Realization of the Haldane Chern insulator in a moiré lattice
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The Chern insulator displays a quantized Hall effect without Landau levels 7. In a
landmark paper in 1988, Haldane showed that a Chern insulator could be realized
through complex next-nearest-neighbor hopping in a honeycomb lattice !. Despite its
profound impact on the field of topological physics ° and recent implementation in
cold-atom experiments '°, the Haldane model has remained elusive in solid-state
materials. Here, we report the experimental realization of a Haldane Chern insulator
in AB-stacked MoTez2/WSe2 moiré bilayers, which form a honeycomb moiré lattice
with two sublattices residing in different layers 7115, We show that the moiré bilayer
filled with two charge particles per unit cell is a quantum spin Hall (QSH) insulator
with a tunable charge gap. Under a small out-of-plane magnetic field, it becomes a
Chern insulator with Chern number ¢ = 1 from magneto-transport studies. The
results are qualitatively captured by a generalized Kane-Mele tight-binding
Hamiltonian -7, The Zeeman field splits the QSH insulator into two halves of
opposite valley--one with a positive and the other a negative moiré band gap. Our
study highlights the unique potential of semiconductor moiré materials in engineering
topological lattice Hamiltonians 32,

Main

When a two-dimensional (2D) electron gas is subjected to high magnetic fields and low
temperatures, the spectrum of electron energy levels is split into Landau levels, and
quantized Hall conductance can be observed *!. The quest for a quantum Hall state without
Landau levels or even external magnetic fields !, that is, a Chern or quantum anomalous
Hall (QAH) insulator, is driven by both fundamental and technological interests. To date,
only a handful of materials have exhibited the QAH effect, including magnetic topological
insulators (B1,Sb)>Te; and MnBi,Tes, and graphene and transition metal dichalcogenide
(TMD) moiré materials at half-band filling >7. A distinct proposal for realizing a Chern
insulator is to ‘split’ through magnetic interactions a QSH insulator, which can be viewed
as two time-reversal copies of the Chern insulator ** (Fig. 1). After the time-reversal
symmetry is broken, one spin species can have a positive band gap corresponding to a
normal band insulator, while the other has a negative band gap with inverted bands, giving
rise to a topologically nontrivial insulator with quantized Hall conductance. The idea
hinges on specific band-dependent magnetic interactions and Zeeman energies exceeding
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the QSH band gap, which are exceedingly difficult to satisfy in known QSH materials 2>~
26

Here we overcome both challenges in AB-stacked (60-degree-aligned) MoTe>/WSe2 moiré
bilayers, a new QSH insulator with a tunable charge gap by an out-of-plane electric field
and a unique spin-valley-layer locked band structure "»''"1> (Fig. 1). We show that the
application of an out-of-plane magnetic field on the order of 1 T transforms the material
into a Chern insulator without forming Landau levels. The system in principle also allows
a Chern insulator state without an external magnetic field, for instance, by proximity
coupling to a layered magnetic insulator 2”8, Our results provide the basis for future such
studies.

AB-stacked MoTe2/WSe:2 moiré bilayer

The Wannier orbital of the first (second) moiré valence band in the TMD moir¢ bilayer is
centered at the MM (XX) stacking point in the MoTe, (WSez) layer (M = Mo, W; X =Te,
Se) 14 They constitute the two sublattices of a honeycomb lattice (Fig. 1a). The electronic
spin and valley degrees of freedom are locked because of the Ising spin-orbit interaction
and time reversal invariance in each monolayer '%!°. The spins of the two bands are anti-
aligned in AB-stacked bilayers. The system realizes a generalized Kane-Mele tight-binding
Hamiltonian !'"!7 (Methods). Particularly, the next-nearest-neighbor (or intralayer)
hopping has a complex value because of time reversal symmetry breaking in each (K or
K’) valley of the monolayers. The lattice relaxation and corrugation in the moiré structure
break mirror symmetry, and enable the nearest-neighbor (or interlayer) hopping, which is
otherwise spin-forbidden. An out-of-plane electric field, E, can tune the sublattice potential
difference and induce band inversion.

