

Lemma 1: If g " f , then [[g]] ≥ [[f ]].

B. The Largest Mixing Factor of Polar Codes

Now we are ready to study the range of mixing factor
of decreasing monomial codes. Since by the MacWilliams
identity [9], one can easily obtain the weight distribution
of a code from the weight distribution of its dual, if we
want to compute the weight distribution of a given decreasing
monomial code, we have the options of applying Algorithm 2
to either the code itself, or to its dual. On the other hand,
Bardet, Dragoi, Otmani, and Tillich have shown that the
dual of any decreasing monomial code is also a decreasing
monomial code [13, Proposition 6]. Thus to get a complexity
cap of our approach, it suffices to limit our space to decreasing
monomial codes of rates at most 1/2.

Theorem 4: Let C be an (n, k) decreasing monomial code
with n = 2m, m = 2t+ 1, and dimension k ≤ n/2, then

MF(C) ≤ 22t − 2t+1 + 1 (13)

Moreover, the equality holds only when C is the self-dual
Reed-Muller code.

According to Theorem 4, the mixing factor of decreasing
monomial codes at length n = 2m, where m is an odd number,
is bounded by the mixing factor of self-dual Reed-Muller
codes. Here we list the mixing factor of self-dual Reed-Muller
codes at length 8, 32, 128, 512 and 2048 in Table III.

For decreasing monomial codes at length n = 2m, where m
is an even number, we make the following conjecture about
their largest mixing factors based on numerical observation.
The conjectured upper bounds for decreasing monomial codes
at length 16, 64, 256, 1024 are listed in Table IV.

TABLE III
MIXING FACTORS OF SELF-DUAL REED-MULLER CODES

code length n 8 32 128 512 2048

mixing factor 1 9 49 225 961

TABLE IV
CONJECTURED UPPER BOUNDS FOR DECREASING MONOMIAL CODES

WITH RATES ≤ 1/2

code length n 16 64 256 1024

mixing factor ≤ 2 18 98 450

TABLE V
A TABLE ILLUSTRATING THE POSITIONS OF g AND g′ IN THE PROOF OF

THEOREM 4

[[f ]] [f ] f

0 (0, 0, · · · , 0, 0
︸ ︷︷ ︸

2t+1

) x0x1x2 · · ·x2t

1 (0, 0, · · · , 0, 1) x1x2 · · ·x2t

.

.

.
.
.
.

.

.

.

22t+1 − 2t+1 (1, · · · , 1
︸ ︷︷ ︸

t

, 0, · · · , 0, 0
︸ ︷︷ ︸

t+1

) g = x0x1x2 · · ·xt

22t+1 − 2t+1 + 1 (1, · · · , 1
︸ ︷︷ ︸

t

, 0, · · · , 0, 1) g′ = x1x2 · · ·xt

.

.

.
.
.
.

.

.

.

22t+1 − 2 (1, 1, · · · , 1, 0) x0

22t+1 − 1 (1, 1, · · · , 1, 1) 1

Conjecture 1: Let C be an (n, k) decreasing monomial code,
with n = 2m, m = 2t, and dimension k ≤ n/2, then

MF(C) ≤ 22t−1 − 2t+1 + 2

where the equality is achievable.
The rest of this section is devoted to the proof of Theorem

4.
Proof of Theorem 4: It can be verified by exhaustive

search that Theorem 4 holds when t = 1 and t = 2. So
hereforth, we focus on proving the theorem when t ≥ 3. In
this proof we use Table V to help illustrate our arguments. First
we show self-dual Reed-Muller codes achieve the equality in
(13).

Claim 1. Let C be the self-dual Reed-Muller code
of length 22t+1, then MF(C) = 22t − 2t+1 + 1.

Proof. Let I be set of monomials generating C,
Then I contains all monomials of degree less or
equal to t. Referring to Table V, we have τ(C) =
22t+1 − 2t+1. Thus from equation (12), we have

MF(C) = 22t − 2t+1 + 1.

Then we focus on the following claim, which states that if the
mixing factor of the code is at least 22t − 2t+1 + 1, then the
code has to be the self-dual Reed-Muller code.

Claim 2. Let C be a decreasing monomial code of
length n = 22t+1 and dimension k ≤ n/2. If

MF(C) ≥ 22t − 2t+1 + 1,
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then C can only be the self-dual Reed-Muller code.

