

1 The *Ruminococcus bromii* amylosome protein Sas6 binds single and double helical α -glucan
2 structures in starch.

3

4 Amanda L. Photenhauer¹, Filipe M. Cerqueira¹, Rosendo Villafuerte-Vega², Krista M.
5 Armbruster¹, Filip Mareček³, Tiantian Chen⁴, Zdzislaw Wawrzak⁵, Jesse B. Hopkins⁶, Craig W.
6 Vander Kooi⁴, Štefan Janeček³, Brandon T. Ruotolo², Nicole M. Koropatkin^{1*}

7

8 ¹ Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor,
9 MI 48109.

10 ² Department of Chemistry, University of Michigan, Ann Arbor, MI 48109.

11 ³ Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences,
12 Bratislava, Slovakia

13 ⁴ Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL

14 ⁵ Northwestern Synchrotron Research Center-LS-CAT, Northwestern University, Argonne, Illinois
15 60439.

16 ⁶ Biophysics Collaborative Access Team, Illinois Institute of Technology, Advanced Photon
17 Source, Argonne National Laboratory, Lemont, Illinois, USA.

18 *To whom correspondence should be addressed: nkoropat@umich.edu

19

20 Running title: Structure of *Ruminococcus bromii* Sas6

21 Keywords: starch, CBM74, CBM26, *Ruminococcus bromii*, microbiome

22

23 **Abstract**

24 Resistant starch is a prebiotic with breakdown by gut bacteria requiring the action of specialized
25 amylases and starch-binding proteins. The human gut symbiont *Ruminococcus bromii* expresses
26 granular starch-binding protein Sas6 (Starch Adherence System member 6) that consists of two
27 starch-specific carbohydrate binding modules from family 26 (RbCBM26) and family 74
28 (RbCBM74). Here we present the crystal structures of Sas6 and RbCBM74 with a double helical
29 dimer of maltodecaose bound along an extended surface groove. Binding data combined with
30 native mass spectrometry suggest that RbCBM26 binds short maltooligosaccharides while
31 RbCBM74 can bind single and double helical α -glucans. Our results support a model by which
32 RbCBM74 and RbCBM26 bind neighboring α -glucan chains at the granule surface. CBM74s are
33 conserved among starch granule-degrading bacteria and our work provides molecular insight into
34 how this structure is accommodated by select gut species.

35 **Introduction**

36 The gut microbiota, the consortium of microbes that resides in the human gastrointestinal
37 tract, influences many aspects of host physiology including digestive health [1]. The composition
38 of the gut microbiota is modulated by the human diet [2-4]. After host nutrient absorption in the
39 small intestine, indigestible dietary fiber transits the large intestine and becomes food for gut
40 microbes [3]. Bacterial fermentation of dietary carbohydrates produces beneficial short chain fatty
41 acids including butyrate, a primary carbon source for colonocytes that also has systemic anti-
42 inflammatory and anti-tumorigenic properties [3, 5].

43 Resistant starch is a prebiotic fiber that tends to increase butyrate in the large intestine
44 [6]. Starch is a glucose polymer composed of branched, soluble amylopectin and coiled insoluble
45 amylose [7, 8]. Breakdown of starch starts with human salivary and pancreatic amylases which
46 release maltooligosaccharides for absorption in the small intestine [9]. However, a portion of
47 starch is indigestible by human amylases and is termed resistant starch (RS) [9]. Raw, uncooked
48 starch granules are resistant to digestion in the upper gastrointestinal tract due to the tight packing
49 of constituent amylose and amylopectin into semi-crystalline, insoluble granules [7]. This type of
50 resistant starch, called RS2, becomes food for gut bacteria that can adhere to and deconstruct
51 granules, releasing glucose and maltooligosaccharides that cross-feed other organisms [9].

52 Human gut bacteria that degrade RS2 *in vitro* include *Bifidobacterium adolescentis* and
53 *Ruminococcus bromii* [10-14]. *R. bromii* is a Gram-positive anaerobe that increases in relative
54 abundance in the gut upon host consumption of resistant potato or corn starch [10, 15, 16]. *R.*
55 *bromii* is a keystone species for RS2 degradation because it cross-feeds butyrate-producing
56 bacteria [10]. *R. bromii* synthesizes multi-protein starch-degrading complexes called amylosomes
57 via protein-protein interactions between dockerin and complementary cohesin domains [17-19].
58 As many as 32 *R. bromii* proteins have predicted cohesin or dockerin domains including
59 amyloses, pullulanases, starch-binding proteins, and proteins of unknown function [17, 20]. Many

60 have carbohydrate-binding modules (CBMs) that presumably aid in binding starch and tether the
61 bacteria to its food source [21].

62 CBMs are classified by amino acid sequence into numbered families and include members
63 that bind only soluble starch and some that also bind granular starch [21, 22]. One such family is
64 CBM74 which was discovered as a discrete domain (*MaCBM74*) of a multimodular amylase from
65 the potato starch-degrading bacterium, *Microbacterium aurum* [22]. *MaCBM74* binds amylose
66 and amylopectin as well as raw wheat, corn, and potato starch granules [22]. The CBM74 family
67 is unique as it is ~300 amino acids, two to three times larger than most starch-binding CBMs [21].
68 CBM74 domains are typically found in multimodular enzymes that include a glycoside hydrolase
69 family 13 (GH13) domain for hydrolyzing starch and are flanked by a starch-binding CBM from
70 family 25 or 26 (CBM25 or CBM26) [21, 22]. Most CBM74 family members are encoded by gut
71 microbes and 70% are found in Bifidobacteria [22]. The genomes of *R. bromii* and *B. adolescentis*
72 each encode one putative CBM74-containing protein. The prevalence of CBM74 domains
73 encoded within the genomes of RS2-degrading bacteria, and its increased representation in
74 metagenomic and metatranscriptomic analyses from host diet studies, suggest a role for this
75 module in RS2 recognition in the distal gut [23-25].

76 The *R. bromii* starch adherence system protein 6 (Sas6) is a secreted protein of 734 amino
77 acids that contains both a CBM26 and CBM74 followed by a C-terminal dockerin type 1 domain
78 [26, 27]. Here we present the biochemical characterization and crystal structure of Sas6, providing
79 the first view of the CBM74 domain and its juxtaposition with the CBM26 domain. The co-crystal
80 structure of *RbCBM74* with a double helical dimer of maltodecaose, which mimics the architecture
81 of double helical amylopectin in starch granules, revealed recognition via an elongated groove
82 spanning the domain. *RbCBM74* exclusively binds longer maltooligosaccharides (≥ 8 glucose
83 units), and native mass spectrometry suggests that both single and double helical α -glucans are
84 recognized, providing flexible recognition of amylose and amylopectin. Our biochemical data

85 demonstrate that CBM26 and CBM74 recognize different α -glucan moieties within starch granules
86 leading to overall enhanced granule binding.

87

88 **Results**

89 *Modular Architecture of Sas6* – Sas6 consists of five discrete domains: an N-terminal
90 CBM26 (*RbCBM26*), a CBM74 domain (*RbCBM74*) flanked by Bacterial Immunoglobulin-like
91 (Blg) domains, and a C-terminal dockerin type I (**Fig. 1A**) [27]. Sas6 is encoded at the
92 WP_015523730 locus (formerly RBR_14490 or Doc6, UniProt: A0A2N0UYM2) and includes a
93 Gram-positive signal peptide (residues 1-30) that presumably targets the protein for secretion.
94 *RbCBM74* spans residues 242-572 based on an alignment with annotated CBM74 domains [22].
95 We used InterProScan to annotate the remaining sequence which added the Bacterial
96 Immunoglobulin-like (Blg, Pfam 02368) domain A (BlgA), but did not predict BlgB, which we
97 identified via structure determination [28].

98

99 *Sas6 Cell Localization* – Though Sas6 has a signal peptide it is unknown whether it is a
100 constituent of a cell-bound amylosome, or part of a freely secreted complex [20]. *R. bromii*
101 synthesizes five scaffoldin (Sca) proteins that have cohesins for amylosome assembly; Sca2 and
102 Sca5 are cell-bound and Sca1, Sca3, and Sca4 are freely secreted [20]. The cognate cohesin for
103 the Sas6 dockerin is unknown. Sas6 is detected in the cell-free supernatant of *R. bromii* cultures
104 in stationary phase but also elutes from the surface of exponentially growing cells with EDTA
105 which disrupts the calcium-dependent cohesin-dockerin interaction [17, 29]. To determine the
106 localization of Sas6, we grew cells to mid-log phase on potato amylopectin and performed a
107 Western Blot with custom antibodies against recombinant Sas6 (**Fig. 1B**). Sas6 was detected in
108 the cell fraction and not the cell-free culture supernatant (**Fig. 1B**), and was visualized on the cell
109 surface via immunofluorescence (**Fig 1C**). Therefore, we conclude that Sas6 is a component of
110 a cell-surface amylosome in actively growing cells. It is possible that Sas6 localization is

111 dependent upon growth phase, as are cellulosome components in some organisms, explaining
112 its previous detection in culture supernatant [17]. Alternatively, *R. bromii*, like some cellulosome-
113 producing bacteria, may release cell-surface amylosomes in stationary phase [30].

114

115 *Sas6 Starch Binding* –CBM26 and CBM74 are putative raw starch-binding families [22,
116 31]. Plant sources of granular starch differ greatly in granule organization, including crystallinity
117 (e.g., packing of the long helical chains), length of α 1,4-linked chains, amylose location and
118 organization, water content, and trace elements [7]. We used a truncated construct of Sas6
119 (residues 31-665) lacking the C-terminal dockerin domain, herein called Sas6T, to test Sas6
120 binding to starch polysaccharides. Sas6T binds potato, corn, and wheat starch granules, with the
121 highest fraction of protein bound to corn starch, and no non-specific binding to Avicel (crystalline
122 cellulose) (**Fig. 1D**). Of note, corn starch has a smaller granule size and therefore a larger surface
123 area to mass ratio [8]. We tested Sas6T binding to amylopectin and amylose, as well as glycogen
124 and pullulan via affinity PAGE. Glycogen is similar to amylopectin with more frequent α 1,6
125 branching (every 6-15 residues for liver glycogen compared to 15-25 residues for amylopectin)
126 [32, 33]. Pullulan is a fungal α -glucan composed of repeating α 1,6-linked maltotriose units [34].
127 Sas6T binds amylose, amylopectin (potato and corn), and glycogen but has less affinity for
128 pullulan suggesting a preference for longer α 1,4-linked regions within the polysaccharide (**Fig.**
129 **1E**). Sas6T does not bind dextran, a bacterially derived exopolysaccharide of α 1,6-linked glucose
130 [35], demonstrating its specificity for starch.

131

132 *Structure of Sas6* – The structure of Sas6T with α -cyclodextrin (ACX), was determined via
133 single-wavelength anomalous dispersion of intrinsic sulfur-containing residues to a resolution of
134 1.6 \AA ($R_{\text{work}}=16.8\%$, $R_{\text{free}}=21.2\%$) (**Table 1**). The final model contained two molecules of Sas6T in
135 the asymmetric unit, with four Ca^{2+} per chain and one molecule of ACX bound at the *Rb*CBM26
136 domain. The Sas6T structure determined with ACX was used to phase a dataset from unliganded

137 crystals (2.2Å, $R_{\text{work}}=19.7\%$, $R_{\text{free}}=25.5\%$) (**Table 1**). The overall crystal structure of Sas6T is
138 compact, with *RbCBM26*, *BlgA* and *BlgB* forming an arc over *RbCBM74* (**Fig. 2A**).

139 *RbCBM26*, *RbCBM74*, and the dockerin domain are separated by *BlgA* (light grey) and
140 *BlgB* (dark grey), respectively (**Fig. 2A, Extended Data Fig 1A**). Ig-like or fibronectin-III domains
141 act as spacers in multi-modular glycoside hydrolases including GH13s that target starch [36].
142 *BlgA* and *BlgB* interact via hydrogen bonding with 354Å of buried surface area [37] (**Extended**
143 **Data Fig 1B**). This interaction may help stabilize or orient the CBM74 domain or the *Blgs* may act
144 as a hinge between the CBMs. The two chains in the asymmetric unit exhibit some flexibility
145 resulting in different positioning between the *RbCBM26* binding site and the *RbCBM74* domain
146 (**Fig. 2B**).

147

148 *Small Angle X-Ray Scattering* – To better connect how our crystal structures correlate with
149 conformational flexibility in solution, we used size-exclusion chromatography coupled with small
150 angle x-ray scattering (SEC-SAXS) on Sas6T (**Table 1**). The elution separated out several peaks,
151 including a single strong peak for that was well separated and monodisperse as indicated by the
152 constant radius of gyration (R_g) across the eluted peak (**Extended Data Fig 2A**). The Guinier fit
153 of a subtracted scattering profile created from that peak gave R_g and $I(0)$ values of $29.44 \pm 0.04\text{Å}$
154 and $0.04 \pm 3.65 \times 10^{-5}$ and the fit and normalized fit residuals confirmed this peak was
155 monodisperse (**Extended Data Fig 2B**). The molecular weight of Sas6T from the SAXS data was
156 calculated to be 61.0 kDa (theoretical 68.9 kDa) indicating it is primarily monomeric in solution
157 [38]. The D_{max} from the $P(r)$ function for Sas6T is 90Å. The overall shape of the $P(r)$ function for
158 Sas6T, calculated by indirect Fourier transform (IFT) using GNOM, has a relatively Gaussian
159 shape that is characteristic of a globular compact particle with the main peak at $r = \sim 30\text{ \AA}$
160 (**Extended Data Fig 2C**) [39]. There is a small peak at $r = 55\text{ \AA}$ which suggests there are two
161 structurally separate motifs, possibly *RbCBM26* and *RbCBM74*. The dimensionless Kratky plot
162 maxima for Sas6T are typical for a rigid globular protein (**Extended Data Fig 2D**). The small

163 plateau in the mid to high q region, around $qR_g = 5$ in the dimensionless Kratky plot indicates
164 some extension or disorder in the system. These results suggest the presence of two separate
165 modules with flexibility between them, likely corresponding to the two CBMs.

166 We tested whether the crystal structure matched the solution data by fitting the crystal
167 structure to the SAXS data using FoXS [40]. The fit had a $\chi^2 = 2.46$ and showed systematic
168 deviations in the normalized fit residual (**Extended Data Fig 2E**). This highlights that there are
169 significant differences between the lowest energy conformation of Sas6T in the crystal structure
170 and the structure of Sas6T in solution. We then used MultiFoXS with our high-resolution structure
171 of Sas6T to account for the flexibility, assigning the linkers between the domains (residues 130-
172 137 and 572-583) as flexible [40]. MultiFoXS gave a best fit with a 1-state solution with a $\chi^2 =$
173 0.96 and calculated R_g of 29.2 Å which corroborates the Guinier R_g calculation (**Extended Data**
174 **Fig 2F**). An alignment of Chain A of the crystal structure and MultiFoXS model had a RMSD of
175 1.2 Å over 347 pruned atom pairs (**Fig. 2C**). The MultiFoXS model shows a slightly more extended
176 model for Sas6T in comparison to the crystal structure demonstrating that Sas6T has some
177 flexibility in solution yet remains compact.

178

179 *Structure of RbCBM74 – RbCBM74* (357 residues) has 21 β -strands and 13 short α -
180 helices with a core β -sandwich fold of two sheets with five antiparallel β -strands (**Fig. 2D**,
181 **Extended Data Fig 3A**). A third short β -sheet forms a convex face and two pairs of β -strands
182 (residues 356-369 and 412-423) protrude from the region between the β -sandwich and the third
183 β -sheet. In this structure, two short β -strands lie at the entrance and exit of the CBM74 domain,
184 marking the domain boundaries (**Extended Data Fig 3B**).

185 A DALI search revealed that the central fold of *RbCBM74* most closely resembles CBM9
186 from *Thermotoga maritima* Xylanase10A (PDB ID: 1I82-A, Z-score: 9.8, RMSD: 3.2 Å, identity:
187 17%) [41, 42] (**Extended Data Fig 3C**). *TmCBM9* binds glucose, cellobiose, cello- and xylo-
188 oligomers at the reducing ends, and amorphous and crystalline cellulose [42]. *TmCBM9* (189

189 residues) is larger than most CBMs which range from 80-120 amino acids [42]. Despite the
190 conserved core β -sandwich, *RbCBM74* displays several extra loops and β -strands. The ligand
191 binding site of *TmCBM9* is formed by two Trp residues that create an aromatic clamp around
192 cellobiose. *RbCBM74* W373 is conserved with one of these Trps and lies within an extended,
193 shallow channel partially covered by residues 374-384 that form a flexible loop only resolved in
194 one monomer (**Extended Data Fig 3D**).

195 There are three putative structural Ca^{2+} in the *TmCBM9* structure and four cations in
196 *RbCBM74*, one of which aligns with a Ca^{2+} in *TmCBM9* (**Extended Data Fig 3E**). We modeled
197 these cations as Ca^{2+} based upon coordination geometry and atomic distances (**Extended Data**
198 **Fig 3F**) [43, 44]. Ca^{2+} -1 and Ca^{2+} -2 are separated by 3.8 \AA and share three coordinating residues
199 but only Ca^{2+} -2 is surface exposed. Ca^{2+} -3 is abutted by the loop connecting β -strands 2 and 3
200 and Ca^{2+} -4 is at the center of a loop formed by residues 256-264 and conserved with *TmCBM9*.
201 Like *TmCBM9*, the Ca^{2+} ions in the *RbCBM74* structure may be important for structural stability
202 [45].

203

204 *Molecular Basis of RbCBM26 Binding* – The N-terminal *RbCBM26* displays a β -sandwich
205 consistent with other members of the CBM26 family [21]. In both chains of the asymmetric unit,
206 CH/ π stacking with ACX is provided by W63 and Y55 with hydrogen bonding mediated by Y53,
207 K101, Q103, and the peptidic oxygen of A107 (**Fig. 2E**). In chain A only, K97 provides hydrogen
208 bonding with O3 of Glc6. In chain B, ACX lies 3.2 \AA from S286 of the CBM74 domain and hydrogen
209 bonds with O2 and O3 of Glc3. In contrast, S286 is 9.5 \AA from ACX in chain A. The top structural
210 homologs of *RbCBM26* from DALI are the CBM25 from *Bacillus halodurans* C-125 (*BhCBM26*)
211 from α -amylase G-6 (PDB ID: 2C3V-A, Z-score: 12.4, RMSD 1.9 \AA , identity: 16%) and CBM26
212 (*BhCBM26*) from the same enzyme (PDB ID: 6B3P-B, Z-score: 12.1, RMSD 1.9 \AA , identity: 20%)
213 [41, 46]. Another top DALI result is *ErCBM26b* of Amy13K from *Eubacterium rectale* (PDB ID
214 2C3H-B, Z-score: 10.8, RMSD 1.7 \AA , identity: 19%). In all three CBM26 structures, the structure

215 and aromatic platforms for ligand recognition are conserved (**Extended Data Fig 4AB**).
216 *RbCBM26*, in contrast to *ErCBM26* and *BhCBM26*, has a longer loop containing K97 and K101
217 that provide additional hydrogen bonding with ACX. Unlike *BhCBM26*, *RbCBM26* does not
218 undergo a conformational change upon ligand binding (**Extended Data Fig 4C**) [31]. A sequence
219 alignment with CBM26 members *BhCBM26*, *ErCBM26* and the *Lactobacillus amylovorus* α –
220 amylase CBM26 (*LaCBM26*), demonstrates conservation of the aromatic platform but more
221 variation in the hydrogen-bonding network (**Extended Data Fig 4A**). Sas6 W63 corresponds to
222 *LaCBM26* W32 that, when mutated, results in complete loss of binding [47]. The *R. bromii* protein
223 Sas20 has a CBM26-like domain that shares 26% sequence identity with *RbCBM26*, yet
224 *RbCBM26* shares more structural similarity with *BhCBM26* and *ErCBM26* [29].

225 *Binding Mechanism of Sas6* – We expressed the individual Sas6 CBMs and included the
226 BlgA/B domains with the CBM74 (Blg-*RbCBM74*-Blg, residues 134-665) to enhance solubility.
227 Sas6T and Blg-*RbCBM74*-Blg bound granular corn and potato starch, but *RbCBM26* did not bind
228 either insoluble starch at detectable levels (**Fig. 2F**). Sas6T binds to more of the corn starch
229 granule, ($K_d = 2.8\mu M \pm 0.4$, $B_{max} = 0.21\mu mol/g \pm 0.01$) but has a modestly higher affinity for potato
230 starch ($K_d = 1.9\mu M \pm 0.3$, $B_{max} = 0.030\mu mol/g \pm 0.001$), which might be a function of the smaller
231 granule size and larger surface to mass ratio for corn starch. Exclusion of the *RbCBM26* in the
232 Blg-*RbCBM74*-Blg construct led to slightly better binding to corn starch ($K_d = 1.5\mu M \pm 0.3$, $B_{max} =$
233 $0.18\mu mol/g \pm 0.008$) and modestly higher affinity but less overall binding to potato starch ($K_d =$
234 $0.51\mu M \pm 0.13$, $B_{max} = 0.015\mu mol/g \pm 0.001$). The saturation curve for Blg-*RbCBM74*-Blg closely
235 resembles that of Sas6T and there is minimal binding by *RbCBM26*, suggesting that *RbCBM74*
236 drives insoluble starch binding.

237 The molecular patterns on the surface of starch granules differs between plant sources
238 and remains an active area of research [48-51]. The “hairy billiard ball model” to describe starch
239 granules postulates that the granule surface has block-like clusters of amylopectin chains with

240 hair-like extensions of amylose penetrating through the amylopectin [50]. Sas6T and Blg-
241 *RbCBM74-Blg* bind amylose and amylopectin whereas *RbCBM26* only binds to amylopectin with
242 apparently low affinity based upon the relatively small change in migration (**Fig. 2G**). This
243 suggests that *RbCBM74* drives binding of Sas6 to the long, tightly packed helices of amylose at
244 the surface of the starch granule.

245 Using isothermal titration calorimetry (ITC), we found that Sas6T and Blg-*RbCBM74-Blg*
246 bound amylopectin with sub-micromolar affinity whereas binding was not detectable for *RbCBM26*
247 (**Table 2; Extended Data Fig 5A**) [52]. Sas6T binds maltotriose (G3), maltoheptaose (G7),
248 maltooctaose (G8) with a K_d in the hundreds of μM but exhibits a K_d of $\sim 5\mu\text{M}$ for maltodecaose
249 (G10) (**Table 2; Extended Data Fig 5B**). Interestingly, *RbCBM26* binds shorter linear
250 oligosaccharides (G3, G7) and cyclodextrins, while Blg-*RbCBM74-Blg* had no detectable affinity
251 for these sugars (**Table 2; Fig. Extended Data Fig 5C**). None of the constructs bound glucosyl-
252 α 1,6-maltotriosyl- α 1,6-maltotriose, an oligosaccharide of pullulan, suggesting that the α 1,6
253 linkages are not specifically recognized by either domain. We determined that Blg-*RbCBM74-Blg*
254 binds exclusively longer α -glucans of at least 8 residues. Notably, α 1,4-linked glucose polymers
255 form double helices at 10 glucose units due to internal hydrogen bonding so we hypothesized that
256 *RbCBM74* might accommodate starch helices [8].