At doping density of two charge particles per moiré unit cell (v = 2), after band inversion,
the system is expected to transition from a normal band insulator to a QSH insulator with
an insulating bulk and two counter-propagating edge states carrying opposite spin. The
initial experimental evidence of such a topological phase transition has been recently
reported . Upon the application of an out-of-plane magnetic field, B, the spin-valley
Zeeman effect can reduce the moiré band gap in one valley and eventually un-invert the
bands, while enlarge the gap in the other (Fig. 1b-d). As a result, one of the edge states
penetrates deeper into the bulk and eventually disappears, while the other bounds more
strongly to the edge . A Haldane Chern insulator thus emerges. Furthermore, because the
band gap is continuously tunable by FE, the system in principle could be tuned to the
quantum critical point with linear band crossing; an infinitesimal magnetic field would be
sufficient to induce the Haldane Chern insulator. The intuitive picture is supported by the
tight-binding calculations including the Zeeman energy for AB-stacked MoTe2/WSe2
moiré bilayers (Methods). This mechanism of realizing a Haldane Chern insulator is unique
to the AB-stacked bilayers. It is not expected in AA-stacked bilayers, which have strongly
hybridized bands from interlayer hopping *, and in graphene moiré systems>%33.

Quantum spin Hall insulator
We perform charge transport studies on multiple AB-stacked MoTe>/WSe> moiré bilayers
using a dual-gated Hall bar structure. The two gate voltages independently control both the



sample doping density and the out-of-plane electric field. The moiré unit cell density (ny =
5 X 10'2 cm™) is primarily determined by the large lattice mismatch between the two
TMDs. The effect of twist angle disorder is reduced compared to that in moiré
homobilayers **3°. The device boundaries are electrostatically defined by the top gate,
which are atomically smooth and significantly suppress back scattering of the helical edge
states (see Methods for details on device fabrication and characterization).

In the absence of a magnetic field, the Hall conductance vanishes by time reversal
symmetry in a QSH insulator. We measure the longitudinal conductance using the
geometry shown in the inset of Fig. 2c. The device is current-biased along the long axis of
the Hall bar, and the voltage drop is measured between two adjacent electrodes separated
by 2.5 um on the same side of the Hall bar. If charge transport is dominated by the helical
edge states, the longitudinal four-terminal resistance, Ry, is expected to take a quantized

h
value of G) = where 4 and e denote the Planck’s constant and the elementary charge,

respectively. Figure 2a shows Ry, of device 1 as a function of the top and bottom gate
voltages, Vig and Vy,g, at 0.33 K. The two dashed lines identify, respectively, the axes along
which the doping density is fixed at v = 2 and the electric field at E. = 0.425 V/nm; and
the arrows show the direction of increasing E or v.

Figure 2c shows the electric-field dependence of Ry, at v = 2 and temperature 7 ranging
from 0.33 K to 30 K. The resistance shows a minimum near E; and distinct behaviors on
two sides of E.. Below E., Ry, decreases as E approaches E.; and at a fixed field, Ryy
diverges as the temperature decreases. This is a typical response of an insulator with a
diminishing band gap towards E.. Above E., Ry, plateaus, and the value saturates around
15 kQ ~ 1.16 h/2e? at 0.33 K. The nearly quantized Ry, plateau suggests the emergence
of a QSH insulator for E > E, where E. corresponds to the quantum critical point for band
inversion. The presence of the helical edge states is also consistent with the observed
nonlocal transport (Extended Data Fig. 1). The result is further supported by a comparison
to the bulk resistance, Ryy pyik, in Fig. 2d. In this case, the device is biased along the short
axis of the Hall bar, and the voltage drop is measured by an adjacent pair of electrodes
along the same direction. An additional contact on each side of the probe region is grounded
to avoid the edge current. Again, we observe a resistance minimum at E, but the response
on both sides of the minimum is one of an insulator.

