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ABSTRACT
This article shows that decision trees constructed with Classification and Regression Trees (CART) and C4.5
methodology are consistent for regression and classification tasks, even when the number of predictor vari-
ables grows sub-exponentially with the sample size, under natural 0-norm and 1-norm sparsity constraints.
The theory applies to a wide range of models, including (ordinary or logistic) additive regression models
with component functions that are continuous, of bounded variation, or, more generally, Borel measurable.
Consistency holds for arbitrary joint distributions of the predictor variables, thereby accommodating con-
tinuous, discrete, and/or dependent data. Finally, we show that these qualitative properties of individual
trees are inherited by Breiman’s random forests. A key step in the analysis is the establishment of an oracle
inequality, which allows for a precise characterization of the goodness of fit and complexity tradeoff for a
mis-specified model. Supplementary materials for this article are available online.
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1. Introduction

Decision trees are one of the most elemental methods for
predictive modeling. Accordingly, they are the cornerstone of
many celebrated algorithms in statistical learning. For example,
decision trees are often employed in ensemble learning, that
is, bagging (Breiman 1996), random forests (Breiman 2001),
and gradient tree boosting (Friedman 2001). From an applied
perspective, decision trees scale well to large datasets, and are
intuitive and interpretable, the latter of which makes them easy
to explain to statistical nonexperts, particularly in the context of
rule-based decision-making. They are also supplemented by a
rich set of analytic and visual diagnostic tools for exploratory
data analysis. These qualities have led to the prominence of
decision trees in disciplines—such as medicine and business—
which place high importance on the ability to understand and
interpret the output from the training algorithm, even at the
expense of predictive accuracy.1

Though our primary focus is theoretical, to make this article
likewise relevant to the applied user of decision trees, we focus
on Classification And Regression Trees (CART) (Breiman et al.
1984) and C4.5 (Quinlan 1993) methodology—undoubtedly the
most popular varieties for regression and classification prob-
lems. On the theoretical side, these approaches raise a number
of technical challenges which stem from the top down greedy
recursive splitting and line search needed to find the best split
points, thereby making CART and C4.5 notoriously difficult to
study. These subtle mechanisms are of course desirable from a
statistical standpoint, as they endow the decision tree with the

1The oft-touted interpretability of CART and C4.5 is sometimes compromised
by the instability of the splits, particularly among deeper nodes where less
data is available. Therefore, one should be cautious when attaching any
meaning or interpretation to such splits.
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ability to adapt to structural and qualitative properties of the
underlying statistical model (such as sparsity and smoothness).
Notwithstanding these major challenges, we take a significant
step forward in advancing the theory of decision trees and prove
the following (informal) statement in this article:

Decision trees constructed with CART and
C4.5 methodology are consistent for large scale
predictive models, where the number of predictor
variables is allowed to grow sub-exponentially with
the sample size, under ℓ0 or ℓ1 sparsity constraints.

The consistency (with respect to mean squared error risk for
regression and excess mis-classification risk for classification) is
shown under essentially no assumptions on the predictor vari-
ables, thereby improving upon most past work which requires
the them to be continuous and either independent or near-
independent (e.g., uniformly distributed or with joint densities
which are bounded above and below by fixed positive constants).

Expectedly, our results for individual trees also carry over to
ensembles, namely, Breiman’s random forests (Breiman 2001),
which among other things, use CART methodology for the
constituent trees.

1.1. Prior Art

We now review some of the past theoretical work on decision
trees, starting with CART in the regression setting, and then for
C4.5 in the classification setting.

Regression trees. The first consistency result for CART was
provided in the original book that proposed the methodology
(Breiman et al. 1984), albeit under very strong assumptions on
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the tree construction, such as a minimum node size condition
and shrinking cell condition. Thirty years later, Scornet, Biau,
and Vert (2015) showed asymptotic consistency of CART for
(fixed dimensional) additive regression models with continu-
ous component functions, en route to establishing asymptotic
consistency of Breiman’s random forests. This article was an
important technical breakthrough because it did not require
any of the strong assumptions on the tree made in Breiman
et al. (1984). Subsequent work by Chi et al. (2020), Klu-
sowski (2020), Syrgkanis and Zampetakis (2020), and Wager
and Walther (2015) provide finite sample consistency rates in a
high dimensional setting with exact sparsity, though again, like
Breiman et al. (1984), they operate under a set of conditions
that may or may not hold in practice. Another notable paper
by Gey and Nedelec (2005) provides oracle-type inequalities for
pruned CART, but the theory does not extend to out-of-sample
prediction.

Motivated by Stone’s conditions for consistency in non-
parametric regression (Stone 1977), most existing convergence
results for decision trees follow an approach in which the
approximation error is bounded by the mesh of the induced
partition of the input space. Conditions are then imposed, either
explicitly or implicitly, to ensure that the mesh approaches
zero as the depth of the tree increases. This is then combined
with a standard empirical process argument to show vanishing
estimation error, which in turn, implies that the prediction
risk vanishes also (Breiman et al. 1984; Denil, Matheson, and
De Freitas 2014; Wager and Walther 2015; Wager and Athey
2018). In contrast, the aforementioned paper (Scornet, Biau,
and Vert 2015) controls the variation of the regression func-
tion inside the cells of the partition, without explicitly control-
ling the mesh, though the theoretical consequences are simi-
lar. While these techniques can be useful to prove consistency
statements, they are not generally delicate enough to capture
the adaptive properties of the tree or handle high dimensional
situations.

More recently, Chi et al. (2020), Klusowski (2020), and
Syrgkanis and Zampetakis (2020) developed techniques to
directly analyze the approximation error (instead of using the
granularity of the partition as a proxy) by exploiting the greedy
optimization inherent in CART methodology. These papers
provide consistency rates for models with exact sparsity in a
high dimensional regime (i.e., when the ambient dimensionality
grows with the sample size); however, they make a number of
assumptions that lead to an unsatisfactory theory. For exam-
ple, the results of Klusowski (2020) apply only to the noise
free setting, Chi et al. (2020) require the ambient dimension-
ality to grow at most polynomially with the sample size, and
Syrgkanis and Zampetakis (2020) work with binary valued pre-
dictor variables. In addition, a local accuracy gain condition
(akin to an edge or progress condition in boosting literature)
is required in these works (Chi et al. 2020; Klusowski 2020;
Syrgkanis and Zampetakis 2020) to ensure the approximation
error decreases by a constant factor after splitting at each level.
In Chi et al. (2020), this local accuracy gain condition is verified
to hold for some simple classes of additive regression models,
such as those with isotonic or piece-wise linear component
functions and independent predictor variables. Syrgkanis and
Zampetakis (2020) do not provide any concrete examples of

models that satisfy what they call a sub-modularity property, and
the reader is required to accept its validity. In summary, it is
difficult to verify which models satisfy these technical conditions
and, therefore, the general applicability of the theory remains
unclear.

Classification trees. The story for the classification setting is
far less complete. Theory for regression trees is far easier to
assemble—and has therefore been overwhelmingly the focus of
past literature—since one does not have to deal with the discrete
nature of the model. This lack of attention is somewhat unfor-
tunate as decision trees are more often successfully deployed in
problems with discrete outputs, that is, clinical decision support
systems. As an exception, one stand-alone paper to tackle the
classification problem is Kearns and Mansour (1999), where the
authors show that classification trees constructed with CART
and C4.5 methodology have small mis-classification risk under
a weak hypothesis assumption, that is, the decision tree output
in each node performs slightly better than random guessing as
approximations to the target function. Their results, however,
do not account for the effect of dimensionality, nor do they
accommodate standard statistical models for classification, such
as logistic regression.