257 *Molecular Basis of RbCBM74 Binding* – We co-crystallized Blg-*RbCBM74-Blg* with
258 maltodecaose (G10) to 1.70 \AA resolution ($R_{\text{work}}=17.9\%$, $R_{\text{free}}=19.9\%$) (**Fig. 3A**). Remarkably, we
259 observed two molecules of G10 as an extended double helix of $\sim 42\text{\AA}$ along the face of *RbCBM74*
260 extending from S286 (reducing ends) to W373 (non-reducing ends). There was strong electron
261 density for 12 glucoses in one molecule, and nine glucoses in the other chain, likely reflecting
262 varied occupancy of the helix along the binding cleft (**Fig. 3B**). H289, F326, and W373 stood out
263 as surface exposed aromatic residues that might be providing CH- π mediated stacking (**Fig. 3C**).

264 An overlay of the unliganded and G10 bound structures demonstrates little global change
265 in the CBM74 domain upon binding (**Extended Data Fig 6A**), with the exception of G374 to K381.
266 In the unliganded structure this loop occludes surface exposure of W373 and in the G10 bound
267 structure the loop opens to create a continuous binding surface (**Extended Data Fig 6B**).
268 Additionally, Ca^{2+} -4 is exchanged for Na^+ , representing flexibility in ion identity at that site
269 (**Extended Data Fig 6C**).

270 Canonical starch-binding domains feature two or three aromatic residues for pi-stacking
271 interactions with the aglycone face of maltooligosaccharides, but *Rb*CBM74 is designed for
272 extensive hydrogen-bonding interactions with longer oligosaccharides and starch [21]. The
273 binding site is continuous and each G10 molecule interacts with protein as a stretch of three Glcs
274 at a time, before the natural helical curvature brings the chain out of the contact with the protein
275 (**Fig. 3D**). For example, at the non-reducing end, Glc 1-3 of G10 chain A (G10A) fit into the ligand-
276 binding groove, while Glcs 4-6 of G10A are solvent exposed and Glc 1-3 of G10 chain B (G10B)
277 then fill the cavity. Along the length of the cavity, from the non-reducing end to the reducing end,
278 Glcs 1-3 and 7-9 of both G10A and G10B alternate to fill this binding site.

279 The binding cleft features a network of residues that hydrogen bond to the hydroxyl groups
280 of glucose (**Fig. 3E**). At the non-reducing end, Glc A1 hydrogen bonds with the indole nitrogen of
281 W373. Glc A2 stacks with W373 with hydrogen bonding provided by G374 and N403. Glc A3
282 hydrogen bonds with S338. The other molecule of G10 (B) contacts the next part of the binding
283 groove and is anchored by hydrogen bonding of Glc B3 by R336 and Y524. Where the first
284 molecule turns back into the binding groove, Glc A8 hydrogen bonds with E290, D549, and K556.
285 Glc A9 hydrogen bonds with the backbone of H289 and pi stacks with F326. The H289 side chain
286 hydrogen bonds with Glc B7 and provides aromatic character for pi stacking with Glc B8. Near
287 the region of *Rb*CBM74 that lies adjacent to *Rb*CBM26, K464 and S286 hydrogen bond with Glc
288 B9.

289 To define the starch-binding properties of *RbCBM74* in solution, we employed
290 Hydrogen–Deuterium eXchange Mass Spectrometry (HDX-MS). The conformational dynamics
291 of Blg-*RbCBM74*-Blg alone and in the presence of G10 were measured over a 4-log timescale
292 (**Extended Data Fig 7AB**). The overall conformational dynamics of the apo protein were
293 consistent with the determined crystal structure, in terms of well-ordered domains and
294 associated loops or flexible regions. The flanking Blg domains showed higher exchange rates
295 than the core CBM74 domain. Intriguingly, the linker regions between domains do not show
296 differentially high dynamic exchange, as would be expected for flexibly tethered independent
297 domains, further supporting the integral nature of Blg-*RbCBM74*-Blg motif.

298 The binding of G10 to *RbCBM74* was explored by differential protection from exchange
299 in the absence and presence of G10. Significant protection was observed in the presence of
300 G10, while no significant increases in exchange were observed (**Extended Data Fig 7C**). This
301 is consistent with the minimal global conformation changes between the two states of the
302 protein. The protected regions upon G10 binding were highly localized to a single surface
303 binding region (**Fig. 3F**). This protected region constitutes a single extended surface, which
304 directly overlaps with the G10 binding site observed in the co-crystal structure (**Fig. 3EF**). With
305 the exception of the peptide from A314-Y318 (ANTTY), each of the protected peptides identified
306 by HDX-MS contains at least one key binding residue identified from the co-crystal structure
307 (**Fig. 3E**). These data provide a comprehensive picture of the structural dynamics of *RbCBM74*
308 binding to long maltooligosaccharides via an extended starch binding cleft.

309

310 *RbCBM74 Mutational Studies* – Because most CBM binding is mediated by aromatics,
311 we hypothesized that mutation of W373, F326, or H289 to Ala would dramatically decrease or
312 eliminate binding. We tested maximum binding of each of the aromatic mutants to insoluble corn
313 (1%) and potato starch (5%). The W373A and H289A constructs lost the ability to bind to
314 insoluble corn starch while binding of the F326A construct was greatly reduced (**Fig. 4A**). This

315 trend was somewhat different for potato starch, in which a lower percentage of H289A bound
316 compared to the F326A and W373A mutants. By affinity PAGE, neither the W373A nor the
317 F326A mutant lost appreciable binding to amylopectin while the H289A mutant had a modest
318 decrease in binding to potato amylopectin (**Fig. 4B**). When we quantified binding via ITC,
319 W373A lost all binding for G10 while H289A and F326A had a ~10-20-fold decrease in affinity
320 (**Table 2, Extended Data Fig 8A**). On potato amylopectin, F326A had a 10-fold reduction in
321 affinity while H289A and W373A exhibited a ~20-fold reduction (**Extended Data Fig 8B**). That
322 single mutations do not eliminate binding is perhaps not surprising given the extensive binding
323 platform. Moreover, the enhanced affinity of these mutants to amylopectin over G10 further
324 suggests that productive interactions with the protein extend beyond a 10-glucose unit footprint.
325 Indeed, the somewhat staggered double helical G10 bound in our crystal structure suggests that
326 at least 12 glucose units contribute to binding (**Fig. 3D**).

327

328 *Native mass spectrometry* – ITC revealed a binding stoichiometry of 1:1 between Blg-
329 *RbCBM74-Blg* and G10, while the co-crystal structure demonstrates that two molecules of G10
330 are accommodated. To better determine the stoichiometry of this binding event, we employed
331 native mass spectrometry in the presence of varying concentrations of G10 (**Fig. 5A**). Each
332 observed state differed by ~1639 Da, which agrees with the theoretical mass of G10 (**Extended**
333 **Data Table 1A**). To obtain binding affinities, we summed the peak intensities of all abundant
334 charge states in our mass spectra and analyzed these intensity values as described previously
335 [53] (**Extended Data Table 1B**). The K_d for Blg-*RbCBM74-Blg* was determined to be $3.8 \pm 0.5 \mu\text{M}$,
336 which agrees with our ITC data. As the concentration of ligand is increased, ligand molecules can
337 bind nonspecifically during the nESI process, generating artifactual peaks in the mass spectra
338 corresponding to a two ligand-bound complex (**Fig. 5A**). We speculate that in excess
339 concentrations of G10, the molecules can form double helices that are accommodated by the

340 *RbCBM74* binding site but that the single molecule binding event represents the most common
341 binding conformation (**Fig. 5B**).

342 Because *Sas6* encodes both a *CBM74* and a *CBM26*, and this co-occurrence is
343 evolutionarily well-conserved, we speculated that *RbCBM26* and *RbCBM74* could either bind
344 separate G10 molecules or that one ligand could span the region between the two *CBM* binding
345 sites [22]. We used native mass spectrometry to determine the number of G10 molecules bound
346 to *Sas6T*, which includes both *CBMs*. The binding state distribution was markedly different when
347 *RbCBM26* was included (**Fig. 5C**). At low G10 concentrations, there is a mix of unliganded, 1-
348 bound, and 2-bound states unlike *Blg-RbCBM74-Blg* alone (**Fig. 5D**). As G10 increases, the apo
349 and 1-bound states decrease as the 2-bound fraction increases. For *Sas6T*, K_d values for 1:1 and
350 1:2 protein:ligand complexes were calculated to be $3.4 \pm 0.5 \mu\text{M}$ and $165.6 \pm 38.8 \mu\text{M}$,
351 respectively, and are in reasonable agreement with ITC data (**Extended Data Table 1B**).
352 Together these results suggest that *RbCBM26* and *RbCBM74* each bind one molecule of G10
353 independently in solution. In the context of a starch granule, this supports a model whereby each
354 *CBM* of *Sas6* binds adjacent α -glucan chains rather than attaching to the same chain in a
355 continuous manner. Moreover, the propensity for *Blg-RbCBM74-Blg* to bind a single helix of G10
356 at low ligand concentrations, as also observed with ITC, suggests that this binding platform
357 prefers single helical α -glucans such as amylose, though it can also tolerate double helical
358 stretches of amylopectin.

359

360 *CBM74 Conservation* – To visualize conserved features of *CBM74* domains, two
361 alignments and a corresponding evolutionary tree were prepared. The first alignment includes all
362 99 *CBM74* sequences (**Extended Data Fig 9A,B; Extended Data Table 2**) while the second was
363 simplified for viewing and includes 33 representative *CBM74* sequences (**Fig. 6**). Both alignments
364 reveal that the *CBM74*s fall into 6 distinct clades (**Fig. 6A; Extended Data Fig 9A**). *RbCBM74*
365 (No. 28) is in a distinct cluster of proteins (blue) that invariably include a dockerin domain as part

366 of the full-length protein. However, there are other CBM74 domains originating from dockerin-
367 containing proteins found in three more groups (green, cyan, and magenta). The prototypical
368 CBM74 of the subfamily GH13_32 α -amylase from *Microbacterium aurum* (No. 52) bins into a
369 clade (cyan) with its GH13_32 counterpart from *Sanguibacter* sp. (No. 54) and the CBM74-
370 containing α -amylase from *Clostridium bornimense* (No. 58). A similar GH13_28 α -amylase from
371 *Streptococcus suis* (No. 68) is in the adjacent cluster (magenta) very close to the CBM74 domains
372 from two other hypothetical dockerin-containing proteins from *Ruminococcus bovis* (No. 67) and
373 Ruminococcaceae bacterium (No. 70). Most CBM74 domains appended to α -amylases from the
374 subfamily GH13_28, predominantly from Bifidobacteria, group together in a separate cluster (red).
375 Finally, the sixth cluster (walnut) covers CBM74 domains found in GH13_19 α -amylases. In total,
376 CBM74 domains occur in α -amylases from several subfamilies or non-catalytic dockerin-
377 containing proteins and are widely represented among Bifidobacteria.

378 We mapped the conservation of all 99 CBM74 family members onto our structure using
379 CONSURF [54-56] (**Fig. 6B**). While the central β -sandwich, ion-coordination sphere, and ligand
380 binding site are highly conserved, the flexible loop in *RbCBM74* (residues 373-384) occluding the
381 binding site is more variable (**Fig. 6C; Extended Data Fig. 9B**). In all but the three or four most
382 closely related CBM74 sequences – covering only the two genera of *Ruminococcus* and
383 *Eubacterium* – this loop is short or not present, though how this feature correlates with binding is
384 unknown.

385 Most of the key aromatic residues that mediate starch-binding in *RbCBM74* are highly
386 conserved (**Fig. 6C**). W373 from *RbCBM74* is 100% conserved among all 99 identified CBM74
387 family members (**Extended Data Fig 9B**), while H289 is shared with 78 sequences or substituted
388 with a Tyr (18/99) in Bifidobacteria and *Candidatus scatavimonas* (No. 25) and a Trp (3/99) in
389 *Pseudoscardovia* species. F326 is perhaps the most variable, sharing sequence identity or
390 similarity with 3 of the 6 clades (F-19/99, Y-43/99), while the other clades feature a glycine or
391 alanine in this position (36/99). The binding site also features an elaborate network of residues

392 that provide hydrogen bonding with the ligand. The residues at the center of the cleft including
393 K556 (80/99), D549 (63/99), and E290 (99/99) exhibit the highest conservation (**Fig. 6C**;
394 **Extended Data Fig 9B**). The hydrogen bonding residues at the ends of the cleft are more varied,
395 including S286 (22/99) which interacts with the *RbCBM26* ligand. Intriguingly, in a large proportion
396 of the sequences there is an aromatic residue at the site of K556 (W-19/99) and Y524 (Y-12/99,
397 F-45/99) that could provide pi stacking in those CBM74s. This moderate variability in the
398 composition of the putative binding site may suggest that CBM74 family members have different
399 affinities for starch.

400

401 **Discussion**

402 CBMs are distinct protein domains that assist with substrate breakdown by specifically
403 binding polysaccharide targets. These domains are especially important for binding to insoluble
404 substrates like crystalline cellulose and semi-crystalline starch granules. The CBM74 family binds
405 insoluble starch and its constituents, amylose and amylopectin. CBM74 domains are frequently
406 (81/99 sequences) encoded adjacent to another starch-binding CBM family, either a CBM25 or
407 CBM26 [22]. Sas6 includes both a CBM26 and a CBM74 domain that have different affinities for
408 maltooligosaccharides but work together to bind granular starch. *RbCBM26* has a canonical
409 binding platform that accommodates motifs found in linear and circular maltooligosaccharides. In
410 contrast, *RbCBM74* has an extended ligand binding groove that requires at least 8 glucose
411 residues and accommodates the single helices of amylose and the double helices found in
412 amylopectin. Because it is on the cell surface, the CBM74 domain of Sas6 may target *R. bromii*
413 to the crystalline regions of starch granules that are not easily accessible to human or other
414 bacterial amylases.

415 Sas6 is a putative *R. bromii* amylosome component and likely cooperates with amylases
416 and pullulanases via the interaction of its dockerin domain with a cohesin from a scaffoldin protein

417 [20]. Because Sas6 is found on the cell surface, it could bind cell anchored scaffoldins Sca2 or
418 Sca5, associate with Sca1/Amy4, or bind the cell surface in a dockerin-independent mechanism
419 [20]. Breakdown of starch by *R. bromii* relies on the coordinated effort of approximately 40 distinct
420 proteins, of which Sas6 may play an integral part by specifically targeting the helical regions of
421 starch [20].

422 Unlike *R. bromii*, resistant starch-utilizing Bifidobacteria encode CBM74-containing
423 multimodular extracellular amylases [9]. A recent study looked at the amylases that were
424 differentially encoded between Bifidobacterial strains that could bind and degrade starch granules
425 and those that could not [57]. Resistant Starch Degrading enzyme 3 (RSD3) was differentially
426 encoded in the resistant starch-binding strains. It contains a CBM74 domain and has high activity
427 on high amylose corn starch. RSD3 has an N-terminal GH13 domain followed by CBM74, CBM26,
428 and CBM25 domains. The CBM74-CBM26 motif is present in RSD3 so the structural and
429 functional insights we have gleaned from Sas6 may suggest how these CBMs structurally assist
430 the enzyme with granular starch hydrolysis.

431 Although starch is a polymer composed solely of glucose, there is massive variation in
432 granule structure [7, 8]. This is a function of primary structure (i.e. α 1,4 or α 1,6 linkages),
433 secondary structure (single or double helices) and tertiary structure (helical packing and amylose
434 content), making granules an exquisitely complex substrate [58]. This complexity is unlocked by
435 only a few specialized gut bacteria, making granular starch a targeted prebiotic [9, 15, 16]. CBM74
436 domains might serve as a molecular marker for the ability to break down resistant starch in
437 metagenomic samples [22]. Furthermore, CBM74 domains might make attractive additions to
438 engineered enzymes for enhanced starch degradation on the industrial scale, or as an adjunct to
439 starch prebiotics. The structural and functional picture of *Rb*CBM74 here will accelerate the
440 targeted use of this domain for various health and industrial applications.

Table 1: X-ray Data Collection and Refinement Statistics

Construct	Sas6T + α -cyclodextrin	Sas6T unliganded	Blg-RbCBM74-Blg + G10
PDB Accession	7UWW	7UWU	7UWV
Wavelength	0.979	0.979	0.979
Resolution range	35 - 1.61 (1.67 - 1.61)	44.77 - 2.19 (2.27 - 2.19)	62.48 - 1.70 (1.76 - 1.70)
Space group	P 21 21 21	P 21 21 21	P 21 21 2
Unit cell	69.5 82.5 213.5 90 90 90	69.2 82.4 213.3 90 90 90	69.7 160.1 67.8 90 90 90
Total reflections	1690626 (29309)	1044914 (104226)	512772 (51008)
Unique reflections	122358 (2727)	63042 (6261)	84071 (8261)
Multiplicity	13.8 (10.7)	16.6 (16.9)	6.1 (6.2)
Completeness (%)	76.8 (24.8)	99.34 (99.97)	99.9 (100.0)
Mean I/sigma(I)	16.0 (1.1)	22.66 (14.34)	17.2 (2.2)
R-merge	0.092 (1.799)	0.0956 (0.192)	0.052 (0.75)
R-meas	0.095 (1.889)	0.0987 (0.1979)	0.057 (0.81)
R-pim	0.025 (0.563)	0.0243 (0.04781)	0.023 (0.33)
CC1/2	0.999 (0.549)	0.998 (0.993)	0.999 (0.822)
Reflections used in refinement	122315 (3895)	63244 (6262)	84061 (8260)
Reflections used for R-free	6093 (201)	3200 (309)	4056 (427)
R-work	0.168 (0.238)	0.197 (0.276)	0.179 (0.279)
R-free	0.212 (0.281)	0.255 (0.348)	0.199 (0.281)
Number of non-hydrogen atoms	11425	10523	4954
macromolecules	9721	9527	4043
ligands	253	38	237
solvent	1451	964	674
Protein residues	1294	1246	531
RMS(bonds)	0.013	0.001	0.013
RMS(angles)	1.4	0.4	1.7
Ramachandran favored (%)	96.3	96.1	97
Ramachandran allowed (%)	3.6	3.9	3
Ramachandran outliers (%)	0.08	0	0
Rotamer outliers (%)	0	1.6	0.5
Clashscore	3.26	4.98	0.24
Average B-factor	22.2	25.6	33.2
macromolecules	20.7	25.4	31.8
ligands	35.8	29.9	31.5
solvent	30	27.8	41.8