We compare the temperature dependence of Ryy and Ryy pyk after band inversion at E =
0.485 V/nm in Fig. 2b. At high temperatures or small 7", both show an activation behavior.
We estimate the gap size to be 2-3 meV from Ryy k. At low temperatures, the bulk states
are largely localized. The transport is dominated by the edge states, which results in nearly
quantized Ry,. But full quantization is prohibited by residual hopping transport in the bulk,
as well as back scattering of the helical edge states. Nearly quantized edge conduction is
observed in multiple devices. We also observe a dependence of the QSH phase space on
the sample twist angle (Extended Data Fig. 2). The Ry plateaus over a wide range of E in
AB-bilayers with a small twist angle (device 1 and 3, ~ 2-3 degrees), and over a relatively
narrow range near band inversion in nearly angle-aligned AB-bilayers (device 2 and 4).



Future studies are required to understand the systematic twist angle dependence, which is
likely associated with the enhanced correlation effect in angle-aligned samples !534,

Haldane Chern insulator

We apply a perpendicular magnetic field and examine the transport properties. Figure 3
and 4 illustrate the result from device 2 at temperatures down to 10 mK (lattice
temperature). Similar studies of device 1 down to 1.6 K are included in Extended Data Fig.
3. Figure 3a shows the Hall resistance Ry, (top) and the longitudinal resistance Ryy
(bottom) as a function of gate voltages under B =2 T at 10 mK. Results at other magnetic
fields are included in Extended Data Fig. 4. The two dashed lines again identify the
constant hole density v = 2 and critical electric field E. for band inversion. In contrast to
measurements at higher temperatures (> 1 K), charge transport cannot be appropriately
measured due to poor electrical contacts around v = 2 under small negative top gate
voltages (black regions in Fig. 3a, b, see Methods for the contact design). The doping is
electron-like or hole-like in the region below or above v = 2, which displays small Ry of
different sign. The Landau levels are not observed. They start to emerge under a magnetic
field above around 3 T.

The most striking feature in Fig. 3a is an unusually large Ry in the narrow region near E
and v = 2, which is correlated with a nearly vanishing Ry,. We examine the state in Fig.
3b by studying the magnetic-field dependence of Ry, and R, at constant electric-field E..
The state can be identified either by a Ry, maximum ora Ry, minimum (denoted by dashed

lines). It develops from v = 2 as the magnetic field increases, and shifts linearly with
doping density and magnetic field. We determine the slope of the dashed lines to be

ny Z—; =c % with ¢ = 1.00 £ 0.05. Here c is the Chern number of the occupied bands, and
is related to the Hall resistance by the Streda relation ¢, Ry, = %}2 In the absence of

Landau levels, the result suggests the emergence of a Chern insulator with Chern number
c=1.

We examine the magnetic field that is required to induce the Chern insulator. Figure 3c is
the magnetic-field dependence of Ry, and Ry, along the dashed lines in Fig. 3b. The Hall
resistance increases sharply from 0 at B = 0 T and plateaus between 1 T and 3 T. The
plateau value (=~ 25.4 kQ) is within 2% of the quantized Hall resistance, h/e? .
Concurrently, Ry, drops sharply with increasing magnetic field and remains small (< 1 kQ)
between 1 T and 3 T. Hence, when the electric field is set near the quantum critical point
for band inversion, a moderate magnetic field between 1 T and 3 T is sufficient to induce
the Chern state.

The Chern insulator can be similarly induced by varying the magnetic field under a
constant electric field both below and above E.. We sample the phase diagram by varying
E under a constant B (Extended Data Fig. 5). For each magnetic field, we observe a span
of the electric field, AE, near E, that hosts the Chern insulator state. The E-field span
increases with field for small magnetic fields (Extended Data Fig. 5), which can be
modeled by adding in quadrature a linear magnetic-field-dependent term and a constant (~



2.2 mV/nm). The constant accounts for disorder broadening. Similar values have been
observed in this type of devices (& 2 mV/nm) 7°.