1.2. Related Work

In closing, we mention a few papers that study other tree based
procedures, but with different aims and from different perspec-
tives. Mondrian random forests (Mourtada, Gaïffas, and Scornet
2020, 2021), unlike some of the aforementioned variants of
Breiman’s random forests, provably attain near-optimal mini-
max rates for various levels of smoothness regularity. The dyadic
CART procedure of Donoho (1997), obtained by optimal (non-
greedy), dyadic recursive partitioning, was also shown to achieve
near-optimal rates (and adaptation to unknown smoothness
regularity) for the case of two predictor variables. (Dyadic CART
unfortunately scales poorly with the dimensionality p, since
finding the optimal dyadic partition may require up to O(2pNp)

operations (Chatterjee and Goswami 2021)). An interesting line
of work from a Bayesian perspective explores Bayesian trees and
forests. For example, Ročková and van der Pas (2020) and Jeong
and Ročková (2020) obtain near-optimal posterior concentra-
tion rates for nonparametric regression, similar to the optimal
minimax rates discussed in Section 4.5, that adapt to both exact
sparsity and smoothness regularity (for Bayesian CART and
BART) and additive structures (for BART).

1.3. Organization

This article is organized according the following schema. In Sec-
tion 2, we describe a unified statistical framework for regression
and classification problems, and introduce various important
quantities for performance assessment. We review basic termi-
nology associated with decision trees and describe CART and
C4.5 methodology in Section 3. Our main results for CART and
C4.5 are contained in Section 4; specifically, an empirical risk
bound, oracle inequality, and asymptotic consistency statement
for (ordinary or logistic) additive regression models. We then
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show that C4.5 achieves a faster consistency rate for separable,
large margin binary data in Section 5. Our main consistency
results in Section 4 are extended to models with interactions
in Section 6 and Breiman’s random forests in Section 7. We
conclude with a discussion in Section 8. Finally, all proofs and
technical lemmas are contained in the supplementary materials.

2. Statistical Framework

Throughout this article, we operate under a standard predictive
framework for regression and classification; that is, from train-
ing data, we desire to predict a response value y for a new set
of p predictor variables x. More formally, we observe training
data D := {(x1, y1), (x2, y2), . . . , (xN , yN)} drawn iid from the
statistical model P(x,y) = PxPy|x, where Px is a probability
measure on the σ -algebra of Borel subsets of Rp. To understand
the predictive properties of decision trees in an (ultra) high
dimensional setting, the dimensionality p = pN is permitted to
grow sub-exponentially with the sample size N.

In order to unify both the regression and classification set-
tings, we consider a discriminative statistical model in which
the conditional mean of y given x is modeled indirectly via a
(possibly nonlinear) link function. To this end, we assume that
there is a fixed and known link function h : R → R such that

g∗(x) := h(E(y|x)) ∈ G, (1)

where G is some class of Rp → R functions to be chosen ahead.
A loss function L(·, ·) is chosen so that

g∗(·) ∈ argming(·)∈GE(x,y)L(y, g(x)). (2)

The empirical and population risk corresponding to the loss
function L(·, ·) are denoted by

R̂(g) := 1
N

N∑

i=1
L(yi, g(xi)), R(g) := E(x,y)L(y, g(x)),

respectively. In light of (2), we aim to estimate the true model
g∗(·) by finding a D-dependent fit g(·), not necessarily in G,
which comes close to minimizing the empirical risk R̂(g).

2.1. Regression Setting

We assume a real-valued response variable y ∈ R and consider
the identity link function h(µ) = µ so that g∗(x) = E(y|x) is
the conditional mean response. We choose the loss function to
be the squared error

L(y, g(x)) = (y − g(x))2, (3)

which satisfies (2). The out-of-sample performance is measured
with the squared L2(Px) norm

∥g − g∗∥2 := Ex((g(x) − g∗(x))2), (4)

which also equals the excess squared error risk R(g) − R(g∗)
under these model specifications.

2.2. Classification Setting

We assume a binary response variable y ∈ {−1, 1} and consider
the logit link function h(µ) = log( 1+µ

1−µ), so that g∗(x) =
h(2η∗(x) − 1) = log( η∗(x)

1−η∗(x) ) is the log-odds of the conditional
class probability η∗(x) := P(y = 1|x) = 1/(1 + exp(−g∗(x))).
Note that if g∗(·) is a linear function, then this model is linear
logistic regression. We choose the loss function to be the logistic
loss

L(y, g(x)) = log(1 + exp(−yg(x))), (5)

which satisfies (2) and, appealingly, corresponds to maximum
likelihood estimation of conditionally Bernoulli distributed data
with probability model P(y|x) = 1/(1 + exp(−yg(x))). Instead
of assessing performance with the logistic risk, we more famil-
iarly consider the mis-classification risk

Err(g) := P(x,y)(c(x) ̸= y) (6)

of the plug-in classifier

c(x) :=
{ +1 if g(x) ≥ 0

−1 if g(x) < 0 .

The out-of-sample performance is then measured by the excess
mis-classification risk

Err(g) − Err(g∗), (7)

where Err(g∗) is the Bayes error rate.

Definition 2.1. When no context is provided, prediction risk
will refer to excess squared error risk (4) in the regression
setting (Section 2.1) or excess mis-classification risk (7) in the
classification setting (Section 2.2).

3. CART and C4.5 Methodology

As mentioned earlier, regression trees are commonly con-
structed with Classification and Regression Trees (CART)
methodology. In the context of classification, one can use either
CART or its contemporary counterpart, C4.5. For technical
reasons that will be explained at the end of this section, we will
focus on the latter methodology. While CART and C4.5 are algo-
rithmically similar, they differ in important ways. The notable
distinction lies in the criterion used to determine the split points,
which turns out to be the key to their success for the predictive
models we consider in Sections 2.1 and 2.2. In a nutshell, the
objective of decision tree learning is to find partitions of the
predictor variables that produce minimal empirical risk of the
constant (average response) values over the partition. Because
of the computational infeasibility of choosing the best overall
partition, CART and C4.5 operate in a greedy, top down fashion
(with a mere O(pN log2(N)) average-case complexity (Louppe
2014, sec. 5)) using a procedure in which a sequence of locally
optimal splits recursively partition the input space.

In Section 3.1, we first discuss the splitting rule, stopping
criterion, and tree output for a generic (top down, greedy)
tree construction algorithm. We then specialize our treatment
of decision trees to CART and C4.5 in Sections 3.2 and 3.3,
respectively.
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3.1. Greedy Tree Construction

Consider splitting a decision tree T at a node t (a hyperrect-
angular region in Rp). Let s be a candidate split point for a
variable xj ∈ R that divides the parent node t into left and
right daughter nodes tL and tR according to whether xj ≤ s
or xj > s, respectively. These two nodes will be denoted by
tL := {x ∈ t : xj ≤ s} and tR := {x ∈ t : xj > s}.