441

442

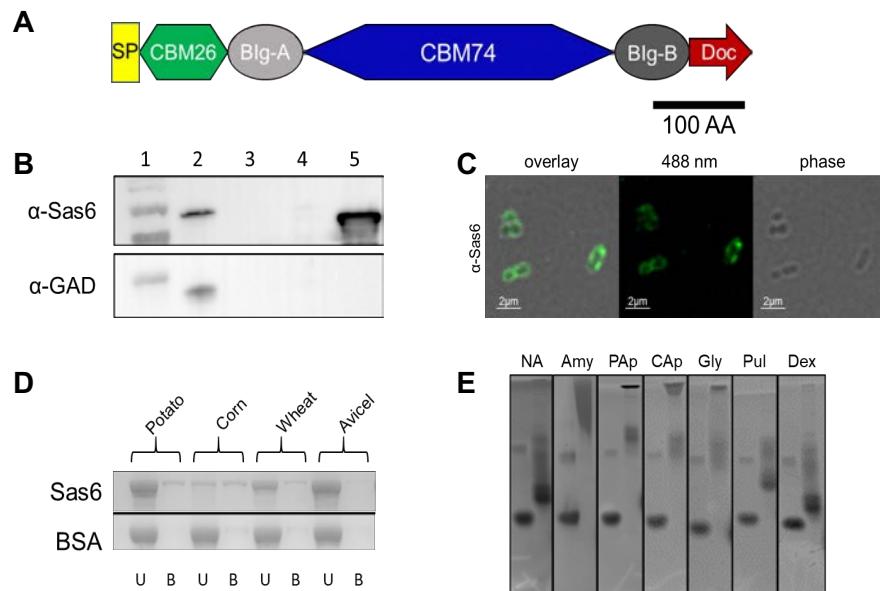
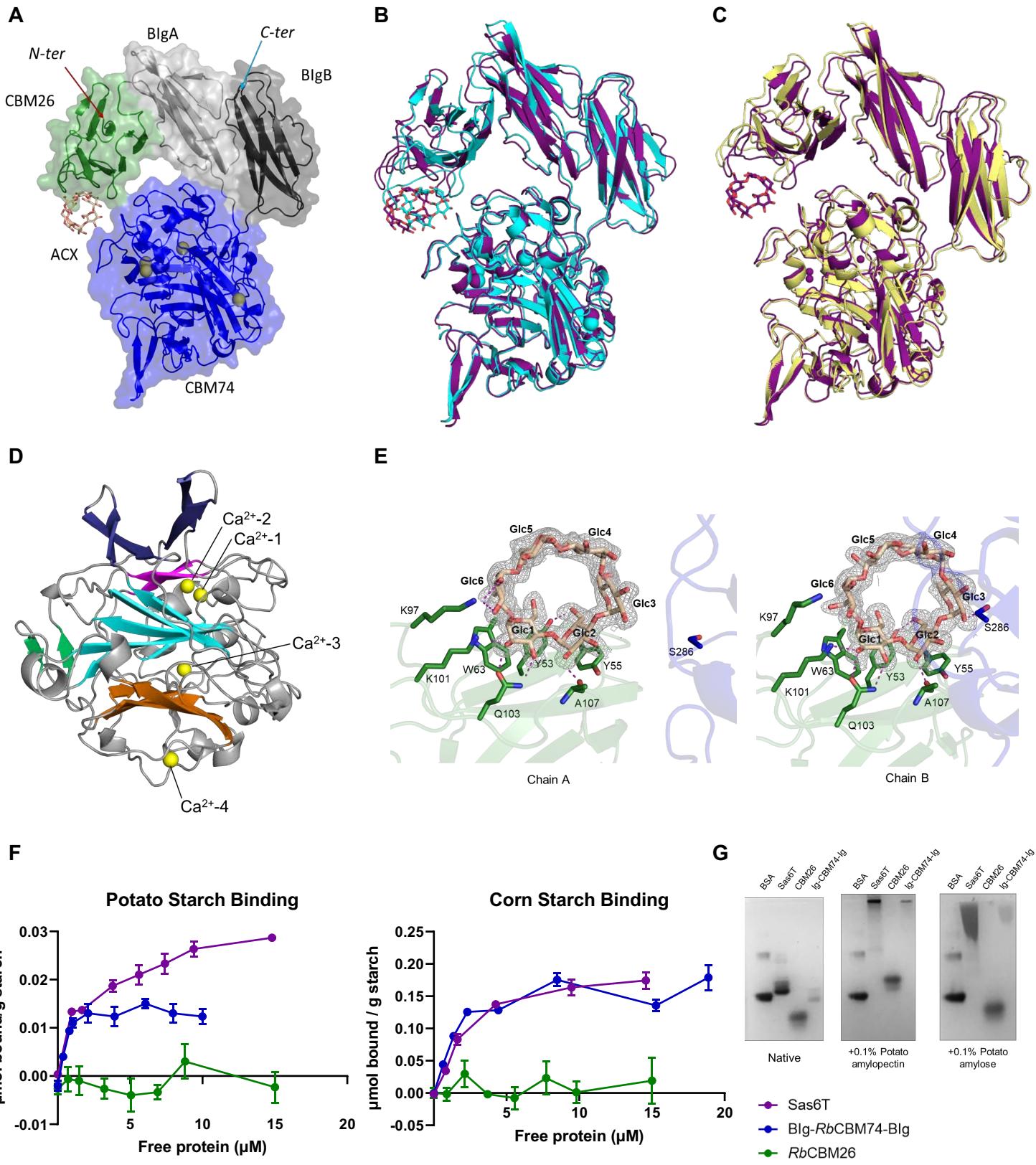
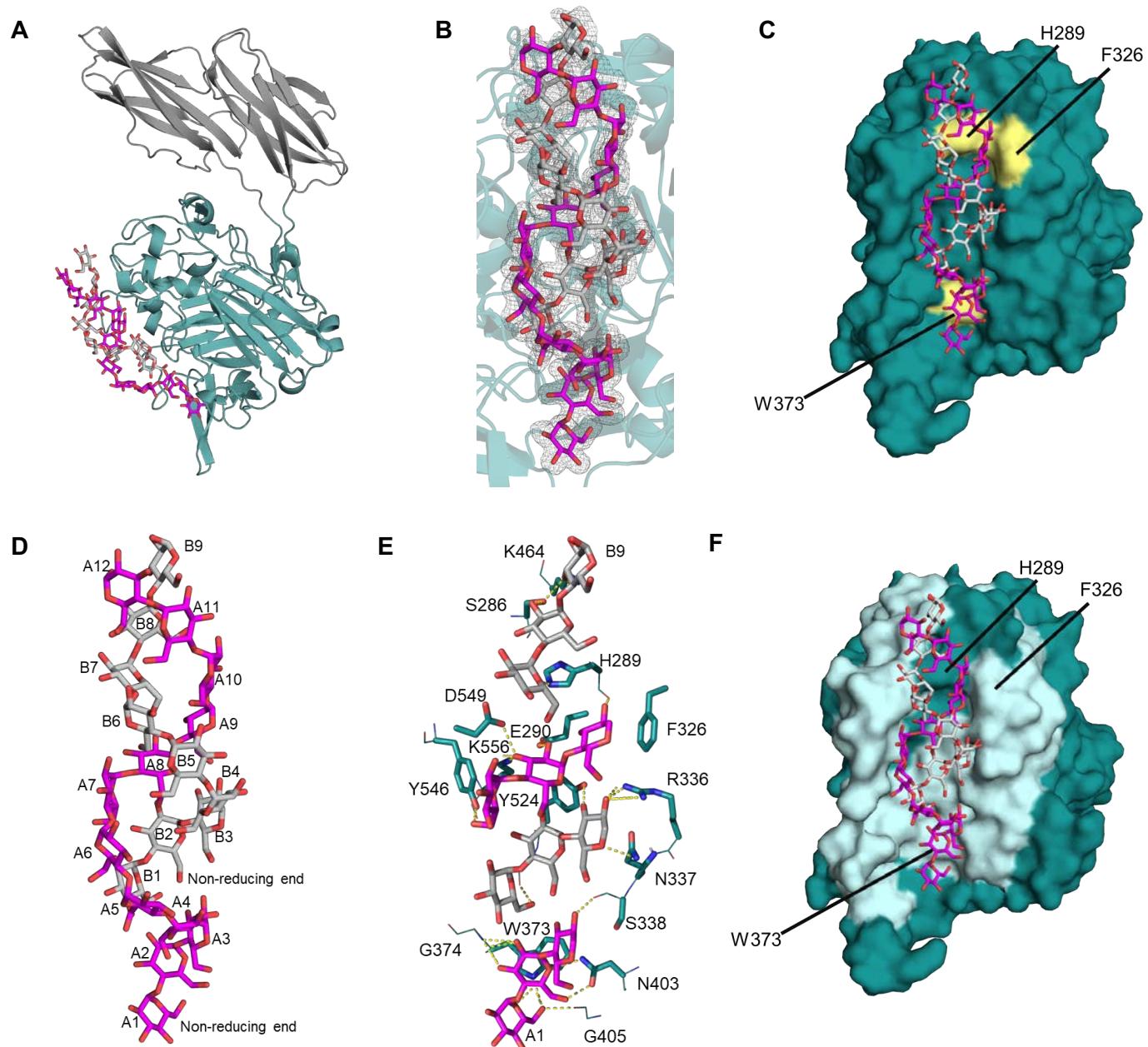

443

Table 2: Sas6 and domain binding via Isothermal Titration Calorimetry

	G3		ACX		G7		G8		G10		Potato AP	
	n	K _d (μM)	n	K _d (μM)	n	K _d (μM)	n	K _d (μM)	n	K _d (μM)	K _d (μM)	
Sas6T	1*	880 ± 25	1.0	178 ± 26	1*	332 ± 15	1*	496 ± 260	0.9	5.5 ± 1.9	0.3 ± 0.08	
RbCBM26	-	NB	0.8	169 ± 16	1	310 ± 34	1*	285 ± 84	0.7	252 ± 128	NB	
Blg-RbCBM74-Blg	-	NB	-	NB	-	NB	1*	820	0.9	5.2 ± 1.1	0.7 ± 0.05	
W373A									NB	NB	13.4 ± 5.4	
H289A									0.5	73.1 ± 7.7	21.4 ± 3.1	
F326A									0.7	100 ± 11	3.9 ± 1.4	

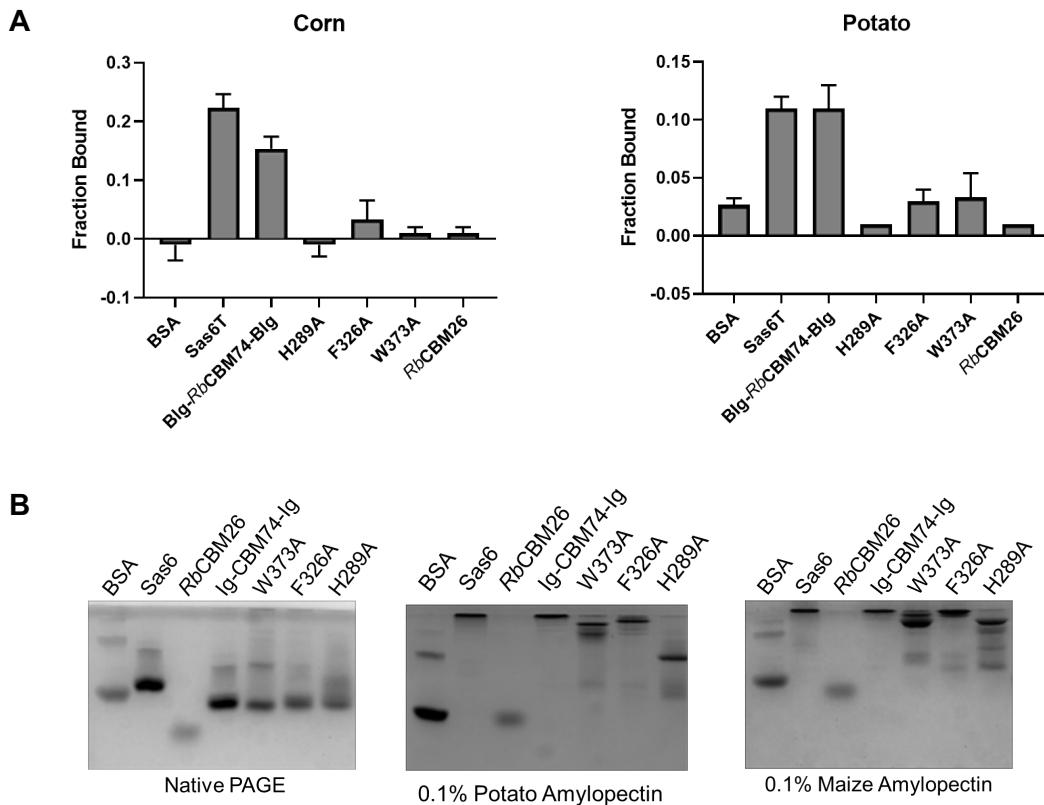

446 * indicates that n was set to 1. Experiments were performed in triplicate with mean ± standard
 447 deviation reported. For amylopectin, curves were modeled for total binding (n=1).

456



457

458 **Figure 1: *Ruminococcus bromii* Sas6 is a starch-binding protein that contains two**
 459 **carbohydrate-binding modules. A.** Domain architecture of Sas6 annotated according to the
 460 Carbohydrate Active Enzyme database (www.cazy.org) and the crystal structure. SP = Signal
 461 Peptide, CBM26 = Carbohydrate Binding Module family 26, Blg = Bacterial Immunoglobulin,
 462 CBM74 = Carbohydrate Binding Module family 74, Doc = Dockerin. **B.** *Top*: Western blot with
 463 anti-Sas6 antibody showing localization of Sas6 in the cell fraction. *Bottom*: Parallel western blot
 464 with custom rabbit antiserum against glutamic acid decarboxylase to control for cell lysis. Lane
 465 1: ladder, 2: *R. bromii* cell lysate, 3: cell-free culture supernatant, 4: TCA precipitated cell-free
 466 culture supernatant, 5: recombinant Sas6T, truncated version of Sas6 lacking the C-terminal
 467 dockerin. **C.** α-Sas6 immunofluorescent staining of fixed *R. bromii* cells grown in potato
 468 amylopectin. **D.** SDS-PAGE gel from Sas6 adsorption to potato, corn, and wheat starch, and
 469 Avicel (cellulose) control. U=unbound protein, B=bound protein. **E.** Affinity PAGE with 0.1% of
 470 the indicated polysaccharide incorporated into the gel matrix. For each, left lane is bovine serum
 471 albumin, right lane is Sas6T. NA=native gel, Amy=potato amylose, PAp=Potato Amylopectin,
 472 CAp=corn amylopectin, Gly=Glycogen, Pul=Pullulan, Dex=Dextran.


474 **Figure 2: Sas6 is a compact protein with two Blg domains that orient RbCBM26 and**
475 **RbCBM74. A.** Semi-transparent surface rendition and cartoon of Sas6T (PDB 7uww) with
476 *RbCBM26* domain in green, BlgA in light grey, *RbCBM74* in blue, and BlgB in dark grey. The α -
477 cyclodextrin (ACX) bound to *RbCBM26* is shown in wheat sticks and Ca^{2+} atoms are shown as
478 yellow spheres. **B.** Overlay of Chain A (purple) and Chain B (cyan) within the asymmetric unit of
479 7uww showing variation in the position of ACX relative to *RbCBM74*. **C.** Overlay of Chain A of
480 7uww (purple) and SAXS-derived MultiFoXS model (yellow). **D.** Side view of *RbCBM74* with the
481 central β -sandwich sheets in orange and cyan. A third β -sheet is shown in magenta and the
482 protruding pairs of β -strands and in dark blue. β -strands connecting the beginning and end of
483 the *RbCBM74* domain are colored green. Ca^{2+} atoms are shown as yellow spheres. **E.** ACX
484 bound at *RbCBM26* (green) in chain A (left) and chain B (right), demonstrating minor
485 conformational flexibility that places S286 from *RbCBM74* (blue) within the binding site. Side
486 chains involved in ligand binding are shown as green sticks with a hydrogen bond cutoff of 3.2 \AA .
487 ACX is displayed as wheat sticks. Omit map is contoured to 2.0 σ and carved within 1.6 \AA of ACX
488 ligand. **F.** *RbCBM74* drives binding to granular potato and corn starch. Binding to granular
489 starch was determined by isotherm depletion. The μmoles of protein bound per gram of starch
490 was plotted against [free protein] to determine dissociation constants (K_d) and binding maxima
491 (B_{\max}) using a one-site specific binding model in GraphPad prism. **G.** Affinity PAGE of Sas6T or
492 individual domains, *RbCBM26* and Blg-*RbCBM74*-Blg, with 0.1% polysaccharide. BSA= bovine
493 serum albumin.

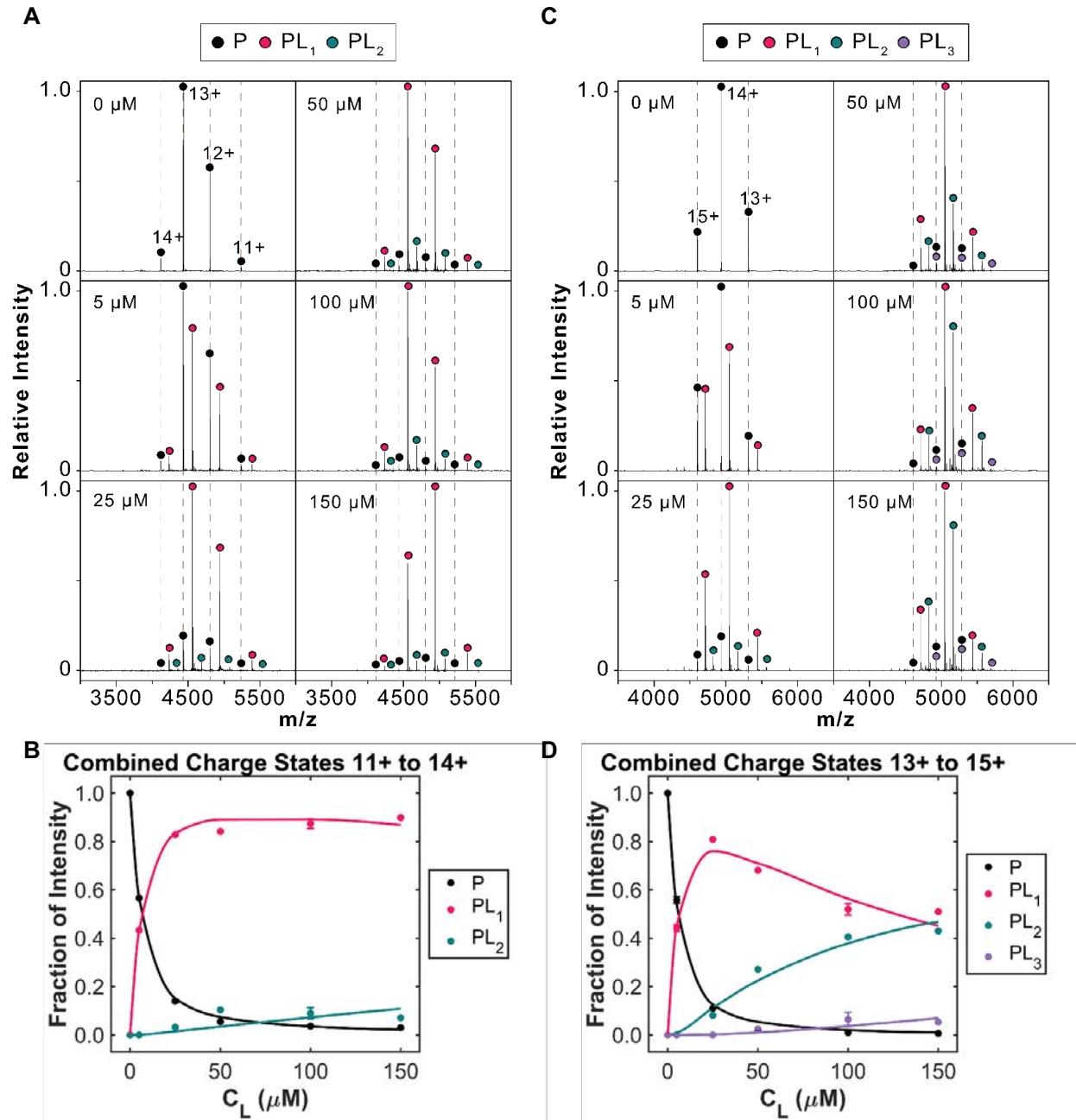
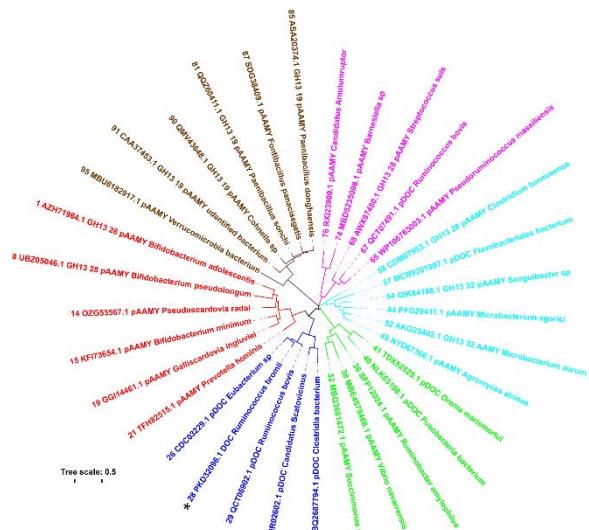
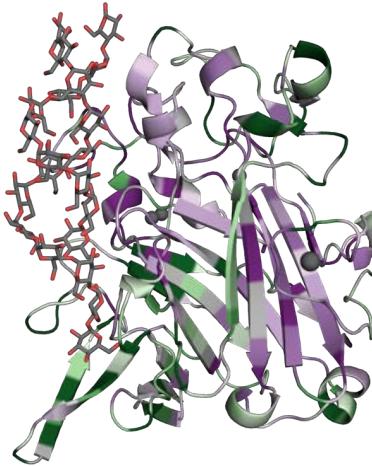

494
495
496
497
498
499
500
501
502
503
504

Figure 3: RbCBM74 has an extended groove that accommodates starch double helices.
A. The Blg-RbCBM74-Blg (PDB 7uwv) starch-binding site is an extended groove that spans nearly the length of the domain. A cartoon representation of BlgA in light grey, CBM74 in teal, and BlgB in dark grey with two chains of maltose (G10) wrapped around one another shown in magenta and grey sticks. **B.** RbCBM74 is co-crystallized with G10 in a double helical conformation. Electron density for G10 demonstrated by an omit map contoured to 2.0σ and carved to 1.6\AA with one chain of modeled Glc in magenta and the other in grey. **C.** RbCBM74 has an inset binding groove that accommodates the width of the starch double helix with aromatic CH- π stacking provided by W373, F326, and H289. A surface representation of CBM74 (teal) with aromatic residues colored in yellow and G10 represented by magenta and

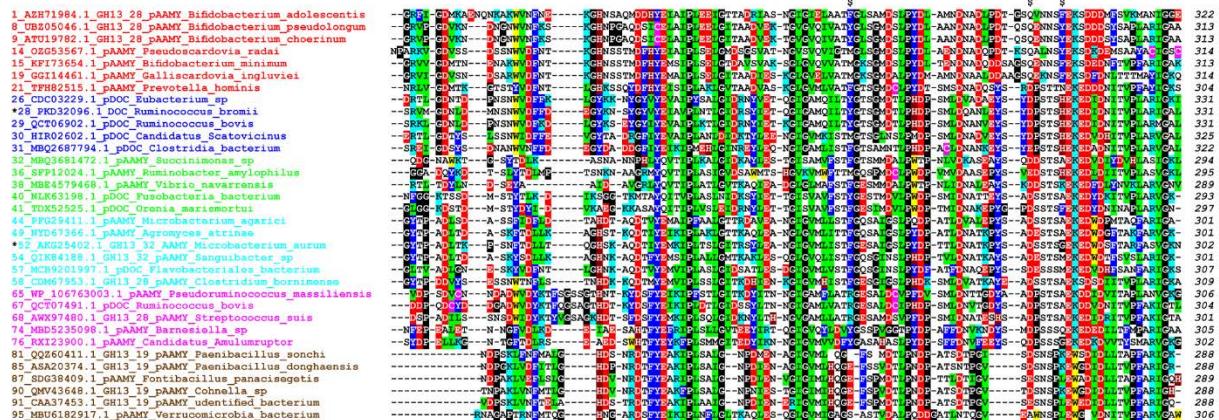
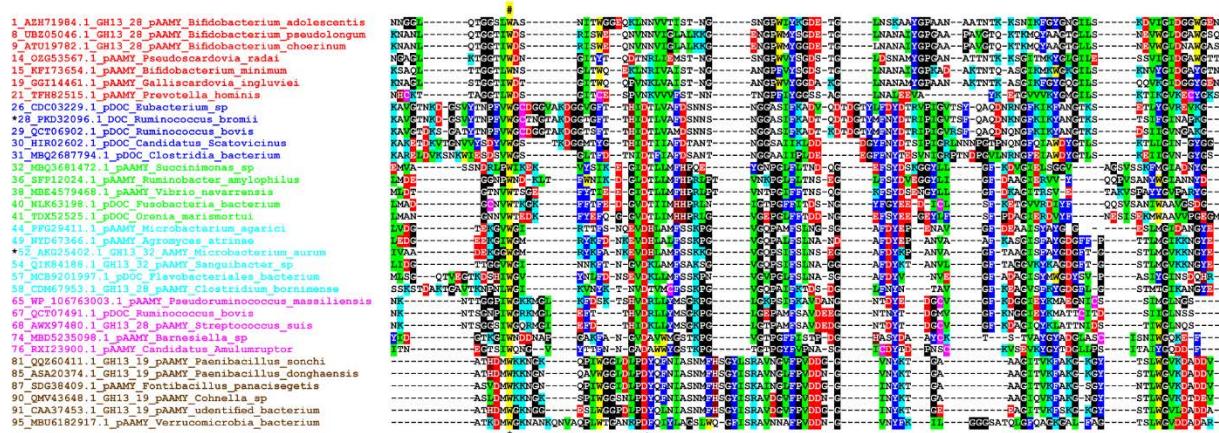
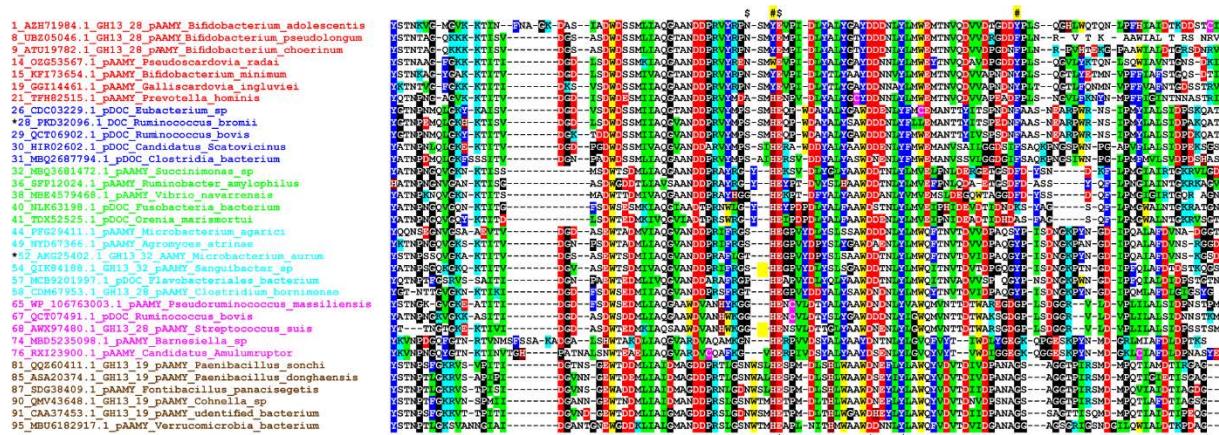
505 grey sticks. **D**. Double helical G10 structure with Glc residues labeled from non-reducing to
 506 reducing ends. One chain of G10 (A1-12) shown in magenta and the other in grey (B1-9) sticks.
 507 **E**. Corresponding hydrogen-bonding network (3.2Å cutoff) between *RbCBM74* and G10. Side
 508 chains involved in hydrogen bonding are shown in teal sticks with nitrogens indicated in blue
 509 and oxygens in red. Hydrogen bonds are indicated by yellow dashed lines and G10 residues
 510 directly involved in binding are shown in magenta (G10 molecule A) and grey (G10 molecule B)
 511 sticks. **F**. Surface representation of *RbCBM74* with peptides protected from deuterium exchange
 512 in the presence of G10 colored in light cyan as determined by hydrogen-deuterium exchange
 513 mass spectrometry.
 514



515
 516 **Figure 4: W373A, F326A, and H289A mediate starch binding by *RbCBM74*.** **A.** Binding to
 517 insoluble starch is eliminated or greatly reduced when W373, H289 or F326 is mutated. The
 518 amount of protein bound to starch granules was determined by quantitation of protein remaining
 519 in solution after binding (n = 3). **B.** Mutation of aromatic residues decreases but does not
 520 eliminate binding to amylopectin. Affinity PAGE with 0.1% potato amylopectin or maize
 521 amylopectin added to the gel matrix. Binding is indicated by reduced migration through the gel.