Finally, we investigate the temperature dependence of the Chern insulator. We use the
result under B =2 T as an example. As temperature decreases, a sharp peak in the doping
dependence of Ry,, (Fig. 4a), correlated with a sharp dip in Ry, (Fig. 4b), emerges at v =
2.01. The temperature dependence of the peak or dip values is summarized in Fig. 4c. The
Hall resistance increases monotonically with decreasing temperature and becomes nearly
quantized below 0.5 K. Simultaneously, the longitudinal resistance first increases as in an
insulator, peaks around 3 K, and then drops below 1 kQ below 0.5 K. The charge transport
is therefore dominated by chiral edge transport below about 3 K, which provides an
estimate of the charge gap size of the Chern state.

Discussions and conclusion

Our experimental results are fully consistent with the tight-binding calculations (Methods).
The topological phase transition to a Haldane Chern insulator can be induced by varying
the magnetic field from either a trivial moiré band insulator (£ < E..) or a QSH insulator (£
> E.) near band inversion. The phase boundaries of the Chern insulator expands linearly
with magnetic field (Extended Data Fig. 6). This is governed by the competing Stark shift
and the Zeeman shift, (AE)D =~ gugB, where g = 10 is the g-factor of the TMD moir¢
valence band *7* up is the Bohr magneton, and D ~ 0.26 exnm is the out-of-plane
electric dipole of the moiré bilayer 2 (Methods). The termination of the Chern insulator at
higher magnetic fields (for instance, > 3 T for £ = E) is associated with the formation of
Landau levels. The low-energy Landau levels disperse towards the Fermi level and
introduce additional band inversions for £ > E. (Methods). The Chern insulator thus
disappears and reappears in an alternating sequence with increasing magnetic field
(Extended Data Fig. 7).

We observe deviations from the ideal Hall quantization and dissipationless transport for
the Chern insulator even at the lowest temperature in our experiment. This is originated
from disorder broadening of energy levels (~ 0.5 meV estimated from the onset magnetic
field for the Landau levels) and of E, and ny; from moiré disorder 3°. Disorder is likely also
responsible for the requirement of a small but finite magnetic field to induce the topological
phase transition near E..

Compared to the original Haldane model, which concerns a spinless (or, equivalently, fully
spin-polarized) system !, the Haldane model realized here is a fully valley-polarized
system. The Zeeman field lifts the spin-valley degeneracy. Band inversion and topological
bands are present in only one of the valleys. The realization of the Haldane model is made
possible by the electrically tunable band inversion and charge gap at v = 2 in AB-stacked
MoTe/WSe> moiré bilayers.



Methods

Device fabrication

We fabricated the dual-gated MoTe./WSe> devices using the layer-by-layer dry transfer
technique 7?>*. The device constituents, including graphite, hBN, MoTe, and WSe:
crystals, were exfoliated onto Si substrates with a thermally grown SiO; layer. MoTe;
crystals were handled in a glovebox with O and H>O concentrations below 1 part per
million (ppm) to prevent sample degradation. We first fabricated the bottom gate by
picking up a hBN flake (thickness ~ 10 nm) and a few-layer graphite flake and depositing
them on a Si substrate with pre-patterned Ti/Au electrodes. After dissolving the polymer
residual, we deposited 5-nm Pt contacts on hBN by standard electron-beam lithography
and evaporation. This is followed by another step of electron beam lithography and
metallization to form 5-nm Ti/40-nm Au to connect the thin Pt contacts on hBN to pre-
patterned electrodes. We cleaned the Pt contacts and the hBN surface after lift-off using
the atomic force microscope (AFM) contact mode. Future transfers were performed in the
glovebox. In the devices, the MoTe. and WSe> monolayers are aligned at 60°. This was
achieved by determining the crystal orientations of the monolayers using the optical
second-harmonic generation technique before stacking *'*>. The angle alignment was
verified using the same technique. We chose a relatively thin hBN layer (~ 4 nm) for the
top gate to achieve large breakdown electric fields (~ 1 V/nm). We also chose a narrower
top graphite gate electrode than the bottom gate, which defines the region of interest.

