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ABSTRACT

Influence Maximization (IM) is a crucial problem in data science.
The goal is to find a fixed-size set of highly influential seed vertices
on a network to maximize the influence spread along the edges.
While IM is NP-hard on commonly used diffusion models, a greedy
algorithm can achieve (1 — 1/e)-approximation by repeatedly se-
lecting the vertex with the highest marginal gain in influence as the
seed. However, we observe two performance issues in the existing
work that prevent them from scaling to today’s large-scale graphs:
space-inefficient memorization to estimate marginal gain, and time-
inefficient seed selection process due to a lack of parallelism.

This paper significantly improves the scalability of IM using
two key techniques. The first is a sketch-compression technique for
the independent cascading model on undirected graphs. It allows
combining the simulation and sketching approaches to achieve
a time-space tradeoff. The second technique includes new data
structures for parallel seed selection. Using our new approaches,
we implemented PaC-IM: Parallel and Compressed IM.

We compare PaC-IM with state-of-the-art parallel IM systems
on a 96-core machine with 1.5TB memory. PaC-IM can process the
ClueWeb graph with 978M vertices and 75B edges in about 2 hours.
On average, across all tested graphs, our uncompressed version
is 5-18X% faster and about 1.4X more space-efficient than existing
parallel IM systems. Using compression further saves 3.8x space
with only 70% overhead in time on average.

1 INTRODUCTION

Influence Maximization (IM) is a crucial problem in data science.
The goal is to find a fixed-size set of highly influential seed vertices
on a network to maximize the spread of influence along the edges.
For example, in viral marketing, the company may choose to send
free samples to a small set of users in the hope of triggering a large
cascade of further adoptions through the “word-of-mouth” effects.
Given a graph G = (V, E) and a stochastic diffusion model to specify
how influence spreads along edges, we use n = |V|, m = |E|, and
o(S) to denote the expected influence spread on G using the seed
set S € V. The IM problem aims to find a seed set S with size k
to maximize o(S). Given its importance, IM is widely studied, and
we refer the audience to a list of surveys [5, 7, 88] that reviews the
numerous applications and a few hundred papers on this topic.
Among various diffusion models, Independent Cascade (IC) [33]
(defined in Sec. 2) is one of the earliest and most widely used. In IC,
only seeds are active initially. In each timestamp, each vertex v that
is newly activated in the last timestamp will activate its neighbors
u with a probability pyy,. Although IM is NP-hard on IC [43], the
monotone and submodular properties of IC allow for a greedy
algorithm with (1 — 1/e)-approximation [43]. Given the current
seed set S, the greedy algorithm selects the next seed as the vertex
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with the highest marginal gain, i.e., arg max,ey {o(SU{v}) —o(S)}.
Due to the theoretical guarantee, this greedy strategy generally
gives better solution quality than other heuristics [52]. However,
the challenge lies in estimating the influence o(S) of a seed set S.
Early work uses Monte-Carlo (MC) experiments by averaging R’
rounds of influence diffusion simulation [43, 50], but the solution
quality relies on a high value of R’ (usually around 10%). Later work
uses sketch-based approaches [17, 21-23, 60, 75, 76] to avoid MC
experiments. Such algorithms pre-store R sketches. Each sketch
is a sampled graph—an edge (v, u) is chosen with probability pyy,.
When estimating ¢(S), the sampled graphs are used as the results of
the MC experiments of influence diffusion. In an existing study [22],
using R =~ 200 sketches achieves a similar solution quality to R’ =
10* MC experiments, greatly improving efficiency. The sketches can
either be the sampled graphs and/or memoizing more information
from the sampled graphs to accelerate influence computation, such
as connectivity [21, 32] or strong connectivity [60].

While numerous sketch-based solutions have been developed,
we observed great challenges in scaling them to today’s large-scale
graphs. In a benchmark paper [3] on nine state-of-the-art (SOTA)
sequential IM solutions, none of them can process the Friendster
(FT) graph [48] with 65M vertices and 3.6B edges due to timeout
(more than 40 hours) or out-of-memory. Even the recent parallel
algorithms [32, 56, 57, 64] need more than half an hour to process
FT on a 96-core machine (See Table 4). Two major challenges exist
to scale sketch-based approaches to billion-scale graphs. The first is
the space. Storing each sketch usually needs per-vertex information.
This indicates O(Rn) space, which is expensive on large graphs
(empirically, R is a few hundred). The second is insufficient paral-
lelism. Many SOTA IM solutions use the CELF [50] optimization for
seed selection (see details below), which is inherently sequential.

This paper takes a significant step to improve the scalability of
sketch-based IM solutions and tests the algorithms on real-world
billion-scale graphs. We propose two techniques to improve both
space and time. The first is a sketch compression technique for the
IC model on undirected graphs, which limits the auxiliary space by a
user-defined capacity to reduce space usage. Our second technique
is parallel data structures for seed selection to reduce running
time, which works on general graphs and any diffusion model with
submodularity. Combining the new ideas, we implemented PaC-
IM: Parallel and Compressed IM. We show a heatmap in Fig. 1
to overview our results. On the aforementioned FT graph, PaC-IM
only uses 128 seconds without compression (using 2.5X auxiliary
space on top of the input graph), or 609 seconds when limiting
auxiliary space in 0.45X input size, using a 96-core machine. PaC-
IM is at least 15X faster than existing parallel solutions while using
much less space and achieving the same solution quality (see Tab. 4).
Below, we overview the key contributions of this paper.



Table 1: Notations in the paper.

G = (V,E) :Theinput graph. k : number of seeds.

o (S) or og,Mm(S) :The influence spread of seed set S C V on graph G
and diffusion model M.

A(v|S) : The true score (marginal gain) of v on top of S. A(v]|S) =
o(SU{o}) — o(S). We omit S and use A(v) with clear context.

A[o] : The stale score (lazily-evaluated marginal gain) of v stored in an
array. It is an upper bound of A(v | S) for the current seed set S.

@1 R :the sketches. Formally defined in Sec. 3.

pand o : p = anis the number of centers.

Function names:

SKETCH (G, r) :Compute the r-th sketch from graph G

MARGINAL(S, v, ®;_g) :The marginal gain of vertex v given the current
seed set S estimated from R sketches @1 g

NEXTSEED(S, ®; R) :Greedily determine the next seed based on sketches
®;._ R given the current seed set S.
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Figure 1: Heatmap of relative running time and space usage, normal-
ized to Ours;. Ours;: PaC-IM with no compression. Oursy 1: PaC-IM with
10X sketch compression. InfuserMG [32] and Ripples [57]: existing parallel
IM systems. Lower/green is better. The graph information is in Tab. 3. The
running times are in Tab. 4. *: graphs with more than a billion edges.

Our first contribution is a compression scheme for sketches
on undirected graphs and the IC model, which allows for user-
defined compression ratios (details in Sec. 3). Similar to existing
work [21, 32], PaC-IM memoizes connected components (CC) of the
sketches but avoids the O(Rn) space to store per-vertex information.
Our idea is a combination (and thus a tradeoff) of memoization
and simulation. The idea is to memoize the CC information only
for centers C C V, where |C| = an, and « € [0, 1] is a user-defined
parameter. A local simulation will retrieve the influence information
of a non-center vertex. Theoretically, we show that we can limit
the auxiliary space by a factor of a by increasing the time by a
factor of O(1/a). Experimentally, such tradeoff is studied in Fig. 8.

Our second contribution is two new parallel data structures
for seed selection. Recall that many SOTA IM solutions [21, 22,

32, 44, 57] use the CELF optimization [50] (details in Sec. 2) for seed
selection. In a nutshell, CELF is an iterative approach that lazily
evaluates the marginal gain of vertices in seed selection, one at a
time. While laziness reduces the number of vertices to evaluate,
CELF is inherently sequential. We proposed two novel solutions
that achieve high parallelism for CELF. The challenge is evaluating
more vertices in parallel while avoiding "unpromising" vertices
as in CELF. Our first solution is a binary search tree (BST) called
P-tree [11, 13, 74] (Sec. 4.1). We highlight its theoretical efficiency
(Thm. 4.1 to 4.3). Our second solution is referred to as Win-Tree
(Sec. 4.2), which has lower space usage, leading to slightly better
overall performance. The two solutions work on both directed and
undirected graphs and any diffusion model with submodularity.
They are potentially extendable to other optimization problems
with submodular objective functions (see discussions in Sec. 7).
We experimentally study the performance of PaC-IM and com-

pare it with SOTA parallel IM systems. We tested 17 graphs, five
of which have over a billion edges. Besides social networks, we

also tested other real-world graphs, including web graphs, road
graphs, and k-NN graphs. One can consider IM on such graphs
as studying the influence diffusion among webpages and geologi-
cally or geometrically close objects. On all tested graphs, PaC-IM
achieves the best running time and space usage while guaranteeing
comparable or better solution quality to all baselines. Compared to
the best baseline, PaC-IM with no compression is 5.6X faster and is
1.5X more space-efficient on average (geometric mean across tested
graphs), and is 3.2X faster and uses 6 less space using compres-
sion with & = 0.1. Due to space- and time-efficiency, PaC-IM is the
only system to process the largest graph ClueWeb [55] with 978M
vertices and 75B edges. We believe PaC-IM is the first IM solution
that scales to tens of billions of edges and close to a billion vertices.
We publish our code at [2].

2 PRELIMINARIES

For graph G = (V,E), we use n = |V| and m = |E|. Since our
sketch compression is designed for undirected graphs and IC model,
throughout the paper, we assume G is undirected and consider the
IC model unless otherwise specified. A connected component (CC)
is a maximal subset in V s.t. every two vertices in it are connected by
a path. In a max-priority-queue, we use top to refer to the element
with the largest key, and use function pop to find and remove the
top element. O(f(n)) denotes O(f(n) - polylog(n)).

Computational Model. We use the fork-join parallelism [14, 24],
and the work-span analysis [16, 37, 39]. We assume a set of threads
that access a shared memory. A thread can fork two child software
threads to work in parallel. When both children complete, the
parent process continues. A parallel for-loop can be simulated by
recursive forks in logarithmic levels. The work of an algorithm is
the total number of instructions, and the span is the length of the
longest sequence of dependent instructions. We can execute the
computation using a randomized work-stealing scheduler [4, 16]
in practice. We use atomic operation WRITEMAX(f, Upew) to write
value vpey at the memory location ¢ if vy, is larger than the current
value in t. We use compare-and-swap to implement WRITEMAX.