An effective split divides the data from the parent node into
two daughter nodes so that the heterogeneity in each of the
daughter nodes, as measured through the impurity, is maximally
reduced from that of the parent node. The impurity is deter-
mined by the within-node empirical risk

R̂t(g) := 1
Nt

∑

xi∈t
L(yi, g(xi)), Nt := #{xi ∈ t}. (8)

In accordance with the directive of minimizing the empirical
risk, it is equal to the smallest within-node empirical risk over
all constant predictors in the node, that is,

I(t) = min
β∈R

R̂t(β) = R̂t(h(yt)), yt := 1
Nt

∑

xi∈t
yi. (9)

The parent node t is split into two daughter nodes using a
variable xjt and split point st which produce the largest impurity
gain (Breiman et al. 1984, Definition 8.13), (Quinlan 1993, p. 22)

IG(j, s, t) := I(t) − PtLI(tL) − PtRI(tR),
IG(t) := max

(j,s)
IG(j, s, t), (10)

breaking ties arbitrarily, where PtL := NtL/Nt and PtR := NtR/Nt
are the proportions of data points within t that are contained
in tL and tR, respectively. Equivalently, the variable and split
point, chosen to maximize (10), also minimize the within-node
empirical risk (8) over all decision stumps, since

PtLI(tL) + PtRI(tR) = min
β0,β1∈R

R̂t(β0 + β11(xj > s)). (11)

We can thus view the maximum impurity gain IG(t) as the
amount by which the optimal decision stump decreases the
empirical risk in the node.

The daughter nodes tL and tR of t become new parent nodes
at the next level of the tree and are themselves further divided
according to the previous scheme, and so on and so forth, until
a desired depth K is reached. There are many criteria that can
be used to determine when to stop splitting, each one giving rise
to a different tree structure. In this article, we use the following
stopping rule.

Definition 3.1 (Stopping rule). We stop splitting a node if (i) the
node contains a single data point, (ii) all input values and/or all
response values within the node are the same, or (iii) a depth of
K is reached, whichever occurs sooner.

Finally, the output of the tree T at a terminal node t is the best
constant predictor in the node:

ĝ(T)(x) := h(yt) ≈ g∗(x), x ∈ t. (12)

When we wish to emphasize the dependence of the tree T on the
depth K, we will write TK .

3.2. CART Algorithm

Recall the regression setting in Section 2.1, where h(·) is the
identity link and L(·, ·) is the squared error loss (3). In this case,
the impurity (9) becomes the within-node sample variance of
the response variable, that is,

I(t) = 1
Nt

∑

xi∈t
(yi − yt)

2. (13)

According to these model specifications, the tree output (12)
makes a prediction by returning the within-node sample mean
of the response variable, that is,

ĝ(TCART)(x) = h(yt) = yt, x ∈ t.

3.3. C4.5 Algorithm

Recall the classification setting in Section 2.2, where h(·) is the
logit link and L(·, ·) is the logistic loss (5). In this case, the
impurity (9) becomes the binary entropy of the within-node
empirical class probability, that is,

I(t) = ηt log(1/ηt) + (1 − ηt) log(1/(1 − ηt)),

ηt := 1
Nt

∑

xi∈t
1(yi = 1).

As entropy quantifies the information content of a random
variable, the impurity gain (10) is sometimes called the informa-
tion gain or the mutual information. According to these model
specifications, the tree output (12) is the log-odds of the within-
node empirical class probability

ĝ(TC4.5)(x) = h(yt) = log
( ηt

1 − ηt

)
, x ∈ t.

The tree makes a class prediction by returning the majority vote
of the classes in the node, that is,

ĉ(TC4.5)(x) =
{ +1 if ĝ(TC4.5)(x) ≥ 0

−1 if ĝ(TC4.5)(x) < 0 .

Definition 3.2. A decision tree T constructed with CART
methodology (Section 3.2) in the regression setting (Section 2.1)
is denoted by TCART. Similarly, a decision tree T constructed
with C4.5 methodology (Section 3.3) in the classification setting
(Section 2.2) is denoted by TC4.5. An arbitrary unnamed deci-
sion tree T refers to either TCART or TC4.5.

Remark 1. The curious reader may wonder why we do not ana-
lyze classification trees constructed with CART methodology—
which use the so-called Gini splitting criterion—and instead
focus on C4.5 methodology. Gini impurity for classification trees
is equivalent to squared error impurity (13) for regression trees
(Louppe 2014, sec. 3), and thus both types of trees produce
identical estimates of the conditional mean response, namely,
yt ≈ E(y|x) for x ∈ t. However, our forthcoming results
for regression trees are relegated to additive E(y|x), which are
appropriate for regression, but awkward for classification. For
this reason, C4.5 methodology allows us to work with more
common models for discrete responses y ∈ {−1, 1}, such as the
logistic regression model in Section 2.2.
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4. Main Results

In this section, we first describe a class of large scale predictive
models. For this class of models, we establish an adaptive pre-
diction risk bound, which in turn, leads to consistency of CART
and C4.5.

4.1. Large Scale Predictive Models

We illustrate the high dimensional properties of CART and C4.5
in the context of generalized additive models, whereby an additive
function is related to the conditional mean of the response vari-
able by a link function (1). While there are many link functions
that could be used, the canonical choices for regression and
classification tasks are the aforementioned identity and logit
functions from Sections 2.1 and 2.2, respectively.

In particular, note that additive logistic regression models are,
importantly, different from ordinary additive regression in the
sense that E(y|x) = 2P(y = 1|x) − 1 is not equal to an additive
function of the predictor variables. This means that one cannot
deduce consistency from existing results for regression trees
(Scornet, Biau, and Vert 2015), even in the fixed dimensional
setting, since they are limited to additive E(y|x).

In practice, additive logistic regression models are typically fit
with backfitting or boosting algorithms (Hastie and Tibshirani
1990; Tutz and Binder 2006). Despite a rich literature on the-
oretical guarantees in the fixed dimensional setting (Horowitz
and Mammen 2004), consistency results in the (ultra) high
dimensional setting (i.e., log(p) ≍ N1−ξ , ξ ∈ (0, 1)) with either
ℓ0 or ℓ1 sparsity constraints do not appear to be available, unless
the logistic regression model is linear and the sparsity pattern
is the number of relevant predictor variables (Abramovich and
Grinshtein 2019). Therefore, sparse logistic regression models
render a situation in which decision trees are unrivaled as a
scalable, theoretically grounded method.

Generalized additive models. We now describe the generalized
additive modeling framework with additional precision. Con-
sider the additive function class

G1 :=
{

g(x) := g1(x1) + g2(x2) + · · · + gp(xp)
}

,

where g1(x1), g2(x2), . . . , gp(xp) is a collection of p univariate
(Borel measurable) functions. The generalized additive model-
ing framework involves finding a g(·) ∈ G1 for which

g(x) = g1(x1) + g2(x2) + · · · + gp(xp) (14)

approximates the true model (1).
Generalized additive models are often used in high dimen-

sional settings, in part because notions of exact ℓ0 or approx-
imate ℓ1 sparsity are easy to define and interpret. We now
describe these two types of sparsity patterns in detail.

Approximate ℓ1 sparsity. As we have already mentioned, we
would like to consider models with approximate sparsity. To this
end, for g(·) ∈ G1, we define the total variation ℓ1 norm ∥g∥TV
as the infimum of

TV(g1) + TV(g2) + · · · + TV(gp) (15)

over all representations of g(·) as (14), that is, ∥g∥TV is the
aggregated total variation of the individual component functions
(see Tan and Zhang (2019) and the references therein). To sim-
plify the arguments, we henceforth assume g(·) has a canonical
representation (14) such that (15) achieves this infimum. One
can think of ∥g∥TV as a measure of the capacity of g(·) and, as we
shall see, it will play a central role in the paper. The total variation
ℓ1 norm is a desirable quantification of sparsity because it allows
for some predictor variables to make very small yet meaningful
contributions to the model.

