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 2 

Abstract 21 

Recycling behaviors are becoming increasingly recognized as important parts of the production 22 

and use of stone tools in the Paleolithic. Yet, there are still no well-defined expectations for how 23 

recycling affects the appearance of the archaeological record across landscapes. Using an agent-24 

based model of recycling in surface contexts, this study looks how the archaeological record 25 

changes under different conditions of recycling frequency, occupational intensity, mobility, and 26 

artifact selection. The simulations also show that while an increased number of recycled artifacts 27 

across a landscape does indicate the occurrence of more scavenging and recycling behaviors 28 

generally, the location of large numbers of recycled artifacts is not necessarily where the 29 

scavenging itself happened. This is particularly true when mobility patterns mean each foraging 30 

group spend more time moving around the landscape. The results of the simulations also 31 

demonstrate that recycled artifacts are typically those that have been exposed longer in surface 32 

contexts, confirming hypothesized relationships between recycling and exposure. In addition to 33 

these findings, the recycling simulation shows how archaeological record formation due to 34 

recycling behaviors is affected by mobility strategies and selection preferences. While only a 35 

simplified model of recycling behaviors, the results of this simulations give us insight into how 36 

to better interpret recycling behaviors from the archaeological record, specifically demonstrating 37 

the importance of contextualizing the occurrence of recycled artifacts on a wider landscape-level 38 

scale. 39 

 40 
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Introduction 41 

 Stone tool recycling has occurred since the earliest manufacture of stone tools. Schiffer 42 

[1] was among the first to discuss recycling as a cultural process affecting the formation of the 43 

archaeological record. Subsequent archaeologists have elaborated on his definition to distinguish 44 

between recycling as a functional change and recycling as waste utilization [2]. Here, recycling 45 

is defined as “secondary recycling” where stone tools are scavenged and then reworked, 46 

requiring some period of discard between episodes of use and typically involving a change in 47 

function [2–4]. This definition of recycling separates it from typical discussions of recycling as 48 

an aspect of tool maintenance in the context of technological efficiency and curation [3]. 49 

Curation is often defined as a characteristic of stone toolkits where tools are produced in 50 

anticipation of future use or for transport between locations [5] resulting in large investments in 51 

maintenance [6]. Other conceptualizations of curation refer to it at the level of individual 52 

artifacts as a ratio between possible and realized utility [7,8]. Curation as defined in these ways 53 

implied conceptualization of stone tool use within a single population. Conversely, recycling as 54 

defined in this paper considers stone tool use on archaeological and geological time scales. 55 

The most reliable indication of this type of recycling is evidence of knapping after some 56 

sort of surface alteration, such as a patina or rock varnish, has formed, resulting in flake scars 57 

with differing degrees of alteration [4,9–13]. In the absence of this clear “double patina”, there is 58 

a lack of consensus on how to most accurately identify recycling evidence [3,14]. Other methods 59 

for identifying recycling have focused on showing that stone tools had multiple functional 60 

purposes [15–21]. However, identifying a change in function in not always straightforward and 61 

this change does not always necessitate discard of the artifact first [22]. Additionally, there are 62 

complications of analyzing the stone tool record if it has been impacted by behaviors such as 63 
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recycling [22–24]. Given these issues, recycling of stone tools has been relatively understudied 64 

in the history of archaeological research.  65 

Fortunately, today, archaeologists are increasingly recognizing the importance of 66 

recycling behaviors in the production and use of stone tools in the Paleolithic. One example is 67 

the identification of recycling as an important component of the Acheulean technological 68 

systems in the Levant [e.g. 21,25–28]. Multiple studies of sites in Israel have demonstrated that 69 

lithic recycling is a distinct aspect of stone tool production in Acheulean assemblages. Lithic 70 

recycling in these contexts often have two main trajectories: 1) recycling bifaces into cores for 71 

the production of flakes, and 2) the production of small flakes from cores-on-flakes or flaked 72 

flakes, many of which are patinated [25]. Another example of extensive study of recycling is the 73 

work of Vaquero and colleagues at Abric Romaní where they identify patinated and burned 74 

flakes subsequently used for tool manufacture [4,29]. Here, recycling occurs in a Middle 75 

Paleolithic context, joining many other examples of recycling behaviors in the Middle Paleolithic 76 

[9,11,16,19,30–32]. At Abric Romaní, Vaquero and colleagues use intra-site spatial analyses and 77 

refitting to demonstrate that recycling behaviors lead to movement of artifacts within a site 78 

[4,29].  79 

Despite these advances in trying to understand recycling at specific sites, there are not 80 

well-defined expectations for what recycling should look like across the archaeological record. 81 

Current research focuses on identifying and characterizing recycling behaviors within layers or 82 

within sites [4,9,10,12,13,15,18,31]. Yet, recycling frequently involves activities offsite, such as 83 

scavenging of artifacts from other locations [11,15,18,28,30,33,34]. This means that recycling 84 

behaviors do not only affect the archaeological record at the location where recycled objects are 85 

found, but potentially also at offsite locations where other assemblages are disturbed by 86 
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scavenging behaviors. This suggests that recycling behaviors are best contextualized as a 87 

property of regional land use. Some of models for land use incorporate recycling as an important 88 

motivator for mobility decisions, but these models assume that reuse and reoccupation is 89 

exclusively an additive process, resulting in more material at a given location [35,36]. It is 90 

plausible that recycling is a removal process at some sites as items are scavenged for use 91 

elsewhere [37,38]. Archaeological findings have shown that recycling behaviors can lead to the 92 

removal of particular artifact shapes from assemblages [18,39].  93 

Current archaeological proxies do not consider how recycling can rewrite the patterns we 94 

rely on for documenting behaviors beyond recycling (but see [40,41]). For example, 95 

archaeologists often use raw material transport as an indicator of mobility; if an assemblage 96 

contains raw materials from a distant source, we assume long distance movements of the makers 97 

of that assemblage. However, if sites act as new “sources” for recyclable materials, then the raw 98 

material composition of assemblages reflect time-averaged movements that were not necessarily 99 

long distance [40–42]. In such a situation recycling is a niche constructing process that 100 

prioritizes reoccupation of previously created sites [36,43,44]. Barrett’s [41] simulations of 101 

different raw material acquisition scenarios demonstrate that the distance decay relationship 102 

between raw material proportions and distance to geological source disappears when stone tool 103 

users prioritize scavenging materials from previously discarded assemblages. This is an excellent 104 

example of how recycling behaviors have implications on the behavioral inferences that can be 105 

drawn from archaeological proxies.  106 

Few other models of the formation of the archaeological record explicitly allow for 107 

scavenging of previously discarded objects despite suggestions by some that stone tool recycling 108 

could cause deviations from modeled patterns [45]. To understand how recycling behaviors 109 
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effect archaeological record formation, I developed an agent-based model to simulate varying 110 

probabilities of recycling behaviors by mobile agents. The simulation models surface sites, 111 

which are important locations for investigating spatial patterning of behavior in the 112 

archaeological record [46,47]. Furthermore, there is ethnographic and archaeological evidence 113 

for scavenging artifacts from surface deposits [34,48,49], making this site type a good case study 114 

for simulating recycling behaviors. In the model agents move across a gridded landscape and 115 

interact with nodules and flakes that can be scavenged and knapped. Using the agent-based 116 

model, it is possible to produce sets of expectations for the appearance of a recycled 117 

archaeological record through time under different conditions of scavenging frequency, 118 

occupation intensity, mobility, and artifact selection.  119 

This model tests an exposure model for recycling in surface deposits; when deposits that 120 

have been exposed for longer this will facilitate more opportunities for their discovery resulting 121 

in more frequent recycling behaviors [35,50]. In surface records characterized by geological 122 

stability through time, exposure corresponds to age of artifacts, so under the exposure model, 123 

older artifacts in surface contexts are more likely to show indications of recycling. Taking this 124 

hypothesis one step further, it is possible that older assemblages would also have higher 125 

proportions of recycled artifacts. While seemingly logical, this assumes that recycling happens in 126 

situ, with scavenging, (re)use, and discard of artifacts all occurring in the same location. In this 127 

paper, this assumption is not made; instead the impact of recycling behaviors is investigated on a 128 

landscape scale under varied mobility conditions that facilitate different degrees of local discard 129 

[37,47].  Specifically, I test whether the number of recycled objects in an assemblage is 130 

indicative of the behaviors that occurred at that location or if any such relationships are erased by 131 

the repeated scavenging and movement of artifacts around the landscape. For example, one 132 
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hypothesis to test is whether recycled objects appear more often in locations that have 133 

experienced more scavenging events. This model also allows for investigating whether 134 

established archaeological proxies, like cortex ratios for studying mobility patterns, become less 135 

reliable when recycling behaviors are occurring.  136 

The recycling of stone tools is a powerful force which can repeatedly rewrite 137 

archaeological patterns during the formation of the archaeological record. As archaeologists 138 

continue to develop methods for tackling the interpretation of a dataset that is the emergent 139 

outcome of many individual actions through time [24,41,51,52], it is important that we add 140 

recycling of the archaeological record to our understanding of this emergence. 141 

Model description 142 

The simulation used for this study simulates simplified stone tool scavenging, 143 

manufacture, and discard behaviors on a gridded landscape. The simulation was coded in Java 144 

16.0.2 [53]. Model description following the ODD protocol [54–56] is available in S1 Text. This 145 

model builds on the methodologies of multiple previously published models, including one by 146 

the author [23 and sources therein] simulating recycling behaviors, and Davies and colleagues’ 147 

FMODEL simulating artifact discard [37].  148 

 This model differs from the previous recycling model published by the author and 149 

colleagues [23] in a few major ways. Firstly, the new model does not simulate geological events. 150 

This means that the simulated landscape is more akin to surface accumulations where all artifacts 151 

are exposed indefinitely upon discard. Secondly, the model presented here more explicitly 152 

simulates mobility of agents using Lévy walks (described below). Additionally, the new model 153 

incorporates selection criteria for scavenging artifacts based on size and object type. For this 154 

reason, the updated model has two types of objects: flakes and nodules. Following the 155 
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methodology used in the FMODEL [37], nodules are icosahedra (20-sided objects) comprised of 156 

flakes that can be removed, and flakes are objects that can be retouched. The size of flakes 157 

dictates how many flakes each nodule has. For example, if flakes have a maximum size of 1, 158 

then each nodule is comprised of 20 flakes. In this study, we experiment with different flakes 159 

sizes, so in some cases, some flakes are size 2, which would mean fewer flakes per nodule.   160 

The modeled world is a 10 x 10 grid, where each grid square represents a location that 161 

agents can visit and perform lithic scavenging and reduction behaviors. Agents, representing 162 

groups that produce and use stone tools, enter the modeled environment sequentially; when one 163 

agent moves out of the landscape, another is subsequently placed on a random grid square. Each 164 

iteration of the model is run until all agents have moved through the landscape. Model runs were 165 

conducted with 100 agents and 200 agents to simulation different occupational intensity.  166 

At each timestep, the agent performs four behaviors (Fig 1). Firstly, the agent scavenges 167 

available artifacts from the current grid square they are occupying. The agent will then either 168 

make new flakes by removing them from nodules or retouch previously created flakes. The 169 

probability of each of these behaviors is determined by a probability of blank creation and its 170 

inverse, respectively. Once the agent has performed its lithic production/reduction, it will discard 171 

artifacts and then move to a new position on the landscape. 172 

 173 

Fig 1. Model run steps. Schematic of procedures at each time step of model run. 174 

 175 

Recycling behaviors are explored in two different technological contexts. The number of 176 

unique technologies available for each agent to use is determined by an overlap parameter. For 177 

half of the model experiments, there were only two technology types simulated (overlap is 1); 178 

each agent was randomly assigned a technology type of 1 or 2. For the other half of model 179 
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experiments, each agent had a unique technology type identifier (overlap is 2). Although in most 180 

archaeological cases not every group or population will have completely independent stone tool 181 

technologies, including this “many technologies” scenario allows for exploring whether the ease 182 

of identifying recycling implements has an impact on the patterns produced by the model. In the 183 

model context, recycled artifacts are defined as those where the technology used to remove a 184 

flake from a nodule differs from the latest technology used to knap or retouch the flake. When 185 

each agent has a unique technology type, this recycling indication will occur more frequently.  186 