Now it suffices to prove Claim 2, since it is clear that Theo-
rem 4 follows if we combine Claim 1 and Claim 2. Hereforth,
we denote g = x0x1x2 · · ·xt as the monomial with [[g]] =
22t+1 − 2t+1, and denote g′ = x1x2 · · ·xt as the monomial
with [[g′]] = [[g]]+1. If we list out all the monomials in M2t+1

following their row indices, the positions of g and g′ in this
list are shown in Table V.

Our proof for Claim 2 relies on the following three claims.

Claim 3. Let C be a decreasing monomial code of
length n = 22t+1, and frozen index set F . If τ(C) ≥
[[g]], then [[g]] ∈ F .

Proof. Observe from Table V that for any mono-
mial h with [[h]] ≥ [[g]], h is a divisor of g, which
gives us h " g. Therefore, if τ(C) ≥ [[g]], it follows
from Theorem 3 that [[g]] ∈ F .

Claim 4. Let C be a decreasing monomial code of
length n = 22t+1, and frozen index set F . If τ(C) ≥
[[g′]], then [[g′]] ∈ F .

Proof. It can be observed from Table V that, for
any monomial h with [[h]] ≥ [[g′]], we have h "
g′. Therefore, similar to the proof for Claim 3, if
τ(C) ≥ [[g′]], it follows from Theorem 3 that [[g′]] ∈
F .

Claim 5. Let C be a decreasing monomial code of
length n = 22t+1 and dimension k ≤ n/2. If

MF(C) ≥ 22t − 2t+1 + 1 and τ(C) = [[g]],

then C is the self-dual Reed-Muller code.

Proof. Since for any monomial h with deg h ≥
t+1, we have g " h, it follows from Theorem 3 that
[[h]] ∈ F for any monomial h with degree at least
t+1. So C is a subcode of the self-dual Reed-Muller
code. On the other hand, in view of equation (12),
the dimension of the code is at least

k = MF(C) + (n− 1)− τ(C) ≥ n/2

Thus C can only be the self-dual Reed-Muller code
itself.

At this point, we are ready to prove Claim 2. We will first
show that given the conditions in Claim 2, g has to be frozen.
Moreover, we will then show that the last frozen index of the
code has to be exactly [[g]].

Proof of Claim 2. First from equation (12), we have

τ(C) = MF(C) + (n− k)− 1 ≥ 22t+1 − 2t+1

So the last frozen index of C is at least [[g]]. Then we
show that τ(C) > [[g]] leads to a contradiction. As-
suming τ(C) > [[g]], we have [[g]] ∈ F and [[g′]] ∈ F
following Claim 3 and Claim 4, respectively. Now
we count the number of monomials having row
indices in F . First for any h with deg h ≥ t + 1,
we have h # g. Thus it follows from Theorem 3

that [[h]] ∈ F for all h with deg h ≥ t + 1. The
number of those monomials can be counted as

2t+1
∑

i=t+1

(
2t+ 1

i

)

= 22t

Then for any degree-t monomial h without x0, we
have h # g′, which gives us [[h]] ∈ F following
Theorem 3. The number of those monomials can be
counted as

(2t
t

)

. Therefore, the number of frozen
indices of C is at least

|F| ≥ 22t +

(
2t

t

)

This gives

|A| = n− |F| ≤ 22t −

(
2t

t

)

But that contradicts MF(C) ≥ 22t− 2t+1 +1, since

22t −

(
2t

t

)

< 22t − 2t+1 + 1

for all t ≥ 3.
Since τ(C) > [[g]] leads to a contradiction, we

can only have τ(C) = [[g]]. Thus it follows from
Claim 5 that C can only be the self-dual Reed-Muller
code.

VI. REDUCING COMPUTATION COMPLEXITY USING A

SUBGROUP OF LTA

As a family of codes including polar codes, decreasing
monomial codes have a large automorphism group. It was first
shown that the automorphism group of decreasing monomial
codes includes the lower triangular affine group (LTA) in
[13]. Recently, this result has been extended to the block
lower triangular affine group (BLTA) [20]. In this section,
we look into the algebraic properties of decreasing monomial
codes, and focus on a subgroup of LTA. We prove that this
subgroup acts transitively on certain subsets of decreasing
monomial codes. This result implies that those subsets share
the same weight distribution, allowing us to drastically reduce
the complexity of our approach.