523 **Figure 5: RbCBM74 and RbCBM26 bind separate molecules of G10 in solution.** **A.** Mass
 524 spectra of Blg-RbCBM74-Blg at different ligand concentrations (0 - 150 μ M) and a fixed protein
 525 concentration of 5 μ M. Charge states for unbound protein are annotated with an orange dashed
 526 line. Peaks corresponding to different bound states are observed after each charge state of the
 527 unbound protein. Intensities of each species, combined across multiple charge states, were
 528 then extracted from the mass spectra and used to calculate the fractional abundance of
 529 unbound and bound states at equilibrium (n=3). **B.** Nonlinear least-squares fitting of the titration
 530 data for Blg-RbCBM74-Blg. **C.** Mass spectra of Sas6T as described in A. **D.** Nonlinear least-
 531 squares fitting of the titration data for Sas6T.




A

B

C

533

534 **Figure 6: Conservation of binding residues among select CBM74 family members. A.**
535 Evolutionary tree for the CBM74 family including 33 sequences selected from the entire studied
536 set of 99 CBM74s (Extended Data Table 2). Two experimentally characterized CBM74s are
537 marked by an asterisk: Sas6 from *Ruminococcus bromii* (No. 28, blue cluster) and the subfamily
538 GH13_32 α -amylase from *Microbacterium aurum* (No. 52; cyan cluster). Protein labels include
539 the order number (33 selected from 1-99), GenBank accession number, abbreviation of the
540 source protein/enzyme and organism name. The tree is based on the alignment (shown in C)
541 spanning the complete CBM74 sequences. **B.** Structure of *Rb*CBM74 (PDB 7uwv) colored by
542 conservation score from least conserved (green) to most conserved (purple) generated using
543 CONSURF. **C.** Sequence alignment of the CBM74 family. The six individual groups
544 distinguished from each other by different colors correspond to six clusters seen in the
545 evolutionary tree (panel A); the sequence order in the alignment reflects their order in the tree in
546 the anticlockwise manner (starting from the first sequence in the red cluster). The residues
547 responsible for stacking interactions and involved in hydrogen bonding with glucose moieties of
548 the bound α -glucan are signified by a hashtag and a dollar sign, respectively, above the
549 alignment. The flexible loop observed in the three-dimensional structure of the *Rb*CBM74 is
550 highlighted by the short yellow strip over the alignment. Identical and similar positions are
551 signified by asterisks and dots/semicolons under the alignment blocks. The color code for the
552 selected residues: W, yellow; F, Y – blue; V, L, I – green; D, E – red; R, K – cyan; H – brown; C
553 – magenta; G, P – black. The alignment of all 99 CBM74 sequences of the present study shown
554 in Extended Data Figure 9B.

555

556

557 **METHODS**

558 *Recombinant Protein Cloning and Expression*

559 We used a previously described cloning and expression protocol to generate each of the
560 recombinant protein constructs used in this study [59]. Genomic DNA was isolated from *R.*
561 *bromii* strain L2-63 and the constructs for Sas6 without the signal peptide were amplified using
562 the primers listed in **Table S1** with overhangs complementary to the Expresso T7 Cloning &
563 Expression System N-His pETite vector (Lucigen). The forward primers were engineered to
564 include the 6x His sequence that complemented the vector plus a TEV protease recognition site
565 for later tag removal. PCR was performed with Flash PHUSION polymerase (ThermoFisher).
566 The amplified products and the linearized N-his pETite vector were transformed in HI-
567 Control10G Chemically Competent Cells (Lucigen) and plated on LB plates supplemented with
568 50 μ g/ml kanamycin (Kan). Transformants were screened for the insertion of Sas6 and validated

569 via sequencing. The Sas6-pETite plasmids were transformed into chloramphenicol (Chl)-
570 resistant *E. coli* Rosetta (DE3) pLysS cells and plated on LB plates supplemented with 50 μ g/ml
571 Kan and 20 μ g/mL Chl. *E. coli* cells were grown at 37°C to OD₆₀₀ 0.6-0.8 in Terrific Broth
572 supplemented with 50 μ g/ml Kan and 20 μ g/ml Chl after which time the temperature was lowered
573 to 20°C and 0.5mM Isopropyl β -d-1-thiogalactopyranoside (IPTG) was added. After 16 hours of
574 growth, 1L of cells was centrifuged, resuspended in 40mL of Buffer A (20mM Tris pH 8.0,
575 300mM NaCl) and lysed by sonication. Cell lysate was separated from cell debris by
576 centrifugation for 30min at 30,000xg. 3mL of Ni-NTA resin was packed into Econo-Pac
577 Chromatography Columns (BioRad) and equilibrated with Buffer A. Lysate was passed through
578 the packed columns and washed with 70mL of Buffer A. Proteins were eluted from the columns
579 via stepwise increase in Buffer B (20mM Tris pH 8.0, 300mM NaCl, 500mM imidazole). Proteins
580 eluted in 10-25% Buffer B fractions. TEV protease (1mg) was added to each protein to initiate
581 cleavage of the His-tag and the mix was dialyzed overnight using dialysis tubing (SpectraPor) in
582 1L of storage buffer (20mM HEPES pH 7, 100mM NaCl). The dialyzed protein-TEV mixture was
583 applied to Ni-NTA resin and the flow-through was collected and concentrated using a VivaSpin
584 20 concentrator (Fisher Scientific).

585

586 *Sas6 Immunofluorescence*

587 Custom α -Sas6T antiserum was generated by rabbit immunization with purified recombinant
588 Sas6T protein (Lampire Biological Laboratories). The resulting antiserum was used for western
589 blotting and cell staining. *R. bromii* cells were grown to mid-log phase on RUM media [17] with
590 0.1% potato amylopectin and 2mL of the cell culture was collected for immunostaining and
591 western blotting. For immunostaining, 1mL of *R. bromii* culture was centrifuged for 1min at
592 13,000xg and washed 3 times with 1X phosphate buffered saline pH 7.4 (PBS). 2 μ L of cells were
593 then spread on a glass slide and fixed with 10% formaldehyde in PBS. Slides were washed 3x in

594 PBS to remove fixative but were not permeabilized. Cells were blocked for 30min with 10% goat
595 serum (Jackson ImmunoResearch). α -Sas6T antiserum was diluted 1:1000 in 10% goat serum
596 and applied for 1hr to cells at room temperature. The primary antiserum was removed, and slides
597 were washed 3 x 5min in PBS before the application of 1:500 goat α -rabbit AlexaFluor488
598 antibody (ThermoFisher) for 30min. Slides were washed 3 x 5min in PBS and preserved with
599 Prolong Gold Antifade reagent and dried overnight before imaging. Cells were imaged at the
600 University of Michigan Microscopy Core on a Leica Stellaris Light Scanning Confocal microscope
601 with a 100X objective.

602

603 *Western Blotting*

604 *R. bromii* was grown to mid-log phase overnight on RUM media containing 0.1% potato
605 amylopectin [17]. 1mL of cells was pelleted and washed twice in phosphate buffered saline (PBS)
606 pH 7.4, then resuspended to a final volume of 50 μ L in 5mM Tris-HCl pH 8.5. The culture
607 supernatant was passed through a 0.2 μ m filter and 50 μ L was reserved for analysis. Proteins were
608 precipitated from the remaining supernatant by the addition of 1/4 volume of 100% trichloroacetic
609 acid (TCA) and incubated 30 min on ice. The precipitate was collected via centrifugation and
610 washed twice with 200 μ L cold acetone. The resulting pellet was dried and resuspended in 50 μ L
611 of 5mM Tris-HCl pH 8.5. Samples were separated by SDS-PAGE on two 10% Tris-glycine gels,
612 then transferred to polyvinylidene difluoride (PVDF) membrane. Blots were blocked in EveryBlot
613 Blocking Buffer (BioRad) for 30min then washed with PBS pH 7.4 + 0.05% Tween 20 (PBST). To
614 detect Sas6, one membrane was incubated with custom rabbit α -Sas6 antiserum (Lampire)
615 diluted 1:500 and the other with custom rabbit α -glutamic acid decarboxylase from *R. bromii*
616 (Lampire) diluted 1:10,000 in PBST + 5% non-fat dry milk (PBST-milk) for 1hr. Blots were washed
617 in PBST and incubated in horse radish peroxidase-conjugated goat α -rabbit antibody

618 (ThermoFisher) diluted 1:5,000 in PBST-milk and the signal was detected by ECL
619 chemiluminescence (ThermoFisher).

620

621 *Granular starch binding assays*

622 Granular starch-binding assays were conducted with potato starch (Bob's Red Mill), corn starch
623 (Sigma), wheat starch (Sigma), or Avicel (Fluka). Prior to use, all polysaccharides were washed
624 3x with an excess of assay buffer (20mM HEPES pH 7.0, 100mM NaCl) to remove soluble starch
625 and oligosaccharides and prepared as a 50mg/mL slurry. 1mg (corn) or 5mg (potato) of starch
626 slurry was aliquoted into 0.2mL tubes in triplicate, centrifuged at 2,000xg for 2 min and the
627 supernatant was carefully removed. 100 μ L of protein ranging from 0.5 μ M-10 μ M protein was
628 added to each starch and the tubes were agitated by end-over-end rotation at room temperature
629 for 1hr. After centrifugation at 2,000xg for 2min, 20 μ L of the supernatant was removed for
630 unbound protein concentration determination by absorbance at A280 using a ThermoFisher
631 NanodropOne with three replicate measurements per sample. The remaining 80 μ L of supernatant
632 was removed and set aside for SDS-PAGE gel analysis. The concentration of unbound protein
633 remaining in the supernatant was used to determine the μ moles of protein bound per gram of
634 starch which was plotted against the concentration of initial (free) protein to generate a binding
635 curve [31]. Overall affinity (K_d) and binding maximum (B_{max}) was determined via a one-site binding
636 model (specific binding) using GraphPad Prism version 9.2.0 for Windows (GraphPad Software,
637 San Diego, California USA, www.graphpad.com) [31].

638 To assess the remaining starch granules for bound protein, the granules were washed
639 three times with an excess of assay buffer by mixing and centrifugation, the final wash supernatant
640 was removed, and 100 μ L of Laemmli buffer containing 1M urea was added to the starch pellet to
641 denature any bound protein but keep the original volume consistent. To qualitatively determine
642 the amount of unbound and bound protein, 10 μ L each of the wash supernatant and solubilized

643 pellet fraction were run separately via SDS-PAGE. Bovine serum albumin was used as a negative
644 control and to confirm unbound protein was sufficiently washed from the starch granules.

645

646 *Polysaccharide Affinity PAGE*

647 Non-denaturing polyacrylamide gels with and without potato amylopectin (Sigma), corn
648 amylopectin (Sigma), potato amylose (Sigma), bovine liver glycogen (Sigma), pullulan (Sigma),
649 or dextran (Sigma) to a final concentration of 0.1% polysaccharide were cast. All polysaccharides
650 were autoclaved and amylose was solubilized by alkaline solubilization with 1M NaOH and acid
651 neutralization to pH 7 with HCl [60]. Sas6 protein samples were mixed with 6X loading dye lacking
652 SDS. Gels were run concurrently for 4 hours on ice and subsequently stained with Coomassie
653 (0.025% Coomassie blue R350, 10% acetic acid, and 45% methanol). Gels were imaged on a
654 Bio-Rad Gel Doc Go imaging system. The distance between each band and the top of the
655 separating gel were measured using ImageJ [61]. The ratio of the distance migrated by each
656 band was determined to the distance the BSA band traveled. Binding was considered positive if
657 the ratio was less 0.85 as previously described [62].

658

659 *Isothermal Titration Calorimetry*

660 All ITC experiments were carried out using a TA Instruments standard volume NanoITC. For each
661 experiment, 1300 μ L of 25 μ M protein was added to the sample cell and the reference cell was
662 filled with distilled water. The sample injection syringe was loaded with 250 μ L of the appropriate
663 ligand concentration (0.5mM - 5mM) to fully saturate the protein by the end of 25 injections of
664 10 μ ls. Titrations were performed at 25°C with a stirring speed of 250 rpm. The resulting data were
665 modeled using TA Instruments NanoAnalyze software employing the pre-set models for
666 independent binding and blank (constant) to subtract the heat of dilution. For interactions with
667 high affinity (c-value at 25 μ M protein greater than 5), no alterations were made to the model. If
668 the calculated c value of an interaction fell below 5, the n value was set to 1 as indicated in the

669 figure legend following the guidance for modeling low affinity interactions [63]. For polysaccharide
670 titrations, curves were modeled by varying the substrate concentration until n=1 such that the K_d
671 represents the overall affinity for the construct [52].

672

673 *Protein Crystallization*

674 Crystallization conditions for α -cyclodextrin (2mM) bound (pdb 7UWW) and unliganded (pdb
675 7UWU) crystals of Sas6T were screened via 96-well sparse matrix screen (Peg Ion HT, Hampton
676 Research #HR2-139) in a sitting drop vapor diffusion experiment at room temperature. Screens
677 were set up using an Art Robbins Gryphon robot with 20mg/mL protein in a 3-well tray (Art
678 Robbins #102-0001-13) using protein-to-well solution ratios of 2:1, 1:1, and 1:2. Small crystals
679 were observed in 0.2M Potassium thiocyanate pH 7.0, 20% w/v Polyethylene glycol 3,350
680 (condition B2) and were further optimized by varying pH, PEG 3350 percentage, and potassium
681 thiocyanate concentration. Crystals were microseeded with a crystal seeding tool (Hampton) in a
682 sitting drop setup of 1.5 μ L drops with 2:1, 1:1, or 1:2 protein:well solution ratios. The optimal
683 crystallization solution contained 0.3M Potassium thiocyanate pH 7.0, 24% PEG 3350 and 1mM
684 Anderson–Evans polyoxotungstate $[TeW_6O_{24}]^{6-}$ (TEW) (Jena Biosciences #X-TEW-5) to improve
685 crystal diffraction. Prior to data collection, crystals were cryoprotected in a mixture of 80%
686 crystallization solution supplemented with 20% ethylene glycol then plunged into liquid nitrogen.

687 Crystallization conditions for maltodecaose-bound RbCBM74 structure (pdb 7UWV) were
688 generated from the construct lacking the CBM26 domain (Blg-RbCBM74-Blg, residues 134-665)
689 using 96-well sparse matrix screens. A crystalline mass observed in 60% v/v Tacsimate pH 7.0,
690 0.1 M BIS-TRIS propane pH 7.0 (Hampton Salt-Rx HT-well H12 #HR2-136) was used to
691 microseed an optimized solution containing 30% Tacsimate, 0.1M HEPES pH 7.0 and 2mM
692 maltodecaose (CarboExpert). No additional cryo-protection was required prior to plunge freezing
693 into liquid nitrogen.

694

695 *Structure Determination and Refinement*

696 X-ray data were collected at the Life Sciences Collaborative Access Team (LS-CAT) at Argonne
697 National Laboratory's Advanced Photon Source (APS) in Argonne, IL. Data were processed at
698 APS using autoPROC with XDS for spot finding, indexing, and integration followed by Aimless for
699 scaling and merging [64-66]. Intrinsic sulfur SAD phasing was used to determine the structure of
700 Sas6T/α-cyclodextrin (7UWW) using AutoSol in Phenix [67, 68]. Those coordinates were then
701 used for molecular replacement in Phaser to determine the unliganded Sas6T (7UWU) and Blg-
702 RbCBM74-Blg/G10 (7UWV) structures [69]. All three structures were refined via manual model
703 building in Coot and refinement in Phenix.refine [70, 71]. Metal ion identities were validated using
704 the web-based CheckMyMetal (CMM) tool [72] (<https://cmm.minorlab.org/>). Carbohydrate models
705 were validated using Privateer [73].

706

707 *SEC-SAXS experiment*

708 SAXS was performed at Biophysics Collaborative Access Team (BioCAT, beamline 18ID at APS)
709 with in-line size exclusion chromatography (SEC-SAXS) to separate the sample from aggregates
710 and other contaminants. Sample was loaded onto a Superdex 200 Increase 10/300 GL column
711 (Cytiva), which was run at 0.6ml/min by an AKTA Pure FPLC (GE) and the eluate after it passed
712 through the UV monitor was flown through the SAXS flow cell. The flow cell consists of a 1.0mm
713 ID quartz capillary with ~20μm walls. A coflowing buffer sheath is used to separate the sample
714 from the capillary walls, helping prevent radiation damage [74]. Scattering intensity was recorded
715 using a Pilatus3 X 1M (Dectris) detector which was placed 3.6m from the sample giving a q-range
716 of 0.003Å⁻¹ to 0.35Å⁻¹. 0.7 s exposures were acquired every 1s during elution and data was
717 reduced using BioXTAS RAW 2.1.1 [75]. Within RAW, the Volume of Correlation (V_C), molecular
718 weight, and oligomeric state were determined [76, 77]. Buffer blanks were created by averaging
719 regions flanking the elution peak and subtracted from exposures selected from the elution peak

720 to create the $I(q)$ vs q curves used for subsequent analyses. The molecular weight was calculated
721 by comparison to known structures (Shape&Size) [38]. $P(r)$ function was determined using GNOM
722 [39]. GNOM and Shape&Size are part of the ATSAS package (version 3.0) [78]. High resolution
723 structures were fit to the SAXS data using FoXS and flexibility in the high-resolution structures
724 was modeled against the Multi-FoXS data [40]. **Tables S2A-C** list sample, instrumentation, and
725 software for the SEC-SAXS experiment.

726

727 *Hydrogen–Deuterium eXchange Mass Spectrometry (HDX-MS)*

728 HDX-MS experiments were performed using a Synapt G2-SX HDMS system (Waters), similar to
729 previously reported [79]. Deuteration reactions were incubated at 20°C for 15s, 150s, 1500s,
730 and 15,000s in triplicate. 3 μ L of Blg-RbCBM74-Blg alone or in the presence of G10 were diluted
731 with 57 μ L of deuterated labeling buffer. Nondeuterated data were acquired by dilution with
732 protonated buffer and fully deuterated data were prepared by dilution in 99% D₂O, 1% (v/v)
733 formic acid) for 48h at room temperature. Samples were measured in triplicate using automated
734 handling with a PAL liquid handling system (LEAP), using randomized sequential collection with
735 Chronos.

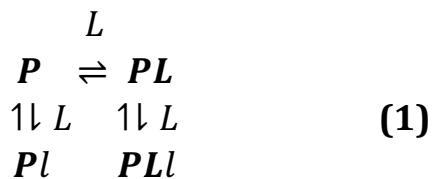
736 Following incubation, deuteration was quenched by mixing 50 μ L of the solution with
737 50 μ L of 100mM phosphate, pH 2.5 at 0.3°C. Immediately after the samples were quenched,
738 95 μ L of the sample was loaded onto an Acquity M-class UPLC (Waters) with sequential inline
739 pepsin digestion (Waters Enzymate BEH Pepsin column, 2.1mm × 30mm) for 3min at 15°C
740 followed by reverse phase purification (Acquity UPLC BEH C18 1.7 μ m at 0.2°C). Sample was
741 loaded onto the column equilibrated with 95% water, 5% acetonitrile, and 0.1% formic acid at a
742 flow rate of 40 μ L/min. A 7min linear gradient (5%–35% acetonitrile) followed by a ramp and
743 2min block (85% acetonitrile) was used for separation and directly continuously infused onto a
744 Synapt XS using Ion Mobility (Waters). [Glu1]-Fibrinopeptide B was used as a reference.

745 Data from nondeuterated samples were used for peptide identification with ProteinLynx
746 Global Server 3.0 (Waters). Full coverage of the protein was obtained, with the exception of the
747 region from residues 289-296, where peptides were not detected. The filtered peptide list and
748 MS data were imported into HDExaminer (Sierra Analytics) for deuterium uptake calculation
749 using both retention time and mobility matching. Representative peptides were utilized for a
750 final cumulative sequence coverage of 91.4%. Normalized deuterium uptake data was
751 calculated for protein alone and with G10, and differential protection, defined as those regions
752 with an average of 5% difference in deuteration between states over the 150-15000s timepoints,
753 were mapped onto the crystal structure using PyMOL (Schrodinger).

754

755 *Native Mass Spectrometry (MS)*

756 Stock solutions of Blg-RbCBM74-Blg and Sas6 were de-salted and solvent exchanged into
757 200mM ammonium acetate (pH 6.8 – 7.0) using Amicon Ultra-0.5mL centrifugal filters
758 (MilliporeSigma) with a 10kDa molecular weight cut-off. Ten consecutive washing steps were
759 performed to achieve sufficient desalting. The final concentrations of each protein stock solution
760 after desalting were estimated via UV absorbance at 280nm. A stock solution of G10 was
761 prepared by dissolving a known mass in 200mM ammonium acetate to achieve a final
762 concentration of 200 μ M. For native MS titration experiments used to quantify K_d values, the
763 concentration of protein was fixed at 5 μ M, and enough G10 was added to achieve final
764 concentrations of 0, 5, 25, 50, 100, and 150 μ M. Protein-G10 mixtures were then incubated at 4°C
765 overnight to achieve equilibration prior to native MS analysis.