 The rest of model behavior is controlled by multiple parameters that defined the types of 187 

objects agents interacted with, probabilities of different actions (i.e., blank creation or 188 

scavenging), selection criteria, and movement (see full description in ODD). Each combination 189 

of parameters was run 50 times to account for stochastic variation. The code for the model and 190 

all subsequent analyses is available at https://github.com/cocoemily/recycling-Java. 191 

 192 

Simulating scavenging and recycling 193 

In this model, scavenging and recycling are simulated by allowing agents to pick up 194 

previously discarded objects from the landscape. Agents can interact only with the assemblage of 195 

artifacts that is at their current location. If there are objects in that assemblage, agents will pick 196 

up artifacts with varying probability (see explanation of scavenging probability parameter in 197 

ODD). 198 

 Following the scavenging of artifacts, agents will either manufacture new flakes or 199 

retouch previously made flakes depending on a user-supplied probability; these actions are 200 

performed on randomly chosen nodules or flakes, respectively. This means that the agent does 201 

not preferentially recycle previously discarded objects. 202 

https://github.com/cocoemily/recycling-Java
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 This model does not rely solely on scavenged artifacts for raw materials. If an agent does 203 

not have any objects in hand at any timestep of the model, then the agent is automatically 204 

resupplied with new nodules. In this way, the model simulates local raw material availability 205 

because the agents do not need to travel to a particular source to gather new raw materials.    206 

 207 

Simulating selection behaviors 208 

 Lithic artifact selection is simulated in two ways governed by three parameters: 1) a 209 

preference for either flakes or nodules, 2) a preference or no preference for particular flake sizes, 210 

and 3) whether these preferences are strict or not. These parameters come into play when agents 211 

are scavenging artifacts from assemblages and when agents are discarding artifacts that they 212 

cannot carry with them on their next move. For scavenging, artifacts that match the selection 213 

criteria will be prioritized for collection. When selection is strict, agents will not collect any 214 

artifacts that do not meet the selection criteria. When selection is not strict, agents will first 215 

collect those artifacts matching the selection criteria, followed by further collection of other 216 

artifacts randomly as needed. For discard, agents will choose to carry (not drop) artifacts that 217 

match the selection criteria.  218 

 219 

Simulating agent movement 220 

Agents are initially randomly placed on the landscape; after initial placement, agents 221 

perform Lévy walks within the gridded landscape until they step beyond the limits of the grid. 222 

This model uses a similar methodology to the one outlined for FMODEL [37]. The direction that 223 

the agent faces is chosen randomly from degrees 0 through 360. In Lévy walks, the probability of 224 

a step length (l) is determined by equation 1: 225 
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 226 𝑃(𝑙) = 𝑙−𝜇       (Eq. 1) 227 

 228 

where P(l) is the probability of a step length, l [57]. Reorganizing this equation allows for 229 

randomly drawing step lengths via equation 2: 230 

 231 𝑙 = 𝑃(𝑙)−1/𝜇       (Eq. 2) 232 

 233 

where the probability of the step length P(l) is generated as a random number. 234 

Using this equation allows for varying how long agents spend inside the gridded 235 

landscape by making their movement more or less tortuous [37,41,58] as is shown in Fig 2. 236 

When μ is greater than or equal to 3, agents are more likely to take shorter steps, leading to the 237 

agent spending more time inside the modeled landscape as its path frequently intersects and 238 

doubles back on itself. As μ approaches a value of 1, there is a higher probability of longer step 239 

lengths, meaning the agent is more likely to exit the landscape quickly in a more linear path. 240 

Once an agent moves outside of the window of observation, that agent and all the artifacts it is 241 

carrying are removed from the model and a new agent is placed on the landscape. 242 

 243 

Fig 2. Comparison of example paths produced under different values of μ. The black dot represents the starting 244 

location of the agent. The grey squares are those occupied by the agent. 245 

 246 

Modeling agent movement in this way simulates different aspects of mobility without 247 

needing to define specific points on the landscape as residential bases or logistical camps [41]. 248 

The relative frequencies of long-distance and short-distance steps mimics the intensity with 249 
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which groups occupy a landscape as well as the redundancy in the coverage of that landscape 250 

[58]. For example, in a logistical mobility system, areas around a base camp may occupied more 251 

intensely with large amounts of small step lengths, whereas logistical forays will be comprised of 252 

more longer step lengths [58]. Conversely, in a residential mobility scheme place use if more 253 

equal across a landscape. 254 

 255 

Output variables 256 

 At different points during a model run, data were outputted summarizing the model state 257 

at three different levels: individual objects, individual grid squares, and the entire landscape. 258 

 For individual objects, data were outputted after the middle time step of a model run and 259 

the final time step of a model run. For each object, the following data were recorded: 260 

1. Whether the object was a flake or a nodule;  261 

2. The model year at the time when the artifact was first dropped by an agent; 262 

3. The stage of the artifact, which for flakes increases by 1 every time a retouch 263 

action is taken;  264 

4. The total number of agents that have retouched or produced blanks from the 265 

object; 266 

5. The technology type of the agent that initially produced the flake or first reduced 267 

the nodule (first technology type); 268 

6. The technology type of the last agent to retouch or produce blanks from the object 269 

at the current model year (last technology type); 270 

7. Whether the object has been recycled, which is true when the first technology 271 

type does not match the current last technology type. 272 
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For each grid square in the landscape, data were recorded every 300 time steps. This 273 

produced snapshots of the landscape at 100 different points during a model run. For each grid 274 

square, the following data were recorded: 275 

1. A count of all nodule objects;  276 

2. A count of all flake objects;  277 

3. The cortex ratio of the square (see below for explanation);  278 

4. A recycling incidence ratio, which is the number of recycled objects divided by 279 

the total object count (both flakes and nodules); 280 

5. The number of discard events, which is increased by the number of flakes/nodules 281 

dropped every time discard behaviors happen in the square;  282 

6. The number of scavenging events, which is increased by 1 for every object 283 

scavenged from the square;  284 

7. The number of encounters/occupations, which is increased by 1 every time an 285 

agent occupies the square;  286 

8. The number of retouch events, which is increased by 1 for every flake retouched 287 

At the model level, data were recorded at every time step to understand the overall 288 

character of the landscape throughout each model run. For the model, the following data were 289 

collected: 290 

1. The number of scavenging events that occurred during that model year; 291 

2. The number of discard events that occurred during that model year; 292 

3. The number of recycled objects created during that model year; 293 

4. The number of flakes retouched during that model year; 294 

5. The number of blanks produced during that model year; 295 
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6. The total number of recycled items currently on the landscape;  296 

7. The total number of assemblages, or grid squares containing at least one object;  297 

8. The total number of encounters summed for all grid squares;  298 

9. The total number of discard events summed for all grid squares;  299 

10. The total number of retouch events summed for all grid squares;  300 

11. The overall cortex ratio of all objects on the landscape;  301 

12. The overall recycling incidence ratio, which is the total number of recycled 302 

objects in the landscape divided by the total number of objects in the landscape 303 

The calculation of cortex ratios followed the methodology used in the FMODEL [37]. 304 

Nodules are initialized as completely cortical with a starting surface area of 11091.8 square 305 

units; the size of each flake (either 1 or 2) determines the amount of nodule cortex that flake 306 

makes up, either one twentieth or two twentieths of nodule surface area respectively. Nodules are 307 

given a starting volume of 100000 cubed units; flake volume is either 4% or 8% of the total 308 

nodule volume depending on the flake size (either 1 or 2, respectively). These volume 309 

percentages allow for a portion of the nodule’s volume to remain after all flakes are removed. 310 

Expected and observed surface areas are then calculated based on the number of nodules and the 311 

number of flakes in an assemblage.  312 

Model analysis and results 313 

Artifact level findings 314 

 Camilli and Ebert [35] posited that exposed deposits should be more subject to recycling 315 

because exposure facilitates discovery of artifacts by making them visible. In a context of pure 316 

surface deposits, such as the one produced in the model, all artifacts are forever exposed 317 
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following discard. This means that it is the length of exposure that should facilitate discovery 318 

with deposits created earlier in a model run being more likely to be scavenged.   319 

I investigated whether recycled artifacts have longer exposure times than non-recycled 320 

artifacts by looking at when artifacts are first discarded during a model run. This is tracked in the 321 

model by a variable (year of first discard) that stores the model year of when an artifact enters 322 

the discard record for the first time. The year of first discard variable for recycled artifacts and 323 

for non-recycled artifacts were compared via one-sided Wilcoxon rank-sum tests. Most 324 

parameter sets produced recycled objects with older year of first discard dates compared to non-325 

recycled objects. This means that artifacts that are eventually recycled entered the discard record 326 

earlier during a model run than artifacts that remained unrecycled.  327 

Under some parameters, recycled artifacts do not have significantly older year of first 328 

discard compared to non-recycled artifacts. This occurs when agents cannot scavenge any 329 

artifacts that do not exactly match their selection criteria (strict selection). When agents are more 330 

limited in the types of objects they are willing to scavenge, it is possible they are forced to 331 

scavenge younger artifacts that fit their selection preferences. Alternatively, agents carry out 332 

artifacts with the longest exposure times because they preferentially discard objects that do not 333 

match their selection criteria.  334 

Using binomial logistic regressions on the significance of the Wilcoxon tests, it is 335 

possible to determine how each model parameter affects the likelihood of recycled artifacts being 336 

older (and exposed for longer) compared to non-recycled artifacts. Regressions were performed 337 

via the MASS package [59]. The results of the regression (Fig 3) demonstrate that when each 338 

agent spends more time in the landscape (higher values of μ) recycled artifacts are more likely to 339 

occur on longer exposed artifacts. More agents occupying the landscape during model run also 340 
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increases the likelihood of older objects being recycled. Interestingly, there is no parameter that 341 

makes the reverse pattern of recycled artifacts having younger first discard dates significantly 342 

more likely.  343 

 344 

Fig 3. Odds ratio estimates for each model parameter on the likelihood of recycled objects having older year 345 

of first discard dates. Only significant effects plotted. 346 

 347 

When considering all artifacts within assemblages, the proportion of recycled artifacts in 348 

an assemblage is typically higher in those assemblages that have predominantly older artifacts 349 

(Fig 4). This relationship was investigated by looking at the skew (calculated with the moments 350 

package [60]) of the distribution of the year of initial discard variable for artifacts within each 351 

assemblage. A negative skew of this distribution means an assemblage dominated by older 352 

artifacts; a positive skew would indicate more younger artifacts. The negative slopes in Fig 3 353 

show increased recycling incidence values are associated with assemblages comprised of 354 

predominately older artifacts. This relationship is relatively consistent when recycling behaviors 355 

are frequent. This suggests that there will be more recycled artifacts in the oldest assemblages 356 

when recycling happens frequently throughout time.  357 

 358 

Fig 4. Relationship between recycling incidence (proportion of recycled artifacts in a grid square) and 359 

skewness of distribution of each artifact’s year of initial discard. Results shown for each grid square when 360 

agents have one of two technology types (overlap = 1) and only 100 agents occupy the landscape during model run. 361 

Negative skew indicates artifacts in the assemblage are first discarded earlier in model run. Positive skew indicates 362 

artifacts are discarded later in model run. Linear relationship shown by dark blue line. R squared values given in 363 

upper left corner of each panel.   364 

 365 
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This pattern of high recycling incidence values in older assemblages is also relatively 366 

consistent across all mobility and selection parameters (S2 Fig). Weakly positive relationships 367 

between recycling incidence and skew only occur when selection is strict, which is consistent 368 

with the above findings. High recycling incidence values also occur in assemblages with 369 

predominately younger artifacts when agents have a non-strict flake preference and no size 370 

preference, but only when each agent spends lots of time on the landscape (μ is high). Given the 371 

very low R-squared values for each relationship, it is possible that this positive correlation is 372 

simply a product of the variation in the relationship between recycling incidence and skew of the 373 

year of first discard distribution.  374 

These results demonstrate that in most cases recycled artifacts are more likely to have 375 

been exposed longer than non-recycled artifacts in the archaeological record. This supports the 376 

hypothesized relationship between recycling and length of exposure time in surface deposits. It 377 

also suggests that surface deposits which have been accumulating for long periods of time are 378 

likely to be targeted for scavenging artifacts in the context of recycling behaviors. 379 