A. Lower Triangular Affine Groups and Their Group Action

We start by reviewing the definition for the lower triangular
affine group, and how it acts on polynomials. Henceforth,
binary m×m matrices are denoted by F

m×m
2 , and m-tuples

in Fm
2 are treated as column vectors. Following the notation

in [13], we denote the affine transformation x ,→ Ax+ b over
Fm
2 by a pair (A, b), where A ∈ F

m×m
2 and b ∈ Fm

2 .
Definition 7: The lower triangular affine group, denoted as

LTA(m, 2), consists of all affine transformations (A, b), where
A ∈ F

m×m
2 is a non-singular lower triangular square matrix,

and b ∈ Fm
2 .

The group action of LTA(m, 2) on the polynomial ring
Rm can be defined as follows. For an affine transformation
(A, b) ∈ LTA(m, 2) with A = (aij), and a polynomial
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p ∈ Rm, we denote by (A, b) · p the action of (A, b) on p,
where each monomial xi in p is replaced by another monomial
yi defined as

yi =
m−1
∑

j=0

aijxj + bi.

For monomials, the following expansion after the group
action of LTA(m, 2) can be observed, which follows directly
from Definition 7.

Proposition 3: Let (A, b) ∈ LTA(m, 2) and f ∈Mm, then
(A, b) · f can be expanded as

(A, b) · f = f +
∑

g∈Mm: g≺f

ug · g, (14)

where ug ∈ {0, 1} for all g.
Here is another way to view the action by the affine trans-

formations. Recall that the evaluation ev(p) of a polynomial
p ∈ Rm is a vector that consists of p(x) over all x ∈ Fm

2 .
Since every affine transformation (A, b) is a bijection on Fm

2 ,
the evaluation ev((A, b) · p) can be obtained from ev(p) by
permuting its coordinates. Denote the action of (A, b) on a
polynomial evaluation as

(A, b) · ev(p) = ev((A, b) · p),

we can then view this action as a permutation on the coordi-
nates of ev(p). In particular, vector (A, b) · ev(p) and vector
ev(p) have the same Hamming weight.

In the work by Bardet, Dragoi, Otmani, and Tillich, they
show that the automorphism group of decreasing monomial
codes over m variables includes the lower triangular affine
group LTA(m, 2) [13, Theorem 2].

B. A Subgroup of LTA(m, 2)

In the main theorem of this section, we consider a subgroup
of LTA(m, 2), denoted LTA(m, 2)f , that we associate with
a given monomial f . This subgroup was introduced in [13],
where it was used to analyze and count the minimum weight
codewords of decreasing monomial codes.

Definition 8: Let f ∈Mm. The subgroup LTA(m, 2)f of
LTA(m, 2) associated with the monomial f is defined as

LTA(m, 2)f ! {(A, b) ∈ LTA(m, 2) | A ∈Mf , b ∈ Bf},

where

Mf = {(aij) ∈ F
m×m
2 | ∀ i > j,

aij = 0 if i ̸∈ ind(f) or j ∈ ind(f)}

and
Bf = {b ∈ F

m
2 | bi = 0 if i ̸∈ ind(f)}

Example 5: Consider LTA(5, 2). For f = x0x3x4 ∈ M5,
we have

Mf = {(aij) ∈ F
5×5
2 | ∀ i > j,

aij = 0 if i ̸∈ {0, 3, 4} or j ∈ {0, 3, 4}}

and
Bf = {b ∈ F

m
2 | bi = 0 if i ̸∈ {0, 3, 4}}

Therefore, the affine transformations (A, b) in the subgroup
LTA(5, 2)f have the form:

A =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 a3,1 a3,2 1 0
0 a4,1 a4,2 0 1

⎞

⎟
⎟
⎟
⎟
⎠

, and b =

⎛

⎜
⎜
⎜
⎜
⎝

b0
0
0
b3
b4

⎞

⎟
⎟
⎟
⎟
⎠

,

where a3,1, a3,2, a4,1, a4,2, b0, b3, b4 can take any value in
{0, 1}. There are 27 such affine transformations, so the order
of LTA(2, 4)f is 27 = 128.