Electrical measurements

Electrical measurements were carried out in a closed-cycle “He cryostat (Oxford
TeslatronPT) with magnetic fields up to 14 T and temperatures down to 300 mK (using a
3He insert) and in a Bluefors LD250 dilution refrigerator with magnetic fields up to 12 T
and lattice temperatures down to 10 mK. The standard low-frequency (10 - 20 Hz) lock-in
technique was used to measure the sample resistance under low bias (0.2 - 1 mV) to avoid
sample heating. A voltage pre-amplifier with 100-MQ impedance was used to measure the
sample resistance up to 10 MQ. Longitudinal and transverse voltage drops and source-drain
current were recorded. Finite longitudinal-transverse coupling occurs in our devices. We

used the standard procedure to obtain the longitudinal and Hall resistance by symmetrizing

Rxx(B) + Rxx(—B) Rxy(B) — Rxy(—B)
2 2

under positive and negative magnetic fields, respectively.

and anti-symmetrizing the measured Ry, and Ry, values

Estimate of the Stark shift
The shift of the band offset between the MoTe> and WSe2 monolayers in the TMD
heterobilayer under a perpendicular electric field E is evaluated as DE, where D is the

electric dipole moment of the TMD heterobilayer, and E = (% - Zﬁ) /2 is defined as the
bg tg

average field right above and below the TMD heterobilayer. Here Vg and Vi are the
bottom and top gate voltages, and dy, and dg are the thickness of the bottom and top hBN
gate dielectrics, respectively. The field E is related to the field in the TMD heterobilayer,
Etmp, by continuity of the displacement field in the device, e,gnE = ermpETMmp, Where
&neN ~ 3 and ervp ~ 7 are the out-of-plane dielectric constant of hBN and the TMD
heterobilayer, respectively “**. The Stark shift can also be expressed as Eryp et, where
t ~ 0.7 nm is the interlayer separation between the two TMD layers. We thus derive the



hBN

ETMD
value from optical measurements

electric dipole moment D = ——et~0.26 e X nm, which is in good agreement with the
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Tight-binding model

The moiré potential minima lie at the MM stacking region in the MoTe; layer and the XX
region in the WSe; layer in the 60°-aligned bilayers (M = Mo, W; X = Te, Se) '!. These
potential minima form a staggered honeycomb lattice with the sublattice potential tunable
by the out-of-plane electric field E. Because of the 60°-alignment, the lowest-energy
valence bands in two layers have opposite spins in the same valley. The spin-conserving
nearest-neighbor hopping is strongly suppressed due to the large momentum mismatch
between the band edges of the two valance bands. The nearest-neighbor hopping is a spin-
flip process; it is allowed by the broken mirror symmetry in the z direction. We adopt the
tight-binding Hamiltonian of Ref. 'Y, H = H, + Hg+H,p, to model the lowest-energy
valence moiré bands under an external out-of-plane magnetic field. Here H, and Hy are
the tight-binding Hamiltonian of each sublattice (layer), and H,p is the hybridization or
inter-layer hopping term:

iSgvi i
Ha Z<l]> a(t e aala'ajo' + h.c. ) ZLE(X n + ZlEda’ zS6Mig>
Hyg = =tz a a-
AB — AB Lui<ij>o0 “ig%jo-

Here a', a and n are the electron creation, annihilation, and number operators,
respectively; @ = A, B denotes the two sublattices (layers) withty = —1t5=1;0 =1,1
denotes the z-component electron spin with s; = —s; = 1; the next-nearest- nelghbor (or
intralayer layer) hopping is assumed to have equal amphtude ty = tg = t, and same
phases for simplicity; v; ; = + 1 denotes the two opposite hopping directions; A is the
layer potential difference; and V, is the Zeeman energy.