In the case that all the component functions gj(·) are smooth
over a domain X with Lebesgue measure one, the total variation
ℓ1 norm can be expressed as the multiple Riemann integral

∥g∥TV =
∫

X p
∥∇g(x)∥ℓ1 dx,

where ∇(·) is the gradient operator and ∥ · ∥ℓ1 is the usual ℓ1
norm of a vector in Rp. In particular, if g(x) = βTx is linear
over X p, then ∥g∥TV = ∥β∥ℓ1 , the ℓ1 norm of the coefficient
vector β ∈ Rp.

Exact ℓ0 sparsity. To account for exact sparsity, we also define
the ℓ0 norm ∥g∥ℓ0 of g(·) ∈ G1 as the infimum of

#{j : gj(·) is nonconstant}

over all representations of g(·) as (14). In other words, the ℓ0
norm counts the number of relevant variables that affect g(·).
For g(·) ∈ G1, we have the relation

∥g∥TV ≤ ∥g∥ℓ0 · max
j

TV(gj),

provided maxj TV(gj) < ∞. Thus, a small total variation ℓ1
norm captures either exact or approximate sparsity, whichever
is present.

Finally, our results will require us to have uniform control on
the magnitude of a function g : Rp → R, which we do through
the supremum norm ∥g∥∞ := supx |g(x)|.

4.2. Empirical Risk Bound

The empirical risk bound in this section is the key to all
forthcoming results. We prove a purely algorithmic guarantee,
namely, that the (excess) empirical risk of a depth K regression
tree constructed with CART or C4.5 methodology is of order
1/K. To the best of our knowledge, this result is the first of
its kind for any decision tree algorithm. The math behind it is
surprisingly simple; in particular, unlike most past work, we do
not need to directly analyze the partition of the input space that
is induced by recursively splitting the variables. Nor do we need
to rely on concentration of measure to show that certain local
(i.e., within-node) empirical quantities concentrate around their
population level versions. Because we are able to circumvent
these technical aspects with a new method of analysis, the astute
reader will notice and appreciate that we make no assumptions
on the decision tree itself (such as a minimum node size con-
dition or shrinking cell condition that typifies extant literature).
In contrast with the recent work of Chi et al. (2020) and Syrgka-
nis and Zampetakis (2020), we also do not need to assume a
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local accuracy gain condition so that the approximation error
decreases by a constant factor after splitting at each level.

We now describe the empirical risk bound in detail. We aim
to upper bound the excess empirical risk of the decision tree
TK . In view of (11), as we grow deeper trees, the empirical risk
reduces by the impurity gain, as can be seen from the recursion
(which holds generically)

R̂(̂g(TK)) = R̂(̂g(TK−1)) −
∑

t∈TK−1

Nt
N IG(t), (16)

where the notation “t ∈ T” means that t is a terminal node of
a tree T. In view of (16), to obtain an inductive upper bound
on R̂(̂g(TK)), we further aim to the lower bound the impurity
gain IG(t) for t ∈ TK−1 in terms of the within-node excess risk
R̂t(̂g(TK−1)) − R̂t(g) for a candidate model g(·). Lemma 4.1
accomplishes this goal.

Lemma 4.1 (Impurity gain for CART and C4.5). Let g(·) ∈ G1

be any additive function and K ≥ 1 be any depth. Then for
any terminal node t of the tree TK−1 such that R̂t(̂g(TK−1)) >

R̂t(g), we have

IG(t) ≥ (R̂t(̂g(TK−1)) − R̂t(g))2

V2(g)
,

where V(g) = ∥g∥TV for CART and V(g) = ∥g∥TV +∥g∥∞ + 3
for C4.5.

Plugging Lemma 4.1 into (16) and subtracting R̂(g) from
both sides, we see that

EK ≤ EK−1 − 1
V2(g)

∑

t∈TK−1:EK−1(t)>0

Nt
N E2

K−1(t), (17)

where

EK := R̂(̂g(TK)) − R̂(g), EK(t) := R̂t(̂g(TK)) − R̂t(g)

are the global and within-node excess empirical risks, respec-
tively. Next, using Jensen’s inequality on (17) and the fact
that EK−1 = ∑

t∈TK−1
Nt
N EK−1(t), it can be shown that (see

Lemma D.1 in supplementary materials D)

EK ≤ EK−1
(

1 − EK−1
V2(g)

)
, EK−1 ≥ 0, K ≥ 1. (18)

Iterating the recursion (18), we establish the following upper
bound on the excess empirical risk EK .

Theorem 4.2 (Empirical risk bound for CART and C4.5). Let TK
be a depth K ≥ 1 decision tree. Then we have

R̂(̂g(TK)) ≤ inf
g(·)∈G1

{
R̂(g) + V2(g)

K + 3

}
,

where V(g) is the constant specified in Lemma 4.1.

The above theorem says that a decision tree of depth K
minimizes the empirical risk (for squared error loss and logistic
loss) over all additive functions, up to a slackness term of order
1/K.

4.3. Oracle Inequality

Our main theorem establishes an adaptive prediction risk bound
(also known as an oracle inequality) for decision trees under
model mis-specification; that is, when the true model (1) may
not belong to G1. Essentially, the result says that CART and C4.5
adapt to the class of (ordinary or logistic) additive regression
models, performing as if they were finding the best additive
approximation of the true model (1), while accounting for the
capacity (the total variation ℓ1 norm ∥ · ∥TV) of the approxima-
tion.

In the regression setting, for simplicity and ease of exposition,
we assume that the error ε = y − g∗(x) = y − E(y|x) is sub-
Gaussian, that is, there exists σ 2 > 0 such that for all u ≥ 0,

P(|ε| ≥ u) ≤ 2 exp(−u2/(2σ 2)). (19)

Before we state our main theorem, we remind the reader that
∥ · ∥ denotes the L2(Px) norm (4) and Err(·) denotes the mis-
classification risk (6). Using these risk measures, we evaluate the
performance of CART for the regression model in Section 2.1
and the performance of C4.5 for the logistic regression model in
Section 2.2.

Theorem 4.3 (Oracle inequalities for CART and C4.5). Let K ≥ 1
be any depth. Granting the noise condition (19), we have

ED(∥̂g(TCART
K ) − g∗∥2) (20)

≤ 2 inf
g(·)∈G1

{
∥g − g∗∥2 + ∥g∥2

TV
K+3

+ C1
2K log2(N) log(Np)

N

}
,

where C1 is a positive constant that depends only on ∥g∗∥∞ and
σ 2. Furthermore, we have

ED(Err(̂g(TC4.5
K ))) − Err(g∗)

≤ infg(·)∈G1

{
∥g − g∗∥ + 2 ∥g∥TV+∥g∥∞+3√

K+3 +

C2
(

2K log2(N) log(Np)
N

)1/4
}

,

(21)

where C2 is a positive universal constant.

Remark 2. Throughout this article, we measure the accuracy of
a predictor via the expected prediction risk over the data D, as
in Theorem 4.3. However, at the expense of more complicated
expressions, one can also obtain statements that hold with high
probability.