C. One-Variable Descendance Relation

We also introduce a new relation on the monomials for our
main theorem of this section. Henceforth, whenever we write
f = gxi for two monomials f and g, we assume i ̸∈ ind(g).

Definition 9: For f, g ∈ Mm, we say g is a one-variable

descendant of f , and write g≺1 f if either one of the following
holds:

1) f = hxi and g = hxj for some monomial h with j < i.
2) f = gxi

Compared with the partial order in Definition 5, this one-
variable descendance relation is a more restricted relation in
the sense that, the two involved monomials can only differ by
one variable. We remark that this one-variable descendance
relation is only a relation, but not a partial order on the mono-
mials. The following example shows that this new relation is
not transitive.

Example 6: For monomials in M4, we have

x0x2≺1 x0x1x2, and x0x1x2≺1 x0x1x3,

but x0x2 is not a one-variable descendant of x0x1x3.

D. The Main Theorem: A Transitive Group Action

Now we are ready to present the main theorem of this
section.

Theorem 5: Let C(I) be a decreasing monomial code
generated by I ∈Mm, and let f be the monomial in I with
the smallest row index:

f = argmin
g∈I

[[g]]

We partition I into the following disjoint union

I = {f} ∪ S ∪ T ,

where S consists of all one-variable descendant of f with
row indices smaller than τ(C), and T contains the rest of the
monomials in I:

S = {h ∈ I | h≺1 f and [[h]] < τ(C)},

and

T = I \ ( {f} ∪ S ) .
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f →

S

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

→

→

→

→

x0x1x2x3x4

x1x2x3x4

x0x2x3x4

x2x3x4

x0x1x3x4

x1x3x4

x0x3x4

x3x4

x0x1x2x4

x1x2x4

x0x2x4

x2x4

x0x1x4

x1x4

x0x4

x4

x0x1x2x3

x1x2x3

x0x2x3

x2x3

x0x1x3

x1x3

x0x3

x3

x0x1x2

x1x2

x0x2

x2

x0x1

x1

x0

1

u0

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

u16

u17

u18

u19

u20

u21

u22

u23

u24

u25

u26

u27

u28

u29

u30

u31

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

generate C(T )

Fig. 6. Polar Transformation matrix G32 in Example 7

Then the group action of subgroup LTA(m, 2)f on the set X
is transitive, where X is the set consisting of cosets of C(T )
defined as follows

X =
{

ev(f) +
∑

h∈S

uh · ev(h) + C(T )
∣
∣
∣ ∀ h ∈ S, uh ∈ {0, 1}

}

(15)

Therefore, all the cosets of C(T ) in X have the same weight
distribution.

Before proving this theorem, we illustrate Theorem 5 with
an example, and show how we can use this theorem to reduce
the complexity when computing the weight distribution of
decreasing monomial codes.

Example 7: Consider a (32,24) decreasing monomial code
C specified by the frozen index set F = {0, 1, 2, 3, 4, 5, 8, 16}.
The monomials corresponding to the rows in G32 are shown
in Figure 6, where the information bits are highlighted in red,
orange and blue, and the frozen bits are black. Code C has
last frozen index τ(C) = 16, and mixing factor MF(C) = 9.

Illustrating Theorem 5

Let f = x0x3x4 be the monomial with the smallest row
index in I. Then I can be partitioned as

I = {f} ∪ S ∪ T ,

where S consists of four of the one-variable descendants of f
with row indices smaller than τ(C) = 16, and T consists of
the rest of the monomials in I:

S = {x3x4, x0x2x4, x0x1x4, x0x4},

T = {x1x2x4, x2x4, x1x4, x4, x1x2x3, x0x2x3, · · · , x0, 1}

As shown in Figure 6, the monomials in S are colored in red,
the monomials in T are colored in orange and in blue, and
the subcode C(T ) is generated by the gray rows in G32.

Then, set X is defined to consist of 16 cosets of C(T ) in
the form

ev(f) + u1 · ev(x3x4) + u2 · ev(x0x2x4)

+ u3 · ev(x0x1x4) + u4 · ev(x0x4) + C(T ),

where u1, u2, u3, u4 are four coefficients that can take any
value in {0, 1}.