 380 

Model level findings 381 

 The primary variable of interest for this model is the ratio of recycled artifacts that end up 382 

in assemblages. For this paper, I refer to this ratio as “recycling incidence.” Recycling behaviors 383 

are primarily controlled by the combination of scavenging probability and blank creation 384 

probability in the model. Scavenging probability dictates how likely agents are to pick up 385 

previously discarded artifacts. Blank creation probability controls the frequency of removing 386 

new flakes from nodules. The inverse of blank creation probability determines frequency of 387 

retouching previously created flakes. Since recycled artifacts in this model are most frequently 388 
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flakes (S3 Fig), a high occurrence of recycling behaviors requires frequent scavenging of flakes 389 

(high scavenging probability) and then retouching them (low blank creation probability). 390 

When looking at average values of recycling incidence across the modeled landscape at 391 

the end of model run (Fig 5), it is clear that recycling incidence values are highest when 392 

recycling is happening frequently (i.e., scavenging probability is high and blank probability is 393 

low). This pattern holds whether agents are using one of two technology types during a model 394 

run or if each agent has a unique technology type (many technology types). When more blanks 395 

are being created, the variation in resulting recycling incidence values is reduced. This is likely 396 

because increased blank production increases the total number of artifacts found in the discard 397 

record (S4 Fig), increasing the denominator of the recycling incidence ratio. 398 

 399 

Fig 5. Density distributions of average recycling incidence values for each model run. Curves show variation in 400 

recycling incidence (RI) values. More diffuse curves show a wider range of RI values produced when scavenging 401 

probability is high. Left-skewed curves indicate more low RI values, which occur when scavenging probability is 402 

low. Dotted lines show the mean value of the distributions. 403 

 404 

Recycling incidence values increase with the number of agents that occupy the landscape 405 

during model run (S5 Fig) because more agents mean more recycling opportunities. Increased 406 

number of agents appears to mitigate the differences in recycling incidence caused by agents 407 

making many small steps (higher values of μ): when more agents occupy the landscape, the 408 

average recycling incidence values are more tightly clustered for μ values of 2 and 3.  409 

In terms of agent selection preferences, non-strict selection results in higher recycling 410 

incidence values compared to strict selection (S5 Fig) because under strict selection agents are 411 

more limited in the artifacts they are allowed to scavenging. This necessarily reduces the number 412 
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of recycled objects an agent can produce. Interestingly, when selection is not strict, there is no 413 

significant difference in the recycling incidence values produced under flake preference or 414 

nodule preferences (Wilcoxon signed rank test, z = 9915064, p = 0.576). Introducing a size 415 

preference reduces recycling incidence values for the same reason as strict selection: size 416 

preference means fewer objects are allowed to be scavenged. 417 

To examine model behavior over time, I looked at the trends over time in following 418 

outputs: recycling incidence, number of identifiably recycled objects created, number of blanks 419 

created, number of scavenging events, number of retouch events, and number of discard events. 420 

For each timestep of a model run data was collected on how many of the above events occurred. 421 

This allows for an investigation of how frequently behavioral events occur during a model run 422 

and how these frequencies were affected by model parameters. Because models are run until 423 

every agent has walked through the landscape, every model differs slightly in how many 424 

timesteps it requires; this causes the variation seen at the left end of the trend lines in all the 425 

graphs in this section.  426 

 As would be expected, the trends for recycling incidence values and number of 427 

identifiably recycled objects produced at each timestep are similar (Fig 6). Recycled objects are 428 

identifiable in the model only if the first and last technology types used to manufacture the object 429 

have different signatures. The first technology type corresponds to that of the agent who initially 430 

removed the flake from its nodule or that of the agent who first reduced the nodule. The last 431 

technology type refers to that of the agent who performed the last retouch action on a flake or 432 

removed the most recent flake from a nodule. When each agent has a unique technology type 433 

signature (overlap is 2), there are more opportunities for the first and last technology types to be 434 

different. When agents have one of two different technologies (overlap is 1), there will be some 435 
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cases when recycling occurs, meaning two different agents interact with the same object at 436 

different points in time, but the technological signature does not change. As a result, more 437 

identifiably recycled objects are produced when each agent has a unique technology type (many 438 

technology types) (Fig 6B).  439 

 440 

Fig 6. Average recycling incidence values and number of identifiably recycled artifacts produced at each 441 

model year (timestep) of a model run. Trend lines are compared by overlap parameter (A & B), by μ parameters 442 

(C & D), and by selection parameters (E & F). For the selection parameter graphs, a size preference only applies to 443 

flakes, so there are no nodule preference trend lines for the size preference panels. Variation on the right side of the 444 

graph produced because some model runs last for more “model years” in order to simulate every agent passing 445 

through the landscape.  446 

 447 

To model different mobility scenarios, the value of μ is used to determine how long an 448 

agent occupies the landscape by determining the likelihood of longer and shorter step lengths 449 

[37]. When μ is high, agents will take more short steps, causing them to spend more time within 450 

the modeled landscape. When μ is low, agents are more likely to take long steps and exit the 451 

modeled landscape quickly. When each agent spends more time on landscape, recycling 452 

incidence and number of identifiably recycled objects produced are higher. Additionally, there 453 

appears to be some threshold of in the likelihood of short steps (as demonstrated by difference in 454 

trend lines for μ = 1 versus μ = 2 and μ = 3), above which recycling signatures are quite similar 455 

(Fig 6C & D).  456 

The frequency of recycling behaviors mediates the effects of mobility on the resulting 457 

recycling incidence values (Fig 7). Lower amounts of recycling (low scavenging probability and 458 

high blank probability) result in trend lines that are similar across mobility scenarios. This is also 459 

true regardless of the agent’s selection criteria (S6 Fig). These results suggests that when 460 
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recycling is happening relatively rarely, the mobility strategy and selection criteria of a group 461 

will not significantly impact the signal of recycling as measured by proportion of recycled 462 

objects in the archaeological record.   463 

 464 

Fig 7. Average recycling incidence value (A) and number of recycled objects created (B) per time step for 465 

different values of scavenging probability and blank probability, which control the frequency of recycling. 466 

High scavenging probability and low blank probability results in more recycling. Low scavenging probability and 467 

high blank probability results in less recycling. Variation on the right side of the graph produced because some 468 

model runs last for more “model years” in order to simulate every agent passing through the landscape. Trend lines 469 

displayed for model runs where agents have one of two technology types (overlap = 1) and 100 agents will occupy 470 

the landscape during a model run.  471 

 472 

There are slightly different trends for recycling incidence and number of identifiably 473 

recycled objects produced when agents preferentially scavenge flakes compared to when they 474 

preferentially scavenge nodules (Figs 6E & F). A flake preference results in lower proportions of 475 

recycled artifacts (recycling incidence) at each time step despite producing roughly the same 476 

number of identifiably recycled objects per time step. This is because flake preference scenarios 477 

result in fewer recycled objects being discarded (see below) compared to nodule preference 478 

scenarios (S3 Fig). Additionally, overall more artifacts end up in the discard record when flakes 479 

are preferred for scavenging (S4 Fig). As a result, the proportion of recycled artifacts is lower.  480 

When agents prefer flakes of particular sizes (size preference is true), more identifiably 481 

recycled objects produced per timestep, but this does not result in similarly higher recycling 482 

incidence values. This is contrary to what one might expect, since more selection criteria reduces 483 

the set of objects that an agent is willing scavenge. However, a size preference results in overall 484 

more artifacts on the landscape compared to no size preference (S4 Fig). This means that there 485 
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would be more artifacts available for the agents to scavenge, increasing the number of recycled 486 

objects that could be created. A strict size preference, on the other hand, decreases both recycling 487 

incidence and the number of recycled objects produced per timestep. This is consistent with the 488 

limitations on scavenging opportunities imposed by strict selection criteria. 489 

When agents may only scavenge nodules (a strict nodule preference scenario), no 490 

identifiably recycled objects are produced (S3 Fig). This results in the flat nodule preference line 491 

in Fig 6E & F. An agent will never scavenge flakes with a strict nodule preference, making the 492 

production of recycled flakes impossible. The fact that no recycled nodules end up in the discard 493 

record suggests that agents either rarely discard nodules under these conditions or that any 494 

discarded nodules are always scavenged by other agents. This is supported by the very small 495 

number of nodules that end up in the discard record when there is a strict nodule preference (S4 496 

Fig). 497 

For the behavioral outputs (i.e., number of blanks created, number of discards, number of 498 

scavenging events, number of retouches), whether or not each agent has a unique technology 499 

type does not impact the trends (S7 Fig). However, different mobility scenarios do. When each 500 

agent spends more time on the landscape (high μ value), agents create more blanks, and 501 

scavenge, discard, and retouch more artifacts on average (Fig 8). This effect may be in part due a 502 

burn-in effect [61] since one timestep is used to place a new agent into the landscape and agents 503 

are initialized with no objects. Higher μ values result in longer agent activity periods, therefore 504 

reducing the number of timesteps in a model run used to initialize a new agent.  505 

 506 

Fig 8. Comparison of effects of μ and number of agents on number of blanks produced (A), number of objects 507 

discarded (B), number of objects scavenged, and number of objects retouched (D) per “model year” 508 
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(timestep) during model run. Variation on the right side of the graph produced because some model runs last for 509 

more “model years” in order to simulate every agent passing through the landscape. 510 

 511 

In terms of selection scenarios (Fig 9), agents scavenge and discard more artifacts per 512 

timestep when they preferentially scavenge nodules. Conversely, agents will retouch fewer 513 

artifacts when they have a nodule preference. When selection criteria are strict, a nodule 514 

preference always results in agents scavenging, discarding, and retouching fewer artifacts. The 515 

patterns for blank creation are more unique. The number of blanks agents produce at each 516 

timestep is essentially the same regardless of selection criteria. The inclusion of a size preference 517 

appears to only impact the behavioral events when that size preference is strict, resulting in fewer 518 

scavenging, retouching, and discard events.   519 

 520 

Fig 9. Comparison of effects of selection parameters on number of blanks produced (A), number of objects 521 

discarded (B), number of objects scavenged, and number of objects retouched (D) per “model year” 522 

(timestep) during model run. Variation on the right side of the graph produced because some model runs last for 523 

more “model years” in order to simulate every agent passing through the landscape. 524 

 525 

Grid square level findings 526 

 There is a lot of variation in the resulting landscapes between model runs of the same 527 

experiment because the path that each agent walks during a model run is unique. To understand 528 

more about how this stochasticity affected the outputs, I calculated the coefficients of variation 529 

(COV) for each output variable for all 50 model runs performed for each set of experimental 530 

parameters. Recycling incidence values vary the most across the landscape with a mean COV of 531 

1.68. All the behavioral events (i.e., discards, scavenging, retouching, grid square encounters) are 532 
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slightly less variable across the landscape with mean COVs ranging between 1.55 to 0.52. The 533 

least variable of these is grid square encounters; this suggests that grid squares are evenly 534 

occupied by agents over the course of a model run. Nodule counts vary more than flake counts 535 

with mean COVs of 1.36 and 0.83, respectively. Cortex ratios are the least variable across the 536 

landscape of all the outputs with a mean COV of 0.09.  The variation of model outputs is 537 

variously affected by the model parameters. The direction of the effect on variation caused by 538 

each parameter was investigated by performing linear regression for each model parameter on 539 

the COVs of each output variable (S8 & S9 Figs). In general, when more agents occupy the 540 

landscape and each agent spends more time within the landscape, variation is reduced for all 541 

outputs. This is consistent with other findings of decreased variability in assemblages with higher 542 

occupation intensity and higher movement redundancy [37,62]. For selection parameters, the 543 

results indicate that limitations on objects that agents are willing to scavenge can cause 544 

behavioral events and assemblage characteristics to be less evenly patterned across the landscape 545 