We note that in the special case of ¢, = ¢ = m/2 the above Hamiltonian reduces to the
original Kane-Mele model '®, which is practically two time-reversal copies of the Haldane
model. In the original Haldane model (for spinful particles), the band inversion occurs
between two orbitals of the same spin indices, |A4,T) and |B,T). Here the Bloch
Hamiltonian remains the same as the phase of the next-nearest-neighbor hopping changing
sign twice upon a 60° lattice rotation and a spin flip; the band inversion occurs between
two orbitals with different spin indices '**°, |4, 1) and |B, ).

Extended Data Fig. 6 shows the first two moiré valence bands under different electric and
magnetic fields. Hopping parameters, t,5 = 1 meV, t, = 2 meV, ¢4, = ¢pp = 2m/3 have
been used. The direct gap size (between the two moiré bands at the K and K’ point of the
moiré mini Brillouin zone) is shown as a function of the interlayer potential difference A
and Zeeman energy V,. No global band gap is observed. The tight binding approximation
is known to underestimate the gap size. The Hartree-Fock approximations, which
incorporate the electron-electron interactions, have been shown to yield a global band gap
12 Our result shows that in the absence of a magnetic field, the out-of-plane electric field
induces a phase transition from a QSH insulator (after band inversion) to a normal band



insulator (before band inversion) at the critical point Ac ~ 9 meV. When the interlayer
potential is fixed slightly above A. (before band inversion), a magnetic field induces a
transition from a normal band insulator to a Haldane Chern insulator, and the critical field
increases linearly with (A - A¢). Similarly, a magnetic-field-induced transition is observed
from a QSH insulator to a Haldane Chern insulator after band inversion.

Landau fans and band inversion

We study the magneto-transport characteristics under high magnetic fields to better
understand the effect of the Landau levels. Extended Data Figure 7 shows the result from
device 2 at 10 mK (lattice temperature). Panel a is the gate voltage dependences of Ry,
(top) and Ry, (bottom) under a fixed magnetic field of 11.8 T. Panel b and ¢ are the
magnetic-field and filling dependences of Ryy and Ry, under two out-of-plane electric
fields, corresponding to before (b) and near band inversion (c), respectively. Before band
inversion, a set of Landau fans originated from v = 2 starts to emerge under about 3 T.
The onset field provides an estimate of the disorder-induced energy level broadening
(~ 0.5 meV). Clear Landau fans can be observed only for v > 2. This is presumably
associated with doping into the WSe: layer, which has a substantially higher carrier
mobility than in the MoTe; layer. The Landau level degeneracy is determined to be 1. This
is also consistent with the known valley- and spin-polarized Landau levels in hole-doped
WSe; (Ref. 4647),