According to Theorem 5, the subgroup LTA(5, 2)f acts
transitively on X . Since the group action of the affine trans-
formations in LTA(5, 2)f can be viewed as permutations on
the codeword coordinates, we can conclude that all 16 cosets
in X have the same weight distribution.

Computing the Weight Distribution

If we directly apply Algorithm 2 to compute the weight
distribution of C, we need to compute the weight enumerating
function of 29 polar cosets. Now we show how we can reduce
this number using Theorem 5.

We start by partitioning code C into two parts according to
u6. Let C{u6 = 1} denote the subset of C where u6 is fixed
to be 1, and let C{u6 = 0} denote the subcode of C where
u6 is fixed to be 0. Then

C = C{u6 = 1} ∪ C{u6 = 0},

and both C{u6 = 1} and C{u6 = 0} can be represented
as disjoint unions of 28 polar cosets. Next, we compute the
weight distribution of C{u6 = 1} and C{u6 = 0} separately.

For C{u6 = 1}, observe that

C{u6 = 1} =
⋃

X∈X

X
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TABLE VI
THE COMPLEXITY REDUCTION AMOUNTS IN EXAMPLE 7

components complexity reduced complexity

C{u6 = 1} 28 = 256 24 = 16

C{· · · , u7 = 1} 27 = 128 23 = 8

C{· · · , u9 = 1} 26 = 64 22 = 4

C{· · · , u10 = 1} 25 = 32 22 = 4

C{· · · , u11 = 1} 24 = 16 21 = 2

C{· · · , u12 = 1} 23 = 8 21 = 2

C{· · · , u13 = 1} 22 = 4 20 = 1

C{· · · , u14 = 1} 21 = 2 20 = 1

C{· · · , u15 = 1} 20 = 1 20 = 1

C{· · · , u15 = 0} 20 = 1 20 = 1

C 29 = 512 40

By Theorem 5, all cosets in X have the same weight distri-
bution. Thus to get the weight distribution for C{u6 = 1}, it
suffices to first compute the weight distribution of a single
coset in X using Algorithm 2, and then multiply it by
|X | = 24. This reduces the number of polar cosets that we
need to evaluate for C{u6 = 1} from 28 down to 24.

After that we consider C{u6 = 0}. Since the subcode
C{u6 = 0} is also a decreasing monomial code itself, we
can again partition C{u6 = 0} into two parts according to u7:

C{u6 = 0} = C{u6 = 0, u7 = 1} ∪ C{u6 = 0, u7 = 0},

and apply Theorem 5 to reduce the complexity for the second
term C{u6 = 0, u7 = 1}.

By repeating this procedure, code C can be unfolded as
follows

C = C{u6 = 1}

∪ C{u6 = 0, u7 = 1}

∪ C{u6 = 0, u7 = 0, u9 = 1}

∪ · · ·

∪ C{u6 = 0, u7 = 0, · · · , u14 = 0, u15 = 1}

∪ C{u6 = 0, u7 = 0, · · · , u14 = 0, u15 = 0},

and Theorem 5 allows us to reduce the number of polar cosets
that we need to evaluate for each of those components. The
amount of complexity reduction for the components, and the
total amount of complexity reduction for C are shown in Table
VI. In Table VI, the second column shows the number of polar
cosets in each component, and the third column shows the
number of polar cosets that we need to evaluate after applying
Theorem 5. We also show the computed weight distribution for
C in this example in Table VII, where the unlisted Ad equals
to zero.

E. Proof of Theorem 5

The rest of this section is devoted to the proof of Theorem 5.
First let us introduce more notations. For any polynomial p ∈
Rm, we can expand it and express p as a sum of monomials
in Mm as

p =
∑

q∈Mm

uq · q, (16)

TABLE VII
WEIGHT DISTRIBUTION OF C IN EXAMPLE 7

d Ad d Ad d Ad

0 1 12 1768424 22 503424

4 472 14 3668224 24 83164

6 6272 16 4717254 26 6272

8 83164 18 3668224 28 472

10 503424 20 1768424 32 1

where uq ∈ {0, 1} are the coefficients. For each monomial q,
we denote the coefficient uq in this expansion of p by ⟨p⟩q .
Using this notation, equation (16) can be written as

p =
∑

q∈Mm

⟨p⟩q · q,

We start our proof by establishing a few lemmas. First, we
consider the group action of an affine transformation (A, b) in
the subgroup LTA(m, 2)f on f itself. The following lemma
states that the coefficient of a monomial h ∈ S in the
expansion of (A, b) ·f can actually be determined by an entry
in (A, b).