Algorithm 1: Sketch-based IM algorithm

Notations:G = (V, E): the input graph. k: the number of seed vertices.
R: the number of sampled graphs
Output: S: a set of K seeds that maximizes influence on G
Notes: ®;_g: R sketches computed from R sampled graphs
// Step 1: Sketch construction
ParallelForEachr <— 1...R do
‘ ®, « SKETCH(r)

[

// Compute the r-th sketch

// Step 2: Seed selection using CELF
35«0
while |S| < k do
s* «NEXTSEED(S, ®;. g) //Find arg maxyecy MARGINAL(S, v, P1 R)
6 MARKSEED(s*, ®1_ R, S) // Mark s* as a seed in the sketches
7 S« SU{s*}
return S

(LI

3

Algorithm 2: Sequential Seed Selection with CELF

Notes: Q: max-priority-queue on all vertices v € V with key A[v]
Initially A[v] = MARGINAL(0, 0, ®1. R)

Function NEXTSEED(S, @1 R) // S: current seed set; ®1_R: R sketches

-

2 Repeat

3 s* « Q.Por() // Pop: find and remove the top
4 A[s*] « MARGINAL(S, s*, ®;_R)

5 if A[s*] > A[Q.Tor()] then return s*

6 else Q.INSERT(s") // insert s* back with new score

The Influence Maximization (IM) Problem

Given a graph G = (V, E), an influence diffusion model M specifies
how influence spreads from a set of current active vertices to acti-
vate more vertices in V. Given a seed set S C V, we use oG pm(S)
to denote the expected number of vertices that S can activate (in-
cluding S) under diffusion model M on graph G. The IM problem is
to find $* C V with size k, s.t. S* maximizes the influence spread
function oG p. With clear context, we omit M and G, and use
o(+). Several propagation models have been proposed, including
the Independent Cascade (IC) model [33], Linear Threshold (LT)
model [35, 68], and more [19, 43, 53, 66]. Since our sketch compres-
sion focuses on the IC model, we briefly introduce it here. In the IC
model, influence spreads in rounds. Initially, only the seed vertices
are active. In round i, each vertex u that was newly activated in
round i — 1 attempts to spread the influence via all incident edges
e, and activate the other endpoint v with probability pe.

Kempe et al. [43] proved that IM under the IC model is NP-hard,
and that the influence spread function has the following properties:
for every X, Y C V where X C Y,andv € V' \ Y, we have:

o(YU{o}) 2 a(Y) 1
Submodularity: o(X U {o}) — 0(X) > (YU {o}) —o(Y) (2)

Monotonicity:

These two properties allow the following greedy algorithm (later
referred to as GeneralGreedy) to give a (1 — 1/e)-approximation.
The algorithm starts with S = 0 and repeatedly adds the vertex
with the highest marginal gain to S, until |S| = k. The marginal
gain A(v | S) of a vertex v given the current seed set S is defined as:

A(w]$) = a(SU{o}) -0 (5) ©)

With clear context, we omit S and use A(v), and also call it the
score or the true score of v. We call the process to compute the true
score of a vertex an evaluation. To estimate o(-), early solutions
average R’ rounds of Monte Carlo (MC) experiments of influence
diffusion simulation. However, on real-world graphs, this approach
requires a large value of R’ to converge, which can be expensive.

Sketch-Based Algorithms. Sketch-based algorithms are proposed
to accelerate A(v) evaluations. Instead of running independent MC
experiments for each evaluation, sketch-based algorithms statically
sample R graphs to reflect MC experiments and consistently simu-
late the results on them. Using sketches allows for much faster con-
vergence, making the number of needed simulations (i.e., sketches)
R smaller than that in MC experiments. Hence, sketch-based algo-
rithms are widely studied [17, 21-23, 60, 75, 76]. We summarize
sketch-based algorithms in two steps (see Alg. 1): sketch construction
and seed selection. Next, we introduce both steps with optimizations
in previous work. We summarize some related work in Tab. 2, and
review more in Sec. 6. Some notations are given in Tab. 1.

Sketch Construction. In the earliest sketch-based algorithm Stat-
icGreedy, R sampled graphs [22] are explicitly stored as sketches.
In the IC model, the r-th sketch corresponds to a sampled graph
G/ = (V,E}), where E, C E, such that each edge e € E is sampled
with probability p., meaning a successful activation. An evaluation
will average the number of reachable vertices on all sampled graphs
from the seed set S. A later paper Infuser [32] proposed the fusion
optimization, which uses hash functions to avoid explicitly storing

the sampled graphs G;.. They sample an edge e in a sketch G with
a random number generated from seed (e, r), such that whether an

edge is selected in a certain sketch is always deterministic, and a
sampled graph G/ can be fully reconstructed from the sketch id r.
We also use this idea in our sketch compression algorithm.

Many existing algorithms also use memoization to avoid influ-
ence spread simulation on sketches. On undirected graphs and the
IC model, the MixGreedy paper [21] first observed that a vertex v’s
influence on a sketch is all vertices in the same connected compo-
nent (CC) as v, but they only used this idea to select the first seed.
Later, InfuserMG adopts this idea to select all seeds and memoizes
the CC information of each sampled graph as the sketch. A vertex
v’s score is then the average of the (inactivated) CC sizes on all
R sketches, which can be obtained in O(R) cost. This approach
avoids simulation but leads to O(Rn) space that is expensive for
large graphs. Sec. 3 presents how our sketch compression approach
reduces this high space usage.

Seed Selection with CELF. A useful optimization for the greedy
algorithm is CELF [50], which avoids evaluating all vertices in
NEexXTSEED. CELF uses lazy evaluation for submodular functions
and evaluates a vertex only if it becomes a “promising” candidate for
the next seed. We show the CELF seed selection algorithm in Alg. 2.
CELF uses a priority queue Q to maintain all vertices with their
scores as the key. Due to submodularity, A(v) is non-increasing
with the expansion of the seed set S. With lazy evaluation, the scores
in Q may be stale but are always upper bounds of the true scores.
We call this lazily-evaluated score the stale score of v and denote
it as A[o] stored in an array. To select the next seed, CELF keeps
popping the top element v from Q, re-evaluating its true score A(v),
storing A(v) to A[v], and inserting it back unless A(v) is greater



Table 2: Existing approaches and our new one. MixGreedy uses different approaches to select the first seed and the other seeds, so we list them separately.
“#vertices per seed”: number of vertices to visit in all re-evaluations involved to find a seed. For StaticGreedy, we assume the fusion optimization in [32] to
avoid explicitly storing sampled graphs. n: number of vertices. n.: number of re-evaluations needed in CELF. T: the average number of reachable vertices in a
simulation (or a sketch). Empirically, T is large, and n. < n. To achieve similar quality, R < R’.

Randomization Compute Influence Select Seed #vertics per seed Space Parallel
GeneralGreedy [43] R’ Monte Carlo experiments Simulation Evaluate all O(nR'T) O(n) no
MixGreedy [21] 1st Seed  Fixed R sampled graphs Memoization Evaluate all O(nR) O(n) no
MixGreedy [21] Others R’ Monte Carlo experiments Simulation CELF O(ncR'T) O(n) no
StaticGreedy [22] Fixed R sampled graphs Simulation CELF O(n¢RT) O(n) no
InfuserMG [32] Fixed R sampled graphs Memoization CELF O(ncR) O(nR) yes
PaC-IM (this work) Fixed R sampled graphs  Simulation + Memoization =~ CELF O(neR-min(T,1/a)) O((1+aR)n)  yes

Algorithm 3: Our sketch algorithm with compression
Global Variables: G = (V, E): input graph; R: number of sketches
C={c1,cz,...,cp} C V:randomly selected centers. p = |C|
Notes: A sketch @, is a triple (r, size[1..p], label[1..p]), defined at the
beginning of Sec. 3.

Function SKETCH(r) //r: sketch id
2 Compute the connected components of graph G’ = (V, E"), where
E = {(u,v) | (u,v) € E,SAMPLE(u, v, 7) = true}

3 ParallelForEach ¢; € C do

-

4 ‘ label[i] < min;{c; is in the same CC as c; }
5 ParallelForEach ¢; € C do
6 ‘ if label[i] = i then size[i] « the CC size of center ¢;

7 return (r, label[1..p], size[1..p])

// sample an edge e with probability p. for sketch r

8 Function SAMPLE(e, ) // e: edge identifier; r: sketch identifier

9 p < random(e, r) // Generate p € [0,1] from random seed e, r
10 return p < p.
// &8: marginal influence of v on sketch ®. I: label of v’s CC in sketch ®, if v
is connected to any center; otherwise [ = —1. S: the current seed set.

1 Function (§,!) = GETCENTER(D,, v, S)

12 Start BFS from v on a sampled subgraph of G, where an edge e € E
exists if SAMPLE (e, r) = true. Count the #reached-vertices as n’

13 if a center ¢; € C is encountered during BFS then

14 | — @, .label[i] // Find the label of the center
15 return (D, .size[l], 1) // the CC size and label of the center
16 if any ¢’ € S has been visited by BFS then return (0, —1)

-

17 else return (n’, -1) // influence is #visited vertices in BFS

// Marginal gain of v given seed set S on sketches 1 g
18 Function MARGINAL(S, v, ®1_R)

19 ParallelForEach r < 1..R do

20 ‘ (6, ) < GETCENTER(D,, 0, S)

21 return (25:1 5r)/R // the sum can be computed in parallel

22 Function MARKSEED (0, @1, S)

23 ParallelForEach r < 1..R do // For each sketch @,
24 (8,1) < GETCENTER(®D,, 0, S)
25 if [ > 0 then ®,.size[l] < 0 // Clear the corresponding CC size

than the current largest value in Q (Line 3-6). In this case, we can
set v as the next seed without more evaluations, as the true scores
of other vertices can not exceed their values in Q. Although CELF
can reduce the number of evaluations, it is essentially sequential
and evaluates vertices one by one. In Sec. 4, we present our new
data structures that allow for parallel evaluations in CELF.

3 SPACE-EFFICIENT SKETCHES

This section presents our new technique to construct compressed
sketches in parallel for the IC model on undirected graphs. In this
setting, as discussed in Sec. 2, a vertex v can activate all vertices in
the same CC on a certain sketch. Thus, memoizing per-vertex CC
information in sketches [32] can accelerate the influence evaluation
but requires O(Rn) space, which does not scale to large input graphs.