766 All native binding experiments were performed using a Q Exactive Orbitrap MS with Ultra
767 High Mass Range (UHMR) platform (Thermo Fisher Scientific) [80]. Each sample (~3 μ M) was
768 transferred to a gold-coated borosilicate capillary needle (prepared in house), and ions were
769 generated via direct infusion using a nano-electrospray ionization (nESI) source operated in
770 positive mode. The capillary voltage was held at 1.2kV, the inlet capillary was heated to 250°C,

771 and the S-lens RF level was kept at 80. Low m/z detector optimization and high m/z transfer optics
772 were used, and the trapping gas pressure was set to 2. In-source trapping was enabled with the
773 desolvation voltage fixed at -25V for improved ion transmission and efficient salt adduct removal.
774 Transient times were set at 128ms (resolution of 25,000 at m/z 400), and 5 microscans were
775 combined into a single scan. A total of ~50 scans were averaged to produce the presented mass
776 spectra. All full scan data were acquired using a noise threshold of 0 to avoid pre-processing of
777 mass spectra. A total of three measurements for each ligand concentration were performed. Data
778 were then processed and deconvoluted using UniDec software [81].

779

780 *K_d Measurements by Native MS.*

781 We performed titration experiments for both Blg-RbCBM74-Blg and Sas6T using G10 and
782 acquired modeled titration curves. Each bound state differed by ~1639 Da, which agrees with
783 the theoretical mass of G10. To obtain the binding constants, we summed the peak intensities
784 of all abundant charge states in our mass spectra. *K_d* values were calculated using the relative
785 intensities of unbound protein and each ligand bound species from the mass spectra as
786 previously described [82]. Briefly, the protein-ligand binding equilibrium of Blg-RbCBM74-Blg
787 with G10 in solution can be described by the following reversible reaction:

793 where **L** is the ligand and **P** and **PL** are the free protein and protein with one specifically bound
794 ligand, respectively. Blg-RbCBM74-Blg possesses one ligand-binding site, *RbCBM74*. As the
795 concentration of ligand is increased, ligand molecules can bind nonspecifically during the nESI
796 process, generating artifactual peaks in the mass spectra corresponding to a two ligand-bound
797 complex. As the concentration of ligand is increased, ligand molecules can bind nonspecifically

798 during the nESI process, generating artifactual peaks in the mass spectra corresponding to a two
799 ligand-bound complex. Here, we presume that nonspecific binding arises equally for free protein
800 and that which possesses one specifically bound ligand represented by Pl and PLL in Eq. 1.
801 Based on these assumptions, the equations of mass balance and binding states can be described
802 the following system of equations:

$$c_p = [P] + ([PL] + [Pl]) + [PLL] \quad (2a)$$

$$c_L = [L] + ([PL] + [Pl]) + 2[PLL] \quad (2b)$$

$$K_d = \frac{[P][L]}{[PL]} \quad (2c)$$

$$K_n = \frac{[P][L]}{[Pl]} = \frac{[PL][L]}{[PLL]} \quad (2d)$$

811
812 where c_p and c_L represent the total concentrations of protein and ligand, respectively, and
813 concentrations in brackets represent those at equilibrium. K_d and K_n represent the dissociation
814 constants for specific and nonspecific binding steps, respectively. If 1) the peak intensities of
815 free protein and ligand-bound complexes are proportional to the abundances of those in solution
816 and 2) the spray and detection efficiency of all species is the same, then the fractional
817 intensities of each species can be determined:

$$F_i = \frac{\sum_n I(PL_i^{n+})/n}{\sum_{i=0}^2 \sum_n (PL_i^{n+})/n} \quad (3)$$

818
819 Here, the fractional intensities are calculated as the sum of the intensities of main peak ions at
820 all charge states. Since a Fourier transform MS method is utilized, signal intensities are
821 proportional to both ion abundance and charge state. Therefore, the ion intensities are
822 normalized for each charge state, n [83, 84]. These fractional intensities can be calculated from

825 the titration experiment at each ligand concentration and can then be related to the equilibrium
826 constants:

827

828
$$F_0 = \frac{K_d K_n}{K_d K_n + [L] (K_d + K_n) + [L]^2} \quad (4a)$$

829

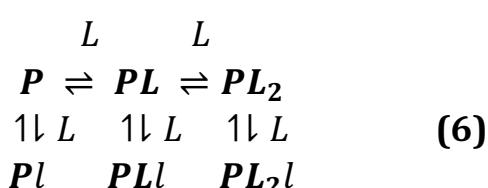
830
$$F_1 = \frac{[L] (K_d + K_n)}{K_d K_n + [L] (K_d + K_n) + [L]^2} \quad (4b)$$

831

832
$$F_2 = \frac{[L]^2}{K_d K_n + [L] (K_d + K_n) + [L]^2} \quad (4c)$$

833

834 [L] can also be determined from nESI-MS titration data:


835

836
$$[L] = c_L - c_P (F_1 + 2F_2) \quad (5)$$

837

838 [L] was then obtained at each ligand concentration and applied to the Eqs. 4a-c. Equations 4a-b
839 were then fitted to experimental fractional intensities using nonlinear least-squares curve fitting
840 using the */sqnonlin.m*. function in MATLAB. A more detailed derivation of these equations is
841 provided elsewhere [82], along with the approach utilized for Sas6 which possesses two sites
842 for specific binding (*RbCBM74* and *RbCBM26*) and exhibits a third nonspecific bound state as
843 shown in Eq. 6.

844

846

847

848

849

850

851 *Sequence collection*

852 Amino acid sequences of CBM74 modules were collected according to information in the CAZy
853 database (<http://www.cazy.org/>) yielding 29 sequences (CAZy update: March 2022) [85]. This set
854 was subsequently completed with sequences of hypothetical CBM74s based on protein BLAST
855 searches (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>) using the CBM74 sequences from Sas6 of

856 *Ruminococcus bromii* (GenBank Acc. No.: PKD32096.1) and the GH13_32 α -amylase from
857 *Microbacterium aurum* (GenBank Acc. No.: AKG25402.1) as queries [20, 86, 87]. In total, three
858 searches with each query sequence were performed, limiting the searched databases to
859 taxonomy kingdoms of Bacteria, Archaea and Eucarya (with no relevant results for the latter two).
860 To capture a wide spectrum of organisms harboring a CBM74 module, one non-redundant amino
861 acid sequence was selected to represent each species and/or bacterial strain. The BLAST
862 searches thus yielded 93 additional CBM74 sequences of bacterial origin; the last sequence taken
863 being the CBM74 module of a putative α -amylase from uncultured *Eubacterium* sp. (GenBank:
864 SCJ65691.1; E-value: 3e-39). That preliminary set of 122 sequences was reduced by eliminating
865 23 sequences due to their redundancy and/or incompleteness of the CBM74 module. The final
866 set of CBM74 modules consisted of 99 sequences (Extended Data Table 2). All sequences were
867 retrieved from the GenBank (<https://www.ncbi.nlm.nih.gov/genbank/>) and/or UniProt
868 (<https://www.uniprot.org/>) databases [88, 89].

869

870 *Sequence comparison and evolutionary analysis*

871 The alignment of 99 CBM74 modules from the final set was performed using the program Clustal-
872 Omega (<https://www.ebi.ac.uk/Tools/msa/clustalo/>) [90]. Only a subtle manual tuning of the
873 computer-produced alignment was necessary to perform to maximize sequence similarities. The
874 evolutionary tree of these 99 sequences was calculated by a maximum-likelihood method (on the
875 final alignment including the gaps) using the WAG substitution model and the bootstrapping
876 procedure with 500 bootstrap trials implemented in the MEGA-X package [91-93]. The calculated
877 tree file was displayed with the program iTOL [94] (<https://itol.embl.de/>). From both the alignment
878 and the tree of all 99 sequences, a sample of 33 representative CBM74s was selected for a
879 simplified alignment and tree. The structural comparison was created using the above-mentioned
880 alignment in conjunction with the web-based CONSURF tool [54-56].

881

882 *Data availability*

883 The X-ray structures and diffraction data reported in this paper have been deposited in the Protein
884 Data Bank under the accession codes 7UWU, 7UWV and 7UWW. The SAXS data are deposited
885 in the small angle x-ray scattering database (SASDB) under the accession code SASDPE2 [95].
886 All mass spectrometry data will be made available upon request.

887

888 **Funding and acknowledgements**

889 This work is primarily supported by a Ruth L. Kirschstein National Research Service Award
890 Individual Predoctoral Fellowship (F31 – F31AT011282 to A.L.P.) from the National Center for
891 Complementary & Integrative Health (NCCIH) and a Research Program Project grant (P01-
892 HL149633 to N.M.K.) from the National Heart, Lung, and Blood Institute (NHLBI) of the National
893 Institutes of Health (NIH). Next-generation Native Mass Spectrometry technologies were
894 supported by National Institute of General Medical Sciences (NIGMS) of the NIH (R01-GM095832
895 to B.T.R.). Hydrogen-Deuterium exchange mass spectrometry acquisition was supported by
896 National Science Foundation (NSF) (DBI 2018007 to C.W.V.K.). The structural biology
897 approaches herein used resources of the Advanced Photon Source; a U.S. Department of Energy
898 (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National
899 Laboratory under Contract No. DE-AC02-06CH11357. The Biophysics Collaborative Access
900 Team is supported by P30-GM138395 from NIGMS-NIH. Use of the Pilatus 3 1M detector was
901 provided by Grant 1S10OD018090-01 from NIGMS-NIH. Use of the LS-CAT Sector 21 was
902 supported by the Michigan Economic Development Corporation and the Michigan Technology
903 Tri-Corridor (Grant 085P1000817). S.J. and F.M. thank the Slovak Grant Agency VEGA for the
904 financial support by the Grant No. 2/0146/21. In collaboration with this research, we acknowledge
905 support from the University of Michigan Biomedical Research Core Facilities Light Microscopy
906 Core. For the native mass spectrometry work, we would like to acknowledge the Biological Mass

907 Spectrometry facility at the University of Michigan Department of Chemistry. The content is solely
908 the responsibility of the authors and does not necessarily represent the official views of VEGA,
909 the National Science Foundation, or National Institutes of Health.

910

911 **Author contributions**

912 N.M.K. and A.L.P. conceptualization;

913 A.L.P., F.M.C., R. V-V., K.M.A., F.M., T.C., Z.W., J.H., C.W.V.K, S.J., B.T.R., and N.M.K. data
914 curation;

915 A.L.P., F.M.C., R.V-V., K.M.A., F.M., T.C., Z.W., J.H., C.W.V.K, S.J., B.T.R., and N.M.K. formal
916 analysis and data interpretation;

917 N.M.K., A.L.P., C.W.V.K, S.J., B.T.R., Z.W., and J.H. funding acquisition;

918 A.L.P., F.M.C., R. V-V., K.M.A., F.M., T.C., Z.W., J.H., C.W.V.K, and S.J. investigation;

919 A.L.P., F.M.C., R. V-V., K.M.A., F.M., T.C., Z.W., J.H., C.W.V.K, S.J., B.T.R., and N.M.K.
920 methodology;

921 A.L.P., F.M.C., R.V-V., C.W.V.K , S.J. and N.M.K original draft;

922 A.L.P., F.M.C., R.V-V., F.M., J.H., C.W.V.K, S.J., B.T.R., and N.M.K. writing- review and editing;

923 N.M.K., J.H., C.W.V.K, S.J., and B.T.R. supervision;

924 A.L.P., F.M.C., R.V-V., T.C., and S.J. visualization.

925

926 **Conflict of interest**

927 The authors declare that they have no conflicts of interest with the contents of this article.

928

929
930 1. Salminen, S., E. Isolauri, and T. Onnela, *Gut Flora in Normal and Disordered States*.
931 Chemotherapy, 1995. **41(suppl 1)**(Suppl. 1): p. 5-15.
932 2. Gibson, G.R. and M.B. Roberfroid, *Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics*. J Nutr, 1995. **125**(6): p. 1401-12.
933 3. Cummings, J.H. and G.T. Macfarlane, *The control and consequences of bacterial fermentation in the human colon*. J Appl Bacteriol, 1991. **70**(6): p. 443-59.
934 4. Backhed, F., et al., *Host-bacterial mutualism in the human intestine*. Science, 2005. **307**(5717): p. 1915-20.
935 5. Wu, X., et al., *Effects of the intestinal microbial metabolite butyrate on the development of colorectal cancer*. J Cancer, 2018. **9**(14): p. 2510-2517.
936 6. Zaman, S.A. and S.R. Sarbini, *The potential of resistant starch as a prebiotic*. Critical Reviews in Biotechnology, 2016. **36**(3): p. 578-584.
937 7. Bertoft, E., *Understanding Starch Structure: Recent Progress*. 2017. **7**(3): p. 56.
938 8. Pérez, S. and E. Bertoft, *The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review*. 2010. **62**(8): p. 389-420.
939 9. Cerqueira, F.M., et al., *Starch Digestion by Gut Bacteria: Crowdsourcing for Carbs*. Trends Microbiol, 2020. **28**(2): p. 95-108.
940 10. Ze, X., et al., *Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon*. ISME J, 2012. **6**(8): p. 1535-43.
941 11. Jung, D.H., et al., *Bifidobacterium adolescentis P2P3, a Human Gut Bacterium Having Strong Non-Gelatinized Resistant Starch-Degrading Activity*. J Microbiol Biotechnol, 2019. **29**(12): p. 1904-1915.
942 12. Teichmann, J. and D.W. Cockburn, *In vitro Fermentation Reveals Changes in Butyrate Production Dependent on Resistant Starch Source and Microbiome Composition*. 2021. **12**(976).
943 13. Duranti, S., et al., *Genomic characterization and transcriptional studies of the starch-utilizing strain Bifidobacterium adolescentis 22L*. Appl Environ Microbiol, 2014. **80**(19): p. 6080-90.
944 14. Belenguer, A., et al., *Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut*. Appl Environ Microbiol, 2006. **72**(5): p. 3593-9.
945 15. Venkataraman, A., et al., *Variable responses of human microbiomes to dietary supplementation with resistant starch*. Microbiome, 2016. **4**(1): p. 33.
946 16. Baxter, N.T., et al., *Dynamics of Human Gut Microbiota and Short-Chain Fatty Acids in Response to Dietary Interventions with Three Fermentable Fibers*. MBio, 2019. **10**(1).
947 17. Ze, X., et al., *Unique Organization of Extracellular Amylases into Amylosomes in the Resistant Starch-Utilizing Human Colonic Firmicutes Bacterium Ruminococcus bromii*. mBio, 2015. **6**(5): p. e01058-15.
948 18. Smith, S.P. and E.A. Bayer, *Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex*. Curr Opin Struct Biol, 2013. **23**(5): p. 686-94.
949 19. Bayer, E.A., E. Morag, and R. Lamed, *The cellulosome--a treasure-trove for biotechnology*. Trends Biotechnol, 1994. **12**(9): p. 379-86.
950 20. Mukhopadhyay, I., et al., *Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starch-degrader Ruminococcus bromii*. Environ Microbiol, 2018. **20**(1): p. 324-336.
951 21. Janecek, S., et al., *Starch-binding domains as CBM families-history, occurrence, structure, function and evolution*. Biotechnol Adv, 2019. **37**(8): p. 107451.
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978

979 22. Valk, V., et al., *Carbohydrate-binding module 74 is a novel starch-binding domain*
980 *associated with large and multidomain alpha-amylase enzymes*. *FEBS J*, 2016. **283**(12):
981 p. 2354-68.

982 23. Dobranowski, P.A. and A. Stintzi, *Resistant starch, microbiome, and precision modulation*.
983 *Gut Microbes*, 2021. **13**(1): p. 1926842.

984 24. Ravi, A., et al., *Hybrid metagenome assemblies link carbohydrate structure with function*
985 *in the human gut microbiome*. *Communications Biology*, 2022. **5**(1): p. 932.

986 25. Xu, J., et al., *Metatranscriptomic analysis of colonic microbiota's functional response to*
987 *different dietary fibers in growing pigs*. *Animal Microbiome*, 2021. **3**(1): p. 45.

988 26. Zhang, H., et al., *dbCAN2: a meta server for automated carbohydrate-active enzyme*
989 *annotation*. *Nucleic Acids Research*, 2018. **46**(W1): p. W95-W101.

990 27. Lombard, V., et al., *The carbohydrate-active enzymes database (CAZy) in 2013*. *Nucleic*
991 *Acids Res*, 2014. **42**(Database issue): p. D490-5.

992 28. Blum, M., et al., *The InterPro protein families and domains database: 20 years on*. *Nucleic*
993 *Acids Res*, 2021. **49**(D1): p. D344-D354.

994 29. Cerqueira, F.M., et al., *Sas20 is a highly flexible starch-binding protein in the*
995 *Ruminococcus bromii cell-surface amylosome*. *J Biol Chem*, 2022: p. 101896.

996 30. Fontes, C.M. and H.J. Gilbert, *Cellulosomes: highly efficient nanomachines designed to*
997 *deconstruct plant cell wall complex carbohydrates*. *Annu Rev Biochem*, 2010. **79**: p. 655-
998 81.

999 31. Boraston, A.B., et al., *A structural and functional analysis of alpha-glucan recognition by*
1000 *family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch*
1001 *recognition*. *J Biol Chem*, 2006. **281**(1): p. 587-98.

1002 32. Matsui, M., M. Kakuta, and A. Misaki, *Comparison of the Unit-chain Distributions of*
1003 *Glycogens from Different Biological Sources, Revealed by Anion Exchange*
1004 *Chromatography*. *Bioscience, Biotechnology, and Biochemistry*, 1993. **57**(4): p. 623-627.

1005 33. Brewer, M.K. and M.S. Gentry, *Brain Glycogen Structure and Its Associated Proteins: Past, Present and Future*. *Adv Neurobiol*, 2019. **23**: p. 17-81.

1007 34. Singh, R.S., G.K. Saini, and J.F. Kennedy, *Pullulan: Microbial sources, production and*
1008 *applications*. *Carbohydr Polym*, 2008. **73**(4): p. 515-31.

1009 35. Khalikova, E., P. Susi, and T. Korpela, *Microbial dextran-hydrolyzing enzymes: fundamentals and applications*. *Microbiol Mol Biol Rev*, 2005. **69**(2): p. 306-25.

1011 36. Valk, V., M.v.d.K. Rachel, and L. Dijkhuizen, *The evolutionary origin and possible*
1012 *functional roles of FNIII domains in two *Microbacterium aurum* B8.A granular starch*
1013 *degrading enzymes, and in other carbohydrate acting enzymes*. *Amylase*, 2017. **1**(1): p.
1014 1-11.

1015 37. Krissinel, E. and K. Henrick, *Inference of macromolecular assemblies from crystalline*
1016 *state*. *J Mol Biol*, 2007. **372**(3): p. 774-97.

1017 38. Franke, D., C.M. Jeffries, and D.I. Svergun, *Machine Learning Methods for X-Ray*
1018 *Scattering Data Analysis from Biomacromolecular Solutions*. *Biophysical Journal*, 2018.
1019 **114**(11): p. 2485-2492.

1020 39. Svergun, D., *Determination of the regularization parameter in indirect-transform methods*
1021 *using perceptual criteria*. *Journal of Applied Crystallography*, 1992. **25**(4): p. 495-503.

1022 40. Schneidman-Duhovny, D., et al., *FoXS, FoXSdock and MultiFoXS: Single-state and multi-*
1023 *state structural modeling of proteins and their complexes based on SAXS profiles*. *Nucleic*
1024 *Acids Res*, 2016. **44**(W1): p. W424-9.

1025 41. Holm, L., *Using Dali for Protein Structure Comparison*. *Methods Mol Biol*, 2020. **2112**: p.
1026 29-42.

1027 42. Notenboom, V., et al., *Crystal structures of the family 9 carbohydrate-binding module from*
1028 *Thermotoga maritima xylanase 10A in native and ligand-bound forms*. *Biochemistry*, 2001.
1029 **40**(21): p. 6248-56.

1030 43. Milles, L.F., et al., *Calcium stabilizes the strongest protein fold*. Nat Commun, 2018. **9**(1):
1031 p. 4764.

1032 44. Zheng, H., et al., *CheckMyMetal: a macromolecular metal-binding validation tool*. Acta
1033 Crystallogr D Struct Biol, 2017. **73**(Pt 3): p. 223-233.

1034 45. Strynadka, N.C.J. and M.N.G. James, *Towards an understanding of the effects of calcium*
1035 *on protein structure and function*. Current Opinion in Structural Biology, 1991. **1**(6): p. 905-
1036 914.

1037 46. Holm, L., *DALI and the persistence of protein shape*. 2020. **29**(1): p. 128-140.

1038 47. Rodriguez-Sanoja, R., et al., *A single residue mutation abolishes attachment of the*
1039 *CBM26 starch-binding domain from Lactobacillus amylovorus alpha-amylase*. J Ind
1040 Microbiol Biotechnol, 2009. **36**(3): p. 341-6.

1041 48. Baldwin, P.M., M.C. Davies, and C.D. Melia, *Starch granule surface imaging using low-*
1042 *voltage scanning electron microscopy and atomic force microscopy*. Int J Biol Macromol,
1043 1997. **21**(1-2): p. 103-7.

1044 49. Szymonska, J. and F. Krok, *Potato starch granule nanostructure studied by high resolution*
1045 *non-contact AFM*. Int J Biol Macromol, 2003. **33**(1-3): p. 1-7.

1046 50. Park, H., S. Xu, and K. Seetharaman, *A novel in situ atomic force microscopy imaging*
1047 *technique to probe surface morphological features of starch granules*. Carbohydr Res,
1048 2011. **346**(6): p. 847-53.

1049 51. Lineback, D.R., *Current Concepts of Starch Structure and Its Impact on Properties*.
1050 Journal of the Japanese Society of Starch Science, 1986. **33**(1): p. 80-88.

1051 52. Abbott, D.W. and A.B. Boraston, *Chapter eleven - Quantitative Approaches to The*
1052 *Analysis of Carbohydrate-Binding Module Function*, in *Methods in Enzymology*, H.J.
1053 Gilbert, Editor. 2012, Academic Press. p. 211-231.

1054 53. Soper, M.T., et al., *Amyloid-beta-neuropeptide interactions assessed by ion mobility-mass*
1055 *spectrometry*. Phys Chem Chem Phys, 2013. **15**(23): p. 8952-61.

1056 54. Ashkenazy, H., et al., *ConSurf 2016: an improved methodology to estimate and visualize*
1057 *evolutionary conservation in macromolecules*. Nucleic Acids Res, 2016. **44**(W1): p. W344-
1058 50.

1059 55. Ashkenazy, H., et al., *ConSurf 2010: calculating evolutionary conservation in sequence*
1060 *and structure of proteins and nucleic acids*. Nucleic Acids Res, 2010. **38**(Web Server
1061 issue): p. W529-33.

1062 56. Celniker, G., et al., *ConSurf: Using Evolutionary Data to Raise Testable Hypotheses about*
1063 *Protein Function*. 2013. **53**(3-4): p. 199-206.