Lemma 2: In Theorem 5, let (A, b) ∈ LTA(m, 2)f with A =
(aij), and h ∈ S , then the coefficient of h in the expansion
of (A, b) · f equals to an entry in (A, b). More precisely,

• if f = qxs and h = qxt for some monomial q with t < s,
then ⟨(A, b) · f⟩h = ast;

• if f = hxs, then ⟨(A, b) · f⟩h = bs.

Proof: First, f can be written as

f =
∏

i∈ind(f)

xi

Consider the action of (A, b) ∈ LTA(m, 2) on f . According
to Definition 8, each monomial xi in f will be replaced by

yi = xi +
∑

j<i: j ̸∈ind(f)

aijxj + bi

Therefore, (A, b) · f can be written as a product of ℓ linear
terms, where ℓ = deg f :

(A, b) · f =
∏

i∈ind(f)

⎛

⎝xi +
∑

j<i: j ̸∈ind(f)

aijxj + bi

⎞

⎠ (17)

Given that h ∈ S is a one-variable descendant of f , we now
verify this lemma by discussing the following two cases for
h:

• Case 1: f = qxs and h = qxt for some monomial q with
t < s.
It can be observed that when we expand the right hand
side of equation (17), there is only one way to generate
the term h, corresponding to choosing astxt from the
linear term led by xs, and choosing the leading xi for
the rest of the linear terms. Thus ⟨(A, b) · f⟩h = ast.

• Case 2: f = hxs.
Similarly, it can be observed that when we expand the
right hand side of equation (17), there is only one way to
generate the term h, corresponding to choosing bs from
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the linear term led by xs, and choosing the leading xi

for the rest of the linear terms. Thus ⟨(A, b) · f⟩h = bs.

Next, we consider the group action of an (A, b) ∈
LTA(m, 2)f on a monomial g ∈ T . The following lemma
states that, the coefficient of a monomial h ∈ S in the
expansion of (A, b) · g always equals to zero.

Lemma 3: In Theorem 5, let (A, b) ∈ LTA(m, 2)f , h ∈ S ,
and g ∈ T , then the coefficient of h in the expansion of
(A, b) · g is zero. In other words, ⟨(A, b) · g⟩h = 0.

Proof: Consider the action of (A, b) on g. According to
Definition 8, the monomials in g will change as follows:

• Every xi with i ∈ ind(g) ∩ ind(f) will be replaced by

yi = xi +
∑

j<i, j ̸∈ind(f)

aijxj + bi

• Every xi with i ∈ ind(g)\ ind(f) will be replaced by
yi = xi, and thus remain unchanged.

So after the action by (A, b) on

g =
∏

i∈ind(g)

xi,

we have

(A, b) · g =

⎛

⎝

∏

i∈ind(g)\ ind(f)

xi

⎞

⎠

︸ ︷︷ ︸

(a)

·

⎛

⎝
∏

i∈ind(g)∩ind(f)

⎛

⎝xi +
∑

j<i, j /∈ind(f)

aijxj + bi

⎞

⎠

⎞

⎠

︸ ︷︷ ︸

(b)

(18)

If ⟨(A, b)·g⟩h = 1, then h should appear if we expand the right
hand side of (18). Since h ∈ S is a one-variable descendant
of f , according to Definition 9, we have the following two
possible cases for the relation between h and f . Next, we
show that if ⟨(A, b) · g⟩h = 1, a contradiction can be drawn
in both cases.

• Case 1: f = qxs and h = qxt for some monomial q with
t < s.
If h appears in the expansion of the right hand side of
(18), then we break it into two cases depending on where
the xt in h comes from.

– If the xt in h comes from parenthesis (a) in (18), then
we must have ind(g)\ ind(f) = t, and ind(q) ⊆
ind(g) ∩ ind(f). Since q is a divisor of f , for
ind(q) ⊆ ind(g) ∩ ind(f) to be true, we can either
have

ind(q) = ind(g) ∩ ind(f) ⇒ g = h

which is a contradiction since g and h are distinct,
or

ind(q) ∪ {s} = ind(g) ∩ ind(f) ⇒ g = qxtxs,

which is also a contradiction since [[g]] > [[f ]].