Alternatively, one can avoid memoization and run a simulation by

traversing the sampled graph to find the CC when needed. This

requires no auxiliary space but can take significant time.

Our approach combines the benefit of both, using bounded-size
auxiliary space while allowing for efficiency. Our key idea is to
only partially memoize CC information in each sketch, and retrieve
this information by partial simulations. In PaC-IM, we only store
the CC information for p = « - n center vertices C C V, where
a € [0,1] is a user-defined parameter. Each sketch @, is a triple
(r, label[ -], size[-]) corresponding to an implicit sampled graph G,
from G, where each edge e = (u,0) is retained with probability pe.
e r: the sketch id. Similar to the fusion idea mentioned in Sec. 2,

the sketch id fully represents the sampled graph.

o label[1..p]: the CC label of center c; on this sketch, which is the
smallest center id j where c; is in the same CC as c;.

o size[1..p]: if label[i] = i (i.e., i represents the label of its CC),
size[i] is the influence of center ¢; on this sketch. It is initially
the CC size of ¢; and becomes 0 when any vertex in this CC is
selected as a seed.

Algorithm Overview. We first present the high-level idea of our
sketch compression algorithm. We present our algorithm in Alg. 3
and an illustration in Fig. 2. As mentioned, we select p = an center
vertices uniformly at random. We only store the CC information
(label and size) for the centers in sketches. We use a global flag
array to indicate if a vertex is a center, and thus the total space
is O((1 + aR)n). To retrieve the CC size of a vertex v on sketch
®,, we start a breadth-first search (BFS) from v. If any center c; is
encountered, v should activate the same set of vertices as c; on this
sketch. As such, we can stop searching and use ¢;’s influence (CC
size) as the influence for v. If v is not connected to any center, the

CC containing v is likely small, and the BFS can visit all of them
quickly. In either case, the number of visited vertices in BFS can

be bounded. In Thm. 3.1, we show that compressing the auxiliary
space by a factor of a roughly increases the evaluation time by
a factor of O(1/a). By controlling the number of centers, we can
achieve a tradeoff between the evaluation time and space usage.
Next, we elaborate on the three functions in Alg. 1: SKETCH(G, r),
which constructs the r-th sketch from G, MARGINAL(S, v, ®1_R),
which computes the score (marginal gain) of a vertex v on top of S



Input graph

Sketch 1

%
%
%
<2

vertex [A[B{C|[D|E|[F|[G|H
center id

O Centers

Selected seeds
—— Sampled edge in a sketch
-------------- Unsampled edge in a sketch
Initial connected component
Activated connected component

'
—-
'
'
'
'

Example 1: Evaluating D on sketch 1:
Search from D, encounter center F (center id is 2).
label[2] is 1 = Marginal gain is size[1] = 5

Example 2: Evaluating D on sketch 2:
Search from D, no centers seen; visited D, G, H.
Marginal gain is 3 (3 vertices visited in BFS)

Select D as first seed Round 2
center ¢y c; center c¢; ¢,
vertex [ B| F vertex | B | F
fabel [ 1] 1] taver [ 1] 1
size | 5] - size | 0] -
(update size[1] to 0) -
Example 3: Evaluating A on sketch 1:
Search from A, encounter B (center id is 1).
label[1] is 1 = Marginal gain is size[1] = 0

center c¢; ¢, center c¢; ¢,

vertex [ B | F vertex [ B| F
faber | 1] 2 | faber 1] 2
size | 2] 2 size | 2|2
(unchanged)  Example 4: Evaluating H on sketch 2:

Search from H, encounter seed D.
Marginal gain is 0 (already activated)

Figure 2: An example of our sketch compression on a graph with 8 vertices (B and F as centers) and R = 2 sampled graphs.

using sketches ®@1__g, and MARKSEED(s*, ®1_g), which adjusts the
sketches ®; g when s* is selected as a seed.

Sketch Construction (SKETCH(G, r)). Recall that we maintain
CC information for p = an centers C = {cy, c2, .. .,cp} in sketches.
To construct a sketch ®,, we first compute the CC information of
the sampled graph G/, which can be performed by any parallel
connectivity algorithm [27]. We store the CC information for all
centers in two arrays. ®,.label[i] records the label of CC of the
i-th center. For multiple centers in the same CC, we simply use the
smallest CC id as the label for all of them to represent this CC, so
all centers find the CC information by referring to their label. For a
center c;, If i is the label of its CC, we use ®,.size[i] to record the
size of this CC. An example of these arrays is given in Fig. 2.

Computing the Marginal Gain (MARGINAL(S, v, d1_g)). Given
the sketches ®;_g and the current seed set S, the function MAR-
GINAL(S, v, @1 R) computes the marginal gain of a vertex v by av-
eraging the marginal gains of v on all sketches. We use a helper
function {8, [) = GETCENTER(®;, v, S), which returns § as the mar-
ginal gain of v on sketch @, and [ as the label of centers connected
to v (I = —1if no center is connected to v). This function will run a
breadth-first search (BFS) from v on G/. (i.e., only using edges e € E
s.t. SAMPLE(e, ) is true). If any center is encountered during this
BFS (Examples 1 and 3 in Fig. 2), then the influence of v is the same
as ¢; on this sketch. The information of ¢; is retrieved by its label
[ = ®,.label[i], and thus § = ®,.size[l]. The influence § is either the
size of the CC containing v when no vertices in this CC are seeds
(Example 1 in Fig. 2), or 0 otherwise, as is updated in MARKSEED
(Example 3 in Fig. 2). Otherwise, if the BFS terminates without
visiting any centers, it will return -1 for the label I. The influence §
is either the number of vertices n’ visited during the BFS, which
is also the size of CC containing v (Example 2 in Fig. 2), or § = 0
(Line 16) if any seed is visited during BFS (Example 4 ). Using the
GETCENTER function, the marginal influence of v on sketch @, can
be obtained as the first return value § of GETCENTER(D;, 0, S).

Marking a Seed (MARKSEED(s", @1 _g)). The function updates the
sketches when s* € V is selected as a seed. For each sketch ®,, the
CC label of s* is the second return value of GETCENTER(®y, s*, S).
If the label is not —1, we set ®[r].size[l] as 0—since s™ is selected,
all other vertices in this CC will get no marginal gain on this sketch.

Our approach allows for a tradeoff between space and query time
in MARGINAL(): a smaller p (fewer centers) means less space but a
higher evaluation cost, as it may take longer to find a center. PaC-IM
unifies and is a hybrid of StaticGreedy and InfuserMG. Theoretically,
using a = 1, our sketch is equivalent to InfuserMG where the CC
information for all vertices on all sketches are memoized; using a =
0, our sketch is equivalent to StaticGreedy with no memoization, and
evaluations are done by traversing the sampled graph. In practice,
PaC-IM is much faster than StaticGreedy and InfuserMG even when
with no compression due to better parallelism. We summarize the
theoretical guarantees in Tab. 2, and state them in Thm. 3.1.

THEOREM 3.1. PaC-IM with parameter a requires O((1 + aR)n)
space to maintain R sketches, and visits O(R-min(1/a, T)) vertices to
re-evaluate the marginal gain of one vertex v, where T is the average
CC size of v on all sketches.

Proof. Assume that no connectivity is stored in the sketches, then
running a simulation for a vertex will visit RT vertices, based on the
definition of T. This is also what the baseline algorithm StaticGreedy
does. We now consider the case that p = an centers are selected.
Note that all centers are picked independently and uniformly at
random. This means that each visited vertex in the BFS has the
probability of « that is a center. Let us first focus on a search on
a specific sketch r, and assume the CC size of v is T;. The search
terminates either 1) all T, vertices have been visited, or 2) a center
is encountered. Therefore, when visiting the T’ vertices in the
BFS order, each of them stops the search with a probability of a.
The expected number of visited vertices in the BFS is therefore
also bounded by »72;(1 - a)' 1o - i, which solves to 1/a. The
total number of visited vertices in all BFS is Y, min(T,, 1/a) =
min(RT,R/a) = R - min(T, 1/a). m]

Note that the centers are selected uniformly at random to bound
the number of visited vertices in Thm. 3.1. It is possible to use
other center selection heuristics, such as betweenness or PageRank
centrality. We leave this as future work.

4 PARALLEL SEED SELECTION

We now present the parallel seed selection process in PaC-IM. We
call each iteration in seed selection (selecting one seed) a round.
Recall that prior solutions use the CELF optimization (see Tab. 2
and Sec. 2), which maintains (possibly stale) scores of all vertices in a



Algorithm 4: Seed Selection based on P-tree

Maintains : A parallel binary search tree T for all A[v].
1 Function NEXTSEED(S, @1 R)

2 s e L // The best seed so far
3 jeo0
4 repeat
// Extract (remove & output) the top 2/ elements in T into array B;
5 Bj[1..27] « T.SPLITANDREMOVE(2/)
6 ParallelForEach v € B; do // Get the true score for each v € B;
7 ‘ A[v] < MARGINAL(S, v, ®;_R)
8 t « argmaxyep; Alv] // can be computed in parallel
9 if (s* = L) or (A[t] > A[s*]) then s* « ¢
10 je—j+1
1 until A[s*] > T.Max() // A[s*] is better than the top in T
12 T.BATCHINSERT(U?,_:IO Bjr \ {s"})
13 return s*
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Figure 3: The number of evaluations by CELF in each round. A point
(x, y) means that CELF does y re-evaluations in the x-th round.

priority queue Q and updates them lazily. In each round, CELF pops
the vertex with the highest (stale) score from Q and re-evaluates
it. The process terminates when a newly evaluated score is higher
than all scores in Q; otherwise, the new score will be inserted
back into Q. For simplicity, we assume no tie between scores. In
the cases when ties exist, we break the tie by vertex id. Let F; =
{v| Aj—1[v] = A*} be the set of vertices re-evaluated by CELF in
round i, where A;_1[0] is the stale score of v after round i — 1, and
A* is the maximum true score in round i (i.e., the score of the chosen
seed in round i). We experimentally study the distribution of |F;|
on all graphs and show three representative graphs in Fig. 3. Except
for road networks (e.g., GER in Fig. 3), most graphs may require a
large number of re-evaluations in certain rounds. However, CELF
is inherently sequential. Some existing parallel implementations
(e.g., [32, 57]) only parallelize the evaluation function MARGINAL
(Line 4 in Alg. 2), but leave the CELF process sequential, and perform
all |F;| evaluations one by one. When F; is large (as in social and
web networks), the sequential CELF results in low parallelism.

