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A primary goal of in situ electron microscopy is to follow the atomic-level structural evolution 

taking place in a material due to an applied stimulus. The in situ field started several years after 

the invention of the transmission electron microscope (TEM) in 1935 [1], and there have been 

constant developments in the areas of closed windowed cells and differentially pumped open cells. 

Each generation offers advantages over the previous technology, opening up new doors for 

scientific discovery. Wilbur Bigelow recognized the critical importance of instrumentation 

development with his work on hot stages and gas cells [2-4]. In recent times, new instrumentation 

based on direct electron detectors has almost eliminated detector noise, resulting in superior quality 

data with signal-to-noise ratios (SNR) associated only with electron counting.  

 

To follow structural evolution with improved time resolution, short exposure times must be used, 

resulting in weak image signals, making it essential to develop approaches to mitigate the effect 

of noise. Artificial intelligence (AI) offers a potential path forward, with denoising techniques 

based on convolutional neural networks showing great promise for electron microscopy. We have 

had success in developing and applying supervised convolutional neural networks to denoise TEM 

data from catalytic nanoparticles [5, 6]. Recently, we have been looking at unsupervised denoising 

methods that are trained strictly using experimental data, eliminating the need to simulate large 

training datasets that might deviate from the real data. Such approaches become feasible when 

large quantities of data are available, as is the case with movies that are generated during in situ 

experiments. We have developed an unsupervised deep video denoiser (UDVD), which we are 

using to reveal the atomic-level structural dynamics in catalytic nanoparticles at time resolutions 

approaching one hundredth of a second [7].   

 

To illustrate how the denoiser can reveal structural dynamics, a Pt catalyst, consisting of Pt 

nanoparticles supported on a CeO2 support, was imaged during exposure to CO gas at varying 

temperatures and pressures [8]. Experiments were performed on a Thermo Fisher Titan 

environmental transmission electron microscope and images were recorded with a Gatan K3 direct 

electron detector with an electron dose rate of 600 e-Å-2s-1 and a frame rate of 75 frames per second. 

The average number of electrons at each pixel in the vacuum region in each frame was 0.46± 0.7 

to give an SNR of ~0.6. The UDVD denoising network uses a blind-spot architecture that estimates 

the intensity of a pixel by using its surrounding spatio-temporal neighborhood [7]. It can produce 

high-quality denoising even when trained exclusively on a single noisy video.  

 

Figure 1A shows two images recorded 0.2 s apart from a small cluster of Pt particles in a CO 

atmosphere at room temperature. In the raw data, noise makes it difficult to determine the location 

and structure of the particle surfaces. The output from the denoiser clearly reveals the location and 

image contrast from the particle. To validate the UDVD denoiser, we compare a raw 40 frame 



averaged image with a denoised 40 frame average over the same time range. Figure 1B shows that 

there is good agreement between the two averages, suggesting that UDVD is making a reasonably 

accurate estimate of the pixel values. 

  

Figure 2A shows a series of 9 consecutive denoised frames of exposure time 0.013s from a Pt 

nanoparticle. During the total time (~ 0.1s), the nanoparticle is seen to undergo significant 

structural transformations. The atoms making the initial particle edge (marked with a blue star in 

frame 1), composed of two intersecting (111) facets, appear to migrate onto the left (111) facet 

forming a short stacked double layer which is highly fluxional, as indicated by the continuous line 

contrast (frame 5). These atoms then re-arranged themselves into a new stable (111) layer and a 

very short, unstable (100) facet (frame 9). Throughout the process, the entire nanoparticle 

undergoes an anticlockwise rigid body rotation of ~10o. Figure 2B shows the same 9 frames 

summed together to simulate the image that would be recorded with a 0.1s exposure time. While 

the SNR in the summed image is improved, there is no information about the complex series of 

elementary structural transformations that is revealed in the denoised higher temporal resolution 

image series. This demonstrates that AI combined with in situ TEM, will provide new insights into 

atomic-level structural dynamics that were previously inaccessible.  
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Figure 1. A) Images showing structural changes in irregularly shaped Pt nanoparticles at 

different points in time (left 0s, right 0.2s). Top row is raw data (0.013s exposure time), bottom 

row same frame after UDVD denoising. B) 40 frame average of raw data (upper) and denoised 

output (lower). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A) Consecutive series (1 – 9) of denoised images from Pt nanoparticle recorded every 

0.013 s showing structural dynamics. Initial particle edge is marked with a blue star in frame 1 

and final (100) very short surface marked with green star in frame 9. In frame 9, particle is 

rotated 10o anticlockwise with respect to frame 1. B) Same 9 frames summed to give the 

equivalent image recorded in 0.1s.  

 