– If the xt in h comes from parenthesis (b) in (18),
then we must have ind(g)\ ind(f) = ∅, and ind(q)∪
{s} ⊆ ind(g) ∩ ind(f), giving us

ind(g) = ind(f) ⇒ g = f,

which is a contradiction since g and f are distinct.

• Case 2: f = hxs.
If h appears in the expansion of the right hand side
of (18), then we must have ind(g)\ ind(f) = ∅, and
ind(h) ⊆ ind(g) ∩ ind(f). Since h is a divisor of f ,
for ind(h) ⊆ ind(g) ∩ ind(f) to be true, we can either
have

ind(h) = ind(g) ∩ ind(f) ⇒ g = h,

which is a contradiction since g and h are distinct, or

ind(h) ∪ {s} = ind(g) ∩ ind(f) ⇒ g = f

which is also a contradiction since g and f are distinct.

Therefore, in both Case 1 and Case 2, ⟨(A, b) · g⟩h = 1 leads
to a contradiction. Thus we can only have ⟨(A, b) · g⟩h = 0.

Using Lemma 3, we can prove that subcode C(T ) is invari-
ant under LTA(m, 2)f , as stated in the following lemma.

Lemma 4: In Theorem 5, subcode C(T ) is invariant under
LTA(m, 2)f .

Proof: Let (A, b) ∈ LTA(m, 2)f . The group action by
(A, b) can be viewed as a permutation on the codeword coordi-
nates, so (A, b) acting on C(T ) will generate another subspace
with the same dimension as C(T ). Since C(T ) is generated
by the monomials in T , to prove this claim, it suffices to prove
that for any g ∈ T , we have (A, b) · ev(g) ∈ C(T ).

Let (A, b) ∈ LTA(m, 2)f and g ∈ T . First, it follows from
Proposition 3 that

(A, b) · g = g +
∑

g′∈Mm: g′≺g

u′
g · g

′, (19)

where u′
g ∈ {0, 1} are coefficients for all g′. Then, since I

is the generating set of a decreasing monomial code, from
Theorem 3 we know all g′ with g′ ≺ g are in I. Hence (19)
can be written as

(A, b) · g = g +
∑

g′∈I: g′≺g

u′
g · g

′. (20)

Recall f is the monomial with the smallest row index in I,
so it follows from Lemma 1 that f ̸" g. Also, Lemma 3 tells
us that in (20), uh = 0 for all h ∈ S . Since I = {f}∪S ∪T ,
(20) becomes

(A, b) · g = g +
∑

g′∈T : g′≺g

u′
g · g

′

Therefore, any (A, b) · g with g ∈ T can be generated by the
monomials in T . This finishes the proof of this lemma.

At this point, we are ready to put everything together and
prove Theorem 5. Take X0 = ev(f) + C(T ) to be a coset in
X . To prove that the group action of LTA(m, 2)f on X is
transitive, it suffices to prove that the orbit of X0 is the entire
X .
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Let (A, b) be an affine transformation in LTA(m, 2)f . If
we consider the action of (A, b) on f , It follows from Propo-
sition 3 that

(A, b) · f = f +
∑

h∈S

uh · h+
∑

g∈T

ug · g (21)

where uh = ⟨(A, b)·f⟩h for each h ∈ S , and ug = ⟨(A, b)·f⟩g
for each g ∈ T . Therefore, if we look at the action of (A, b)
on X0, we have

(A, b) ·X0

= ev(f) +
∑

h∈S

uh · ev(h) +
∑

g∈T

ug · ev(g) + (A, b) · C(T )

(22)

= ev(f) +
∑

h∈S

uh · ev(h) +
∑

g∈T

ug · ev(g) + C(T ) (23)

= ev(f) +
∑

h∈S

uh · ev(h) + C(T ) (24)

= ev(f) +
∑

h∈S

⟨(A, b) · f⟩h · ev(h) + C(T ) (25)

where

• in (22), we have (A, b) · C(T ) = C(T ), since (A, b) ∈
LTA(m, 2)f , and C(T ) is invariant under LTA(m, 2)f
from Lemma 4.