Prior Work on Parallel Priority Queue. As a fundamental data
type, parallel priority queues are widely studied [10, 13, 28, 67, 73,
74, 82]. However, as far as we know, all these algorithms/interfaces
require knowing the batch of operations (e.g., the threshold to
extract keys or the number of keys to extract) ahead of time. This

is not true in CELF—the set F; is only known during the execution.

Thus, we need different approaches to tackle this challenge.

Overview of Our Approaches. We first formalize the interface
of the parallel priority queue needed in Alg. 1. The data structure
maintains an array A[-] of (stale) scores for all vertices. It is allowed

to call MARGINAL function to re-evaluate and obtain the true score
of any vertex. The interface needs to support NEXTSEED function,
which returns the vertex id with the highest true score.

We present two parallel data structures to maintain the scores.
The first one is based on a parallel binary search tree (BST) called
P-tree [11, 13, 25, 74]. We prove that using P-trees, our approach
has work (number of evaluations) asymptotically the same as CELF,
while is highly parallel: the selection of the i-th seed finishes in
log |F;| iterations of evaluations (each iteration evaluates multiple
vertices in parallel), instead of |F;| iterations (one vertex per iter-
ation) in CELF. We also propose a new data structure Win-Tree,
based on parallel winning trees. Win-Tree does not maintain the
total order of scores, and is simpler and potentially more practical
than P-trees. We introduce the P-tree-based approach in Sec. 4.1
and Win-Tree-based approach in Sec. 4.2, and compare their per-
formance in Sec. 5.3. These two approaches are independent of the
sketching algorithm and apply to seed selection on all submodular

diffusion models (not necessarily the IC model and/or on undirected
graphs). Note that most IM diffusion models are submodular (e.g., IC,

Linear Threshold (LT), Triggering (TR [43]), and more [43, 77, 85]).

4.1 Parallel Priority Queue Based on P-tree

Our first approach to parallelizing CELF is to maintain the total
(decreasing) order of the scores of all vertices, using a parallel binary
search tree (BST) called P-tree [11, 13]. We will use two functions
on a P-tree T: 1) T.SPLITANDREMOVE(k), which extracts (removes
and outputs to an array) the first k tree nodes (k largest scores)
from T, and 2) T.BATCHINSERT(B), which inserts a set of keys B to
T. Both algorithms are parallel with a polylogarithmic span.

Since P-tree maintains the total order of all vertices, we can
extract a batch of vertices with top (stale) scores and evaluate them
in parallel. The key challenge is a similar stop condition as CELF
to avoid evaluating too many vertices, since we are unaware of
the number of “useful” vertices, i.e., |F;|, ahead of time. Our idea
is to use prefix doubling [15, 26, 36, 38, 69, 70, 78] to achieve work
efficiency and high parallelism. The pseudocode is given in Alg. 4
with an illustration in Fig. 4. To find the next seed, the P-tree T starts
with the stale scores A[-] from the previous round. We then extract
the top (largest stale score) nodes in batches of size 1,2,4,8, ...
from T (Line 5). Within each batch B;, we re-evaluate all vertices in
parallel (Line 7). These new scores are used to update the current
best seed s*. The loop terminates when the score of s* is better than
the best score in T (Line 11). Finally, we select s* as the seed and
insert the rest of the new true scores | JB; \ {s*} back to T.

Due to prefix doubling, each seed selection finishes in at most
O(log n) rounds. Note that our approach evaluates more vertices
than CELF, but due to the stop condition (Line 11), the extra work
is bounded by a constant factor (proved in Thm. 4.2).

THEOREM 4.1 (P-TREE CORRECTNESS). Alg. 4 always selects the
next seed with the largest marginal gain, i.e., A(s*) = max,ecy {A(0v)}.

Proof. Let s™ be the vertex selected by the algorithm, and we will
show A(s*) > A(v) forallo € V when the stop condition on Line 11
is triggered. We first show that A(s*) > A(v) for all v € V that
has been split from the tree. This is because all such vertices have
been re-evaluated, and s*, by definition, has the highest true score
among them. We then show s* has a higher true score than any
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Figure 4: Example of P-tree-Based Seed Selection. The letters in the tree nodes represent vertices, and the numbers below them are their stale scores.
P-tree maintains decreasing order of the (stale) scores. By prefix-doubling, we extract batches of 1, 2, 4 vertices and evaluate each batch in parallel. After batch
3, the highest true score (13) is higher than the current best in the tree (10), and the algorithm stops. We will select the node with the highest true score and
insert the rest back to the tree with their new score. P-tree may evaluate more vertices than CELF, but the extra work can be bounded (Thm. 4.2).

other vertices still in T. For any u € T, the stop condition indicates
A(s*) = A[s*] > Alu] = A(u) (due to submodularity). Therefore,
A(s™) is the highest true score among all vertices. O

THEOREM 4.2 (P-TREE EFFICIENCY). Alg. 4 has the total number
of evaluations at most twice that of CELF.

Proof. Recall that F; is the set of evaluated vertices by CELF when
selecting the i-th seed. Let F; be the set of evaluated vertices by
P-trees in Alg. 4. We first show a simple case—if both CELF and
Alg. 4 start with the same stale scores A;_1[-], then |F]| < 2|F].
Let us reorder vertices in V as v1,vg, . . ., v, by the decreasing order
of their stale score A;_1[-]. Assume v; is the last vertex evaluated
by CELF, so |F;| = . v; must be in the last batch in P-tree. Assume
the last batch is batch j with 2/ vertices. This indicates that all
2/ — 1 vertices in the previous j — 1 batches are before v;. Therefore
2/ —1<1=|F], and |F]| = 2/*1 1, which proves |F]| < 2|Fi].

We now consider the general case. We first focus on a specific
seed selection round i. Due to different sets of vertices evaluated
in each round, at the beginning of round i, CELF and P-tree may
not see exactly the same stale scores. We denote the stale score at
the beginning of round i in CELF as Acgp[-] and that for P-tree as
Apgst|-]. We reorder vertices by the decreasing order of Acgrr|-]
as v1,02, . . ., Up, and similarly for Ags7[-] as u1,up, . . ., up. Denote
A* as the highest true score in round i. Let vy, be the last vertex
in v1.., such that Acgrr[ox,] = A", and uy, the last vertex in uy.,
such that ABST[“yi] > A*. Namely, x; is the rank of A* in v;_p,
and y; is the rank of A* in u;_p,. By definition, F; is exactly the first
x; vertices in sequence v, and thus x; = |F;|; Fl.’ contains all vertices
smaller than u, and possibly some more in the same batch with
ty,, so |F]| < 2y;. In the simple case discussed above, where we
assume Acgrr(-] = Apst[-], we always have x; = y;.

We will use amortized analysis to show that Y} y; < 3 x;, which
further indicates ), |le | < 2-3|Fi|. We can partition u._, into two
categories: U; as the intersection of u;..y, and v1_ x,, and Uz as the
rest. Note that for t € Uz, Agsr[t] = A* > Acgpr(t]. This happens
iff. ¢ is evaluated by CELF in a previous round but not by P-tree.
Namely, there exists a round j, s.t. t € Fj but t ¢ Ul L F’ Letoy
and u] , be the u and v sequences in round j, respectlvely Note
that F; = 01 X0

counted in x;. Smce t¢ Fj'., t is not counted in any y;. Therefore,

and ui‘ u; c Fj’.. Since t € Fj, then vertex t was
~yj

we can save a token for such ¢ when it is evaluated by CELF in
round j but not by P-tree, such that when later t is counted in u;. .4,
in round i, we will use the token to count ¢ for free. Note that
t¢ (F’ qu’Jrl U..UF/_,
any yj» for j < j* < i, so the token must still be available in round i.
In summary, all vertices in Uj are counted in x;, and all vertices in
U, can be counted by the saved tokens (charged to some previous
x;j). Therefore, using amortized analysis, we have 3 y; < 3 x;.
Recall that x; = |Fj|, and |F]| < 2y;. Since Y y; < ¥ xi, we
proved that 3’ |F/| < ¥ 2y; <23 x; =2 3 |Fil. O

), for the same reason, t is not counted in

THEOREM 4.3 (P-TREE CosT BouND). Given the same sketches
®1 R, our seed selection based on P-tree will select the same seed set
as CELF with O(nlog n + Wegrr) work and O(kDp) span, where k
is the number of seeds, WoELF is the work (time complexity) by CELF,
and Dy is the span to evaluate one vertex.

Proof. Using the analysis of P-tree [13], SPLITANDREMOVE have
O(log n) work and span, where n is the tree size. BATCHINSERT has
O(n’ log n) work and O(log n” log n) span, where n’ is the size of
unordered insertion batch. In addition, constructing the P-tree uses
O(nlogn) work and O(log n) span.

For each seed selection round that evaluates a set of vertices Fl.’ ,
Alg. 4 will first split them out from the tree, re-evaluate them, and
insert all but one back to tree. Based on the aforementioned cost
bounds, the work per element in Fl.’ is O(log n), the same as in CELF
per element in F;. Thm. 4.2 indicates that 3} [F| = O(X |Fi]), so the
total work for P-tree is asymptotically the same as the sequential
CELF except for the O(nlog n) preprocsssing cost.

For the span, note that P-tree needs O(log n) batches per round.
Each batch requires a split, and evaluates multiple vertices in paral-
lel. Therefore, the span is O(Da + polylog(n)) in each round. After
all the batches are processed, finally a batch-insertion adds all but
one vertices back to the tree with polylogarithmic span. Combine
all pieces together, the span is O(Dp) per round, and O(kDp) for
the entire Alg. 4. O

4.2 Parallel Priority Queue: Win-Tree

While P-tree provides theoretical efficiency for seed selection, it
maintains the total order of all vertices, which is not needed in
priority queues and may cause performance overhead. Also, P-tree
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Figure 5: Seed selection based on Win-Tree. Each leaf stores a vertex id, and each internal node stores the vertex in its subtree with the highest (stale) score.
(a) An example of finding the maximum score. For illustration purposes, we assume the parallel threads work at the same speed and all tree nodes on the same
level are processed in parallel (in reality the threads run asynchronously in fork-join parallelism). Therefore, the subtree at G will see A* = 14 updated by D,
and this subtree will be skipped. (b) Updating the internal nodes with the new A[-] values. Finally, the root of the tree has the highest true score.