Near band inversion, a state with Chern number ¢ = 1 emerges under low magnetic fields
(below 3 T). This is the magnetic-field-induced Haldane insulator state discussed in the
main text. In contrast, here we observe Landau levels with both positive and negative
slopes; there are also multiple level crossings. The presence of Landau levels with opposite
dispersion and yet the same sign for Ry,, (all corresponding to hole transport) supports the
inverted band structure. Similar effect has been observed in HgTe ?* and InAs/GaSb
quantum wells *®. The energy of the Landau levels near the inverted band edge and away
from it disperses with magnetic field in opposite directions *°.
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Figure 1 | AB-stacked MoTe2/WSe2 moiré bilayer. a, Top: atomic stacking structure at
the high-symmetry MM and XX sites (orange balls for M = Mo or W; green balls for X =
Te or Se). Middle: a staggered honeycomb moiré lattice formed by the MM (red) and XX
(blue) sites. Bottom: side view. The electron Wannier wavefunction at the MM (XX) site
is centered in the MoTe, (WSez) layer. b-d, Top: schematics of the electronic band
structure. Red and blue lines denote spin-up and spin-down bands. The black lines
represent the edge states. Bottom: schematics of the edge states in a stripe of samples (light
blue). Contacts are shown in orange. The bands are inverted at both the K and K’ valleys
with helical edge states bound to the sample edges (b). This corresponds to a quantum spin
Hall insulator. Upon the application of a critical magnetic field, the bands in the K valley
cross at a single point; the corresponding edge state is pushed deep into the bulk (c¢). With
further increase of the magnetic field, the gap in the K valley is positive; a Chern insulator
with a chiral edge state is formed (d).
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Figure 2 | Quantum spin Hall insulator at v = 2. a, Dependence of Ry, on the top and
bottom gate voltages. The green and orange dashed lines denote, respectively, the electric
field direction at fixed v = 2 and the filling factor direction at fixed E = E.. b, Arrhenius
plot for the edge and bulk resistance, Ryy and Ryy puik, at E = 0.485V /nm (above E).
The symbols are the measurement result and the lines are guides to the eye. To account for
the difference in the measurement geometry, Ryy pyx 1s multiplied by a factor of 1.3 to

match Ry, in the high-temperature limit. At low temperatures, Ry is nearly quantized at

(1) L3 (dashed line). ¢, d, Electric-field dependence of Ry (¢) and Ryx puik (d) at varying

2/ e?
temperatures. The insets show the measurement configurations. To measure Ryy pyik, tWO

contacts are grounded to avoid the edge current.
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Figure 3 | Magnetic-field-induced Haldane Chern insulator. a, Hall resistance (top) and
longitudinal resistance (bottom) at 10 mK (lattice temperature) and B = 2 T as a function
of the top and bottom gate voltages. b, Magnetic field and filling factor dependences of
Ryy (left) and Ry (right) at E = E, (along the orange dashed line in a). The filling factor

for the Ry, maximum and the Ry, minimum disperses linearly with magnetic field (dashed
lines). The best-fit slope is ny Z—; = (1.00 £+ 0.05) %. Transport characteristics cannot be

reliably probed in the black regions due to poor electrical contacts. ¢, Magnetic-field
dependence of Ry, and Ry, along the dashed lines in b. The lines are guides to the eye. The

Hall resistance is nearly quantized at elz (dashed line) between 1 T and 3 T.
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Figure 4 | Temperature dependence of the Chern insulator. a, b, Filling factor
dependence of R,y (a) and Ry, (b) at B = 2 T and E = E for different temperatures. The

arrows mark the emergence of the R,y peak, which is approximately quantized at e—hz
(dashed line) and the Ry, dip, which is below 1 kQ at low temperatures. ¢, Temperature
dependence of Ry, and Ryy of the Chern insulating state. The dashed line marks e—hz The

solid lines are a guide to the eye.

15



Extended data figures
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Extended Data Figure 1 | Nonlocal transport supporting the quantum spin Hall
insulator. a, Nonlocal resistance R as a function of top and bottom gate voltages at B =
0 and T = 330 mK. The green and orange dashed lines denote, respectively, the electric
field direction at fixed v = 2 and the filling factor direction at fixed E = E,. b, Optical
micrograph of device 1. The top gate (TG) and bottom gate (BG) are outlined by a black
and red dashed line, respectively. The scale bar is 5 pm. ¢, Schematics of the measurement
geometry. The device is current (/) biased along the arrow direction. The voltage drop V,,
is measured at the other end of the device. Ry, is negligible except at v = 2. Before band
inversion, Ry, cannot be probed appropriately because the current is practically zero; after
band inversion, it grows with increasing electric field. This is consistent with the helical
edge transport in a quantum spin Hall insulator.
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Extended Data Figure 2 | Quantum spin Hall effect in devices of different twist angles.
a, b, Longitudinal resistance as a function of top and bottom gate voltages of device 3 (2-
degree twisted) at T = 300 mK (a) and device 2 (near 0-degree twisted) at T = 10 mK (b).
¢, Two-terminal resistance measured by adjacent contacts as a function of top and bottom
gate voltages of a bilayer MoTe>/monolayer WSe» device 4 (near 0-degree twisted) at T =
1.6 K. d-f, Line-cuts of a-c at varying top gate voltages. The grey dashed lines mark the
quantized resistance % (= 12.9 kQ). For device 3, Ry at v = 2 is the smallest right after