1064 57. Jung, D.H., et al., *The presence of resistant starch-degrading amylases in Bifidobacterium*
1065 *adolescentis of the human gut*. Int J Biol Macromol, 2020. **161**: p. 389-397.

1066 58. Rees, D.A. and E.J. Welsh, *Secondary and Tertiary Structure of Polysaccharides in*
1067 *Solutions and Gels*. 1977. **16**(4): p. 214-224.

1068 59. Cameron, E.A., et al., *Multidomain Carbohydrate-binding Proteins Involved in Bacteroides*
1069 *thetaiotaomicron Starch Metabolism*. J Biol Chem, 2012. **287**(41): p. 34614-25.

1070 60. Hillmann, G., *Measurement by End-point Determination on Paper*, in *Methods of*
1071 *Enzymatic Analysis (Second Edition)*, H.U. Bergmeyer, Editor. 1974, Academic Press. p.
1072 903-909.

1073 61. Schneider, C.A., W.S. Rasband, and K.W. Eliceiri, *NIH Image to ImageJ: 25 years of*
1074 *image analysis*. Nature Methods, 2012. **9**(7): p. 671-675.

1075 62. Cockburn, D.W., et al., *Novel carbohydrate binding modules in the surface anchored*
1076 *alpha-amylase of Eubacterium rectale provide a molecular rationale for the range of*
1077 *starches used by this organism in the human gut*. Mol Microbiol, 2018. **107**(2): p. 249-264.

1078 63. Turnbull, W.B. and A.H. Daranas, *On the value of c: can low affinity systems be studied*
1079 *by isothermal titration calorimetry?* J Am Chem Soc, 2003. **125**(48): p. 14859-66.

1080 64. Vonrhein, C., et al., *Data processing and analysis with the autoPROC toolbox*. Acta
1081 Crystallographica Section D, 2011. **67**(4): p. 293-302.

1082 65. Kabsch, W., *Xds*. Acta Crystallogr D Biol Crystallogr, 2010. **66**(Pt 2): p. 125-32.

1083 66. Evans, P.R. and G.N. Murshudov, *How good are my data and what is the resolution?* Acta
1084 Crystallogr D Biol Crystallogr, 2013. **69**(Pt 7): p. 1204-14.

1085 67. El Omari, K., et al., *Pushing the limits of sulfur SAD phasing: de novo structure solution of*
1086 *the N-terminal domain of the ectodomain of HCV E1*. Acta Crystallogr D Biol Crystallogr,
1087 2014. **70**(Pt 8): p. 2197-203.

1088 68. Terwilliger, T.C., et al., *Decision-making in structure solution using Bayesian estimates of*
1089 *map quality: the PHENIX AutoSol wizard*. Acta Crystallographica Section D, 2009. **65**(6):
1090 p. 582-601.

1091 69. McCoy, A.J., et al., *Phaser crystallographic software*. Journal of Applied Crystallography,
1092 2007. **40**(4): p. 658-674.

1093 70. Emsley, P. and K. Cowtan, *Coot: model-building tools for molecular graphics*. Acta
1094 Crystallogr D Biol Crystallogr, 2004. **60**(Pt 12 Pt 1): p. 2126-32.

1095 71. Afonine, P.V., et al., *Towards automated crystallographic structure refinement with*
1096 *phenix.refine*. Acta Crystallogr D Biol Crystallogr, 2012. **68**(Pt 4): p. 352-67.

1097 72. Zheng, H., et al., *Validation of metal-binding sites in macromolecular structures with the*
1098 *CheckMyMetal web server*. Nat Protoc, 2014. **9**(1): p. 156-70.

1099 73. Aguirre, J., et al., *Privateer: software for the conformational validation of carbohydrate*
1100 *structures*. Nature Structural & Molecular Biology, 2015. **22**(11): p. 833-834.

1101 74. Kirby, N., et al., *Improved radiation dose efficiency in solution SAXS using a sheath flow*
1102 *sample environment*. Acta crystallographica. Section D, Structural biology, 2016. **72**(Pt
1103 12): p. 1254-1266.

1104 75. Hopkins, J.B., R.E. Gilliland, and S. Skou, *BioXTAS RAW: improvements to a free open-*
1105 *source program for small-angle X-ray scattering data reduction and analysis*. J Appl
1106 Crystallogr, 2017. **50**(Pt 5): p. 1545-1553.

1107 76. Rambo, R.P. and J.A. Tainer, *Accurate assessment of mass, models and resolution by*
1108 *small-angle scattering*. Nature, 2013. **496**(7446): p. 477-481.

1109 77. Pliadov, V., et al., *SAXSMoW 2.0: Online calculator of the molecular weight of proteins in*
1110 *dilute solution from experimental SAXS data measured on a relative scale*. Protein Sci,
1111 2019. **28**(2): p. 454-463.

1112 78. Manalastas-Cantos, K., et al., *ATSAS 3.0: expanded functionality and new tools for small-*
1113 *angle scattering data analysis*. Journal of Applied Crystallography, 2021. **54**(1): p. 343-
1114 355.

1115 79. Murphy, R.D., et al., *The Toxoplasma glucan phosphatase TgLaforin utilizes a distinct*
1116 *functional mechanism that can be exploited by therapeutic inhibitors*. Journal of Biological
1117 Chemistry, 2022. **298**(7): p. 102089.

1118 80. van de Waterbeemd, M., et al., *High-fidelity mass analysis unveils heterogeneity in intact*
1119 *ribosomal particles*. Nature Methods, 2017. **14**(3): p. 283-286.

1120 81. Marty, M.T., et al., *Bayesian deconvolution of mass and ion mobility spectra: from binary*
1121 *interactions to polydisperse ensembles*. Anal Chem, 2015. **87**(8): p. 4370-6.

1122 82. Gulbakan, B., et al., *Native Electrospray Ionization Mass Spectrometry Reveals Multiple*
1123 *Facets of Aptamer-Ligand Interactions: From Mechanism to Binding Constants*. J Am
1124 Chem Soc, 2018. **140**(24): p. 7486-7497.

1125 83. Wang, W., E.N. Kitova, and J.S. Klassen, *Influence of solution and gas phase processes*
1126 *on protein-carbohydrate binding affinities determined by nanoelectrospray Fourier*
1127 *transform ion cyclotron resonance mass spectrometry*. Anal Chem, 2003. **75**(19): p. 4945-
1128 55.

1129 84. Báez Bolívar, E.G., et al., *Submicron Emitters Enable Reliable Quantification of Weak*
1130 *Protein–Glycan Interactions by ESI-MS*. Analytical Chemistry, 2021. **93**(9): p. 4231-4239.

1131 85. Drula, E., et al., *The carbohydrate-active enzyme database: functions and literature*.
 1132 Nucleic Acids Res, 2022. **50**(D1): p. D571-D577.

1133 86. Valk, V., et al., *Degradation of Granular Starch by the Bacterium Microbacterium aurum*
 1134 *Strain B8.A Involves a Modular alpha-Amylase Enzyme System with FNIII and CBM25*
 1135 *Domains*. Appl Environ Microbiol, 2015. **81**(19): p. 6610-20.

1136 87. Altschul, S.F., et al., *Basic local alignment search tool*. J Mol Biol, 1990. **215**(3): p. 403-
 1137 10.

1138 88. Sayers, E.W., et al., *GenBank*. Nucleic Acids Res, 2021. **49**(D1): p. D92-D96.

1139 89. UniProt, C., *UniProt: the universal protein knowledgebase in 2021*. Nucleic Acids Res,
 1140 2021. **49**(D1): p. D480-D489.

1141 90. Sievers, F., et al., *Fast, scalable generation of high-quality protein multiple sequence*
 1142 *alignments using Clustal Omega*. Mol Syst Biol, 2011. **7**: p. 539.

1143 91. Whelan, S. and N. Goldman, *A general empirical model of protein evolution derived from*
 1144 *multiple protein families using a maximum-likelihood approach*. Mol Biol Evol, 2001. **18**(5):
 1145 p. 691-9.

1146 92. Felsenstein, J., *Confidence Limits on Phylogenies: An Approach Using the Bootstrap*.
 1147 Evolution, 1985. **39**(4): p. 783-791.

1148 93. Kumar, S., et al., *MEGA X: Molecular Evolutionary Genetics Analysis across Computing*
 1149 *Platforms*. Mol Biol Evol, 2018. **35**(6): p. 1547-1549.

1150 94. Letunic, I. and P. Bork, *Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree*
 1151 *display and annotation*. Bioinformatics, 2007. **23**(1): p. 127-8.

1152 95. Kikhney, A.G., et al., *SASBDB: Towards an automatically curated and validated repository*
 1153 *for biological scattering data*. Protein Sci, 2020. **29**(1): p. 66-75.

1154

1155 **Extended Data**

Extended Table 1A: Average masses assigned to native mass spectrometry peaks

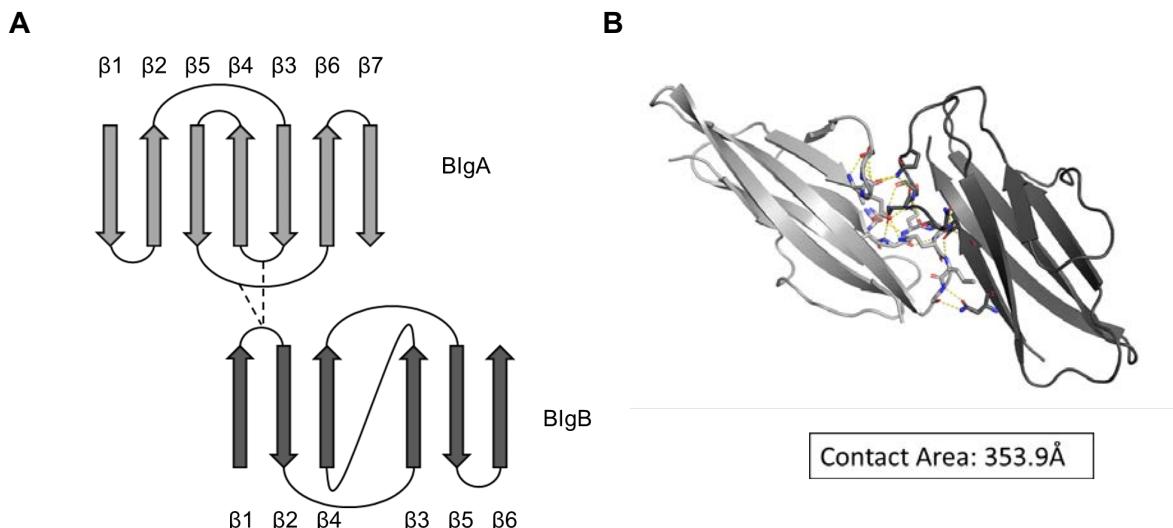
P	0 bound (Da)	1 bound (Da)	2 bound (Da)	3 bound (Da)	Av Diff. (Da) ^a
Blg-RbCBM74-Big	57635.3 ± 0.8	59274.7 ± 0.6	60913.8 ± 0.2	N/A	1639.4 ± 0.8
Sas6	69064.9 ± 0.6	70704.3 ± 0.5	72343.8 ± 1.8	73982.1 ± 0.6	1639.3 ± 1.0

^aAverage difference between bound states across all ligand concentrations.

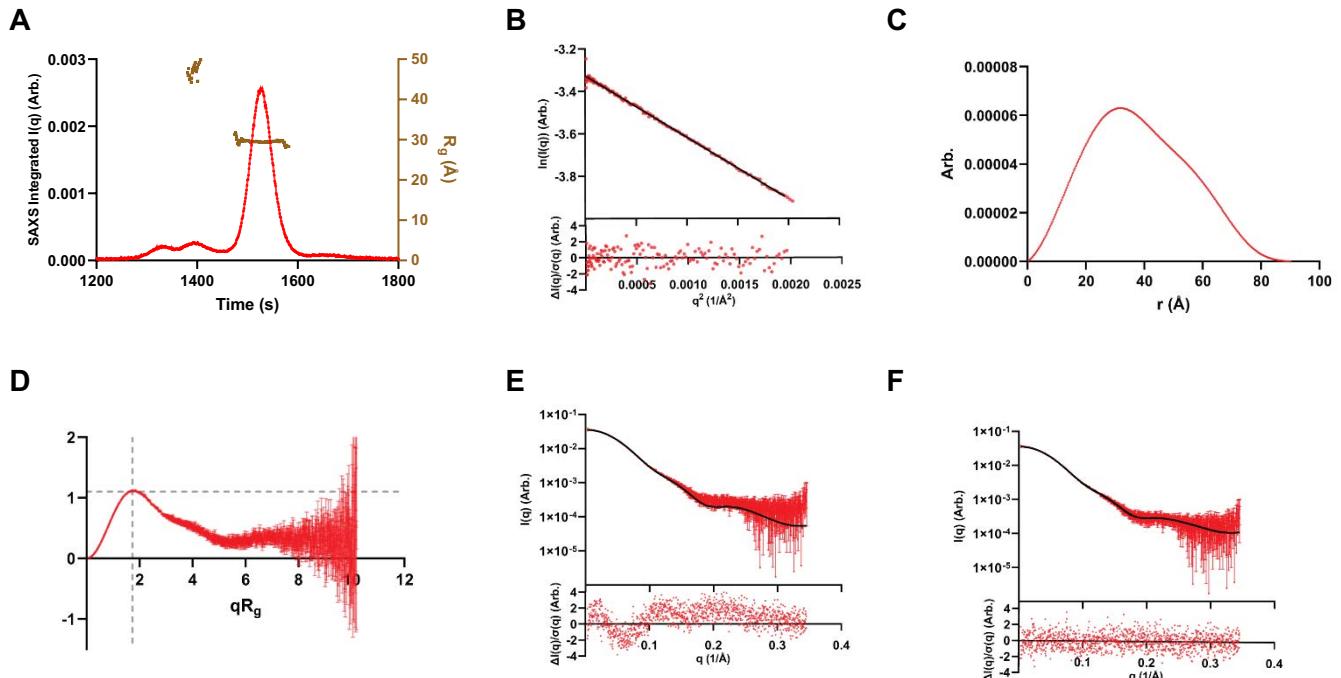
Extended Table 1B: Binding parameters determined by Native Mass Spectrometry

P	Charge States	K _{d1} (μM)	K _{d2} (μM)	K _n (μM) ^a	SSR ^b
Blg-RbCBM74-Big	11+ to 14+	3.8 ± 0.5	N/A	1154.4 ± 378.0	0.0111
Sas6	13+ to 15+	3.4 ± 0.5	165.6 ± 38.8	782.6 ± 647.9	0.0170

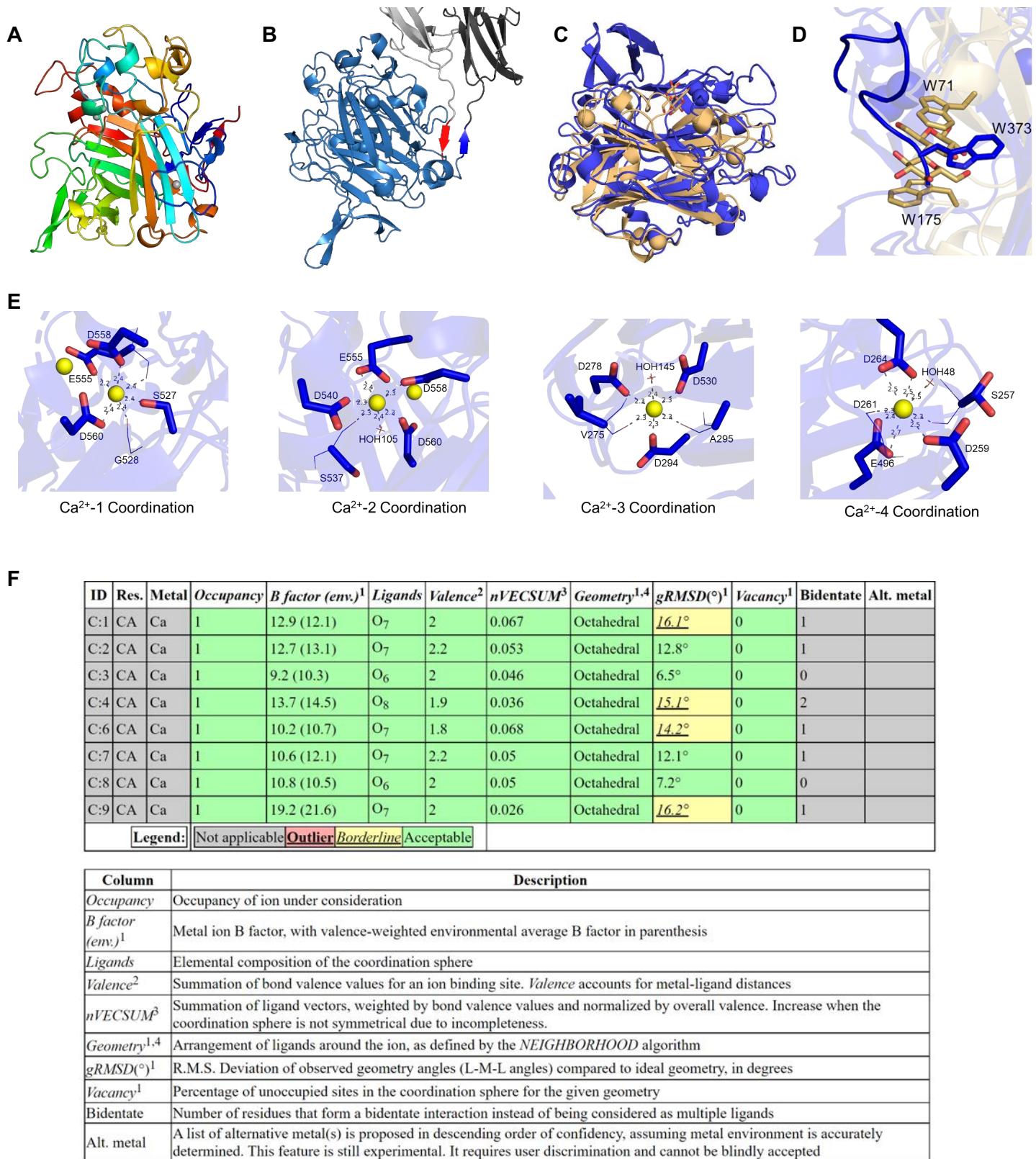
^aK_n - dissociation constant for nonspecific binding step during nESI. Values reported with 95% confidence interval.


^bSSR - sum of squared residuals

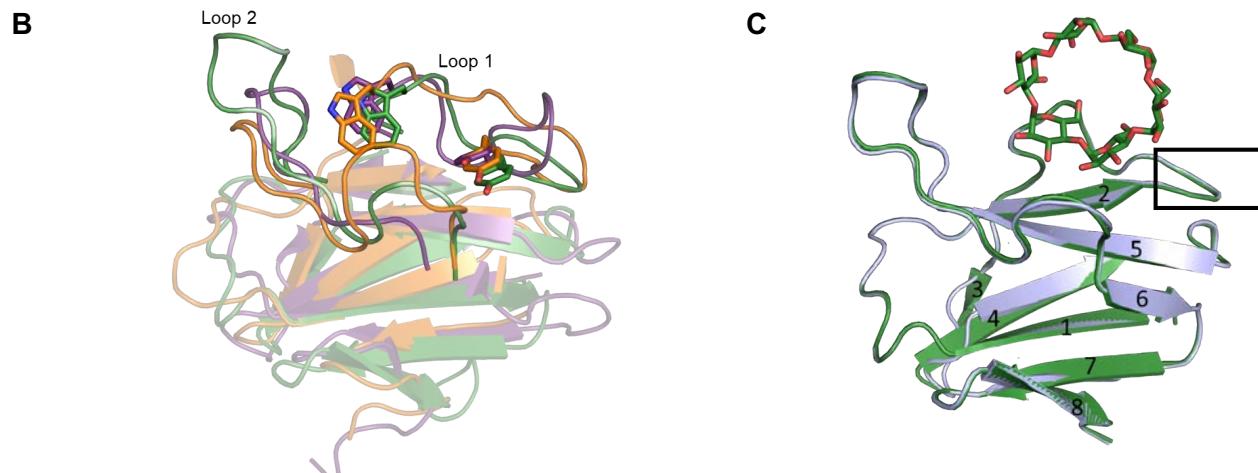
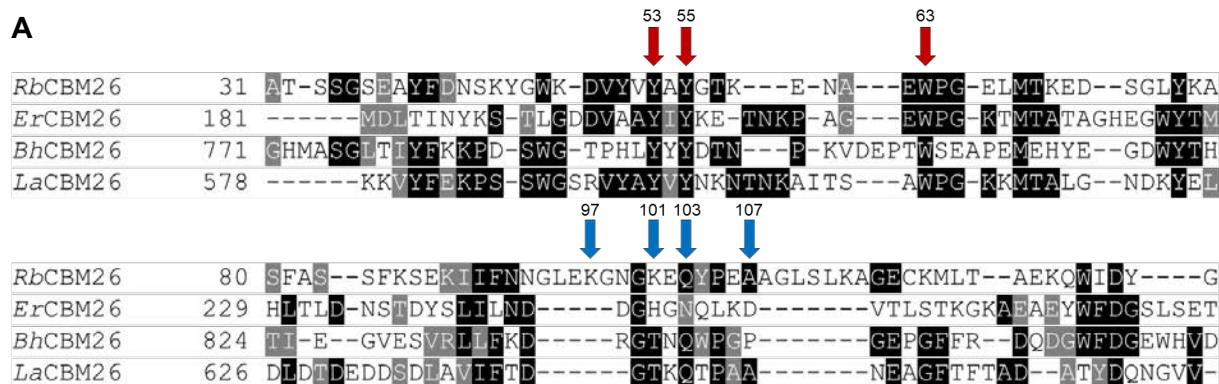
1156


1157

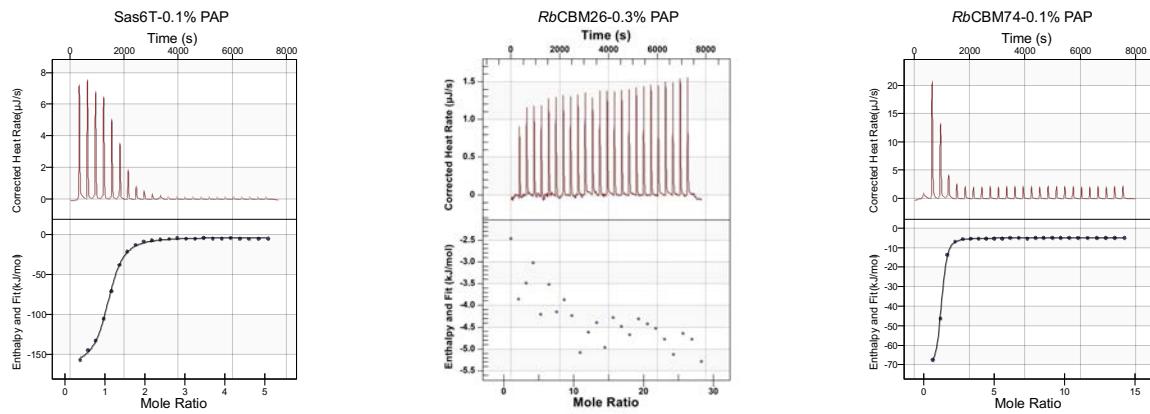
Extended Table 2: List of 99 selected CBM74 sequences.*