Algorithm 5: Seed Selection based on Win-Tree

Maintains: Global variable A*: the highest true score evaluated so far

A winning tree T with n leaf nodes each storing a record.
For a tree node ¢ € T, we use the following notations:
t.id: the id of the vertex stored in this node
t.parent / t.left / t.right : the parent/left child/right child of node ¢
The Win-Tree is a max-priority-queue based on (stale) score A[t.id]
for each vertex.

1 Function FINDMax(tree node ¢, current seed set S, sketches ®;_g)

2 if t.id = t.parent.id then stale < false // evaluated by parent

3 else stale — true

// Skip a subtree if the max is stale and is smaller than the current best
score; no re-evaluation needed for the entire subtree

4 if stale = true and A[t.id] < A* then return

5 if stale = true then // Current value is stale, re-evaluation needed

A[t.id] < MARGINALGAIN(S, t.id, ®1_R) // Re-evaluate

WRITEMAX(A*, A[t.id]) // update the best score so far

8 if ¢ is a leaf then return

9 In Parallel:

FINDMax(t.left, S, @1 R)

FINDMax(t.right, S, ®1_R)

// compare two branches and reset max

12 if A[t.left.id] > A[t.right.id] then t.id « t.left.id

13 else t.id « t.right.id

14 Function NEXTSEED(S, @1 R)

: ‘

11

15 A* —0
16 FINDMAX (T .root, S, ®1.R)
17 return T.root.id

explicitly maintains the parent-child pointers, which causes addi-
tional space usage. We now propose a more practical data structure
based on a winning tree that overcomes these two challenges, al-
though it does not have the same bounds as in Thm. 4.3.

A classic winning tree (aka. tournament tree) is a complete binary
tree with n leaf nodes and n — 1 interior nodes. The data are stored
in the leaves. Each interior node records the larger key of its two
children. Since a winning tree is a complete binary tree, it can be
stored implicitly in an array T[1..2n — 1], which consumes smaller
space. In our case, each tree node stores a vertex id (noted as t.id).
The key of a node t is the (stale) score of this vertex, i.e., A[t.id].

Each interior node stores the id of its children with a larger score.
As a result, the vertex at the root has the highest (stale) score.

To support CELF efficiently, we use the internal nodes of Win-
Tree to prune the search process. Suppose the best true score evalu-
ated so far is A*, then if we see a subtree root t with a stale score
smaller than A*, we can skip the entire subtree. This is because all
nodes in this subtree must have smaller stale scores than t.id, which
indicates even smaller true scores. Although this idea is simple, we
must also carefully maintain the Win-Tree structure, with the newly
evaluated true scores. We presented our algorithm in Alg. 5 with
an illustration in Fig. 5, and elaborate on more details below.

For NEXTSEED, we keep a global variable A* as the largest true
score obtained so far, initialized to 0. The algorithm calls the FIND-
Max(t,...) routine starting from the root, which explores the sub-
tree rooted at ¢. We first check if the score at t is stale: if +’s id is
the same as its parent, the true score has been re-evaluated at its
parent (Line 2). Based on the node’s status, we discuss three cases.
First, if the score is stale and is lower than A*, as discussed above,
we can skip the entire subtree and terminate the function (Line 4).
Second, if the score is stale but is higher than A*, we have to re-
evaluate the vertex t.id, since it may be a candidate for the seed
(Line 6). We then use the atomic operation WRITEMAX to update
A™ by this true score if it is better. The third case is when the score
is not stale. Although no evaluation is needed on t.id, we should
still explore the subtrees, since with the newly evaluated score, the
subtree structure (i.e., the ids of the internal nodes) may change.
Hence, in cases 2 and 3, we recursively explore the two subtrees in
parallel (Lines 9 to 11). After the recursive calls, we set the vertex
id as one of its two children with a higher score (Lines 12 to 13).

THEOREM 4.4 (WIN-TREE CORRECTNESS). Alg. 5 always selects the
next seed with the largest marginal gain.

Proof. Due to Lines 12 and 13, the Win-Tree is always valid after
each round, where each internal node records the vertex with the
higher (stale) score in its children. We then show that the final
selected seed has the highest true score. First, using write-max,
the value of A* is non-decreasing during the algorithm. Let A,
be the final highest score selected by the algorithm. This means
that throughout the algorithm, A* < Ay,. For any vertex v, there
are two cases. The first is when v has been re-evaluated, so its
true score has updated A* by write-max (Line 7), and therefore



Table 3: Graph Information. Influence: the maximum influence spread of
100 seeds selected by PaC-IM (R = 256), InfuserMG (R = 256), and Ripples
(e = 0.5), rounded to integers. Most influence values are evaluated by 20000
simulations. The underline numbers on large graphs use 2000 simulations.

« 9

-”: unable to evaluate within 50 hours using 2000 simulations.

\4 |E| ‘ Influence ‘ Notes
EP 0.08M  0.831M 5332 | Epinionsl [65]
SLDT 0.08M 0.94M 6342 | Slashdot [51]
DBLP 032M 2.10M 1057 | DBLP [84]
= YT 1.14M  5.98M 29614 | com-Youtube [84]
'g OK 3.07M  234M 1460000 | com-orkut [84]
@ 1 4.85M 85.7M 376701 | soc-LiveJournall [6]
TW  417M  240B | 11776629 | Twitter [48]
FT 65.6M  3.61B 19198744 | Friendster [84]
= SD 89.2M  3.88B | 15559737 | sd_arc [55]
2 Cw 978M  74.7B - | ClueWeb [55]
< GER 12.3M  32.3M 384 | Germany [1]
g USA  239M 57.7M 370 | RoadUSA [1]
HT5  205M 13.0M 1018 | HT [29, 81], k=5
z HH5 2.05M  13.0M 2827 | Household [29, 81], k=5
Z. CH5 4.21M  29.7M 355065 | CHEM [31, 81], k=5
~ GL5  249M 157M 11632 | GeoLife [81, 86], k=5
COS5 321M 1.96B 4753 | Cosmo50 [49, 81], k=5

A(v) < A* < Ap,. Otherwise, v is skipped by Line 4 at a node ¢,
indicating A(v) < Alo] < A* < Ayy. Hence, Ay, > A(0) for all v.
Note that when A* obtained its final value A, the corresponding
vertex will be carried all the way up to the root (by Line 12-13),
which proves the stated theorem. O

Unlike P-trees, we cannot prove strong bounds for the number
of re-evaluations in Win-Tree—since the parallel threads are highly
asynchronous, the progress of updating A* and pruning the search
cannot be guaranteed. However, we expect Win-Tree to be more
practical than P-tree for a few reasons. First, Win-Tree is a complete
binary and can be maintained in an array, which requires smaller
space (no need to store metadata such as pointers in P-trees). Second,
the P-tree algorithm requires O(log n) batches and synchronizing
all threads between batches. Such synchronization may result in
scheduling overhead, while the Win-Tree algorithm is highly asyn-
chronous. Most importantly, Win-Tree does not maintain the total
order, and the construction time is O(n) instead of O(nlogn). In
Sec. 5.3, we experimentally verify that although Win-Tree incurs
more re-evaluations than P-trees, it is faster in most tests.

5 EXPERIMENTS

Setup. We implemented PaC-IM in C++. We run our experiments
on a 96-core (192 hyperthreads) machine with four Intel Xeon Gold
6252 CPUs and 1.5 TB of main memory. We use numactl -i all
in experiments with more than one thread to spread the memory
pages across CPUs in a round-robin fashion. We run each test four
times and report the average of the last three runs.

We tested 17 graphs with information shown in Tab. 3. We in-
clude real-world graphs with a wide range of sizes and distributions,
including five billion-scale or larger graphs. In addition to the
commonly used benchmarks of social networks, we also include

web graphs, road networks, and k-NN graphs (each vertex is a multi-
dimensional data point connecting to its k-nearest neighbors [81]).
Solving IM on such graphs simulates the influence spread between
websites (web graphs), geologically connected objects (road net-
works), and geometrically close objects (k-NN graphs). Based on
graph patterns, we call social and web graphs scale-free graphs,
and the rest sparse graphs. We symmetrize the directed graphs
to make them undirected. PaC-IM (with compression) is the only
tested system that can process the largest graph ClueWeb [55] with
978M vertices and 74B edges. Even with 1.5TB memory, PaC-IM
can process Clueweb only when < 0.25 (4X or more compression
ratio in sketches), which shows the necessity of compression.

We select k = 100 seeds in all tests. We use the IC model with

constant propagation probability p in the same graph. For scale-free
networks, we use p = 0.02, similar to previous work [21, 23, 32, 44].
For sparse graphs, we set p = 0.2 since the average vertex degrees
are mostly within 5. We also tested two other edge probability
distributions similar to previous papers [32, 57]. Among different
distributions, we observed similar relative performance among the
tested algorithms. Thus, we provide the result using fixed p =
0.02 or 0.2 here. Full results on other distributions can be found
in Appendix A. When comparing the average numbers across
multiple graphs, we use the geometric mean.
Software Libraries. We use ParlayLib [12] for fork-join parallelism
and some parallel primitives (e.g., sorting). We use the P-tree imple-
mentation from the PAM library [72, 74], and the UniteRemCAS
implementation from Connectlt [27] for parallel connectivity.

Tested Algorithms. We tested both P-tree and Win-Tree for seed
selection. In most cases, Win-Tree is more efficient in both time and
space, so use Win-Tree as the default option in PaC-IM. We present
more results comparing the two options in Sec. 5.3.

We compare with three existing parallel IM systems: InfuserMG [32],
No-Singles [64] and Ripples [56, 57], and call them baselines. As in-
troduced in Sec. 2, InfuserMG uses a similar sketch-based approach
as PaC-IM but does not support compression or parallel CELF. No-
Singles and Ripples both use Reverse Influence Sampling [17]. In
our tests, Ripples is always better than No-Singles in time and space,
so we only report the results of Ripples. We have also tested some
sequential algorithms, such as PMC [60] and IMM [75], but their
running times are not competitive to the parallel implementations.
We observe that InfuserMG and Ripples have scalability issues when
the number of threads increases (see examples in Fig. 7). Hence, we
report their shortest time among all the tested numbers of threads.