(increased COVs). This is likely because in the model agents are somewhat restricted to 546 

performing behaviors at locations with suitable scavenging materials. Finally, recycling 547 

frequency also impacts variation of model outputs. Increased recycling probability, as 548 

determined by high scavenging probability and low blank probability, reduces the variation in 549 

recycling incidence values across a landscape, but increases the variation in the occurrence of 550 

other behaviors. 551 

 552 

Variation in recycling incidence 553 

When considering the entire landscape, recycling incidence values increase when 554 

recycling behaviors are more frequent. However, recycling incidence values can also be highly 555 
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variable across the landscape. This is particularly true when recycling is infrequent and when the 556 

landscape is occupied by relatively few agents who spend small amounts of time within the 557 

landscape. The question is whether this variation is informative in similar ways that the variation 558 

in cortex ratios has been shown to be informative about mobility [37].  559 

To test this, I compared the coefficients of variation of recycling incidence calculated 560 

across the landscape for each run of the model across different parameter values via Wilcoxon 561 

rank-sum tests. The results show that there is significantly more variation in recycling incidence 562 

across the landscape when recycling happens infrequently (scavenging probability is lowest and 563 

blank creation probability is highest) (Fig 10). Conversely, all assemblages on the landscape will 564 

have relatively similar proportions of recycled artifacts when recycling is frequent.  565 

 566 

Fig 10. Boxplots of coefficient of variation (COV) of recycling incidence across all grid squares from each 567 

model run. Wilcoxon rank-sum tests show significant differences in COV between different scavenging 568 

probabilities (**** = Bonferroni adjusted p values less than 0.0001) Only data from model runs where agents had 569 

one of two technology types (overlap = 1) are used. 570 

 571 

The reduced variation in recycling incidence with increased recycling frequency holds 572 

regardless of occupational intensity (i.e., number of agents) and whether or not every agent has a 573 

unique technological tradition. Increased subsequent occupations of the landscape (more agents 574 

during model run) serve to further reduce the variation of recycling incidence between 575 

assemblages, because more recycled artifacts are created and discarded over the course of 576 

archaeological record formation. Additionally, as each agent spends more time on the landscape 577 

(increasing value2 of μ), the variation in recycling incidence values decreases (S10 Fig). This is 578 
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consistent with what Davies and colleagues [37] find for the variation in cortex ratio with 579 

increased values of μ.  580 

The variation in recycling incidence increases when agents can carry around more 581 

artifacts because more recycled artifacts can be removed from the landscape over the course of a 582 

model run (S10 Fig). Selection criteria appear to minimally affect the variation in recycling 583 

incidence across the landscape (S11 Fig). A flake preference and a nodule preference when 584 

scavenging result in similar amounts of variation, as does strict and non-strict selection. A size 585 

preference when scavenging increases the variation in recycling incidence to a greater extent 586 

than the other two selection criteria.  587 

In general, any parameters that result in more recycled objects being discarded on the 588 

landscape lead to a reduction in the variation in recycling incidence. Interestingly, this pattern 589 

does not apply to the other model outputs. High frequency of recycling behaviors increases the 590 

variation in flake counts, nodule counts, cortex ratios, number of discard events, and number of 591 

retouch events (S8 & S9 Figs).    592 

 593 

Recycling incidence and behavioral events 594 

 One goal of this study was to understand how recycling incidence relates to other 595 

behaviors that occur across the landscape. To this end, I calculate Spearman’s rank correlations 596 

between recycling incidence and the following model outputs: number of artifacts discarded into 597 

a grid square, number of artifacts scavenged from a grid square, number of times an agent 598 

occupied a grid square, and number of artifacts retouched at a grid square (Fig 11). Correlations 599 

were calculated for each grid square individually across all model runs. The correlations between 600 

recycling incidence and behavioral events are on average positive, but some model conditions do 601 
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produce negative correlations. This suggest that the proportion of recycled artifacts in an 602 

assemblage may not always be informative about the behaviors that occurred at a site. 603 

 604 

Fig 11. Average correlations with recycling incidence measured for each grid square across simulation 605 

parameters. From left to right, the correlations are between recycling incidence and: number of discard events, 606 

number of scavenging events, number of grid square encounters, and number of retouch events.  607 

 608 

  When looking at the effects of different parameter values on these correlations between 609 

recycling incidence (RI) and behavioral events, each agent spending more time on the landscape 610 

(high μ) causes recycling incidence to become uncorrelated with the number of behavioral events 611 

that occur at a grid square (Fig 12), except for the number of retouching events. This makes 612 

sense because recycled artifacts are predominantly flakes, which must be retouched by agents to 613 

become identifiably recycled objects. In all other cases, agents spending more time on the 614 

landscape means they reorganize the discard record over and over again, masking its relationship 615 

between behavioral events. 616 

 617 

Fig 12. Correlations with recycling incidence measured for each grid square displayed by number of agents, 618 

technological scenario (overlap parameter), and value of μ. The correlations are between recycling incidence 619 

and: number of discard events (A), number of scavenging events (B), number of grid square encounters (C) and 620 

number of retouch events (D). Wilcoxon rank-sum tests show significant differences in correlations between 621 

different values of μ (**** = Bonferroni adjusted p values less than 0.0001). 622 

  623 

In terms of selection scenarios, correlations between recycling incidence and behavioral 624 

events remain relatively unchanged (S12 Fig). This is consistent with the model trend results 625 

presented above. The selection parameters result in relatively similar trends in all behavioral 626 
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outputs (i.e., number of discard events, scavenging events, retouch events, and encounters), so 627 

any effect of selection on these correlations would be primarily driven by the effect of selection 628 

on recycling incidence. 629 

In terms of frequency of recycling behaviors, increase in scavenging probability reduces 630 

the correlations between recycling incidence and behavioral events (S13 Fig). This is consistent 631 

with scavenging for the purpose of recycling functioning as a removal process for the use of 632 

stone tools elsewhere on a landscape [38], supporting the proposition that recycling is best 633 

understood within the context of landscape-level analysis of the archaeological record.  634 

 635 

Recycling incidence and assemblage density 636 

 Because recycling incidence is tracked as the proportion of recycled artifacts in an 637 

assemblage, it is important to understand if recycling incidence values are determined by 638 

assemblage density (as measured by object counts for this model). Assemblage density is a 639 

measure of accumulation [62], whereas recycling incidence values are determined by how much 640 

things move and how often they are recycled. The strongest positive relationships between 641 

recycling incidence and assemblage density (Fig 13) occur when agents are more frequently 642 

retouching flakes (low blank creation probability) and exiting the landscape quickly (low μ 643 

values). As scavenging probability increases, the relationship between recycling incidence and 644 

assemblage density becomes weaker and less positive, especially when agents spend more time 645 

in the landscape (high μ).  646 

 647 

Fig 13. Relationship between recycling incidence values and logged artifact counts for each grid square. 648 

Results shown for model runs where agents have one of two technology types (overlap is 1) and only 100 agents 649 
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occupy the landscape during model run. Linear relationship shown for each μ value. Equation and R squared value 650 

for each line given in upper left corner of each panel.   651 

 652 

 Increased repeated occupation of the landscape (i.e., more agents) most strongly affects 653 

the relationship between recycling incidence and assemblage density when scavenging is 654 

frequent (S14 Fig). These conditions result in negative relationships between recycling incidence 655 

ratios and assemblage densities, albeit very weak. This weak negative relationship occurs 656 

because there is a mismatch in the increases of number of recycled objects compared to that of 657 

object count overall when more agents occupy the landscape during a model run and recycling is 658 

frequent. As a result, high object counts drive down recycling incidence values by outpacing the 659 

increased number of recycled objects. This means that if a landscape experiences frequent 660 

recycling by increasingly large amounts of stone tool-using groups, it is possible that the highest 661 

proportions of recycled objects will occur in smaller assemblages.  662 

The relationship between recycling incidence and object counts only weakly related 663 

across all selection preference scenarios (S15 Fig). Instead, the relationship between recycling 664 

incidence values and assemblage densities is primarily driven by parameters that allow for 665 

increased recycling incidence values and more diversity in assemblage densities. When more 666 

objects are being created (high blank probability, more agents, high values of μ), the distribution 667 

of assemblage sizes is less skewed (S16 Fig). It is this more even distribution of assemblage 668 

sizes that allows for weaker relationships with recycling incidence.  669 

 670 

Recycling incidence and cortex ratios 671 

Another relationship of interest is that between recycling incidence and cortex ratios 672 

within grid squares. Cortex ratios measure artifact movement [37,58,62–66], so the relationship 673 
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between these two metrics can help determine how recycling incidence values depend on the 674 

addition and/or removal of artifacts from assemblages.  675 

The cortex ratios produced in this model are consistent with findings by Davies and 676 

colleagues [37]. Cortex ratios are lower than 1 when agents exit the landscape quickly (low μ);  677 

Cortex ratio values approach 1 and become less variable as agents spend more time on the 678 

landscape (high μ). Lower μ values also foster more fragmentation of the discard record [41], 679 

because agents have less time on the landscape to discard objects (see discard trends in Fig 7).   680 

The values of cortex ratios produced during model run are largely determined by whether 681 

agents have a flake preference or a nodule preference. In this model, flakes are simulated as 682 

completely cortical objects, meaning that when a flake is removed from a nodule, the remaining 683 

nodule becomes increasingly non-cortical. As a result, a nodule preference fosters the removal of 684 

non-cortical elements from assemblages, resulting in cortex ratios above 1 (S17 Fig). 685 

Conversely, when agents prefer flakes, cortex ratios are below 1 because agents preferentially 686 

remove completely cortical objects from the landscape. Because of this, the relationship between 687 

recycling incidence values and cortex ratios of assemblage must be investigated for flake and 688 

nodule preferences separately.  689 

When agents have a nodule preference, recycling incidence is only very weakly related to 690 

cortex ratio in any given assemblage. When agents have a flake preference, the relationship 691 

between recycling incidence and cortex ratios is stronger and more interesting. There are strong 692 

negative relationships between recycling incidence and cortex ratios when cortex ratios are 693 

tightly clustered around a value of 1 (Fig 14). A negative relationship between recycling 694 

incidence and cortex ratio means that assemblages experiencing relatively little artifact dispersal 695 

are also the assemblages with lower proportions of recycled artifacts. This relationship is 696 
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strongest when agents spend more time on the landscape (higher values of μ) (S17 Fig). This 697 

means that when there more opportunities for local discard of objects, it is more likely that 698 

recycling incidence will be highest in those assemblages where the most objects have been 699 

removed. 700 

 701 

Fig 14. Relationship between recycling incidence values and cortex ratios across all assemblages for each 702 

model run. Data displayed for model runs where agents have one of two technology types and a flake preference. 703 

 704 

It is important to consider that cortex ratios and recycling incidence will both be affected 705 

by assemblage size. Part of the reason that high recycling incidence values occur in assemblages 706 

with more removal of objects is because those assemblages will have fewer objects and therefore 707 

recycled artifacts can make up greater proportions. However, when looking at the relationship 708 

between cortex ratios and assemblage density, the positive correlation between these two metrics 709 

is not extremely strong (S18 Fig). This means that even when controlling for the effect of 710 

assemblage density on recycling incidence, there is still a significant negative relationship 711 

between recycling incidence and cortex ratios.   712 

 713 

Hotspots of behavior 714 

Understanding the spatial structure of recycling behaviors in the archaeological record is 715 

important. This was accomplished by examining how concentrations of high recycling incidence 716 

values overlapped with high concentrations of other behaviors and objects. Recycling incidence 717 

values and the other layer outputs at each grid square were compared to their queen neighbors to 718 

calculate local G statistics via the spdep package in R [67]. Grid squares with the highest local G 719 

values (more than two standard deviations from the mean) were compared to determine how 720 
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many of these high-value squares overlapped with the grid squares with the highest local G 721 

values for recycling incidence.  722 

There is relatively little overlap of high concentrations of recycling incidence (RI) and 723 

high concentrations of other outputs (Fig 15), despite the fact that on average 5% of the 724 

landscape has high value hotspots for each of the outputs individually (S19 Fig). This means that 725 

areas of high recycling incidence occur in different locations on the landscape than the hotspots 726 

for the other outputs.  727 

 728 

Fig 15. Distributions of hotspot overlap counts for overlaps with high recycling incidence (RI) across all 729 

model runs. Result here show the counts for the two technology scenarios (overlap is 1) only.  730 