Theorem 4.3 reveals the tradeoff between the goodness of
fit and complexity relative to sample size. The goodness of fit
terms involving ∥g−g∗∥, ∥g∥TV, and ∥g∥∞ stem from the excess
empirical risk bound in Theorem 4.2, and the descriptive com-
plexity term 2K log(Np) comes from the fact that the empirical
ϵ-metric entropy for depth K decision trees with p predictor
variables is of order 2K log(Np/ϵ).

4.4. Consistency

We now explore the case where the true model g∗(·) has the
freedom to change with the sample size, which is common in
other literature on high dimensional consistency (Bühlmann
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2006). To this end, Theorem 4.3 immediately implies consis-
tency when the model is well-specified (i.e., g∗(·) ∈ G1) and
has a controlled sparsity pattern. More specifically, choosing
g(·) = g∗(·) in Theorem 4.3 and stipulating that the total
variation ℓ1 norm of g∗(·) does not grow too fast, we find that
CART and C4.5 are consistent, even when the dimensionality
grows sub-exponentially with the sample size. We note that this
type of result is impossible with nonadaptive procedures that
do not automatically adjust the amount of smoothing along
a particular dimension according to how much the predictor
variable affects the response variable. Such procedures perform
local estimation at a query point using data that are close in
every single dimension, making them prone to the curse of
dimensionality even if the true model is sparse. This is the
case with conventional multivariate (Nadaraya-Watson or local
polynomial) kernel regression in which the bandwidth is the
same for all directions, or k-nearest neighbors with Euclidean
distance. Indeed, one can compute asymptotic expansions of
their bias and variance (Mack 1981; Ruppert and Wand 1994),
which evidently do not exploit low dimensional structure in the
regression model.

Corollary 4.4 (Consistency of CART and C4.5). Consider
a sequence of prediction problems (1) with true models
{g∗

N(·)}∞N=1. Assume that g∗
N(x) = ∑pN

j=1 gj(xj) ∈ G1 and
supN ∥g∗

N∥∞ < ∞. Suppose that KN → ∞, ∥g∗
N∥TV =

o(
√

KN), and 2KN log2(N) log(NpN )
N → 0 as N → ∞. Granting the

noise condition (19), regression trees are consistent, that is,

lim
N→∞

ED(∥̂g(TCART
KN ) − g∗

N∥2) = 0.

Furthermore, classification trees are consistent, that is,

lim
N→∞

(ED(Err(̂g(TC4.5
KN ))) − Err(g∗

N)) = 0.

Remark 3. Note that because ∥g∗
N∥TV ≤ ∥g∗

N∥ℓ0 ·
maxj≤pN TV(g∗

j ), the consistency statement in Corollary 4.4
also applies to models with sparsity patterns defined by
the number of relevant variables. Thus, the condition
∥g∗

N∥TV = o(
√

KN) can be replaced with ∥g∗
N∥ℓ0 = o(

√
KN),

provided maxj≤pN TV(g∗
j ) is independent of N. The same

reasoning applies to all forthcoming results that use ∥ · ∥TV to
measure sparsity.

4.4.1. Consistency Rates
We now describe the effect of specific choices of the depth and
regimes of the ambient dimension on the consistency rate for
CART and C4.5. The hypotheses of Corollary 4.4 are satisfied
if, for example, KN = ⌊(ξ/2) log2(N)⌋, log(pN) ≍ N1−ξ for
ξ ∈ (0, 1), supN ∥g∗

N∥∞ < ∞, and supN ∥g∗
N∥TV < ∞. In this

case, from (20) in Theorem 4.3, the consistency rate of the CART
algorithm is

4 supN ∥g∗
N∥2

TV
ξ log2(N) + 6

+ 2C1
log3(N)

N1−ξ/2 + 2C1
log2(N)

Nξ/2

= O(1/ log(N)) (22)

and from (21) in Theorem 4.3, the consistency rate of the C4.5
algorithm is

4
supN ∥g∗

N∥TV + supN ∥g∗
N∥∞ + 3

√
2ξ log2(N) + 12

(23)

+ C2
( log3(N)

N1−ξ/2 + log2(N)

Nξ/2

)1/4
= O(1/

√
log(N)).

The dependence on the total variation ℓ1 norm ∥g∗
N∥TV in the

consistency rates (22) and (23) shows that CART and C4.5
can tolerate an approximate sparsity level that grows as fast as
o(

√
log(N)). As per Remark 3, a similar growth is tolerated for

the ℓ0 norm ∥g∗
N∥ℓ0 .

4.4.2. Consistency for Unbounded Variation Component
Functions

Corollary 4.4 implicitly considers (ordinary or logistic) additive
regression models whose component functions have bounded
variation, per the finiteness of ∥g∗

N∥TV. In fact, consistency holds
when the component functions gj(·) are merely Borel measur-
able, as Corollary 4.5 reveals.

Corollary 4.5 (Consistency of CART and C4.5 for unbounded vari-
ation components). Consider a sequence of prediction problems
with true models {g∗

N(·)}∞N=1. Assume g∗
N(x) = ∑pN

j=1 gj(xj) ∈
G1, supN ∥g∗

N∥∞ < ∞, and supN ∥g∗
N∥ℓ0 < ∞. Suppose that

KN → ∞ and 2KN log2(N) log(NpN )
N → 0 as N → ∞. Granting the

noise condition (19), regression trees are consistent, that is,

lim
N→∞

ED(∥̂g(TCART
KN ) − g∗

N∥2) = 0.

Furthermore, classification trees are consistent, that is,

lim
N→∞

(ED(Err(̂g(TC4.5
KN ))) − Err(g∗

N)) = 0.

While Corollary 4.5 allows the component functions of the
model to have unbounded variation, it requires the number of
relevant variables ∥g∗

N∥ℓ0 to be uniformly bounded in N, in con-
trast to the o(

√
KN) growth of ∥g∗

N∥TV tolerated in Corollary 4.4.

Remark 4. Corollaries 4.4 and 4.5 do not offer guidance on how
to choose the depth KN . In practice, it is best to let the data
decide and therefore cost complexity pruning (i.e., weakest link
pruning (Breiman et al. 1984)) is recommended. This would
have one first grow a full tree Tmax (to maximum depth) and
then minimize

R̂(̂g(T)) + λ|T|

over all trees T that can be obtained from Tmax by iteratively
merging its internal nodes, where λ is a positive constant and |T|
is the number of terminal nodes of T. Working with the resulting
pruned tree enables one to obtain oracle inequalities of the form
(20), but with the advantage of having the infimum over both
the depth K ≥ 1 and additive functions g(·) ∈ G1.
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4.5. Related Consistency Results and Optimality

Here we compare our consistency results for CART and C4.5
to those of other prediction methods and the optimal minimax
rates.

The reader might be somewhat surprised by the consistency
statements in Corollaries 4.4 and 4.5, especially since they are
qualitatively similar to existing performance guarantees for pre-
dictors based on very different principles, like boosting or neural
networks. For example, (Bühlmann 2006, Theorem 1) states that
boosting with linear learners is also consistent for a sequence of
ℓ1 constrained linear models g∗

N(x) = βT
Nx on [0, 1]p in the high

dimensional regime, that is, when log(pN) ≍ N1−ξ for ξ ∈ (0, 1)

and supN ∥g∗
N∥TV = supN ∥βN∥ℓ1 < ∞.