Each algorithm has a parameter that controls the solution qual-
ity: R for InfuserMG and PaC-IM and € € (0, 0.5] for Ripples. The
solution quality increases with larger R or smaller e. When compar-
ing running time, we guarantee that PaC-IM always gives a better
solution than the baselines. For InfuserMG and PaC-IM, we set the
number of sketches R = 256. PaC-IM with R = 256 is on average
more than 99% of the quality when using R = 2%, which is consis-
tent with the observation in the StaticGreedy paper [22] (see our
full version for quality analysis). We independently verified this
and shown it in Fig. 6 For Ripples, smaller e means better accuracy
but more time. We tested € in [0.13,0.5] as in their paper. PaC-IM
under R = 256 yields about the same solution quality as € = 0.13
(the best tested setting in their paper). When reporting time, we



Table 4: Running time, memory usage, and influence spread (normalized to the maximum) of all tested systems on a machine with 96 cores
(192 hyperthreads). Relative influence is the influence spread normalized to the maximum influence spread among Ours (R = 256), InfuserMG (R = 256),

« 2

and Ripples (€ = 0.5). “-”: out of memory (1.5 TB) or time limit (3 hours). Ours; is our implementation with Win-Tree without compression. Oursy ; is our
implementation with & = 0.1 (10X compression for sketches). InfuserMG [32] and Ripples [56, 57] are baselines. We report the best time of InfuserMG and
Ripples by varied core counts (the scalability issue of InfuserMG and Ripples are shown in Fig. 7). CSR is the memory used to store the graph in CSR format
(see more in Sec. 5.1). The bold numbers are the fastest time/smallest memory among all implementations on each graph. The underlined numbers in memory
usage are the smallest memory among systems that do not use compression (Ours;, Ripples and InfuserMG). A heatmap of the full result is in Fig. 1.

Relative Influence Total Running Time (second) Memory Usage (GB)

Ours InfuserMG Ripples | Ours; Owursy; InfuserMG Ripples | CSR  Ours; Owursg; InfuserMG Ripples

EP 100% 99.9% 98.9% 0.29 0.49 0.38 3.70 0.01 0.14 0.06 0.17 0.21

SLDT 100% 99.8% 99.1% 0.30 0.53 0.48 6.88 0.01 0.15 0.05 0.17 0.24

DBLP 100% 99.0% 98.3% 0.35 0.37 0.86 2.71 0.02 0.48 0.10 0.67 0.29

= YT 100% 99.9% 98.2% 1.22 2.44 6.20 26.6 0.05 1.63 0.28 2.36 1.50

'g OK 100% 100% 99.8% 8.79 39.6 80.3 325 1.77 6.13 2.44 8.07 78.3

L ¥ | 100% 99.9% 99.4% 6.00 20.5 61.3 130 0.68 5.98 1.63 10.5 20.4

™ 100% 100% - 93.4 378 639 5863 18.2 63.0 259 103 718

FT 100% 100% - 128 609 1973 - 27.4 97.9 399 161 -

G SD 100% 97.1% - 150 627 1684 - 29.6 125 44.8 211 -

3 cw 100% - - - 9776 - - 564 - 738 - -

< GER 100% 70.4% 94.4% 9.35 8.53 26.7 392 0.33 133 2.58 25.1 22.8

é USA 100% 74.7% 92.8% 14.6 13.7 53.1 8534 0.61 25.8 5.05 49.0 46.1

HT5 100% 85.7% 94.8% 0.72 0.68 2.73 9.26 0.11 1.37 0.24 1.93 0.79

Z HH5 100% 79.5% 97.6% 2.28 2.11 8.26 14.4 0.11 3.00 0.51 4.26 1.14

Z, CH5 100% 92.3% 97.8% 3.52 5.32 124 10.2 0.25 4.87 1.05 8.77 1.64

=  GL5 100% 76.9% 98.9% 19.5 17.9 116 232 1.36 27.6 6.02 51.6 8.18

COS5 100% 37.7% - 348 284 2319 - 17.0 355 66.1 666 -
e == = = o Ep GER the largest graph CW [55]. With similar quality, Ours; is faster than
Bos :/' SLDT HTS all baselines on all graphs, and Ours 1 is just slower than InfuserMG
50‘6 ¢! e~ DBLP HH5 on the two smallest graphs. Oursy ; has the smallest space usage on
8 : o e CHS all graphs. The advantage of PaC-IM is more significant on larger

g:z B N SK . g(lic,s graphs, both in time and space.

€ : USA Running Time. PaC-IM is significantly faster than the baselines
00 T e ymd m & on almost all graphs. As mentioned, we report the best running

R(number of sketches)
Figure 6: Spread curves for our algorithm. In each plot, x-axis is the

number of sketches (R) and y-axis is the spread normalized to the maximum
spread of each graph. Higher is better.

use € = 0.5, which gives the fastest running time, and the quality is
still reasonably high (at least 93% of our best influence).

We observe that on sparse graphs, the influence spread of In-
fuserMG is only 38-92% of the best achieved by PaC-IM and Ripples.
Although theoretically, PaC-IM and InfuserMG should give the same
output, InfuserMG uses many optimizations that sacrifice solution
quality. We tried to increase R and various other attempts in In-
fuserMG, but they did not improve the solution quality. Therefore,
we keep the same value R = 256 for PaC-IM and InfuserMG.

5.1 Overall Time and Space

Tab. 4 shows the running time, memory usage, and normalized
influence spread of all systems. Ours; and Ours ; are PaC-IM with
a = 1 (no compression) and a = 0.1 (10X sketch compression),
respectively. To illustrate the relative performance, we present a

heatmap in Fig. 1, where all the numbers (time and space) are
normalized to Ours;. Oursg 1 is the only algorithm that can process

time among all tested core counts for InfuserMG and Ripples, since
they may not scale to 192 threads (see Fig. 7 and Sec. 5.2). Even
s0, PaC-IM is still faster on all graphs. On average, Ours; is 5.7X
faster than InfuserMG and 18x faster than Ripples. Ours 1 is slightly
slower than Oursy, but is still 3.2x faster than InfuserMG and 10X
faster than Ripples.

In general, the compression in PaC-IM saves space by trading
off more time. When « = 1, the CC sizes for all vertices are stored
in the sketches, and a re-evaluation only needs a constant time
per sketch. When « = 0.1, each query involves a search to either
find a center, or visit all connected vertices, which roughly costs
O(1/a) on each sketch. Indeed, on all scale-free graphs, Oursg 1
takes a longer time than Ours;. Interestingly, on most sparse graphs,
Oursg 1 can be faster than Ours;. This is because seed selection
only takes a small fraction of the total running time (except for
CH5), so the slow-down in seed selection is negligible for the overall
performance. Meanwhile, avoiding storing O(Rn) connectivity sizes
reduces memory footprint and makes the sketching step slightly
faster, which overall speeds up the running time.

Memory Usage. We show space usage of PaC-IM and baselines
in Fig. 1 and 8 and Tab. 4. We also show the size of representing
the graph in standard Compressed Sparse Row (CSR) format as a



n CELF P-Tree Win-Tree

HP 12008 7936 7964 8322

EP 75879 57980 58010 58398
SLDT 77360 66618 66649 67035

= DBLP 317080 3255 3269 4075
'g YT 1134890 656014 656068 656727
2 OK 3072627 3066983 3066995 3067514
L) 4847571 3609995 3610105 3611583
™ 41652231 41200415 41200437 41200774

FT 65608366 61946405 61946434 61947064

= SD 89247739 84554009 84576755 84576236
2 CwW 978408098 873230222 873256302
< USA 23947348 143 159 465
2 GER 12277375 139 155 416
HT5 928991 516 536 1007

z HH5 2049280 3931 3943 4717
Z CH5 4208261 628918 629501 653157
=~ GL5 24876978 11042 11430 12996
COS5 321065547 431 449 1264

Table 5: Numbers of evaluations for each graph instance using different
algorithms.

reference in Tab. 4 and Fig. 8, which roughly indicates the space
to store the input graph. CSR uses 8 bytes for each vertex and
each edge. Using a = 0.1, PaC-IM uses the least memory on all
graphs. Even without compression, our algorithm uses less memory
than the baselines on 10 out of 16 graphs. Note that although the
compression rate for sketches is 10x in Oursy 1, the total space also
includes the input graph and the data structure for seed selection.
Therefore, we cannot directly achieve a 10X improvement in space.
In most cases, the total memory usage is about 5x smaller.

Summary. Overall, PaC-IM has better performance than the base-
lines in both time and space. We note that the space usage of Ripples
can be (up to 3.4X) better than Ours; on certain graphs (but still
worse than Oursg 1), but in these cases the running time is also
much longer (by 2X to 583X ). On scale-free graphs, Oursg ; is 2.5X
slower than Ours; on average, but uses 3x less space. On sparse
graphs, Oursg 1 is almost always better in both time and space.

5.2 Scalability

We study the scalability of all systems. We present the performance
on six representative graphs in Fig. 7 with varying core counts P.
We separate the time for sketch construction (the “sketch time”)
and seed selection (the “selection time”) to study the two compo-
nents independently. For PaC-IM, both sketch and selection time
decrease with more cores and achieve almost linear speedup. In
contrast, InfuserMG and Ripples get the best speedup with 8-16
cores on many graphs, and perform worse with more cores. For
both InfuserMG and Ripples, the sketch time scales better than the
selection time. This is because both algorithms use well-parallelized
algorithms to construct sketches. For example, InfuserMG uses a
standard coloring [61, 71] idea for parallel connectivity. However,
in seed selection, the baseline algorithms can have longer running
times with more threads used. This is because they only use paral-
lelism within one evaluation, and perform all evaluations one by
one. For both baselines, a single evaluation does not cause much

computation. In this case, the overhead of scheduling the parallel
threads can be more expensive than the computation (and can even
dominate the cost), which increases with the number of threads.

The scalability curves indicate a major performance gain of PaC-
IM over baselines is from better scalability. On SLDT, L], and SD,
although the sequential running time of InfuserMG is better than
PaC-IM, PaC-IM achieves better performance when more than 8
cores are used. The advantage is more significant with more cores.

The scalability curves also indicate the necessity of our paral-
lel CELF. For Oursy 1, the sequential selection time takes a large
portion of the total running time, so parallelizing seed selection is
crucial for improving the overall performance. Even for Ours, the
selection time on 1 core is still much longer than the total parallel
running time. This means that if this step was not well-parallelized,
it would become the performance bottleneck when P is large. Using
our new techniques from Sec. 3 and 4, both steps scale well.

5.3 Analysis of the Proposed Techniques

Compression. We evaluate the time and space usage of different
compression ratios by controlling the parameter @, and present the
results in Fig. 8. The gray dashed line represents the CSR size of each

graph, which is the space to store the input. Compression always
reduces memory usage, but may affect running time differently.