 731 

To investigate which parameters result in no overlap of hotspots and which parameters 732 

increase the amount of hotspot overlap I used zero-inflated regressions via the pscl package in R 733 

[68]. Zero-inflated regressions are used to model count data that have an excess of zero counts, 734 

such as is the case for the number of overlapping hotspots. These regressions accomplish this by 735 

combining two models: a Poisson count model and a logit model for the excess zeros.  736 

Parameters that cause lower recycling incidence values across the landscape, such as a 737 

size preference, strict selection, larger minimum flake size for selection, increase the likelihood 738 

that there will be no overlap with hotspots of recycling incidence (Fig 16). Interestingly, 739 

parameters that result in more objects being created and discarded (high μ, more agents, high 740 

blank probability) also appear to increase the likelihood of no overlap with hotspots of recycling 741 

incidence (Fig 16). This suggests that high recycling incidence is a poor indicator of where 742 

agents perform other behaviors in a denser archaeological record.  743 

 744 
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Fig 16. Zero-inflated log odds regression coefficients for effect of model parameters on counts of hotspot 745 

overlap. Results are displayed for excess of zero counts for overlap of hotspot squares of recycling incidence(RI) 746 

and other output variables. Only significant coefficient values are plotted. 747 

 748 

For the most part, parameters that result in no overlap of hotspots also cause in smaller 749 

counts of overlapping hotspots and vice versa (Fig 17). Interestingly, strict selection has a large 750 

positive effect on the number of overlapping hotspots despite also resulting in a lack of overlap 751 

between hotspots of recycling incidence and flake counts and that of recycling incidence and grid 752 

square encounters. This could be because, strict selection forces activities on the landscape to 753 

happen in the same area by limiting the locations from which agents can scavenge artifacts. For 754 

example, if the agent does not scavenge artifacts at one location due to the limitations of its 755 

selection criteria, then the agent is also less likely to perform other behaviors there because it 756 

will not have any objects to manufacture or discard.  757 

 758 

Fig 17. Poisson incidence ratio regression coefficients for model parameters. Results are displayed for counts for 759 

overlap of hotspot squares of recycling incidence (RI) and other output variables. Only significant coefficient values 760 

are plotted. 761 

 762 

The results of the hotspot analyses indicate that high recycling incidence values rarely 763 

occur in the same location as high object counts, which is akin to assemblage density in the 764 

archaeological record. This supports the finding of a weak relationship between recycling 765 

incidence values and assemblage density discussed above. 766 

Given the effects of recycling behaviors on the patterning produced in cortex ratios, I 767 

tested whether another archaeological proxy was affected. Specifically, I looked at whether the 768 
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proportion of retouched tools in an assemblage was positively correlated with occupation 769 

intensity or occupation redundancy as archaeologists have proposed [69–72]. This was 770 

accomplished by looking at hotspot overlap between grid squares with high encounter rates and 771 

grid squares with high proportions of retouched artifacts. In the context of this model, retouched 772 

artifacts are those that have been “knapped” following their initial removal from a nodule. There 773 

is an excess of zero counts for overlap in hotspots of retouched artifact proportions and grid 774 

square encounter rates in this model (Fig 18A).  This is not because these two metrics are 775 

uncorrelated within assemblages. In fact, proportion of retouched artifacts is predominantly 776 

positively correlated with number of grid square encounters (S20 Fig). The lack of hotspot 777 

overlap simply means the highest values of each do not necessarily occur at the same location on 778 

the landscape. This is likely primarily driven by a lack of hotspots for retouched artifact 779 

proportions (Fig 18B).  780 

 781 

Fig 18. Hotspot overlap for retouched artifact proportions and grid square encounters (A) and distribution of 782 

hotspots for each (B). Hotspot and overlap counts shown for all model runs.  783 

 784 

 Agent behaviors hotspots tend to cluster in the center of the modeled landscape, 785 

especially when each agent spends more time on the landscape (high μ) . Conversely, recycling 786 

incidence hotspots do not cluster centrally. The combination of these two results means that 787 

overlap of recycling incidence hotspots and hotspots of agent behavior typically occur in the 788 

center of the landscape, but rarely with more than 2 grid squares defined as hotspots overlaps per 789 

model run. The results of the hotspot overlap analyses appear to suggest that high values of 790 

recycling incidence are a relatively poor proxy for the location of frequent behavioral events on a 791 

landscape.  792 



 35 

Discussion 793 

 A major question this paper sought to answer is whether recycling incidence, or 794 

proportion of recycled objects found in an assemblage, is indicative of how much recycling 795 

occurred. The results demonstrate that recycling incidence values increase on a landscape scale 796 

when there is a higher probability of recycling behaviors. This increase in recycling incidence is 797 

accompanied by overall less variation in the proportions of recycled objects per assemblage 798 

across the landscape when recycling behaviors are frequent, however variation still exists. This is 799 

important because it means that different spots on the landscape will provide different insights 800 

into recycling frequency, potentially masking a different pattern on a wider scale. As a result, 801 

this model demonstrates that a landscape-scale approach is necessary for understanding recycling 802 

behaviors, particularly in cases of frequent recycling behaviors.  803 

The variation in recycling incidence between assemblages decreases over time (S21 Fig), 804 

meaning that assemblages which have been accumulating for longer are more likely to have 805 

similar signals of recycling incidence. This is also true when each agent spends an extended 806 

amount of time on the landscape (high μ) and more agents occupy the landscape. This reduced 807 

variation of recycling incidence with increased μ mirrors the patterns of reduced variation found 808 

by Davies and colleagues [37] for cortex ratios and by Barrett [41] for distribution of reduction 809 

set sizes. When found archaeologically, this lack of variation can demonstrate long term 810 

regularity in landscape use [41,73]. In the context of recycling behaviors, a lack of variation in 811 

proportions of recycled artifacts across a landscape indicate long-term stability in frequency of 812 

recycling behaviors.  813 

Another important result from this model is the confirmation that, in pure surface 814 

contexts, recycled artifacts will typically have been exposed for longer compared to non-recycled 815 
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artifacts. Furthermore, recycled artifacts will occur more frequently in older assemblages. These 816 

findings fit well with Camilli and Ebert’s [35] hypothesis that exposure of artifacts facilitates 817 

artifact discovery and therefore scavenging and subsequent recycling. Although this model 818 

focuses on surface contexts, the established relationship between exposure and recycling sets up 819 

a further hypothesis: when comparing any type of deposits, those that have been exposed for 820 

longer will have larger amounts of recycled objects. This hypothesis can be tested by comparing 821 

the numbers of recycled artifacts in archaeological assemblages with different accumulation 822 

intervals. 823 

 824 

Location of archaeological signatures of recycling 825 

An important result of this model is the finding that areas of high recycling incidence are 826 

not necessarily also places where lots of other occupational activities happened. For example, the 827 

overlap between areas of high recycling incidence and those with high numbers of scavenging 828 

events was less than 1% of landscape on average, even though 9% of the landscape is identified 829 

as a hotspot of scavenging activity on average. Archaeologists often use proportions of recycled 830 

artifacts to discuss the importance or intensity of recycling behaviors at a particular site. 831 

However, the results of this model demonstrate that in some contexts there will be a disconnect 832 

between where recycled artifacts are found and where occupation or scavenging behaviors 833 

happened. 834 

Although the hotspots do not overlap, recycling incidence is consistently positively 835 

correlated with counts of behavioral events. That being said, increased recycling behaviors 836 

reduce the strength of this correlation, making values of recycling incidence increasingly less 837 

informative about the frequency of behavioral events that occurred at a particular site when 838 
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recycling is frequent. To make matters more complicated, these assemblage-level correlations 839 

are influenced by mobility. When each agent spends more time occupying a landscape, the 840 

proportion of recycled objects at a location is comparatively less reliable for interpreting discard, 841 

scavenging, occupation, or retouch behaviors. In this model, mobility patterns are determined by 842 

value of μ, which modulates the relative frequencies of long-distance and short-distance steps in 843 

a Lévy walk. Long-distance steps are more likely at low values of μ, causing the agents to exit 844 

the landscape more quickly. High values of μ result in shorter step lengths, causing agents to 845 

spend more time in the landscape and have more redundant movement paths. In a logistical 846 

mobility system, low μ values would represent landscape areas where logistical forays occur, 847 

whereas high μ values simulate movement that would be more characteristic of areas around a 848 

base camp [58]. This means that if recycling is occurring within a logistical mobility system, 849 

archaeologist should expect higher recycling incidence values to be more informative about the 850 

location of other behaviors in landscape areas where logistical forays occur. Conversely, if 851 

recycling behaviors are occurring in base camp settings, recycling incidence values will be less 852 

variable across the landscape and therefore less informative about where foragers are performing 853 

other stone tool use behaviors.  854 

In a residential mobility scheme, place use is more equal across a landscape, so 855 

landscapes characterized by different frequencies of long-distance and short-distance movements 856 

will be dictated by how often and how far groups decide to move their residences. Studies of 857 

ethnographic hunter-gatherer populations have demonstrated that these decisions are primarily 858 

determined by factors such as habitat quality, subsistence strategy, group sizes, and population 859 

density [74,75]. This means that when interpreting the appearance of recycling behaviors for 860 



 38 

populations practicing residential mobility, other archaeological data will first need to be 861 

incorporated to assess the frequency of long- versus short-distance moves within a landscape.  862 

Although proportions of recycled objects are often not informative about location of 863 

behaviors, high assemblage densities will indicate where other agent behaviors occur more 864 

frequently in the context of recycling. Object counts are always positively correlated with discard 865 

events, and typically very highly positively correlated with scavenging events and grid square 866 

encounters (S22 Fig). These relationships are consistent with artifact density being used as an 867 

indicator of occupational redundancy, particularly when foragers are drawn to previously 868 

deposited materials for the purpose of recycling [36].   869 

Interestingly, the relationship between recycling incidence and other aspects of the 870 

archaeological record are only minorly effected by selection preferences during scavenging. The 871 

largest impacts are notable when selection is strict, but that is not a typical scenario 872 

archaeologically [25]. Yet, in many cases of recycling known from the archaeological record, 873 

there does appear to be some sort of size preference when recycling occurs [18,76–78]. For this 874 

reason, it makes the most sense to consider non-strict selection scenarios to establish 875 

archaeologically testable patterns. size preference act as an averaging force on assemblage 876 

density distributions and concentrations of agent behaviors across the landscape by limiting the 877 

locations from which agents are willing to scavenge artifacts. Conversely, size preference 878 

increases the variation in recycling incidence across a landscape (S11 Fig). This suggests that a 879 

mismatch in the variability of recycled artifact proportions and other indicators of human 880 

behaviors across the landscape might indicate some sort of limitation imposed on scavenging 881 

behaviors, be that a size preference or any other type of selection criterion.  882 
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The results of the model demonstrate that there is a lot of equifinality in the effects of 883 

recycling frequency, mobility strategy, and selection criteria on the appearance of recycled 884 

artifacts in the archaeological record. For example, both high recycling frequency and a high 885 

frequency of short moves by agents (high μ) reduce the variation in recycling incidence values 886 

across the landscape. As a result, interpreting an archaeological record affected by recycling 887 

behaviors will require considering many different aspects of the record at once. In Table 1, I 888 

outline a few conditions that co-occur under distinct recycling regimes. 889 

 890 

Table 1. Expected archaeological record conditions for various recycling behavior 891 

frequency, mobility styles, and selection criteria. 892 

Recycling 

frequency 

Mobility style: 

Frequent, short 

moves (high μ) 

Mobility style: 

Infrequent, long 

moves (low μ) 

Selection behaviors: 

Flakes preferentially 

scavenged 

Selection behaviors: 