To provide another frame of reference, we also compare the
consistency rates of CART (22) and C4.5 (23) to the correspond-
ing minimax rates for the model classes we consider. For regres-
sion, the optimal minimax rate (with respect to excess squared
error risk) for s-sparse additive regression with continuously dif-
ferentiable component functions is max{(s/N) log(p/s), sN−2/3}
(Raskutti, Wainwright, and Yu 2012), while the optimal rate
for additive regression models with bounded total variation ℓ1
norm (when p ≫ N) is

√
(log(p))/N (Tan and Zhang 2019).

Both of these settings, corresponding to ℓ0 and ℓ1 sparsity,
respectively, are covered by our theory for regression trees,
and so our 1/ log(N) rate (22) is evidently sub-optimal. For
classification, the literature is less developed, though there are
results for linear logistic regression. For example, Abramovich
and Grinshtein (2019) show that the optimal minimax rate
(with respect to excess mis-classification risk) for s-sparse linear
logistic regression is

√
(s/N) log(p/s), again much faster than

our 1/
√

log(N) rate (23).
The sub-optimality of our rates is due to a combination of

two factors. First, the form of the decision tree predictions—
averaging the response data in the terminal nodes—introduces
an inductive bias, which, in the aforementioned s-sparse additive
regression setting, leads to best-case (yet still sub-optimal) rates
of order N−2/(2+s) (Tan, Agarwal, and Yu 2021). The second
source of sub-optimality stems from our method of analysis.
Recall from Lemma 4.1 that a key step in our proofs is to lower
bound the impurity gain at each node by a constant multiple of
the squared excess risk, viz., IG(t) ! (R̂t(̂g(TK−1)) − R̂t(g∗))2

whenever R̂t(̂g(TK−1)) > R̂t(g∗). Had we been able to show (or
rather presumed in the form of an assumption) a lower bound
IG(t) ! R̂t(̂g(TK−1)) − R̂t(g∗) whenever R̂t(̂g(TK−1)) >

R̂t(g∗), then it would have been possible for us to obtain poly-
nomial convergence rates, instead of logarithmic. In the next
section, we obtain a similar lower bound on the impurity gain
(Lemma 5.1) for separable, large margin data, which does indeed
lead to a faster consistency rate.

5. Beyond Discriminative Models

In Section 4, we operated under a discriminative statistical
model of the data; that is, we study decision trees under an
explicit form of the conditional distribution Py|x. In lieu of the
logistic regression model from Section 2.2, here we consider
another ubiquitous classification setting in which the data can
be perfectly separated into two classes by an additive decision

boundary, with margin γ > 0. As we shall see, this setting
will allow us to obtain consistency rates which are exponentially
faster than those from Section 4.4. Separable data assumptions,
such as the one formalized in Assumption 1, are prevalent in
statistical learning literature, especially in the context of (kernel)
support vector machines (Boser, Guyon, and Vapnik 1992) and
boosting (Bartlett et al. 1998). Note that such an assumption
is particularly appropriate for our high dimensional setting—
when p is large, there is more freedom for the data to be sep-
arated by an additive decision boundary.

Assumption 1 (Additively separable, large margin). There exists
γ ∈ (0, 1] and f ∗(x) = ∑p

j=1 fj(xj) ∈ G1 with
max{∥f ∗∥TV, ∥f ∗∥∞} ≤ 1 such that for almost all pairs (x, y)
drawn from the joint distribution P(x,y),

yf ∗(x) ≥ γ .

Remark 5. If the additive function f ∗(x) = βTx is linear over
[0, 1]p, then γ corresponds to the maximum ℓ1-margin subject
to ∥β∥ℓ1 ≤ 1, matching the standard margin framework for
linearly separable data.

Note that any separable, large margin distributional assump-
tion implies that the Bayes risk is zero; therefore, we aim to
show that a tree constructed with C4.5 methodology will have
mis-classification risk converging to zero. While there are some
similarities with the proof of Corollary 4.4, the key difference is
an improved lower bound on the impurity gain that establishes
nearly linear, rather than quadratic (see Lemma 4.1), depen-
dence on the within-node empirical risk.

Lemma 5.1 (Information gain for C4.5 with separable, large mar-
gin data). Grant Assumption 1. Let K ≥ 1 be any depth and let
t be any terminal node of TC4.5

K−1. We have that

IG(t) ≥ γ 2

30
· R̂t(̂g(TC4.5

K−1))

log(1/R̂t(̂g(TC4.5
K−1)))

.

Using Lemma 5.1 in conjunction with (16) shows that the
empirical risk decays sub-exponentially fast in the depth K,
much faster than the polynomial rate of decay for a logistic
regression model (Theorem 4.2).

Theorem 5.2 (Empirical risk for C4.5 with separable, large margin
data). Granting Assumption 1, for all depths K ≥ 1,

R̂(̂g(TC4.5
K )) ≤ exp

(
−

(γ 2K
30

)1/2)
.

Employing the above empirical risk bound, we can establish
the following mis-classification risk bound.

Theorem 5.3 (Mis-classification risk for C4.5 with separable, large
margin data). Granting Assumption 1, for all depths K ≥ 1,

ED(Err(̂g(TC4.5
K ))) ≤ 2 exp

(
−

(γ 2K
120

)1/2)

+ C2
(2K log2(N) log(Np)

N

)1/4
,

where C2 is the same constant in the statement of Theorem 4.3.
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Theorem 5.3 immediately implies the following consistency
result.

Corollary 5.4 (Consistency of C4.5 with separable, large margin
data). Consider a sequence of decision boundaries {f ∗

N(·)}∞N=1
with respective margins {γN(·)}∞N=1 such that Assumption 1
holds. Suppose f ∗

N(x) = ∑pN
j=1 fj(xj) ∈ G1 and that KN → ∞,

γN = ω(1/
√

KN), and 2KN log2(N) log(NpN )
N → 0 as N → ∞.

Then, classification trees are consistent, that is,

lim
N→∞

ED(Err(̂g(TC4.5
KN ))) = 0.

The hypotheses of Corollary 5.4 are satisfied if, for example,
KN = ⌊(ξ/2) log2(N)⌋, log(pN) ≍ N1−ξ for ξ ∈ (0, 1), and
γN = γ for some γ ∈ (0, 1]. In this case, from Theorem 5.3, the
consistency rate of C4.5 is

O
(

exp
(
−

√
γ 2ξ log(N)/240

))
,

which is sub-polynomial in N, and exponentially faster than the
1/

√
log(N) rate (23) for a logistic regression model.

6. Models with Interactions

Our main results in Section 4 focused on (ordinary or logis-
tic) additive regression models primarily because notions of
approximate and exact sparsity are easier to define and more
interpretable in high dimensional settings. However, the inter-
pretation of CART and C4.5 in an (ordinary or logistic) additive
regression setting will be muddled by the fact that all interactions
it finds will be spurious. It is therefore desirable to have a
more comprehensive theory, particularly for data settings where
decision trees could be useful.

As we now explain, it is possible to motivate reasonable
assumptions so that our main results for (ordinary or logistic)
additive regression models can be extended to models with
interactions. To this end, recall the proof outline in Section 4.
We started with the recursion (16) and then used a lower bound
on the impurity gain (Lemma 4.1), tailored for (ordinary or
logistic) additive regression models, to bound the empirical risk
(Theorem 4.2) and ultimately show consistency (Corollary 4.4).
In fact, under suitable assumptions, many of these same ideas
work when model class G has interaction terms.