Memory usage always decreases with the value o decreases. As
mentioned previously, the actual compression rate can be lower
than 1/a, since our compression only controls the memory for
storing sketches, and there are other space usage in the algorithm.
Roughly speaking, using @ = 0.05 can save space on graphs by up
to 8x and shrink the space very close to the input graph size.

Compression affects the running time differently for sketch con-
struction and seed selection. Smaller « indicates longer running
time in seed selection, but may improve the sketch time slightly
due to the reduced memory footprint. The effect of compression
on total running time depends on the ratio of sketching and se-
lection time, where scale-free and sparse graphs exhibit different
patterns. Scale-free graphs usually have one or several large CCs
in the sampled graphs since they are dense, while sparse graphs
usually have many small CCs. This can also be seen by the overall
influence in Tab. 3: even though we use a smaller p on scale-free
networks, the total influence is still much larger than the sparse
graphs. On scale-free graphs, due to large CCs on sampled graphs,
selecting any seed in a large CC may significantly lower the score of
other vertices, leading to much more total evaluations than sparse
graphs. As a result, a smaller « causes a clear time increase for seed
selection on scale-free networks because each evaluation becomes
slower while only having a small impact on most sparse graphs.

We provide the number of re-evaluations on each graph in Tab. 5
as a reference.

P-tree vs. Win-Tree. We now study both data structures for seed
selection. Our goal is to achieve high parallelism without causing
much overhead in work. P-tree has the theoretical guarantee that the
total number of evaluations is no more than twice that in CELF. To
evaluate the work overhead, we compare the number of evaluations
for both data structures to CELF in Fig. 9(a). For each graph, we
count the number of evaluations done by CELF as x and that by
P-tree and Win-Tree as y; and yy, respectively. We plot all (x, y1 /x)
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Figure 7: Running time using different core counts for different IM algorithms. In each plot, the x-axis shows core counts (96h means 96 cores with

hyperthreading) and the y-axis is running time in seconds.
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evaluations and selection time. (a): Let #CELF, #P-tree and # Win-Tree
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method. Each point represents a tested graph. Each blue circle is a data
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(#CELF, #P-tree/#CELF). (b): Each point represents a tested graph under
different values of a. The y-axis is P-tree selection time/ Win-Tree selection
time. The orange cross is the average value under each a.

B Win-Tree: Sketch Construction WM P-Tree: Sketch Construction
I Win-Tree: Seed Selection Il P-Tree: Seed Selection

Win-Tree: Memory Usage P-Tree: Memory Usage

SLDT L TW
750
! II II 500 II
0.5 20 39
0.0 ' of- =B _uf_uB a8 of-mm—mn_20_=H_=R
m 0.1 5
2 b — S
S FT SD GER 3
9 10
9 1000 1000) o
< 500 500 5| <
Qo o mm_En_=E_=R =R 0 c
£ -IR-AE 50 5 &
= 100 100 10 @
o : . —— 15 @
= HH5 CH5 COS5 P~
c [0}
é’ 1 5 ~
0 ' 0 . 0 |
> B 200
e rle ML hNe Nbeoso
~ ~ ~ ~ ~ ~
P ST Q PN Q LY Q
o' Vo & SIPASIC SIPASIS

Figure 8: Running time and memory with different values of «. The
x-axis represents the compression rate. The growing up y-axis represents
the running time (in seconds) of the sketching and selecting process. The
growing down y-axis represents the total memory usage (in GB). The gray
horizontal line represents the CSR size of each graph, which is the basic
memory we need to load the graph.

as blue dots and all (x, y2/x) as orange triangles. The number of
evaluations done by P-trees is very close to that by CELF (1.03X on
average), while Win-Trees require slightly more (1.7X on average).
The result is consistent with our theoretical analysis.

As mentioned in Sec. 4.2, we expect Win-Trees to perform better
in practice due to various reasons. To study this, we plotted Fig. 9(b)
as a comparison for selection time between P-tree and Win-Tree
under different compression ratios. Each data point represents a
graph, and the value is the ratio of selection time between P-tree and
Win-Tree. The average ratios are always larger than 1, indicating
better performance for Win-Tree, but the advantage decreases as o
becomes smaller (higher compression). This is because when « is
large, the evaluation is fast, and the major time is on the tree oper-
ations, where Win-Trees is more advantageous due to the reasons
mentioned in Sec. 4.2. With higher compression (small @), the eval-

uation becomes more expensive. Since the P-tree evaluates fewer
vertices, the overall selection time is more likely to be better. To fur-

ther understand this, we focus on the five topmost points (circled)
in Fig. 9(b): those data points are from COS5, where P-tree is 8-12x
slower than Win-Tree. For COS5, the number of vertices n is large,
but only hundreds of vertices are evaluated in total. Thus, the seed
selection time is dominated by constructing the data structures,
i.e, O(nlogn) work for P-tree to maintain total ordering, and O(n)
for Win-Tree that is a lot faster. Since the number of evaluations is
small, most of the vertices in the tree are never touched, and thus,
maintaining their order wastes the work.

In Fig. 8, we also compare the time and space between P-tree
and Win-Tree. Similar to the discussions above, when « is small,
Win-Tree is almost always faster than P-tree, but P-tree may perform
better when « is large. However, the advantage is quite small since
the number of evaluations of Win-Tree is still close to P-tree (see
Fig. 9(a)). Win-Tree also uses smaller memory than P-tree. As dis-
cussed in Sec. 4.2, this is because P-tree needs to explicitly maintain
tree pointers and balancing criteria, while each Win-Tree node only
needs to store the vertex id (2n integers in total).

Based on these observations, PaC-IM always uses Win-Tree by
default, but also provides the interface for users to choose P-trees.



6 RELATED WORK

Influence Maximization (IM). IM has been widely studied for
decades with a list of excellent surveys [5, 7, 52, 63, 88] that review
the applications and papers on this topic. IM is also of high rele-
vance of the data management community, and many excellent pa-
pers published recently regarding benchmarking (3, 59], new algo-
rithms [40], new propagation models and applications [9, 41, 77, 83],
and interdisciplinary extensions [85, 89].

A survey paper [52] roughly categorizes IM algorithms into three
methodologies: simulation-based, proxy-based, and sketch-based.
Among them, (Monte Carlo) simulation-based approaches (e.g., [34,
43, 50, 80, 87, 90]) are the most general and apply to most settings
(i-e., graph types and diffusion models); however, they do not take
advantage of the specific settings, so generally, their performance
is limited. Proxy-based approaches (e.g., [20, 42, 44, 45, 54, 62]) use
simpler algorithms/problems (e.g., PageRank or shortest-paths) to
solve IM. While they can be fast in practice, their solution quality
has no theoretical guarantees. Sketch-based solutions, as mentioned
in Sec. 1 and 2, generally have good performance and theoretical
guarantees, but only apply to specific diffusion models. Our sketch
compression focuses on the IC model. We note that the parallel
data structures in Sec. 4 are general to submodular diffusion models
such as linear threshold [43], and more [77, 85].

Sketch-based algorithms can further be categorized into forward
(influence) sketches and reverse (reachable) sketches [52]. As the
names suggest, forward sketches record the influence that each
vertex can propagate to in sampled graphs. Most algorithms [21-23,
32, 43, 60] mentioned in this paper, including PaC-IM, use forward
sketches. Reverse sketches find a sample of vertices T and keep the
sets of vertices that can reach them. Many IM algorithms (e.g., [17,
75, 76, 79]), including No-Singles [64] and Ripples [56, 57] that we
compared to, use reverse sketches. These algorithms can trade off
(lower) solution quality for (better) performance/space, by adjusting
the size of T. This paper focuses on forward sketches because our
compression technique is designed for them. However, the parallel
data structures we proposed for seed selection, P-tree and Win-Tree,
are independent of forward sketches. Applying P-tree and Win-Tree
to reverse-reachable sketches can be interesting for future work.

Space-Efficient Connectivity. We are aware of a few algorithms
that can compute graph connectivity using o(n) space [8, 18, 30, 46],
which share a similar motivation with PaC-IM. However, PaC-IM
does not require computing connectivity in o(n) space, but only
requires storing it in O(n) space. Hence, the goal here is essentially
different, although these approaches are inspiring.

7 CONCLUSION AND DISCUSSIONS

This paper addresses the scalability issues in existing IM systems by
novel techniques including sketch compression and parallel CELF.
Our sketch compression (Sec. 3) applies to the IC model and undi-
rected graphs, and avoids the O(Rn) space usage in SOTA systems,
which allows PaC-IM to run on much larger graphs without sacri-
ficing much performance. To the best of our knowledge, our new
data structures (Sec. 4) are the first parallel version of CELF seed
selection, which is general to any submodular diffusion models.
In addition to new algorithms, our techniques are carefully an-

alyzed (Thm. 3.1 and 4.3) and have good theoretical guarantees
regarding work, parallelism, and space. These analyses not only

lead to good practical performance but also help to understand how
the techniques interplay. The techniques are also experimentally
verified in Fig. 7 to 9. The theory and our careful implementation
also lead to stable speedup with increasing core counts (see Fig. 7).

Limitations, Generalizations, and Future Work. Our paper
discussed two techniques: sketch compression and parallel CELF.
Sketch compression uses the idea of memoization. As in previous
work [21, 32], this approach only applies to IC models on undirected
graphs, so that each edge can be sampled in advance regardless of
the actual influence propagation direction. One future direction is to
study similar approaches for sketch compression on directed graphs,
but it may require a different technique, such as a compressed
representation for strongly connected components.

For parallel CELF, we believe that our approaches based on P-tree
and Win-Tree can be generalized to other settings. Within the scope
of IM, this technique can also be combined with reverse (reachable)
sketches, as long as the diffusion models are submodular. More-
over, CELF is a general greedy approach to accelerate optimization
problems with submodular objective functions [47, 50, 58]. There-
fore, our approaches can potentially provide parallelism for these
problems. We leave these extensions as future work.