Flakes of certain size 

preferentially 

scavenged 

High • Highest 

recycling 

incidence (RI) 

values 

• Less variation in 

RI between sites 

• RI uncorrelated 

with assemblage 

density 

• RI less correlated 

with location of 

• High recycling 

incidence (RI) 

values 

• Slightly elevated 

variation in RI 

between sites 

• RI weakly 

positively 

correlated with 

assemblage 

density 

• High recycling 

incidence (RI) 

values 

• Less variation in 

RI between sites 

• RI weakly 

correlated with 

cortex ratios 

• High recycling 

incidence (RI) 

values, but lower 

relative to no size 

preference 

• Slightly elevated 

variation in RI 

between sites 

• RI more 

positively 

correlated with 
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behavioral 

events 

• RI weakly 

correlated with 

cortex ratios 

• Some possible 

concentrations of 

high RI values 

location of 

behavioral events 

Low 

(RI values 

relatively 

unaffected by 

mobility and 

selection) 

• Low recycling 

incidence (RI) 

values 

• Lower variation 

in RI between 

sites 

• RI weakly 

positively 

correlated with 

assemblage 

density 

• RI less correlated 

with location of 

behavioral 

events 

• RI strongly 

negatively 

correlated with 

cortex ratios 

• Low recycling 

incidence (RI) 

values 

• More variation in 

RI between sites 

• Some possible 

concentrations of 

high RI values 

• RI slightly 

positively 

correlated with 

location of 

behavioral 

events 

• Low recycling 

incidence (RI) 

values 

• More variation in 

RI between sites 

• High RI values 

where cortex 

ratios closer to 1 

• Low recycling 

incidence (RI) 

values 

• Elevated variation 

in RI between 

sites 

 

 893 
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Recycling and archaeological proxies 894 

Another driving question of creating this model was whether recycling behaviors 895 

significantly change other archaeological proxies. For example, the number of retouched artifacts 896 

is frequently used to assess occupation frequency of a site [69–71,79]. Although the model does 897 

not differentiate between primary and secondary flaking behaviors, the results from this 898 

simulation indicate that artifacts that have been “knapped” at least once following their removal 899 

from a core occur in proportions that are correlated with how frequently an assemblage has been 900 

visited by agents. This is true at all levels of recycling behaviors (S22 Fig), although the 901 

correlation is lower when recycling is more frequent.  902 

Cortex ratios are another archaeological proxy, which been shown to be informative 903 

about mobility [37,58,62–66]. The cortex ratios produced across all model runs are consistent 904 

with those modeled by Davies and colleagues, where more time spent in the landscape by each 905 

agent (high μ) reduces the variability of cortex ratios across a landscape [37]. However, when 906 

this is broken down by frequency of recycling behaviors, a different pattern emerges. Frequent 907 

recycling make cortex ratios more variable independent of the effects of mobility. In fact, at high 908 

frequencies of recycling, the effect of μ on cortex ratio variation disappears (S23 Fig). 909 

Furthermore, at the highest recycling frequencies, there is actually an increase in variation of 910 

cortex ratios across the landscape as agents spend more time in the landscape. This means that 911 

cortex ratios be used to understand artifact movement on a landscape only at low levels of 912 

recycling; at high levels of recycling this may not be the case. As such, the model shows that 913 

cortex ratios need to be interpreted in the context of recycling incidence. If proportions of 914 

recycled artifacts are high and less variable across a landscape, indicating high frequency of 915 
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recycling, then cortex ratios may not behave in the ways described by Davies and colleagues 916 

[37]. 917 

The relationship between recycling incidence and cortex ratios can be informative. The 918 

model demonstrates that high proportions of recycled artifacts are less likely to be in locations 919 

where in situ scavenging, tool use, and discard occur when artifacts are frequently removed from 920 

a landscape. Instead, recycled objects are more likely to be moved around the landscape, ending 921 

up in assemblages characterized by frequent artifact movement (i.e., have cortex ratios less than 922 

1).  923 

 924 

Future directions 925 

As it is currently written, this model is not suited for addressing the effect of recycling on 926 

some additional aspects of assemblage variation. For example, this model uses a simple core and 927 

flake conceptualization of stone tools, ignoring tool types that are often identified in the 928 

archaeological record. Tool types are often used to assess the composition of assemblages and 929 

relate it to concepts such as intensity of occupation, reduction trajectories, assemblage 930 

accumulation intervals, discard rates, and tool use life [80–82]. Many assessment of assemblage 931 

composition show it is size-dependent, a property supposed to emerge due to an interaction 932 

between occupation span and tool use-life assuming regular discard of tools at a site [82,83]. 933 

However, these proposed relationships do not consider the potential removal of items after initial 934 

discard; it would be interesting to see if scavenging affects the size-dependency of assemblage 935 

composition especially considering the relationship between recycling and exposure (which is 936 

akin to accumulation interval in this model).  937 
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Another thing this model does not explore is the effect of artifact use life on the 938 

relationship between artifact age and likelihood of it being recycled. In the model, all artifacts 939 

have an unlimited use life, meaning they can be knapped again and again until the end of model 940 

run. Obviously, in the archaeological record this is not the case; knapping of stone tools is a 941 

reductive process, so objects will necessarily have a limited use-life after which they are no 942 

longer useable [84]. Other modeling that incorporates use-life of lithic artifacts as a parameter 943 

has demonstrated that this parameter can affect maximum transport distances of stone tools and 944 

how well that reflects maximum group range [85]. Simulations by Barton and Riel-Salvatore 945 

[86] demonstrated that when artifact use-life is expended more quickly, there is an increased 946 

proportion of retouched artifacts in assemblages; furthermore, when artifact use-life is expended 947 

less quickly, there is more variation in assemblage composition in terms of remaining artifact 948 

use-life [86]. More formal modeling by Surovell demonstrates how increased artifact use-life 949 

results in more constant ratios of local to transported materials over time [87]. For the model 950 

presented here, it is possible that older artifacts, although exposed for longer and therefore more 951 

discoverable throughout time, would also have comparatively little remaining utility, forcing 952 

groups to scavenge younger artifacts that have more utility. The use of artifacts that have been 953 

used the least is a tendency that is documented ethnographically [88]. Stone tool users also do 954 

appear to prefer larger artifacts when scavenging for reuse [e.g. 18], which may have something 955 

to do with the remaining utility. Future iterations of recycling models could explore how limiting 956 

the use-life of artifacts affects the relationship between when an artifact is discarded and how 957 

likely it is for that artifact to be recycled. It is likely that artifact use-life would act to create some 958 

assemblages without a correlation between exposure time and recycling, much in the way the 959 
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strict selection scenarios modeled here produced assemblages where recycled artifacts were not 960 

those discarded earlier in time. 961 

Simulations by Davies and colleagues have demonstrated the relationship between cortex 962 

ratios and assemblage densities is dependent on the consistency of landscape use [62]. They 963 

model an “accumulation” scenario where all agent movement follows consistent patterns 964 

(constant value of μ for each agent), but the number of agents that occupies the landscape during 965 

model run is random. They also model an “occupation” scenario where each agent’s movement 966 

is dictated by a random value of μ, but the number of agents is held constant. Cortex ratios are 967 

only assemblage density-dependent under the “occupation” scenario when landscape use is 968 

varied. In the model presented in this paper, with both the number of agents and μ are held 969 

constant throughout each model run. This limits any comparison between recycling incidence 970 

values and assemblage densities for understanding consistency in landscape use. Further 971 

experiments with the model presented in this paper could be done to more thoroughly investigate 972 

the differences in recycling incidence values between an “accumulation” and an “occupation” 973 

model sensu Davies et al [62]. 974 

 975 

Conclusions 976 

The findings from this model demonstrate that a landscape-level approach is crucial to 977 

understanding nuances in recycling behaviors, especially within the context of differing mobility 978 

patterns and scavenging preferences. This is true not only for contextualizing proportions of 979 

recycled artifacts, but also for understanding how those proportions should be related to other 980 

archaeological phenomenon, such as assemblage densities and cortex ratios. As the importance 981 

of recycling as a part of stone tool use continues to be recognized at individual sites, 982 
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archaeologists must now turn to wider regional approaches for understanding how Paleolithic 983 

stone tool users employed recycling as part of their technological strategy.  984 

The model presented here is a simplified simulation of recycling behaviors. The resulting 985 

patterns of this model, therefore, do not necessarily represent true patterns produced by recycling 986 

behaviors in the past, but instead can be used for hypothesis testing and bounding our 987 

expectations of archaeological data under different parameters [89–91]. The results of the 988 

recycling model demonstrate that archaeological record formation due to recycling behaviors is 989 

indeed influenced by differences in mobility strategies and selection criteria of groups. The 990 

model also demonstrates that there is spatial structure to the patterns created by recycling 991 

behaviors across a landscape. Both of these results highlight the need to consider recycling 992 

behaviors within the context of regional landscape use by mobile populations [47].  993 

The model demonstrates that while the number of recycled objects can be indicative of 994 

the frequency of recycling behaviors on a landscape, the location of recycled objects does not 995 

necessarily inform us about where scavenging behaviors or retouching of scavenged materials 996 

occurred [50]. This is particularly true when scavenging behaviors are occurring frequently. The 997 

model also demonstrates that decreased variation in proportions of recycled artifacts in 998 

assemblages across a landscape is indicative of long-term occurrence of frequent recycling 999 

behaviors. Furthermore, this long-term consistency in recycling behaviors in a landscape is likely 1000 

to result in higher proportions of recycled objects occurring in assemblages that have been 1001 

accumulating for longer.  1002 

Other archaeological metrics used to interpret artifact movement (cortex ratios) and site 1003 

occupation frequency (retouched artifact counts) still maintain their previously established 1004 

patterns at low levels of recycling behaviors. At higher levels of recycling behaviors, it is 1005 
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prudent to consider archaeological proxies in the context of recycling. For example, the results of 1006 

this model demonstrated that the relationship between variation in cortex ratios and movement 1007 

redundancy is not straightforward when recycling is highly frequent.  1008 

It is important to note that all results presented here are more likely to apply in contexts 1009 

where a layer has been exposed for an extended period, such as surface sites. Previous research 1010 

demonstrates that the frequency and type of geological events can significantly impact the 1011 

technological characteristics of scavenged and recycled assemblages [23]. Therefore, it is very 1012 

likely that including geological events in this model would change the patterns created during 1013 

archaeological site formation in the context of continuous recycling behaviors across time. This, 1014 

however, does not take away from the fact that the recycling of stone tools is a powerful force 1015 

repeatedly rewriting archaeological patterns throughout history. Archaeologists are continually 1016 

finding new evidence that recycling behaviors were common during the Paleolithic. Despite this 1017 

understanding, the implications of this behavior have not been thoroughly explored. This model 1018 

offers insight into how recycling behaviors under different mobility scenarios and with different 1019 

selection criteria can have large effects on the formation of the archaeological record over time. 1020 

In doing so, the findings presented in this paper bring us closer to being able to interpret the 1021 

stone tool record most accurately.  1022 

Acknowledgements 1023 

The author would like to thank Radu Iovita and Colin Wren for their helpful comments on the 1024 

first draft of this paper. The author would also like to thank the two reviewers whose comments 1025 

greatly improved the quality of this manuscript. This work also made use of the NYU IT High 1026 

Performance Computer resources and services.   1027 



 47 

References 1028 

1.  Schiffer MB. Archaeological Context and Systemic Context. Am Antiq. 1972;37: 156–165. 1029 

doi:10.2307/278203 1030 

2.  Barkai R, Lemorini C, Vaquero M. The origins of recycling: A Paleolithic perspective. Quat 1031 

Int. 2015;361. doi:10.1016/j.quaint.2014.12.044 1032 

3.  Amick DS. Investigating the Behavioral Causes and Archaeological Effects of Lithic 1033 

Recycling. In: McPherron SP, editor. Tools versus Cores: Alternative Approaches to Stone 1034 

Tool Analysis. Newcastle, UK: Cambridge Scholars Publishing; 2007. pp. 223–252.  1035 

4.  Vaquero M, Bargalló A, Chacón MG, Romagnoli F, Sañudo P. Lithic recycling in a Middle 1036 

Paleolithic expedient context: Evidence from the Abric Romaní (Capellades, Spain). Quat 1037 