To illustrate the broad strokes in obtaining these extensions,
we will consider the class of d-way interaction models

Gd :=
{

g(x) :=
∑

j1
gj1(xj1) +

∑

j1<j2
gj1,j2(xj1 , xj2)

+ · · · +
∑

j1<j2<···<jd

gj1,j2,...,jd(x1, x2, . . . , xd)
}

,

which encompasses the additive function class G1. Thus, models
belonging to Gd have interactions involving up to d predic-
tor variables. Conversely, any square-integrable function with
interactions involving at most d variables admits a functional
ANOVA decomposition in the form above, where the functional
components in the expansion have zero mean and are orthog-
onal to each other (Hooker 2007). We note in passing that,
while decision trees can discover interaction effects through the

way they are constructed, they do not directly leverage additive
structure in the model and so are unlikely to achieve the optimal
rates of convergence on Gd (this is certainly the case for G1; see
Section 4.5).

By recursing (16), we can write the empirical risk of the tree as

R̂(̂g(TK)) = R̂(̂g(TK−d)) − ∑
t∈TK−d

Nt
N IGd(t), (24)

where IGd(t) := IG(t) + ∑
t′

Nt′
Nt

IG(t′) is the d-level impurity
gain of a node t ∈ TK−d. Here in the definition of IGd(t), the
sum extends over all descendent nodes t′ of t up to depth K − 1.
Another way of thinking about IGd(t) is that it measures the
decrease in risk from greedily splitting d times in t and thus
captures interactions involving up to d predictor variables. For
example, according to the representations given by (10) and (11),

IG(t) = R̂t(h(yt)) − min
β0,β1

R̂t(β0 + β11(xjt > st)),

which captures only main effects from splitting once in t. This
explains why Lemma 4.1 relates the impurity gain to the empir-
ical risk of an (ordinary or logistic) additive regression model.
On the other hand, IG2(t) = IG(t) + PtLIG(tL) + PtRIG(tR)

equals

R̂t(h(yt)) − min
β0,β1,β2,β3,j1,s1,j2,s2

R̂t(β0 + β11(xjt > st)

+ β21(xj1 > s1, xjt ≤ st) + β31(xj2 > s2, xjt > st)),

and thus captures both main effects and second order effects
from greedily splitting twice in t. It is then reasonable to postulate
that one could relate IG2(t) to the empirical risk of a function
in G2. Consequently, a natural generalization of the impurity
gain inequality in Lemma 4.1 to functions in Gd would be the
following condition.

Assumption 2. Let g∗(·) ∈ Gd and K ≥ d. For any terminal node
t of the tree TK−d such that R̂t(̂g(TK−d)) > R̂t(g∗), we have

IGd(t) ≥ (R̂t(̂g(TK−d)) − R̂t(g∗))2

V2(g∗)
, (25)

for some complexity constant V(g∗) that depends only on g∗(·).

Following a similar argument to the one outlined in Section 4,
we can substitute the purported lower bound (25) into (24) and
use Jensen’s inequality to produce the recursion

EK ≤ EK−d
(

1 − EK−d
V2(g∗)

)
, EK−d ≥ 0, K ≥ d.

Thus, granting the impurity gain condition (25), by Lemma D.1
in supplementary materials D, we have that

R̂(̂g(TK)) ≤ R̂(g∗) + V2(g∗)d
K + 2d + 1

, K ≥ d, (26)

a direct analogue to Theorem 4.2. Thus, the excess empirical
risk for a d-way interaction model is of order d/K, which means
that the depth K should exceed d for it to be small. This is to be
expected since the depth K controls the interaction order of the
tree. Using (26) and the same steps as the proof of Theorem 4.3
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and Corollary 4.4, we can easily deduce that if {g∗
N(·)}∞N=1 is a

sequence of true models in Gd with supN ∥g∗
N∥∞ < ∞ and

KN → ∞, V(g∗
N) = o(

√
KN), and 2KN log2(N) log(NpN )

N → 0 as
N → ∞, then both regression trees and classification trees are
consistent, that is,

ED(∥̂g(TCART
KN ) − g∗

N∥2) → 0 and
ED(Err(̂g(TC4.5

KN ))) − Err(g∗
N) → 0, as N → ∞.

7. Random Forests

The predictive abilities of individual decision trees should intu-
itively be inherited by random forests due to the ensemble
principle and convexity of squared error (see Denil, Matheson,
and De Freitas 2014, Propositions 3 and 4; Breiman 2001, sec.
11, or Breiman 1996, sec. 4.1). Indeed, our main results for
individual trees in Section 4 also carry over to Breiman’s random
forests (Breiman 2001) with relative ease, as we now explain. To
keep redundancy to a minimum, we will restrict ourselves to the
regression setting of Section 2.1.

7.1. Growing the Forest

Consider a sub-sample D′ of size aN from the original dataset
D, whereby each sample point is drawn uniformly at random
without replacement.2 From this sub-sample, we train a depth
K tree TCART

K with CART methodology in the usual way, except
that, at each internal node, we select m (also known as mtry)
of the p variables uniformly at random without replacement,
as candidates for splitting. That is, for each internal node t of
TCART

K , we generate a random subset S ⊂ {1, 2, . . . , p} of size m
and split along a variable xȷ̂t with split point ŝt, where (ȷ̂t,̂ st) ∈
arg max(j∈S , s∈R)IG(j, s, t).

We grow B of these depth K regression trees sepa-
rately using, respectively, B independent realizations " =
(,1, ,2, . . . , ,B)T of a random variable ,. Here , is dis-
tributed according to the law that generates the sub-sampled
training data D′ and candidate variables S for splitting at each
of the nodes. The output of the bth regression tree is denoted by
ĝ(TCART

K (,b)).
With this notation in place, the random forest output is then

simply the empirical average of the B regression tree outputs,
namely,

ĝ(")(x) := B−1
B∑

b=1
ĝ(TCART

K (,b))(x).

7.2. Oracle Inequality for Random Forests

By a modification of the proofs of Theorems 4.2 and 4.3, it
is possible to show the following oracle inequality for random
forests.

2We deviate slightly from Breiman’s original random forests (Breiman 2001),
as we do not grow the constituent trees to maximum depth with boot-
strapped data. Note, however, that sampling with and without replacement
produce similar results when aN = ⌊N/2⌋ (Friedman and Hall 2007).

Theorem 7.1 (Oracle inequality for CART random forests).
Granting the noise condition (19), for all depths K ≥ 1, we have

E",D(∥̂g(") − g∗∥2)

≤ 2 inf
g(·)∈G1

{
∥g−g∗∥2+ p

m
∥g∥2

TV
K+3

+C1
2K log2(aN) log(aNp)

aN

}
,

where C1 is the same constant in the statement of Theorem 4.3.

Remark 6. As the number of trees B in the forest approaches
infinity, by (Breiman 2001, Theorem 11.1),

E",D(∥̂g(") − g∗∥2) → ED(∥E"|D (̂g(")) − g∗∥2),

almost surely.

Thus, when B is large, Theorem 7.1 resembles results such as
(20) in Theorem 4.3 which measure the accuracy of a predictor
via the expected prediction risk over the data D.