One limitation of Win-Tree is that it does not have strong bounds
as P-trees. An interesting future work is to derive a strong bound
regarding the number of evaluations. In the worst case, Win-Tree
may require O(n) evaluations due to the asynchrony of the threads.
However, such a bad case is very unlikely in practice, and Win-Tree
has demonstrated good performance in our experiments. Giving a
tighter bound under some practical assumptions may be interesting.
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A PERFORMANCE EVALUATION UNDER DIF-

FERENT EDGE PROBABILITY DISTRIBUTIONS

To study how different edge probability distributions affect our
algorithm and baseline algorithms, we also tested two more edge
probability distributions. The first one uses U (0, 0.1) for each edge
in social and web graphs, and U (0.1, 0.3) for road and k-NN graphs,
where U(x,y) means to draw a uniform random number from x
to y. This edge probability assignment is also commonly used in
previous work [32, 57]. The other probability distribution is taking
Puv = ﬁ where py, is the probability to sample edge (u, v), and
dy, and dy are degrees of vertex u and v. It is similar to the Weighted
IC (WIC) model on the directed graph, where py, = m, Puo 18
the probability that the directed edge u — v is sampled, and d;,, (v)
is the in-degree of vertex v. We will use Uniform and WIC to refer
to these two edge probability assignments, respectively, and use
Consistent to refer to the assignment mentioned in the main context
of the paper.

Tab. 6 and Tab. 7 show the influence scores, running time and
memory usage of all systems with Uniform and WIC edge proba-
bility assignments respectively. Ours; and Oursg 1 are our PaC-IM
with @ = 1 (no compression) and @ = 0.1 (10X sketch compres-
sion), respectively. As mentioned in the main paper, InfuserMG and
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Relative Influence Total Running Time (second) Memory Usage (GB)

Ours InfuserMG Ripples | Ours; Ourso; InfuserMG Ripples | CSR  Ours; Oursg; InfuserMG Ripples

EP 11.3K 11.3K 11.2K 0.36 0.49 0.34 4.30 0.01 0.14 0.05 0.16 0.46
SLDT 15.4K 15.3K 15.3K 0.35 0.52 0.39 10.4 0.01 0.13 0.05 0.17 0.53

< DBLP 104K 10.3K 10.2K 0.52 0.79 2.15 7.55 0.02 0.47 0.08 0.67 0.40
3 YT 86.6K 86.6K 86.1K 1.60 2.95 5.21 56.0 0.05 1.68 0.27 2.37 3.84
f OK 2.32M 2.32M 2.32M 9.93 29.0 52.7 290 1.77 6.09 2.43 8.09 129
g LJ 1.19M 1.19M 1.19M 7.30 22.3 54.2 179 0.68 6.08 1.62 10.5 77.5
S TW 20.1M 20.1M - 122 327 571 - 18.2 63.2 26.5 103 -
FT 29.4M 29.4M - 150 492 1213 - 27.4 97.6 39.4 161 -

SD 29.2M 29.0M - 187 570 1523 - 29.6 125 44.5 211 -

'g GER 0.40K 0.29K 0.38K 9.26 8.44 27.6 388 0.61 133 2.59 25.2 21.8
é USA 0.39K 0.30K 0.36K 14.4 13.9 64.3 8048 0.33 25.8 5.06 49.1 45.0
HT5 1.07K 0.89K 1.02K 0.74 0.71 2.71 9.09 0.11 1.37 0.23 1.94 0.77

z HH5 2.93K 2.31K 2.85K 2.28 2.10 9.92 14.6 0.11 3.04 0.51 4.27 1.14
Z. CH5 360K 320K 355K 3.61 5.58 118.24 9.82 0.25 4.88 1.04 8.80 1.63
= GL5 11.6K 8.5K 11.5K 19.3 17.7 94.5 231 1.36 27.6 6.02 51.7 8.17
COS5 5.0K 2.1K - 310 322 2024 - 17 355 66 666 -

Table 6: Under uniform edge distribution: running time, memory usage, and the influence spread of all tested systems on a machine with 96
cores (192 hyperthreads). For social and web graphs, the edges are sampled under the uniform distribution U (0, 0.1); for road and k-NN graphs, the edges
are sampled under U (0.1, 0.3). “-”: out of memory (1.5 TB) or time limit (3 hours). Ours; is our implementation with Win-Tree without compression. Oursg ; is
our implementation with @ = 0.1 (10x compression for sketches). InfuserMG [32] and Ripples [56, 57] are baselines. We report the best time of InfuserMG
and Ripples by varied core counts (the scalability issue of InfuserMG and Ripples are shown in Fig. 7). CSR is the memory used to store the graph in CSR
format (see more in Sec. 5.1). The bold numbers are the highest influence spread/fastest time/smallest memory among all implementations on each graph. The
underlined numbers in memory usage are the smallest memory among systems that do not use compression (Ours;, Ripples and InfuserMG).

Relative Influence Total Running Time (second) Memory Usage (GB)

Ours InfuserMG Ripples | Ours; Owursy; InfuserMG Ripples | CSR  Ours; Owursg; InfuserMG Ripples

EP 615 605 598 0.30 0.41 0.28 1.19 0.01 0.13 0.04 0.16 0.09
SLDT 645 628 629 0.29 0.35 0.28 0.77 0.01 0.13 0.04 0.17 0.09

-3 DBLP 738 636 713 0.37 0.42 1.04 3.18 0.02 0.47 0.08 0.67 0.31
2 YT 678 652 656 1.00 1.08 3.34 13.5 0.05 1.68 0.27 2.37 1.22
f OK 1747 1622 1810 6.81 6.77 80.3 65.5 1.77 6.21 2.43 8.10 5.62
-g LJ 1199 1054 1211 5.23 5.23 32.9 75.6 0.68 6.04 1.63 10.5 4.98
S TW 990 509 - 73.2 75.6 416 - 18.2 62.8 25.6 103 -
FT 1425 1324 - 95.7 93.2 1352 - 27.4 97.6 39.2 161 -

SD 3762 3675 - 117 121 1924 - 29.6 125 44.4 211 -

'g GER 430 385 408 10.9 9.87 35.3 334 0.33 13.26 2.62 25.2 21.0
é USA 422 405 411 13.9 12.9 86.0 6283 0.61 25.80 4.99 49.1 43.0
HT5 440 397 404 0.73 0.68 2.50 15.8 0.11 1.35 0.23 1.94 1.24

z HH5 518 453 491 1.97 1.83 7.55 454 | 0.11 3.05 0.49 4.27 2.69
ZI CH5 755 596 733 3.03 2.95 16.4 88.1 0.25 4.83 1.05 8.80 4.87
=  GL5 489 406 459 18.2 17.0 74.1 3493 1.36 27.6 6.05 51.7 45.3
COS5 519 453 - 294 267 1729 - 17 355 66.0 666 -

Table 7: Under vertex-related edge distribution: running time, memory usage, and the influence spread of all tested systems on a machine with
96 cores (192 hyperthreads). For an undirected-edge (u, v), the probability it is sampled is ﬁ where d,, and d, are the degrees of vertex u and v. “-”:
out of memory (1.5 TB) or time limit (3 hours). Ours; is our implementation with Win-Tree without compression. Ours ; is our implementation with & = 0.1
(10x compression for sketches). InfuserMG [32] and Ripples [56, 57] are baselines. We report the best time of InfuserMG and Ripples by varied core counts (the
scalability issue of InfuserMG and Ripples are shown in Fig. 7). CSR is the memory used to store the graph in CSR format (see more in Sec. 5.1). The bold
numbers are the highest influence spread/fastest time/smallest memory among all implementations on each graph. The underlined numbers in memory usage
are the smallest memory among systems that do not use compression (Ours;, Ripples and InfuserMG).

Ripples have scalability issues. We tested them with both 192 hy- Influence Score. With R = 256 for PaC-IM and InfuserMG, and
perthreads and the same core counts to get their best performance € = 0.5 for Ripples, PaC-IM has the largest influence score on all
in Tab. 4 for each graph. In Tab. 6 and Tab. 7, we report the smaller 16 tested graphs with Uniform edge probability assignment, and
one as the running time. is smaller than Ripples by 3.5% and 1.0% on graph OK and L] with

WIC edge probability assignment. The influence scores of Ripples
and Ours differ less than 8%, which indicates R = 256 and € = 0.5



is a fair setting for baselines to compare their running time and
memory. We observe that the influence score of InfuserMG is only
41-89% of the best-achieved score by Ripples and PaC-IM on sparse
graphs with Uniform edge assignment and 51% of the best influence
on TW with WIC edge assignment. The observation is the same
with the Consistent assignment in the main body of the paper.
Running Time. PaC-IM is significantly faster than two baseline
algorithms on almost all graphs. With both Uniform and WIC as-
signments, Ours; is faster than all baselines on 14 graphs. Ours;
and Ours ; are just slower than InfuserMG on the two smallest
graphs. On average, with the Uniform assignment, Ours; is 4.6X
faster than InfuserMG and 21X faster than Ripples, and Oursg 1 is
2.9x faster than InfuserMG and 15X faster than Ripples. With WIC
assignment, Ours; is 4.5X faster than InfuserMG and 21X faster
than Ripples, and Oursg 1 is 4.4X faster than InfuserMG and 20X
faster than Ripples.

Memory Usage. PaC-IM and InfuserMG have almost the same
memory usage under different edge probability assignments. Recall
that PaC-IM and InfuserMG are forward-reachable sketch-based IM
algorithms. Their memory usage for the same graph only depends
on the number of sketches R. Therefore, with the same R = 256,

they will have almost the same memory usage. Different from PaC-
IM and InfuserMG, Ripples is a reverse-reachable sketch-based IM
algorithm, which dynamically samples sketches according to the €
and graphs. Ripples memory usage varies on different edge proba-
bility assignments. One observation is that on social graphs YT, OK
and L], the memory usage of Ripples with WIC is much smaller than
that with Uniform and Consistent edge probability assignments (10X
fewer than Uniform and 4.1x fewer than Consistent on average on
these three graphs). With a = 0.1, PaC-IM uses the least memory
on all graphs with all different assignments.

Summary. Overall, the performance comparison between PaC-IM
and the baseline algorithms are similar on Consistent and Uniform
assignments. Ripples exhibits slightly different performance on
WIC to Consistent, because it samples reverse-reachable sketches
dynamically. Both Ours; and Oursg ; have shorter running time
than the baselines in time on all but the two smallest graphs for each
tested edge probability assignment. In those exceptions, Ours; has
a running time very close to InfuserMG, which is much shorter than
Ripples. Oursy 1 has lower space usage on all tested edge probability
assignments and graphs. In summary, the relative performance is
fairly consistent on these three edge probability distributions. There-
fore, in the main body of the paper, we simply use the Consistent
assignment (fixing p for all edges) to demonstrate the performance.
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