No.	Protein	Subfamily	Source material	Source organism	GenBank	UniProt	Length	CBM74	Additional CBMs*	Additional CBMs**
1.	pAAMY	GH13_28	Korean adult feces (HG)	<i>Bifidobacterium adolescentis</i>	AJ171984.1	A0A09K250	1462	657-978	2x CBM25; CBM26	-
2.	pAAMY	GH13_28	Human feces (HG)	<i>Bifidobacterium adolescentis</i>	AJ064170.1	A0A0BSBP09	1432	621-942	2x CBM25; CBM26	-
3.	pAAMY	-	Human fecal sample (HG)	<i>Bifidobacterium ruminantium</i>	MBU94121.68.1	-	1200	636-957	-	CBM26
4.	pAAMY	GH13_28	Human feces (HG)	<i>Bifidobacterium oligulatum</i>	AMK575G.1	A0A126SL08	1527	620-950	2x CBM20; CBM26	-
5.	pAAMY	-	-	<i>Bifidobacterium merycidum</i>	SHB84896.1	UP0009218F34	1186	657-978	-	CBM26
6.	pAAMY	-	Hamster dental plaque (RoG)	<i>Bifidobacterium turuanense</i>	KF06122.1	A0A087EEC1	1361	650-971	-	-
7.	pAAMY	GH13_28	-	<i>Bifidobacterium pseudolongum</i>	UB206046.1	-	1530	644-956	CBM25	-
8.	pAAMY	GH13_28	<i>Sus scrofa</i> cecum (PG)	<i>Bifidobacterium pseudolongum</i>	ATU197821	A0A2D3D2U4	1613	644-946	CBM20; CBM26	-
9.	pAAMY	GH13_28	Rumen fluid of <i>Bos taurus</i> ()	<i>Bifidobacterium gallicum</i>	KF159086.1	A0A087AN6	1612	648-960	-	CBM25
10.	pAAMY	-	Human adult intestine (HG)	<i>Bifidobacterium dolichoidis</i>	RSX5520.1	A0A30FRN0	1228	635-946	-	CBM25
11.	pAAMY	-	<i>Dolichos palagonium</i> fecal samples (RoG)	<i>Bifidobacterium castoris</i>	RSX4996.1	A0A430F482	1439	639-944	-	CBM25
12.	pAAMY	-	<i>Castor fiber</i> feces (RoG)	<i>Bifidobacterium pullosum</i>	WP_10464541.1	UP0019560CA0	1251	626-939	-	CBM25
13.	pAAMY	-	-	<i>Pseudocardioa suis</i>	PJH2656.1	UP000BC6C43C	1455	621-934	-	CBM26
14.	pAAMY	-	<i>Sus scrofa</i> digestive tract (PG)	<i>Pseudocardioa radai</i>	OZG53567.1	A0A261F64	2041	624-937	-	CBM26
15.	pAAMY	-	Wastewater (W)	<i>Bifidobacterium minimum</i>	KF173654.1	A0A087BRK4	1457	631-943	-	2x CBM25; CBM26
16.	pAAMY	-	Swine feces (PG)	<i>Bifidobacterium thermophilum</i>	KF07018.1	UP000505012E	1642	604-917	-	CBM26
17.	pAAMY	-	Feces of tamarin (PrG)	<i>Bifidobacterium goedii</i>	RSX5155.1	A0A430FT3	1522	635-946	-	2x CBM20; CBM25
18.	pAAMY	-	-	<i>Bifidobacterium pullorum</i>	WP_10464541.1	UP0019560CA0	1251	626-939	-	CBM25
19.	pAAMY	-	-	<i>Gallisordiostra ingulstei</i>	GG114461.1	UP0016604DC	1473	650-963	-	3x CBM25
20.	HYPO	-	Human gut (HG)	<i>Prevotella sp.</i>	MBD9217786.1	UP001D949E24	677	372-677	-	CBM26
21.	pAAMY	-	Human feces (HG)	<i>Prevotella amnii</i>	TFH8215.1	A0A4YSPVY7	1095	791-1095	-	CBM26
22.	pAAMY	-	Human gut (HG)	<i>Prevotella sp. CAG:86</i>	CDC2913.1	R6QE37	1082	777-1082	-	CBM26
23.	pAAMY	-	Human fecal samples (HG)	<i>Prevotella acopi</i>	MBV341028.1	-	1092	787-1092	-	CBM26
24.	pDOC	-	Equine fecal microbiome (EG)	<i>Oscillospiraace bacterium</i>	MBQ009774.1	-	575	45-344	-	CBM26
25.	pDOC	-	<i>Gallus gallus</i> gut (CG)	<i>Candidatus Saccharinomas merdigallinum</i>	HIQ8147.1	-	714	235-533	-	CBM26
26.	pDOC	-	Human gut (HG)	<i>Eubacterium sp. CAG:202</i>	CDC032291	R6N48	671	175-505	-	-
27.	pDOC	-	Human feces (HG)	<i>Eubacterium sp. OM8-24</i>	RGM191321	A0A374UZY1	737	241-571	-	CBM26
28.	DOC	-	Human gut (HG)	<i>Ruminococcus bromii</i>	CBL1587.1	UP0001C14E31	734	245-572	CBM26	-
29.	pDOC	-	Rumen fluid of <i>Bos taurus</i> (RG)	<i>Ruminococcus sp. JE/1A12</i>	QI10620.1	A0A4P8XW45	730	246-570	CBM26	-
30.	pDOC	-	<i>Gallus gallus</i> gut (CG)	<i>Candidatus Saccharinomas merdigallinum</i>	HB026021.1	-	949	438-599	-	CBM26
31.	pDOC	-	Goat gastrointestinal tract (RG)	<i>Clodistia bacterium</i>	MBQ200794.1	-	985	547-752	-	CBM26
32.	pAAMY	-	Goat gastrointestinal tract (RG)	<i>Succinimonas sp.</i>	MBD0881472.1	-	1799	545-838	-	CBM26
33.	pAAMY	-	-	<i>Succinimonas amyloytic</i>	WP_01900750.1	UP000380E766	1786	538-826	-	3x CBM26
34.	pAAMY	-	-	<i>Ruminococcace bacterium</i>	MBR1924924.1	-	2051	808-1101	-	CBM26
35.	pAAMY	-	Dairy cattle gastrointestinal tract (RG)	<i>Succinimonas butyricum</i>	MBQ5525197.1	-	2157	941-1232	-	-
36.	pAAMY	-	-	<i>Ruminococcace bacterium</i>	SFPI2024.1	A0A66Z2I68	1895	721-1015	-	CBM26
37.	pAAMY	-	-	<i>Vibrio vulnificus</i>	MBN810519.1	UP0019D43A75	2050	694-982	-	CBM26
38.	pAAMY	-	Cattle (RG)	<i>Vibrio natrivoris</i>	MBE4579468.1	UP0018697B6D	2476	687-975	-	CBM26
39.	pAAMY	-	-	<i>Vibrio cincinnatiensis</i>	WP_28130312.1	-	2465	694-983	-	CBM26
40.	pDOC	-	anaerobic digestion of organic wastes under variable temperature conditions and feedstock	<i>Fusobacterium bacterium</i>	NLK61981.1	A0A7X8J1U3	599	307-599	-	-
41.	pDOC	-	-	<i>Orenia massmortu</i>	TDX525251.1	A0A4R8H020	809	508-804	-	-
42.	HYPO	-	Sheep gastrointestinal tract (RG)	<i>Spirochaetes bacterium</i>	MBR2317321.1	-	838	533-838	-	-
43.	HYPO	-	Water deer gut (RG)	<i>Treponema sp.</i>	MPB3562092.1	UP001B74B407	879	572-879	-	-
44.	pAAMY	-	-	<i>Microbacterium garci</i>	PFG2941.1	A0A2A9DS88	1398	1098-1398	-	2x CBM25
45.	pAAMY	-	-	<i>Microbacterium lituanicum</i>	TQJ224191.1	UP001170BA3D	1398	1098-1398	-	2x CBM25
46.	pAAMY	-	-	<i>Microbacterium fandangi</i>	WP_16982566.1	UP00141DCT7DD	1401	1101-1401	-	2x CBM25
47.	pAAMY	-	-	<i>Arthrobacter pigmenti</i>	NJ/C4392.1	A0A46RV66	1402	1102-1402	-	2x CBM25
48.	pAAMY	-	-	<i>Microbacterium sp. A18L241</i>	WP_39420059.1	UP0018895AD0	1124	825-1124	-	2x CBM25
49.	pAAMY	-	-	<i>Agromyces urinace</i>	NYD6736.1	A0A4QZM4N3	1310	101-1310	-	CBM25
50.	HYPO	-	Larvae of insect <i>Tryparylus dichotomus</i> (I)	<i>Microbacterium sp. BW7-G7</i>	MCC033550.1	A0A349V531	361	61-361	-	-
51.	pAAMY	-	-	<i>Arthrobacter stachylandii</i>	MBP2412725.1	UP001D5C6EE1	2095	982-1283	-	3x CBM25
52.	AAMY	GH13_32	Wastewater treatment plant from a potato starch factory (W)	<i>Microbacterium aurum</i>	AKP21404.1	A0A0G2T485	1417	1116-1417	2x CBM25	-
53.	HYPO	-	Wastewater (W)	<i>Aeromonadaceae bacterium</i>	MBP8172431.1	UP001B401EC6	701	400-701	-	-
54.	pAAMY	GH13_32	Hydrophilus acuminatus (I)	<i>Sangaderia sp. HDW7</i>	QIK84188.1	A0A6G7Z5A5	1153	853-153	2x CBM25	-
55.	HYPO	-	-	<i>Sympetrum sp. NB</i> (09706)	WP_06221424.1	UP0007823FAB	355	51-355	-	-
56.	HYPO	-	anaerobic digestion of organic wastes under variable temperature conditions and feedstock	<i>Polyphymomicrobaceae bacterium</i>	NLQ701761.1	UP00162A5B17	613	23-335	-	CBM26
57.	pDOC	-	activated sludge from Hong Kong Shatin wastewater treatment plant (W)	<i>Flavobacteriaceae bacterium</i>	MCB9201997.1	-	604	30-336	-	CBM26
58.	pAAMY	GH13_28	-	<i>Cladonitidium hominense</i> M240	CDM4793.1	W6RLUH	1725	778-1086	CBM26	-
59.	HYPO	-	<i>Gallus gallus</i> gut (CG)	<i>Cladonitidium sudense</i>	MBM6820797.1	UP00195AF2DA	545	545-559	-	-
60.	HYPO	-	-	<i>Lachnospiraceae bacterium</i>	HAU84760.1	A0A349VH5	709	75-374	-	3x CBM25
61.	pAAMY	-	<i>Gallus gallus</i> gut (CG)	<i>Candidatus Mediterraneum bacteriaceae</i>	HAU65501.1	A0A349VH5	1527	848-145	-	CBM26
62.	pAAMY	-	-	<i>Lachnospiraceum sp. An-1b</i>	UP0013A610D6	1424	826-126	-	CBM26	
63.	pAAMY	-	Human feces (HG)	<i>Eubacterium rectale</i>	RGV10000000.1	A0A413B1P0	913	725-523	-	CBM26
64.	HYPO	-	-	<i>Cladonitidium sp. MS-18</i>	MBD1545505.1	-	720	46-344	-	-
65.	pAAMY	-	-	<i>Pseudomonas nocoensis massiliensis</i>	WP_1076303.1	UP000D106684	1475	787-1092	-	CBM26
66.	pAAMY	-	-	<i>uncultured Eubacterium sp.</i>	SCF65611.1	A0A1C6T98	1518	877-1180	-	CBM26
67.	pDOC	-	Rumen fluid of <i>Bos taurus</i> (RG)	<i>Bacillus sp. bovis</i>	OC-T07491.1	A0A4P5XWHD	648	225-528	CBM26	-
68.	pAAMY	GH13_28	Tonsil scrap of <i>Sus scrofa</i> (PG)	<i>Synechococcus suis</i>	AWX97480.1	A0A2Z4P1F7	1636	763-1063	4x CBM26	-
69.	HYPO	-	<i>Macraeaceae bacteris</i> feces (PrG)	<i>Lachnospiraceum sp. MSJ-17</i>	MBU346254.1	A0A3462D1F	921	39-341	-	-
70.	pDOC	-	-	<i>Ruminococcaceae bacterium P7</i>	SCX00552.1	A0A1G4V5K7	925	39-340	-	-
71.	HYPO	-	Human feces (HG)	<i>Cladonitidium sp.</i>	MB566400272.1	-	811	51-347	-	-
72.	HYPO	-	Porcine fecal sample (PG)	<i>Muribacillus bacterium</i>	MBS7352324.1	-	524	28-333	-	CBM26
73.	pAAMY	-	Human gut (HG)	<i>Cladonitidium sp. CAG:411</i>	CDE4637.1	R717Z	1517	833-1132	-	CBM26
74.	pAAMY	-	<i>Myxobolus</i> feces (RoG)	<i>Barnesiella sp.</i>	MBD523998.1	UP0019A6972	1110	755-1059	-	-
75.	pDOC	-	Sheep gastrointestinal tract (RG)	<i>Paludibacteraceae bacterium</i>	MBP3872341.1	-	570	208-513	-	-
76.	pAAMY	-	<i>Myxobolus</i> gut (CG)	<i>Candidatus Amulonruptor caecigallinarius</i>	TX123900.1	A0A4QU9L8	1131	753-1054	-	-
77.	pAAMY	-	<i>Myxobolus</i> feces (RoG)	<i>Bacteroides sp.</i>	MBD5349186.1	UP0019CS840C	1269	905-1217	-	2x CBM26
78.	HYPO	-	Wastewater (W)	<i>Breznabacter sp.</i>	MBP849315.1	UP001B6D11F8	454	138-454	-	-
79.	HYPO	-	Sea Water from shallow coastal region	<i>Alia gravisontis taitanensis</i>	WP_1057379.1	UP000473B16	994	688-994	-	CBM26
80.	HYPO	-	Sea Water from shallow coastal region	<i>Alia gravisontis marinus</i>	WP_1057379.1	UP00047461D5	994	688-994	-	CBM26
81.	pAAMY	GH13_19	Soil (S)	<i>Paenibacillus sonchi</i>	QZQ62641.1	A0A7U1B36	1583	1296-1583	2x CBM25; CBM26	-
82.	pAAMY	-	-	<i>Paenibacillus jumili</i>	SDL85044.1	A0A1G9N8F0	1585	1298-1585	-	2x CBM25; CBM26
83.	pAAMY	-	Milk (M)	<i>Paenibacillus borealis</i>	OMD46076.1	A0A1R0YDQ8	2351	204-2351	-	3x CBM25; CBM26
84.	pAAMY	-	Soil (S)	<i>Paenibacillus zosanoi</i>	RUT36321.1	A0A433XQ6	2641	2354-2641	-	2x CBM25; CBM26
85.	pAAMY	GH13_19	Marine sediment (MS)	<i>Paenibacillus donghaiensis</i>	AS20374.1	A0A2Z2K6E7	1578	1291-1578	2x CBM25; CBM26	-
86.	pAAMY	-	<i>Aporrectodes caliginosus</i> gut (AcG)	<i>Paenibacillus anaricamus</i>	RUT47280.1	A0A3S1D7Y1	2567	2280-2567	-	2x CBM25; CBM26
87.	pAAMY	-	-	<i>Fonseciella paracisagis</i>	SDG38049.1	A0A1G7TUK6	2442	2153-2442	-	2x CBM25; 2x CBM26
88.	pAAMY	-	-	<i>Paenibacillus sp. MMS18C1Y02</i>	MWC30933.1	A0A7X3GNM1	1675	1388-1675	-	3x CBM25; CBM26
89.	pAAMY	-	Soil (S)	<i>Paenibacillus curdlanolyticus</i>	EFM88001	E0F24	1677	1390-1677	-	3x CBM25; CBM26
90.	pAAMY	GH13_19	Human blood (HB)	<i>Cohnella sp. KS 22</i>	QMV43648.1	A0A7G5C364	1587	1300-1587	2x CBM25; CBM26	-
91.	pAAMY	GH13_19	-	<i>unidentified bacterium UGO163</i>	CAA37453.1	Q03658	1684	1397-1684	3x CBM25; CBM26	-
92.	HYPO	-	anaerobic digestion of organic wastes under variable temperature conditions and feedstock	<i>Lentisphaerae bacterium GWF2_57_35</i>	HUH20571.1	A0A7V6LK53	426	139-426	-	-
93.	pAAMY	-	rifle w/ CDD1 at time point 6 / 5m depth, 0.2 filter	<i>Kirinimicrobacteria</i>	MBP9573123.1	UP001H4D1DFF	871	586-871	-	CBM25
94.	HYPO	-	Wastewater (W)	<i>Verucomicrobacteria</i>	MBP9573123.1	UP001C298BD	1518	1234-1518	-	-
95.	pAAMY	-	rare earth elements-acid mine drainage contaminated river water	<i>Myxococcales bacterium</i>	MCA9546954.1	UP001DE396C8	419	194-419	-	-
96.	HYPO	-	activated sludge from Hong Kong Shatin wastewater treatment plant (W)	<i>Myxococcales bacterium</i>	MBU143708.1	-	471	20-319	-	-
97.	HYPO	-								

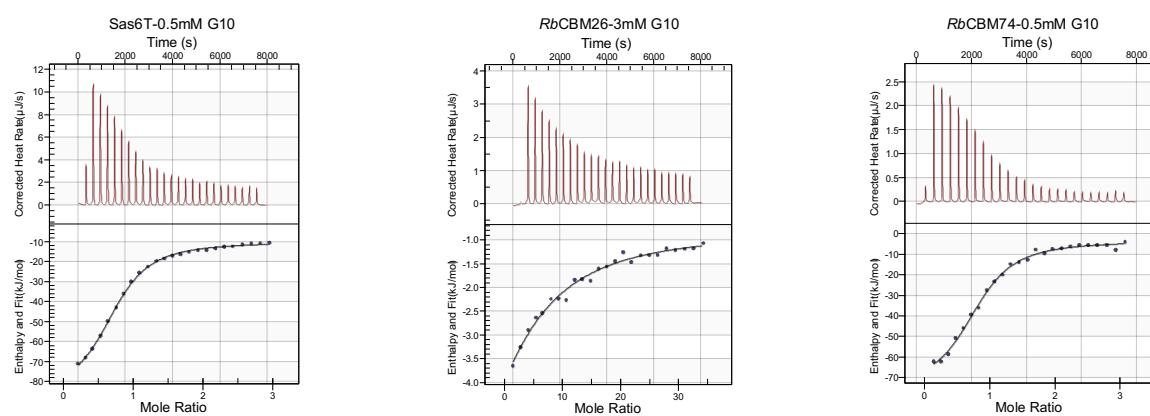
1160 **Extended Data Figure 1: Bacterial Ig-like domains of Sas6 interact via extensive**
 1161 **hydrogen bonding.** **A.** Topology map of BlgA and BlgB domains illustrating the Greek key
 1162 motif in BlgA and showing the loops that hydrogen bond with one another. **B.** A surface area
 1163 analysis of the Blg domains using PISA in CCP4 gives a buried surface area of 353.9 Å [37].
 1164 Residues providing hydrogen bonding are represented by stick side chains and the hydrogen
 1165 bonds are shown by dashed yellow lines.



1168 **Extended Data Figure 2: Small Angle X-Ray Scattering indicates that Sas6 remains**
1169 **mostly compact in solution with minor extension beyond that of the crystal structure. A.**
1170 Total subtracted scattering intensity (left y axis) and R_g (right y axis) as a function of time for the
1171 SEC-SAXS elution. **B.** Guinier fit analysis with normalized residual shown in the bottom panel.
1172 **C.** $P(r)$ versus r normalized by $I(0)$. **D.** Dimensionless Kratky plot; $y=3/e$ and $x=\sqrt{3}$ as dashed
1173 gray lines to indicate where a globular protein would peak. **E.** FoXS and **F.** MultiFoXS fits
1174 (black) to the Sas6T SAXS data (red) with normalized residual shown in the bottom panel.

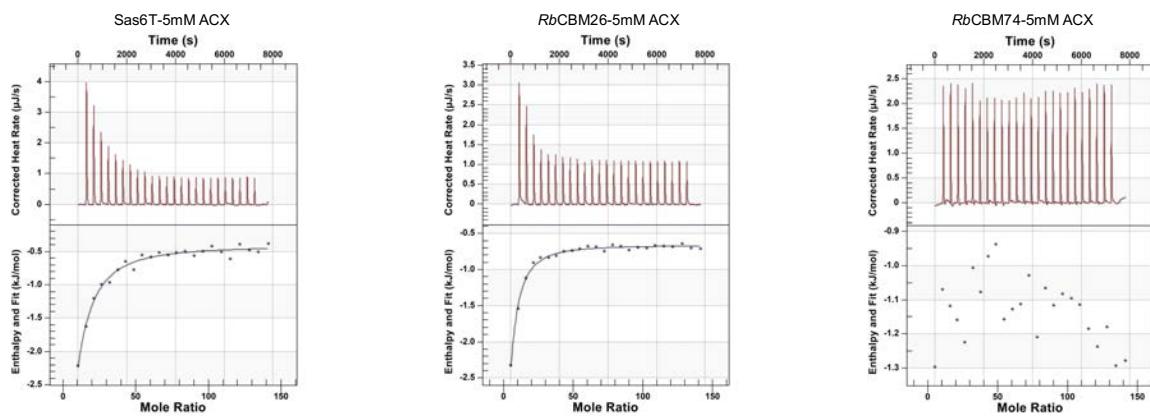
1178 **Extended Data Figure 3: RbCBM74 is a singular globular domain, most similar to**
 1179 **TmCBM9 A.** Structure of RbCBM74 (PDB 7uww) colored from N-terminus (blue) to C-terminus


1180 (red). **B.** Short β -strands leading into and out of *RbCBM74* domain are colored in red and blue.
 1181 **C.** Overlay of *TmCBM9* (gold) (PDB 1i82-A) and *RbCBM74* (blue). The DALI server calculated
 1182 an RMSD of 3.2 \AA and sequence identity of 17%. **D.** Close-up view of *TmCBM9* binding site
 1183 showing the two *TmCBM9* Trp residues involved in binding cellobiose (gold) and W373 of
 1184 *RbCBM74* (blue) which lies in the same region but is occluded from the surface by a loop
 1185 containing residues 374-384. **E.** Zoomed in view of calciums coordinated in the *RbCBM74*
 1186 domain with side chains shown in sticks, main chain shown in lines and Ca^{2+} ions by yellow
 1187 spheres. Atomic distances are shown in \AA and residues are labeled. Residues are colored by
 1188 element with oxygen shown in red. **F.** Ion validation by web server CheckMyMetal [72].