To the best of our knowledge, Theorem 7.1 is one of the
first results in the literature that shows explicitly the impact on
the prediction risk from randomly choosing subsets of variables
as candidates for splitting at the nodes, without any restrictive
assumptions on the tree or data generating process. Even though
it is not captured by Theorem 7.1, empirically, the random
variable selection mechanism of forests has the effect of de-
correlating and encouraging diversity among the constituent
trees, which can greatly improve the performance. It also reduces
the computational time of constructing each tree, since the opti-
mal split points do not need to be calculated for every variable
at each node. What Theorem 7.1 does reveal, however, is that
this mechanism cannot hurt the prediction risk beyond a benign
factor of p/m. In fact, standard implementations of regression
forests use a default value of m equal to ⌊p/3⌋. With this choice,
we see by comparing Theorem 7.1 and Corollary 4.4 that there is
essentially no loss in performance (at most a factor of p/m = 3)
over individual trees, despite not optimizing over the full set of
variables at the internal nodes. It is also interesting to note that
we recover the bound (20) for individual regression trees when
m = p.

7.3. Consistency of Random Forests

Theorem 7.1 immediately implies a consistency result for regres-
sion forests, analogous to Corollary 4.4 for individual regression
trees.

Corollary 7.2 (Consistency of random forests). Consider
a sequence of prediction problems (1) with true models
{g∗

N(·)}∞N=1. Assume that g∗
N(x) = ∑pN

j=1 gj(xj) ∈ G1

and supN ∥g∗
N∥∞ < ∞. Suppose that KN → ∞,

∥g∗
N∥TV = o(

√
(mN/pN)KN), and 2KN log2(aN ) log(aN pN )

aN
→ 0 as

N → ∞. Then, granting the noise condition (19), regression
forests are consistent, that is,

lim
N→∞

E",D(∥̂g(") − g∗∥2) = 0.

Like the consistency statement for CART in Corollary 4.4, the
hypotheses of Corollary 7.2 are satisfied if, for example, KN =



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 11

⌊(ξ/2) log2(aN)⌋, log(pN) ≍ a1−ξ
N , and mN = ⌊pN/3⌋, for some

constant ξ ∈ (0, 1), yielding the same O(1/ log(N)) rate as a
single tree (see (22)). It is also interesting to note that consistency
is still possible even if only a vanishing fraction of variables are
randomly selected at each node, that is, mN = o(pN). At the
extreme end, consistency holds even when mN ≡ 1; that is, only
a single coordinate is selected at random at each node, provided
appropriate restrictions are placed on pN and ∥g∗

N∥TV.
Corollary 7.2 provides a partial answer to a problem posed by

Scornet, Biau, and Vert (2015):

It remains that a substantial research effort is
still needed to understand the properties of forests
in a high-dimensional setting, when p = pN may
be substantially larger than the sample size.

More specifically, Corollary 7.2 strengthens (Scornet, Biau, and
Vert 2015, Theorem 1), which shows that random forests are
consistent for additive regression when p is fixed, the component
functions are continuous, and KN → ∞ and 2KN (log9(aN ))

aN
→ 0

as N → ∞. In contrast, here we allow the dimensionality pN
to grow sub-exponentially with the sample size N (under ℓ1
sparsity constraints) and also for the component functions to be
possibly discontinuous. In fact, the proof of Corollary 4.5 can
be modified to establish consistency of random forests for addi-
tive regression with growing dimensionality pN (under ℓ0 spar-
sity constraints) and Borel measurable component functions—
without assuming continuity or finite total variation. More
specifically, suppose that supN ∥g∗

N∥∞ < ∞, supN ∥g∗
N∥ℓ0 < ∞,

and mN ≍ pN . If KN → ∞ and 2KN log2(aN ) log(aN pN )
aN

→ 0 as
N → ∞, then granting the noise condition (19), we have

lim
N→∞

E",D(∥̂g(") − g∗
N∥2) = 0.

We close this section by saying that it is still largely a mystery
(at least theoretically) why bagging and the random feature
selection mechanism are so effective at reducing the prediction
risk. Our bounds in Theorem 7.1 only show that these appa-
ratuses do not degrade the performance beyond small factors.
Certainly more work needs to be done to answer these questions.

7.4. Empirical Studies

Because random forests are now a classic topic in machine
learning and data science, they have been subject to thorough
empirical scrutiny and investigation under a variety of model
specifications. This includes the high dimensional regime when
p ≫ N. As the literature is vast, we only mention a few
experimental papers below.

Regarding the m parameter, Genuer, Poggi, and Tuleau
(2008) provide a detailed empirical analysis of random forests in
the high dimensional setting. They consider both synthetic and
real-world data for regression and classification tasks. Among
the simulated examples for regression are Friedman’s benchmark
models (Breiman 1996), which, in our notation, belong to the
classes G2 and G4 and involve either 4 or 5 relevant predictor
variables. For a sample size of N = 100, the simulation results
(see Figures 3–5 in Genuer, Poggi, and Tuleau 2008) reveal
that forests are quite robust to the inclusion of noisy predictor

variables (with ambient dimensionality ranging from p = 100
to p = 1000). The author finds that forests achieve best per-
formance when m is set to be equal to the ambient dimension
p, corresponding to bagging. Similar observations are made in
(Segal 2004, Table I) for one of Friedman’s models with N = 200
and p = 510.

An investigation of the tree depth in random forests can
be found in Zhou and Mentch (2021, Figures 10 and 11),
where they sample N = 50 and N = 100 data points from
a sparse linear model with 5 and 10 relevant variables, and
ambient dimensionality p = 1000. Shallow trees are found
to be advantageous when the model has a low signal-to-noise
ratio. In Duroux and Scornet (2018, Figures A.1 and A.3) reveal
that forests with smaller trees achieve similar performance to
forests with fully grown trees if the number of terminal nodes
is properly tuned. One of their examples (Model 8) consists of a
sparse additive model with 4 relevant variables, p = 1000, and
N = 500.

Other references on the impact of hyperparameter tuning
in random forests can be found in the review article (Probst,
Wright, and Boulesteix 2019).

It is still largely a mystery (at least theoretically) why bagging
and the random feature selection mechanism are so effective at
reducing the prediction risk. Our bounds in Theorem 7.1 only
show that these apparatuses do not degrade the performance
beyond small factors. Fascinating recent work by Mentch and
Zhou (2020) shows that m plays a similar role as the shrinkage
penalty in explicitly regularized procedures. More specifically,
when p > N, they show that if an ensemble predictor is
formed by averaging over many linear regression models with
orthogonal designs and randomly selected subsets of variables,
then asymptotically as the number of models goes to infinity,
the coefficient vector of the ensemble is shrunk by a factor
of m/p. It is possible that a similar form of implicit regular-
ization is occurring in our high dimensional additive setting,
which may lead to even better performance over individual
trees. Certainly more work needs to be done to answer these
questions.

8. Conclusion

In this article, we showed that decision trees and random forests
adapt to ℓ0 or ℓ1 forms of sparsity and can accommodate (essen-
tially) arbitrary types of predictor variables, such as continuous,
discrete, and/or dependent. Our work is primarily of theoret-
ical value, since we study existing decision tree methodology,
namely, CART and C4.5. Nevertheless, given their widespread
popularity in many applied disciplines, we believe our results can
be used as a theoretical justification for practical application on
high dimensional regression and classification problems. Specif-
ically, Theorems 4.3 and 7.1 give an explicit characterization of
how the various quantities (e.g., tree depth, mtry, sample size,
ambient dimension, sparsity level) interact with each other and
determine the performance, thereby motivating specific choices
of the parameters (e.g., tree depth, mtry). Furthermore, consis-
tency in Corollaries 4.4 and 7.2 serves as a stress-test and shows
how practical implementations of decision trees and random
forests can be accurate even with a very high predictor variable
count.
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Supplementary Materials

The supplementary materials contain detailed proofs for all the theoretical
results presented in the paper.
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