Int. 2015;361: 212–228. doi:10.1016/j.quaint.2014.05.055 1038 

5.  McAnany PA. The Effects of Lithic Procurement Strategies on Tool Curation and Recycling. 1039 

Lithic Technol. 1988;17: 3–11. doi:10.1080/01977261.1988.11754520 1040 

6.  Binford LR. Organization and Formation Processes: Looking at Curated Technologies. J 1041 

Anthropol Res. 1979;35: 255–273. doi:10.1086/jar.35.3.3629902 1042 

7.  Shott MJ. An Exegesis of the Curation Concept. J Anthropol Res. 1996;52: 259–280. 1043 

doi:10.1086/jar.52.3.3630085 1044 

8.  Shott MJ. Stone-Tool Demography: Reduction Distributions in North American Paleoindian 1045 

Tools. In: Lycett S, Chauhan P, editors. New Perspectives on Old Stones: Analytical 1046 

Approaches to Paleolithic Technologies. New York, NY: Springer; 2010. pp. 275–293. 1047 

doi:10.1007/978-1-4419-6861-6_12 1048 

9.  Peresani M, Boldrin M, Pasetti P. Assessing the exploitation of double patinated artifacts 1049 

from the Late Mousterian: Implications for lithic economy and human mobility in northern 1050 

Italy. Quat Int. 2015;361: 238–250. doi:10.1016/j.quaint.2014.10.058 1051 

10.  Shimelmitz R. The recycling of flint throughout the Lower and Middle Paleolithic sequence 1052 

of Tabun Cave, Israel. Quat Int. 2015;361: 34–45. doi:10.1016/j.quaint.2014.08.033 1053 

11.  Turq A, Roebroeks W, Bourguignon L, Faivre J-P. The fragmented character of Middle 1054 

Palaeolithic stone tool technology. J Hum Evol. 2013;65: 641–655. 1055 

doi:10.1016/j.jhevol.2013.07.014 1056 

12.  Vaquero M. New perspectives on recycling of lithic resources using refitting and spatial data. 1057 

Quartär. 2011;58: 113–130.  1058 

13.  Vaquero M, Alonso S, García-Catalán S, García-Hernández A, Gómez de Soler B, Rettig D, 1059 

et al. Temporal nature and recycling of Upper Paleolithic artifacts: the burned tools from 1060 

the Molí del Salt site (Vimbodí i Poblet, northeastern Spain). J Archaeol Sci. 2012;39: 1061 

2785–2796. doi:10.1016/j.jas.2012.04.024 1062 

14.  Amick DS. Reflection on the Origins of Recycling: A Paleolithic Perspective. Lithic 1063 

Technol. 2014;39: 64–69. doi:10.1179/0197726113Z.00000000025 1064 

15.  Assaf E, Parush Y, Gopher A, Barkai R. Intra-site variability in lithic recycling at Qesem 1065 

Cave, Israel. Quat Int. 2015;361: 88–102. doi:10.1016/j.quaint.2014.07.071 1066 

16.  Baena Preysler J, Nieto-Márquez IO, Navas CT, Cueto SB. Recycling in abundance: Re-use 1067 

and recycling processes in the Lower and Middle Paleolithic contexts of the central Iberian 1068 

Peninsula. Quat Int. 2015;361: 142–154. doi:10.1016/j.quaint.2014.07.007 1069 



 48 

17.  Barsky D, Sala R, Menéndez L, Toro-Moyano I. Use and re-use: Re-knapped flakes from the 1070 

Mode 1 site of Fuente Nueva 3 (Orce, Andalucía, Spain). Quat Int. 2015;361: 21–33. 1071 

doi:10.1016/j.quaint.2014.01.048 1072 

18.  Belfer-Cohen A, Bar-Yosef O. Paleolithic recycling: The example of Aurignacian artifacts 1073 

from Kebara and Hayonim caves. Quat Int. 2015;361: 256–259. 1074 

doi:10.1016/j.quaint.2014.06.008 1075 

19.  Thiébaut C, Claud É, Mourre V, Chacón M-G, Asselin G, Brenet M, et al. The Recycling 1076 

and Reuse of Cores and Bifaces during the Middle Paleolithic in Western Europe: 1077 

functional and cultural interpretations. Palethnologie. 2010 [cited 3 Mar 2020]. 1078 

doi:10.4000/palethnologie.641 1079 

20.  Venditti F, Agam A, Barkai R. Techno-functional analysis of small recycled flakes from 1080 

Late Acheulian Revadim (Israel) demonstrates a link between morphology and function. J 1081 

Archaeol Sci Rep. 2019;28: 102039. doi:10.1016/j.jasrep.2019.102039 1082 

21.  Venditti F, Nunziante-Cesaro S, Parush Y, Gopher A, Barkai R. Recycling for a purpose in 1083 

the late Lower Paleolithic Levant: Use-wear and residue analyses of small sharp flint items 1084 

indicate a planned and integrated subsistence behavior at Qesem Cave (Israel). J Hum Evol. 1085 

2019;131: 109–128. doi:10.1016/j.jhevol.2019.03.016 1086 

22.  Dibble HL, Holdaway S, Lin SC, Braun DR, Douglass MJ, Iovita R, et al. Major Fallacies 1087 

Surrounding Stone Artifacts and Assemblages. J Archaeol Method Theory. 2017;24: 813–1088 

851. doi:10.1007/s10816-016-9297-8 1089 

23.  Coco E, Holdaway S, Iovita R. The effects of secondary recycling on the technological 1090 

character of lithic assemblages. J Paleolit Archaeol. 2020 [cited 24 Apr 2020]. 1091 

doi:10.1007/s41982-020-00055-4 1092 

24.  Rezek Z, Holdaway S, Olszewski DI, Lin SC, Douglass M, McPherron S, et al. Aggregates, 1093 

Formational Emergence, and the Focus on Practice in Stone Artifact Archaeology. J 1094 

Archaeol Method Theory. 2020 [cited 12 Feb 2020]. doi:10.1007/s10816-020-09445-y 1095 

25.  Agam A, Marder O, Barkai R. Small flake production and lithic recycling at Late Acheulian 1096 

Revadim, Israel. Quat Int. 2015;361: 46–60. doi:10.1016/j.quaint.2014.06.070 1097 

26.  Agam A, Barkai R. Small Flake Acheulian: Further Insights into Lithic Recycling at Late 1098 

Acheulian Revadim, Israel. Tel Aviv. 2018;45: 170–192. 1099 

doi:10.1080/03344355.2018.1494783 1100 

27.  Lemorini C, Venditti F, Assaf E, Parush Y, Barkai R, Gopher A. The function of recycled 1101 

lithic items at late Lower Paleolithic Qesem Cave, Israel: An overview of the use-wear data. 1102 

Quat Int. 2015;361: 103–112. doi:10.1016/j.quaint.2014.07.032 1103 

28.  Parush Y, Assaf E, Slon V, Gopher A, Barkai R. Looking for sharp edges: Modes of flint 1104 

recycling at Middle Pleistocene Qesem Cave, Israel. Quat Int. 2015;361: 61–87. 1105 

doi:10.1016/j.quaint.2014.07.057 1106 

29.  Vaquero M, Fernández-Laso MC, Chacón MG, Romagnoli F, Rosell J, Sañudo P. Moving 1107 

things: Comparing lithic and bone refits from a Middle Paleolithic site. J Anthropol 1108 

Archaeol. 2017;48: 262–280. doi:10.1016/j.jaa.2017.09.001 1109 

30.  Gravina B, Discamps E. MTA-B or not to be? Recycled bifaces and shifting hunting 1110 

strategies at Le Moustier and their implication for the late Middle Palaeolithic in 1111 

southwestern France. J Hum Evol. 2015;84: 83–98. doi:10.1016/j.jhevol.2015.04.005 1112 

31.  Hiscock P. Recycling in the Haua Fteah sequence of North Africa. Quat Int. 2015;361: 251–1113 

255. doi:10.1016/j.quaint.2014.08.028 1114 



 49 

32.  Navazo M, Santamaría C, Santamaría M. Using Cores as Tools: Use-wear Analysis of 1115 

Neanderthal Recycling Processes in Level 4 at Prado Vargas (Cornejo, Merindad de 1116 

Sotoscueva, Burgos, Spain). Lithic Technol. 2022; 1–19. 1117 

doi:10.1080/01977261.2022.2108276 1118 

33.  Efrati B, Barkai R, Cesaro SN, Venditti F. Function, life histories, and biographies of Lower 1119 

Paleolithic patinated flint tools from Late Acheulian Revadim, Israel. Sci Rep. 2022;12: 1120 

2885. doi:10.1038/s41598-022-06823-2 1121 

34.  Mcdonald MMA. Systematic Reworking of Lithics from Earlier Cultures in the Early 1122 

Holocene of Dakhleh Oasis, Egypt. J Field Archaeol. 1991;18: 269–273. 1123 

doi:10.1179/009346991792208281 1124 

35.  Camilli EL, Ebert JI. Artifact Reuse and Recycling in Continuous Surface Distributions and 1125 

Implications for Interpreting Land Use Patterns. In: Rossignol J, Wandsnider L, editors. 1126 

Space, Time, and Archaeological Landscapes. Boston, MA: Springer US; 1992. pp. 113–1127 

136. doi:10.1007/978-1-4899-2450-6_6 1128 

36.  Haas R, Kuhn SL. Forager Mobility in Constructed Environments. Curr Anthropol. 2019;60: 1129 

499–535. doi:10.1086/704710 1130 

37.  Davies B, Holdaway S, Fanning PC. Modeling Relationships Between Space, Movement, 1131 

and Lithic Geometric Attributes. Am Antiq. 2018;83: 444–461. doi:10.1017/aaq.2018.23 1132 

38.  Knell EJ. Minimum Analytical Nodules and Late Paleoindian Cody Complex Lithic 1133 

Technological Organization at Hell Gap, Wyoming. Plains Anthropol. 2012;57: 325–351. 1134 

doi:10.1179/pan.2012.024 1135 

39.  Wojtczak D. Cores on flakes and bladelet production, a question of recycling? The 1136 

perspective from the Hummalian industry of Hummal, Central Syria. Quat Int. 2015;361: 1137 

155–177. doi:10.1016/j.quaint.2014.10.021 1138 

40.  Holdaway S, Phillipps R. Artefact Categories, Artefact Assemblages and Ontological 1139 

Alterity. Camb Archaeol J. 2020; 1–18.  1140 

41.  Barrett MC. Lithics in Perspective: Indeterminacy, Simulation, and the Formation of Lithic 1141 

Assemblages. Thesis, ResearchSpace@Auckland. 2023. Available: 1142 

https://researchspace.auckland.ac.nz/handle/2292/64781 1143 

42.  Perreault C. The Quality of the Archaeological Record. University of Chicago Press; 2019. 1144 

doi:10.7208/chicago/9780226631011.001.0001 1145 

43.  Fitzsimmons KE, Stern N, Murray-Wallace CV, Truscott W, Pop C. The Mungo Mega-Lake 1146 

Event, Semi-Arid Australia: Non-Linear Descent into the Last Ice Age, Implications for 1147 

Human Behaviour. PLOS ONE. 2015;10: e0127008. doi:10.1371/journal.pone.0127008 1148 

44.  Iovita R, Braun DR, Douglass MJ, Holdaway SJ, Lin SC, Olszewski DI, et al. 1149 

Operationalizing niche construction theory with stone tools. Evol Anthropol Issues News 1150 

Rev. 2021;30: 28–39. doi:https://doi.org/10.1002/evan.21881 1151 

45.  Pop CM. Simulating Lithic Raw Material Variability in Archaeological Contexts: A Re-1152 

evaluation and Revision of Brantingham’s Neutral Model. J Archaeol Method Theory. 1153 

2016;23: 1127–1161. doi:10.1007/s10816-015-9262-y 1154 

46.  Chiotti L, McPherron SR, Olszewski DI, Schurmans U, Dibble HL, Smith JR. Paleolithic 1155 

Abydos: Reconstructing Individual Behaviors across the High Desert Landscape. Archaeol 1156 