1189

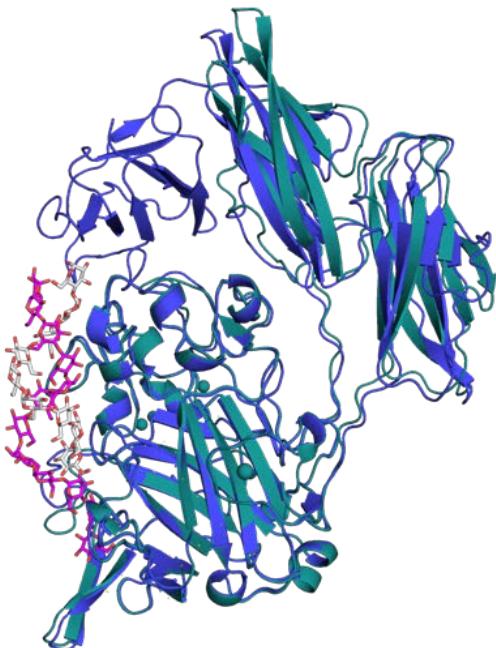
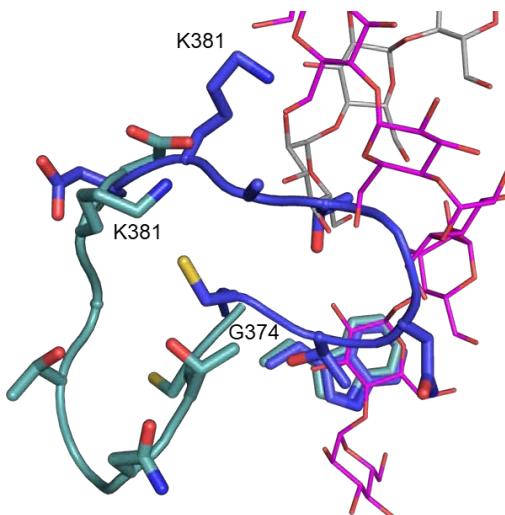


1190 **Extended Data Figure 4: RbCBM26 shares a conserved binding site with other CBM26**
 1191 **family members.** **A.** Sequence alignment of *RbCBM26* (RBL236_00020), *ErCBM26*
 1192 (ERE_20420), *BhCBM26* (BH0413), and *LaCBM26* (Q48502). Conserved binding site residues
 1193 are indicated by a red arrow while variable residues are indicated by a blue arrow and provide
 1194 hydrogen bonding. **B.** Overlay of *RbCBM26* (green) with *Bacillus halodurans* CBM26 (PDB
 1195 2c3h, orange), and *Eubacterium rectale* Amy13K CBM26 (PDB 6b3p, purple). **C.** Overlay of
 1196 unliganded *RbCBM26* (blue) and ACX-bound *RbCBM26* (green) showing that loop 1 does not
 1197 move upon ligand binding. β -strands are numbered for reference.


A

B

C

1199

1200

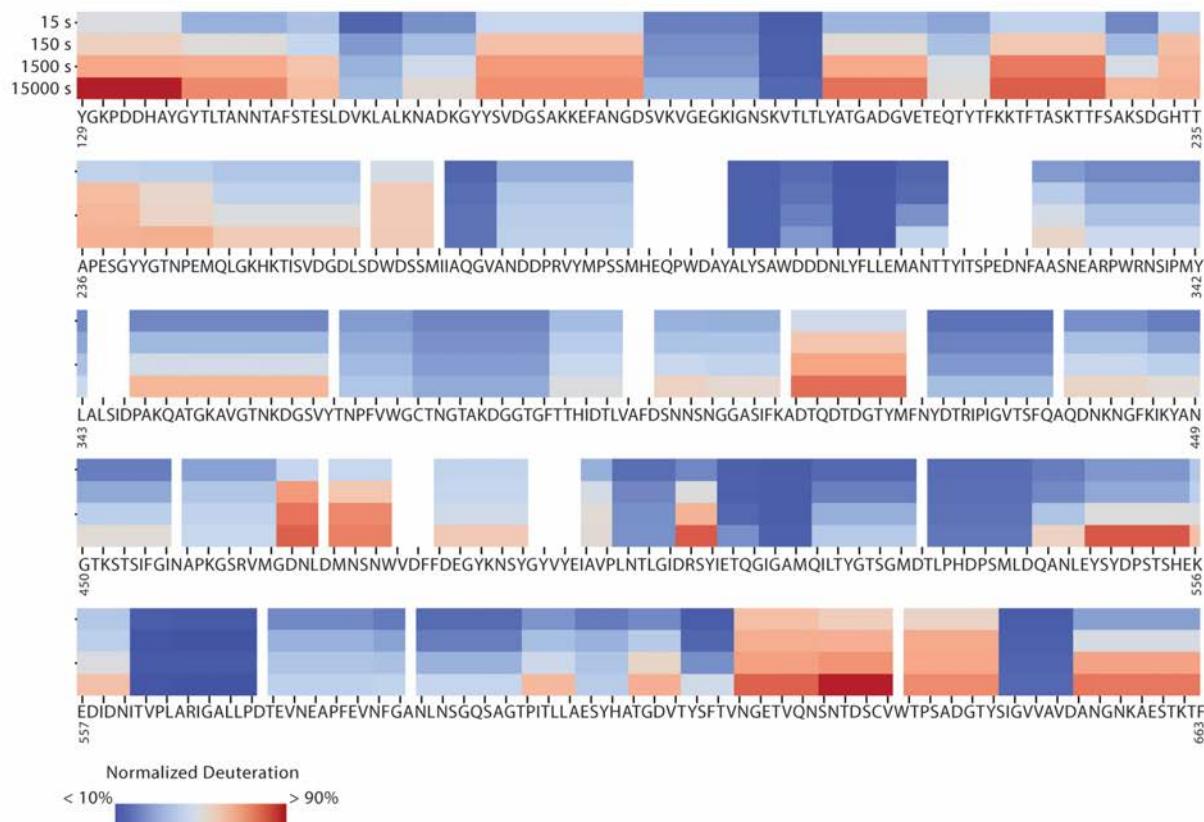
1201

Extended Data Figure 5: Representative ITC graphs of Sas6 domains. Sas6T, RbCBM74, and Blg-RbCBM74-Blg binding to **A.** potato amylopectin, **B.** maltodextrin (G10), and **C.** α -cyclodextrin (ACX).

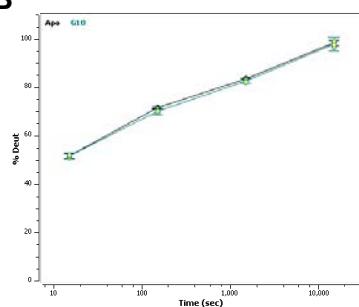
A**B**

CBM74 RMSD: 0.24 (291 atoms)
 Overall RMSD: 0.52 (361 atoms)

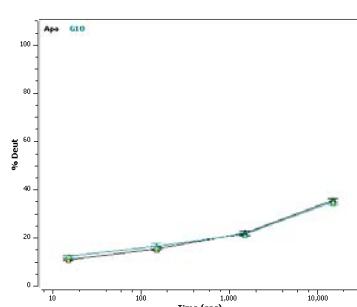
C

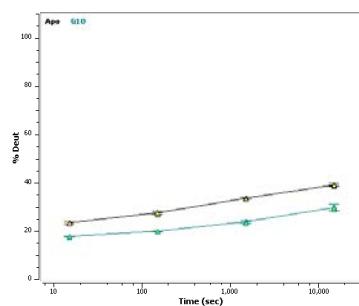

ID	Res.	Metal	Occupancy	B factor (env.) ¹	Ligands	Valence ²	nVECSUM ³	Geometry ^{1,4}	gRMSD($^{\circ}$) ¹	Vacancy ¹	Bidentate	Alt. metal
B:1	CA	Ca	1	21.4 (22)	O ₇	1.9	0.11	Octahedral	13 $^{\circ}$	0	1	
B:2	CA	Ca	1	21.3 (22.7)	O ₇	2.2	0.1	Octahedral	11 $^{\circ}$	0	1	
B:3	CA	Ca	1	20.4 (20.5)	O ₆	2	0.028	Octahedral	6.3 $^{\circ}$	0	0	
C:1	NA	Na	1	25.4 (33.4)	O ₅	1	0.1	Trigonal Bipyramidal	8.4 $^{\circ}$	0	0	

Legend: Not applicable | Outlier | Borderline | Acceptable

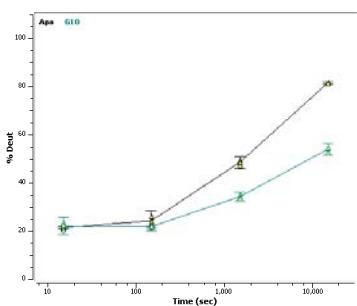

Column	Description
Occupancy	Occupancy of ion under consideration
B factor (env.) ¹	Metal ion B factor, with valence-weighted environmental average B factor in parenthesis
Ligands	Elemental composition of the coordination sphere
Valence ²	Summation of bond valence values for an ion binding site. Valence accounts for metal-ligand distances
nVECSUM ³	Summation of ligand vectors, weighted by bond valence values and normalized by overall valence. Increase when the coordination sphere is not symmetrical due to incompleteness.
Geometry ^{1,4}	Arrangement of ligands around the ion, as defined by the NEIGHBORHOOD algorithm
gRMSD($^{\circ}$) ¹	R.M.S. Deviation of observed geometry angles (L-M-L angles) compared to ideal geometry, in degrees
Vacancy ¹	Percentage of unoccupied sites in the coordination sphere for the given geometry
Bidentate	Number of residues that form a bidentate interaction instead of being considered as multiple ligands
Alt. metal	A list of alternative metal(s) is proposed in descending order of confidence, assuming metal environment is accurately determined. This feature is still experimental. It requires user discrimination and cannot be blindly accepted

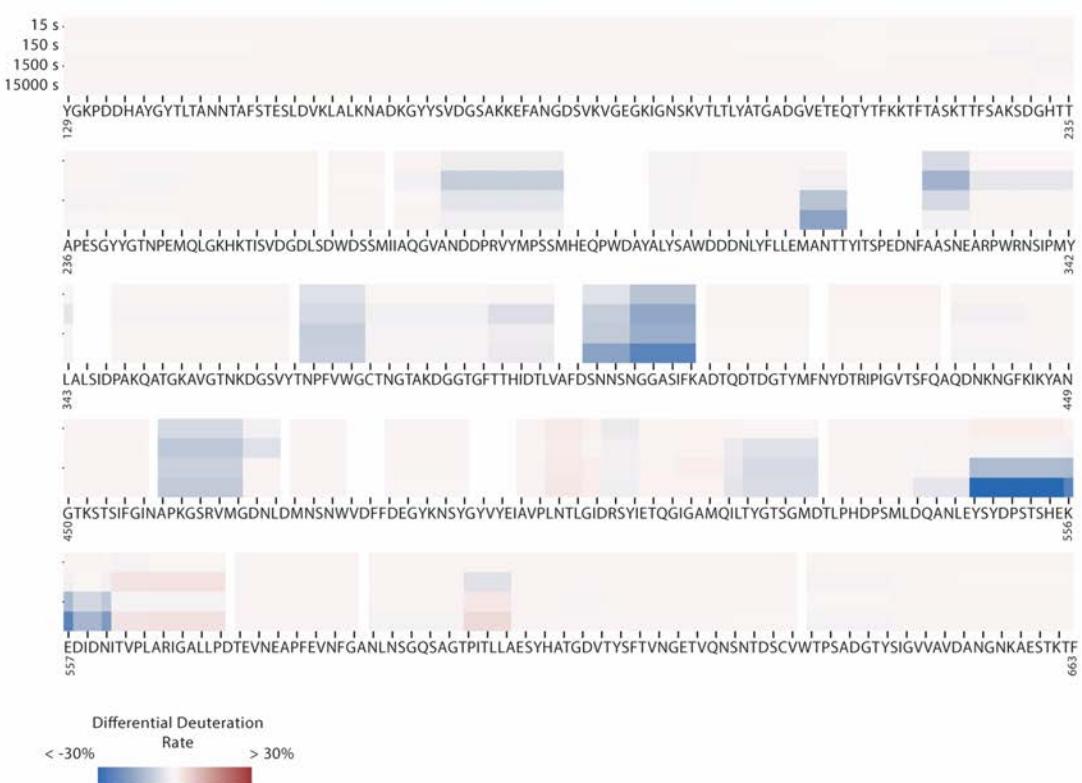
1204


1205 **Extended Data Figure 6: RbCBM74 undergoes minor conformational changes upon**
 1206 **ligand binding.** **A.** Overlay of RbCBM74 from Sas6T structure (PDB 7uww) in blue with
 1207 RbCBM74 from Blg-RbCBM74-Blg co-crystal structure (PDB 7uwv) in deep teal. **B.** Loop from
 1208 G374-G382 demonstrating that the unliganded loop (blue) occludes W373 but moves to allow
 1209 access to W373 in the ligand-bound structure (deep teal). **C.** Validation of ion identities with
 1210 CheckMyMetal [72]. Note Ca²⁺-4 is exchanged for a Na⁺ ion in the G10 liganded structure.

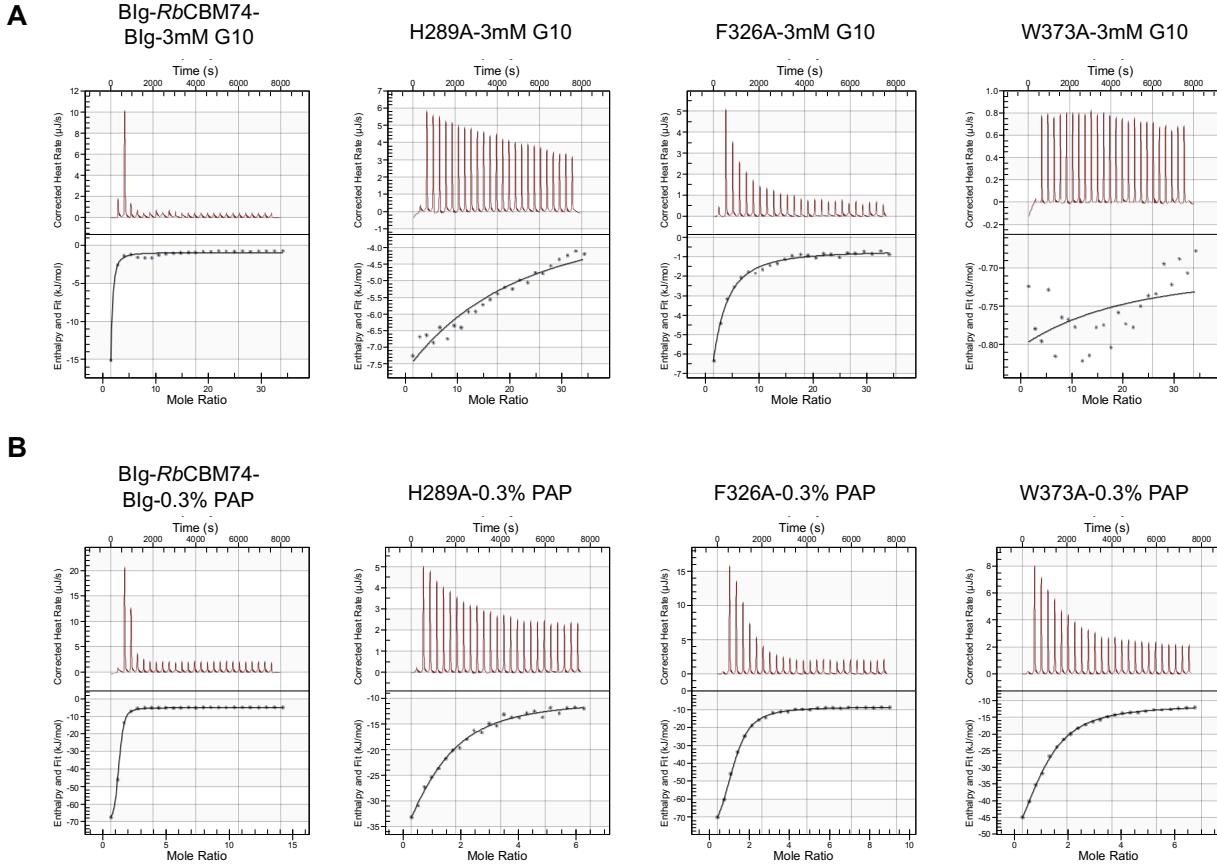

1211

B


Residues 410-421


Residues 423-435

Residues 367-386

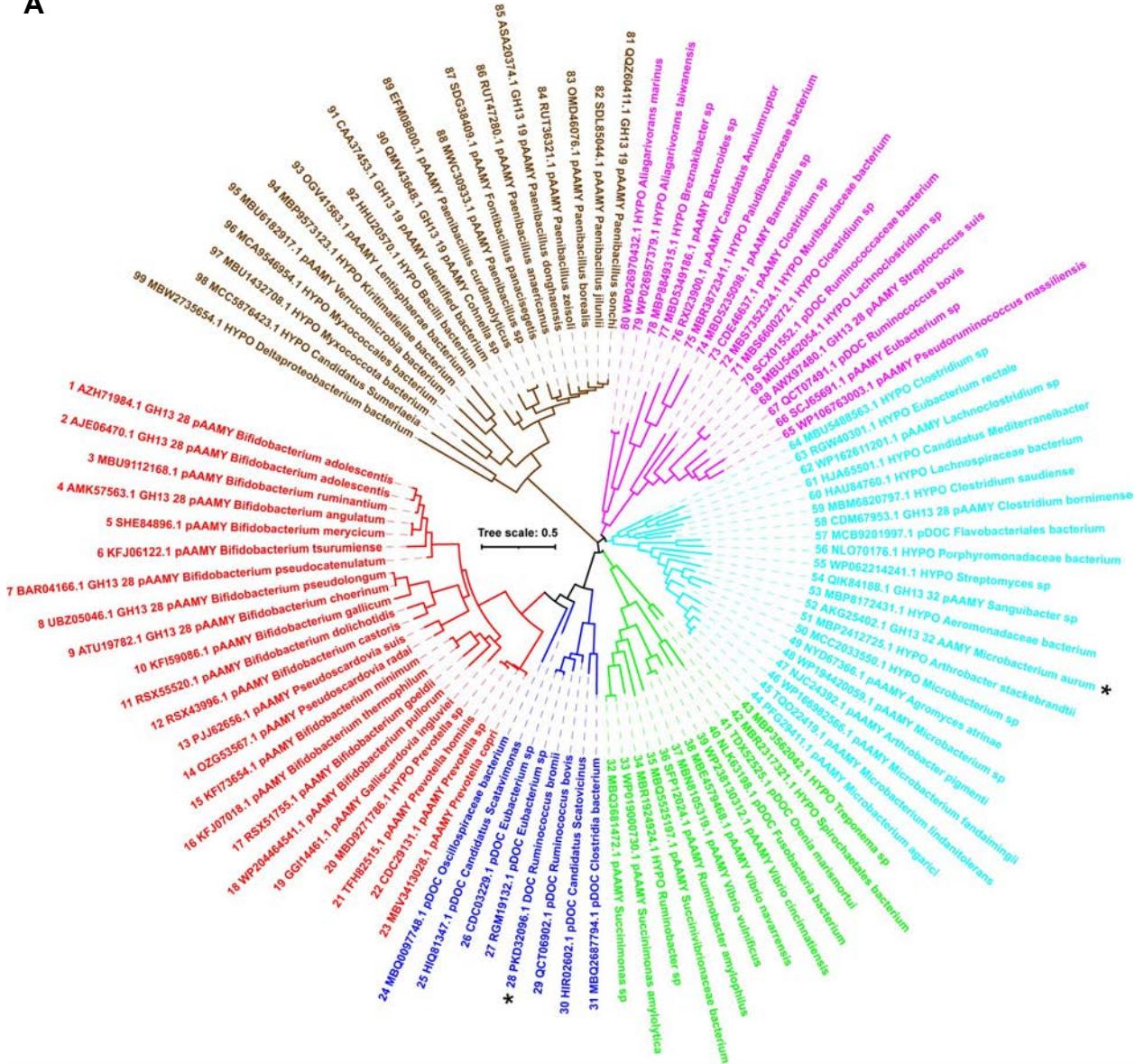

Residues 545-557

C

1213 **Extended Data Figure 7: HDX-MS analysis of RbCBM74** **A.** Heatmap of exchange dynamics
 1214 of Blg-RbCBM74-Blg. All values are the average of three replicates. **B.** Representative
 1215 differential uptake for peptides that both showed no significant difference (upper panels) and
 1216 those which showed significant differential decreased deuteration (lower panels) in the G10
 1217 bound Blg-RbCBM74-Blg. Data points are represented by the mean +/- standard
 1218 deviation. **C.** Heatmap of the differential exchange dynamics of Blg-RbCBM74-Blg in the
 1219 absence and presence of G10. Blue represents lower exchange (protection) in the G10 bound
 1220 form and red higher exchange in the G10 bound form. All values are the average of three
 1221 replicates.

1222

1223



1224

1225 **Extended Data Figure 8: Representative ITC graphs of RbCBM74 mutations.** Blg-
 1226 RbCBM74-Blg, H289A, F236A, and W373A mutations binding to **A.** maltodextrin (G10), and
 1227 **B.** potato amylopectin (PAP).

1228

A

1229

1230

1231

1232

1233

B

1235 **Extended Data Figure 9: Conservation of binding residues among all 99 CBM74 family**
1236 **members. A.** A maximum-likelihood tree covering 99 sequences with emphasis on the two
1237 experimentally characterized CBM74s, Sas6 from *Ruminococcus bromii* (No. 28, blue cluster)
1238 and the subfamily GH13_32 α -amylase from *Microbacterium aurum* (No. 52; cyan cluster). For
1239 details concerning all 99 CBM74 sequences, see Extended Data Table 2. A simplified tree
1240 showing 33 selected CBM74 sequences representing all clusters is shown in Fig. 6A. **B.**
1241 Sequence alignment of the 99 CBM74 sequences. The labels of protein sources consist of the
1242 order number (1-99), GenBank accession number, abbreviation of the source protein/enzyme
1243 and the name of the organism. The two experimentally characterized CBM74 are marked by an
1244 asterisk. The six individual groups distinguished from each other by different colors correspond
1245 to six clusters seen in the evolutionary tree (panel A); the sequence order in the alignment
1246 (starting from the top from 1 to 99) reflects their order in the tree in the anticlockwise manner
1247 (starting from the first sequence in the red cluster). The residues responsible for stacking
1248 interactions and involved in hydrogen bonding with glucose moieties of the bound α -glucan are
1249 signified by a hashtag and a dollar sign, respectively, above the alignment. The flexible loop
1250 observed in the three-dimensional structure of *RbCBM74* is highlighted by the short yellow strip
1251 over the alignment. Identical and similar positions are signified by asterisks and dots/semicolons
1252 under the alignment blocks. The color code for the selected residues: W, yellow; F, Y – blue; V,
1253 L, I – green; D, E – red; R, K – cyan; H – brown; C – magenta; G, P – black.

1254