• in (23), we have
∑

g∈T

ug · ev(g) + C(T ) = C(T ),

since ev(g) ∈ C(T ) for all g ∈ T .

In (25), according to Lemma 2, every ⟨(A, b) ·f⟩h equals to
an entry in (A, b). Therefore, given any X ∈ X , we can pick
an (A, b) ∈ LTA(m, 2)f whose entries are chosen such that
X can be generated by (A, b) ·X0. This proves that the orbit
of X0 is the entire set X , which means the group action of
LTA(m, 2)f on the X is transitive. Since the action by affine
transformations in LTA(m, 2)f can be viewed as permutations
on the codeword coordinates, all the cosets in X thus have the
same weight distribution. This completes the proof.

VII. APPLICATIONS OF OUR ALGORITHM

In this section, we present some application examples of our
algorithm on decreasing monomial codes. For those codes, we
also show how much the complexity of our approach can be
reduced using the method from Section VI.

First, we present the weight distribution of a (128, 64) polar
code constructed based on the reliability sequence in the 5G
technical specification [26] without CRC. This polar code
has mixing factor 34, so if we directly apply Algorithm 2,
the number of polar cosets that we need to evaluate equals
234. The code can be verified to be a decreasing monomial
code, so this complexity can be reduced using the method
from Section VI. After the complexity reduction, the number
of polar cosets that we need to evaluate can be reduced to
39257360 ≈ 225.23. The computed weight distribution of this
code is shown in Table VIII. For reference, computing this

TABLE VIII
WEIGHT DISTRIBUTION OF THE (128,64) POLAR CODE CONSTRUCTED

FOLLOWING THE RELIABILITY SEQUENCE IN 5G [26]

d Ad

0 1

8 304

12 768

16 161528

20 4452096

24 166137744

28 8299319808

32 474588991516

36 19910428320256

40 555627871531568

44 9459383897458944

48 94101946507153608

52 550051775557674240

56 1920378732932218128

60 4051638142931561472

64 5194332067339587654

68 4051638142931561472

72 1920378732932218128

76 550051775557674240

80 94101946507153608

84 9459383897458944

88 555627871531568

92 19910428320256

96 474588991516

100 8299319808

104 166137744

108 4452096

112 161528

116 768

120 304

128 1

weight distribution takes less than two hours on a laptop
computer.

Then, we look at the (128,64) Reed-Muller code. Note
that the weight distribution of this Reed-Muller code has
already been computed by Sugino, Ienaga, Tokura and Kasami
in [6]. This Reed-Muller code has mixing factor 49, so in
our approach, the number of polar cosets that we need to
evaluate in Algorithm 2 equals 249. If we apply the complex-
ity reduction from Section VI, this number can be reduced
to 49761365064 ≈ 235.53, which is a viable computation
complexity that can be achieved. Since this self-dual Reed-
Muller code has the largest mixing factor among all decreasing
monomial codes with rate at most 1/2 at length 128. It
is reasonable to expect that after we apply the complexity
reduction from Section VI, the number of polar cosets that
we need to evaluate for other decreasing monomial codes at
length 128 will not be much larger than 235. Therefore, we
believe that our approach allows us to compute the weight
distribution of any decreasing monomial codes at length 128.

VIII. CONCLUSION

In this paper, we present a deterministic algorithm for
computing the exact weight distribution of polar codes at
length 128. First, we propose a recursive procedure for com-
puting the weight distribution of polar cosets along arbitrary
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decoding path. Then, we show that any polar code can be
represented as a disjoint union of polar cosets. Therefore, the
entire weight distribution of the code can be obtained by first
computing the weight distribution of all the polar cosets in this
representation, and then taking the sum. However, the number
of polar cosets in this representation grows exponentially with
a parameter called mixing factor. To bound the complexity
of our approach, we provide a bound on the mixing factor
of polar codes being decreasing monomial codes. To further
reduce this complexity, we study the algebraic structure of
decreasing monomial codes, and prove that a subgroup of
the lower triangular affine group acts transitively on certain
subsets of decreasing monomial codes. This allows us to
reduce the number of polar cosets that we need to evaluate in
our approach. After the complexity reduction, our algorithm
still has exponential complexity, but it is efficient enough to
compute the weight distribution of any decreasing monomial
codes at length 128.
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