band inversion and plateaus with further increase of the electric field. Ry, and R, increase
continuously with electric field after band inversion for device 2 and 4, respectively.
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Extended Data Figure 3 | Magneto-transport in device 1 at 1.6 K. a, b, Hall resistance
as a function of the top and bottom gate voltages at B = 3 T (a) and of the magnetic field
and filling factor at E = E_ (b). The orange dashed line in a corresponds to E = E.. The
green dashed line in b marks the Ry, maximum. We determine the slope of the dashed lines

to be ny Z—; = c% with ¢ = 1.1 £ 0.1. Right inset shows the magnetic-field dependence of
R,y along the green dashed line.
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Extended Data Figure 4 | Transport under different magnetic fields for device 2. a-e,
Hall resistance (left) and longitudinal resistance (right) at 10 mK (lattice temperature) as a
function of the top and bottom gate voltages. The magnetic field is 0.5 T (a), 1 T (b), 2 T
(c, same as Fig. 3a of the main text), 3T (d), 4 T (e).

19



a
- B(T)
-~ ~
| / N 0.5
g ~ A 1
> / \] —2
“ 10} Yoy
0
o 20}
=3
=0l —
\ oo —_—
N
0 L L L M
045 046 047 048

E (Vinm)

0.49

AE (mV/nm)

IS

w

Extended Data Figure 5 | The electric-field span of the Chern state as a function of
magnetic field. a, R, and Ry, of device 2 at v = 2 and T = 10 mK (lattice temperature)
as a function of electric field. The data is extracted from Extended Data Fig. 4. b, The
electric-field span, AE, of the Chern state as a function of magnetic field. For each magnetic
field, the electric-field dependence of Ryy is fit with a Gaussian function and AE is

determined as half of the variance. The red dashed line is the best fit to AE =
with fitting parameters a = 2.2 + 0.1 mV/nm and b = 2 £ 0.1 mV/nmT.
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Extended Data Figure 6 | Tight-binding model calculations. a-c, Band structure
simulated using the tight-binding Hamiltonian described in Methods. Red and blue curves
denote the spin-up and spin-down bands, respectively. Under zero magnetic field (a), the
bands are inverted at both the K and K’ valleys. This is a quantum spin Hall insulator
(QSHI). Under a small magnetic field (b), the bands in the K’ valley cross at one
momentum. Under a sufficiently high magnetic field (c), the gap changes sign for the K’
valley; this is a Chern insulator. d, The direct band gap near the K/K’ valleys as a function
of the Zeeman energy and the sublattice/interlayer potential difference. The three symbols
mark the phase space for which the electronic band structure is represented in a-c,
respectively.
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Extended Data Figure 7 | High-magnetic-field transport. a, R,y (top) and Ry, (bottom)
of device 2 as a function of top and bottom gate voltages at B = 11.8 Tand T = 10 mK
(lattice temperature). The Landau levels (identified by the resistance minimum) are
indexed. b, ¢, R,y (top) and Ry, (bottom) as a function of filling factor and magnetic field

at £=0.435 V/nm (before band inversion, b) and at £ = 0.463 V/nm (after band inversion,
¢). The dashed lines show the Landau fan.
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