Art Anc Egypt Essays Honor David B OConnor. 2007; 169–183.  1157 

47.  Holdaway S, Davies B. Surface Stone Artifact Scatters, Settlement Patterns, and New 1158 

Methods for Stone Artifact Analysis. J Paleolit Archaeol. 2019 [cited 19 Dec 2019]. 1159 

doi:10.1007/s41982-019-00030-8 1160 



 50 

48.  Binford LR. An Alyawara Day: Making Men’s Knives and beyond. Am Antiq. 1986;51: 1161 

547–562. doi:10.2307/281751 1162 

49.  Gould RA, Koster DA, Sontz AHL. The Lithic Assemblage of the Western Desert 1163 

Aborigines of Australia. Am Antiq. 1971;36: 149–169. doi:10.2307/278668 1164 

50.  Brumm A, Pope M, Leroyer M, Emery K. Hominin Evolution and Stone Tool Scavenging 1165 

and Reuse in the Lower Paleolithic. Squeezing Minds From Stones. Oxford University 1166 

Press; 2019. pp. 149–178. doi:10.1093/oso/9780190854614.003.0008 1167 

51.  Binford LR. Behavioral Archaeology and the “Pompeii Premise.” J Anthropol Res. 1981;37: 1168 

195–208.  1169 

52.  Lucas G. Understanding the Archaeological Record. Cambridge: Cambridge University 1170 

Press; 2012. doi:10.1017/CBO9780511845772 1171 

53.  Arnold K, Gosling J, Holmes D. The Java programming language. Addison Wesley 1172 

Professional; 2005.  1173 

54.  Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, et al. A standard protocol 1174 

for describing individual-based and agent-based models. Ecol Model. 2006;198: 115–126. 1175 

doi:10.1016/j.ecolmodel.2006.04.023 1176 

55.  Grimm V, Berger U, DeAngelis DL, Polhill JG, Giske J, Railsback SF. The ODD protocol: 1177 

A review and first update. Ecol Model. 2010;221: 2760–2768. 1178 

doi:10.1016/j.ecolmodel.2010.08.019 1179 

56.  Grimm V, Railsback SF, Vincenot CE, Berger U, Gallagher C, Deangelis DL, et al. The 1180 

ODD protocol for describing agent-based and other simulation models: A second update to 1181 

improve clarity, replication, and structural realism. J Artif Soc Soc Simul. 2020;23. 1182 

Available: http://eprints.bournemouth.ac.uk/33918/ 1183 

57.  Tsallis C. Lévy distributions. Phys World. 1997;10: 42. doi:10.1088/2058-7058/10/7/32 1184 

58.  Davies B. Logic and Landscapes: Simulating Surface Archaeological Record Formation in 1185 

Western New South Wales, Australia. Doctor of Philosophy, University of Auckland. 2016.  1186 

59.  Ripley B, Venables B, Bates DM, ca 1998) KH (partial port, ca 1998) AG (partial port, Firth 1187 

D. MASS: Support Functions and Datasets for Venables and Ripley’s MASS. 2023. 1188 

Available: https://cran.r-project.org/web/packages/MASS/index.html 1189 

60.  Komsta L, Novomestky F. moments: Moments, Cumulants, Skewness, Kurtosis and Related 1190 

Tests. 2022. Available: https://cran.r-project.org/web/packages/moments/index.html 1191 

61.  Romanowska I, Wren CD, Crabtree SA. Agent-Based Modeling for Archaeology: 1192 

Simulating the Complexity of Societies. SFI Press; 2021.  1193 

62.  Davies B, Douglass M, Fanning PC, Holdaway SJ. Resilience and reversibility: Engaging 1194 

with archaeological record formation to inform on past resilience. In: Russo SG, Brainerd 1195 

LM, editors. Resilience & Archaeology. Cambridge; 2021. pp. 51–74.  1196 

63.  Dibble HL, Schurmans UA, Iovita RP, McLaughlin MV. The Measurement and 1197 

Interpretation of Cortex in Lithic Assemblages. Am Antiq. 2005;70: 545–560. 1198 

doi:10.2307/40035313 1199 

64.  Douglass MJ, Holdaway S, Fanning PC, Shiner JI. An Assessment and Archaeological 1200 

Application of Cortex Measurement in Lithic Assemblages. Am Antiq. 2008;73: 513–526. 1201 

doi:10.1017/S0002731600046849 1202 

65.  Lin SC, Douglass M, Mackay A. Interpreting MIS3 Artefact Transport Patterns in Southern 1203 

Africa Using Cortex Ratios: An Example from the Putslaagte Valley, Western Cape. South 1204 

Afr Archaeol Bull. 2016;71: 173–180.  1205 



 51 

66.  Phillipps R, Holdaway S. Estimating Core Number in Assemblages: Core Movement and 1206 

Mobility During the Holocene of the Fayum, Egypt. J Archaeol Method Theory. 2016;23: 1207 

520–540. doi:10.1007/s10816-015-9250-2 1208 

67.  Bivand R, Altman M, Anselin L, Assunção R, Berke O, Blanchet FG, et al. spdep: Spatial 1209 

Dependence: Weighting Schemes, Statistics. 2023. Available: https://cran.r-1210 

project.org/web/packages/spdep/index.html 1211 

68.  Jackman S, Tahk  with contributions from A, Zeileis A, Maimone C, Meers JF and Z. pscl: 1212 

Political Science Computational Laboratory. 2023. Available: https://cran.r-1213 

project.org/web/packages/pscl/index.html 1214 

69.  Barton CM, Riel-Salvatore J, Anderies JM, Popescu G. Modeling Human Ecodynamics and 1215 

Biocultural Interactions in the Late Pleistocene of Western Eurasia. Hum Ecol. 2011;39: 1216 

705–725. doi:10.1007/s10745-011-9433-8 1217 

70.  Barton CM, Riel-Salvatore J. Agents of Change: Modeling Biocultural Evolution in Upper 1218 

Pleistocene Western Eurasia. Adv Complex Syst. 2012;15: 1150003. 1219 

doi:10.1142/S0219525911003359 1220 

71.  Kuhn SL, Clark AE. Artifact densities and assemblage formation: Evidence from Tabun 1221 

Cave. J Anthropol Archaeol. 2015;38: 8–16. doi:10.1016/j.jaa.2014.09.002 1222 

72.  Mitki N, Yeshurun R, Ekshtain R, Malinsky-Buller A, Hovers E. A multi-proxy approach to 1223 

Middle Paleolithic mobility: A case study from the open-air site of ‘Ein Qashish (Israel). J 1224 

Archaeol Sci Rep. 2021;38: 103088. doi:10.1016/j.jasrep.2021.103088 1225 

73.  Davies B, Holdaway S. Windows on the Past? Perspectives on Accumulation, Formation, 1226 

and Significance from an Australian Holocene Lithic Landscape. Mitteilungen Ges Für 1227 

Urgesch. 2017;26.  1228 

74.  Grove M. Hunter–gatherer movement patterns: Causes and constraints. J Anthropol 1229 

Archaeol. 2009;28: 222–233. doi:10.1016/j.jaa.2009.01.003 1230 

75.  Grove M. Hunter-gatherers adjust mobility to maintain contact under climatic variation. J 1231 

Archaeol Sci Rep. 2018;19: 588–595. doi:10.1016/j.jasrep.2018.04.003 1232 

76.  DeBono H, Goren-Inbar N. Note on a Link between Acheulian Handaxes and the Levallois 1233 

Method. J Isr Prehist Soc. 2001;31: 9–23.  1234 

77.  Galup SM. Postclassic Maya Lithic Tool Maintenance, Recycling, and Consumption Patterns 1235 

at Laguna de On Island. Occas Publ. 2007;13.  1236 

78.  Rosenberg-Yefet T, Shemer M, Barkai R. Acheulian shortcuts: Cumulative culture and the 1237 

use of handaxes as cores for the production of predetermined blanks. J Archaeol Sci Rep. 1238 

2021;36: 102822. doi:10.1016/j.jasrep.2021.102822 1239 

79.  Hiscock P. Comments on the Use of Chipped Stone Artefacts as a Measure of ‘Intensity Of 1240 

Site Usage.’ Aust Archaeol. 1981;13: 30–34. doi:10.1080/03122417.1981.12092820 1241 

80.  Rolland N, Dibble HL. A New Synthesis of Middle Paleolithic Variability. Am Antiq. 1242 

1990;55: 480–499. doi:10.2307/281279 1243 

81.  Shott MJ. Size as a Factor in Middle Palaeolithic Assemblage Variation in the Old World: a 1244 

North American Perspective. 1st ed. In: Moloney N, Shott MJ, editors. Lithic Analysis at 1245 

the Millennium. 1st ed. Taylor & Francis Group; 2003. pp. 137–149.  1246 

82.  Shott MJ. Activity and Formation as Sources of Variation in Great Lakes Paleoindian 1247 

Assemblages. Midcont J Archaeol. 1997;22: 197–236.  1248 

83.  Shott MJ. Size Dependence in Assemblage Measures: Essentialism, Materialism, and “She” 1249 

Analysis in Archaeology. Am Antiq. 2010;75: 886–906. doi:10.7183/0002-7316.75.4.886 1250 



 52 

84.  Schiffer MB. Formation processes of the archaeological record. Salt Lake City: University of 1251 

Utah Press; 1987.  1252 

85.  White A. Lithic Transport Patterns, Tool Curation Behavior, and Group Range Estimates: A 1253 

Model-Based Exploration. J Comput Appl Archaeol. 2021;4: 254–273. doi:10.5334/jcaa.82 1254 

86.  Barton CM, Riel-Salvatore J. The formation of lithic assemblages. J Archaeol Sci. 2014;46: 1255 

334–352. doi:10.1016/j.jas.2014.03.031 1256 

87.  Surovell TA. Occupation Span and Residential Mobility. Toward a Behavioral Ecology of 1257 

Lithic Technology: Cases from Paleoindian Archaeology. Tucson, AZ: University of 1258 

Arizona Press; 2012. pp. 58–98.  1259 

88.  Holdaway S, Douglass M. A Twenty-First Century Archaeology of Stone Artifacts. J 1260 

Archaeol Method Theory. 2012;19: 101–131. doi:10.1007/s10816-011-9103-6 1261 

89.  Breitenecker F, Bicher M, Wurzer G. Agent-Based Simulation in Archaeology: A 1262 

Characterization. In: Wurzer G, Kowarik K, Reschreiter H, editors. Agent-based Modeling 1263 

and Simulation in Archaeology. Cham: Springer International Publishing; 2015. pp. 53–76. 1264 

doi:10.1007/978-3-319-00008-4_3 1265 

90.  Lake M. Explaining the Past with ABM: On Modelling Philosophy. In: Wurzer G, Kowarik 1266 

K, Reschreiter H, editors. Agent-based Modeling and Simulation in Archaeology. Cham: 1267 

Springer International Publishing; 2015. pp. 3–35. doi:10.1007/978-3-319-00008-4_1 1268 

91.  Premo LS. Equifinality and Explanation: The Role of Agent-Based Modeling in 1269 

Postpositivist Archaeology. In: Costopoulos A, Lake M, editors. Simulating Change: 1270 

Archaeology into the Twenty-First Century. Salt Lake City: University of Utah Press; 2010. 1271 

pp. 28–37.  1272 

 1273 

Supporting information 1274 

S1 Text. Overview, Design Concepts, and Details for extended recycling model. Description 1275 

of the recycling agent-based model used in this paper following the ODD protocol. 1276 

S2 Fig. Relationship between recycling intensity (proportion of recycled artifacts in a grid 1277 

square) and skewness of distribution of each artifact’s year of initial discard for each grid 1278 

square. Results show for model runs when agents have one of two technology types (overlap = 1279 

1) and only 100 agents occupy the landscape during model run. Negative skew indicates artifacts 1280 
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(overlap is 1). Error bars in panel B represent the 95% confidence intervals on the average per 1286 
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Estimated effects calculated from regression coefficients for blank probability, scavenging 1308 
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technology types (overlap = 1) and 200 agents occupied the landscape during a model run. 1312 
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S14 Fig. Relationship between recycling intensity values and logged artifact counts for each 1325 
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technology types (overlap is 1) and only 200 agents occupy the landscape during model run. 1327 

Linear relationship shown for each mu value. Equation and R squared value for each line given 1328 
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output variables across all model runs and parameter sets. 1341 
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