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1 Introduction

The operator product expansion (OPE) [1, 2] provides an elegant method to separate short-
distance from long-distance contributions in quantum field theory. Its early application
to deeply inelastic lepton-nucleon scattering processes [3] in quantum chromodynamics
(QCD) successfully predicted the violation of Bjorken scaling [4, 5], thereby enabling
the development of the QCD-improved parton model [6]. The anomalous dimensions of
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quark and gluon operators in the OPE are directly related to the Altarelli-Parisi splitting
functions [6–8] of the QCD-improved parton model by an inverse Mellin transformation.

The splitting functions determine the scale evolution of the parton distributions, which
are an essential ingredient to all quantitative predictions for high-energy hadron collider
processes. The precise determination of parton distributions requires the iterated comparison
of highly accurate experimental data for a multitude of processes with theoretical predictions
at a comparable level of precision. These predictions require higher order perturbative
corrections [9] to the underlying hard scattering processes as well as to the splitting functions.

Splitting functions are currently known to three-loop order in QCD [10, 11], which
enables a consistent description of hadron collider processes at next-to-next-to-leading order
(NNLO) in perturbative QCD. Despite its early success and its computational simplicity,
the OPE method has not played a significant role in this progress towards precision QCD
for collider observables. Its applicability at higher loop orders is limited by the currently
incomplete understanding of the renormalization of singlet quark and gluon operators,
which involves the mixing with so-called gauge-variant (GV) operators, that are unphysical
operators resulting from the gauge fixing in QCD. Although the existence of such operators
has been known [12, 13] since the initial applications of the OPE in QCD, it has not been
possible to determine the number and the form of these GV operators — or even only
the renormalization counterterms that result from them — beyond what is required for
two-loop calculations [14].

In this paper, we revisit the long-standing question of the renormalization of the leading-
twist quark and gluon operators, whose anomalous dimensions determine the scale evolution
of parton distribution functions. We devise a new method to extract the Feynman rules for
renormalization counterterms that result from GV operators, through the computation of
multi-leg operator matrix elements. We apply the newly developed method to determine
all counterterms required in the OPE up to three loops in QCD. Section 2 establishes our
notation and briefly summarizes the OPE of QCD. We describe the calculation of operator
matrix elements (OMEs) up to three loops in section 3. Our method for the determination
of Feynman rules for operators and counterterms is developed in section 4 and, in section 5,
applied to compute all counterterms that are required for the three-loop renormalization.
These counterterms are used in section 6 to rederive the three-loop anomalous dimensions,
thereby rigorously establishing their independence of the QCD gauge parameter. We
conclude with an extensive summary of our method and key results in section 7.

2 Notation and formalism

2.1 Lagrangian density in massless QCD
The dynamics of quarks and gluons are controlled by the QCD Lagrangian. The classical
gauge invariant Lagrangian of QCD is given by

Lc = ψ̄iiγ
µ(Dµ)ijψj − 1

4G
a
µνG

µν
a , (2.1)

where ψi is the quark field in the fundamental representation of SU(3) gauge group and
i is the color index. Further, (Dµ)ij is the gauge-covariant derivative in the fundamental
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representation,
(Dµ)ij = ∂µδij − igs(T a)ijAa

µ , (2.2)
and Ga

µν is the gluon field strength tensor,

Ga
µν = ∂µA

a
ν − ∂µA

a
µ + gsf

abcAb
µA

c
ν , (2.3)

with gluon fields Aa
µ in the adjoint representation of the SU(3) gauge group.

The classical QCD Lagrangian is invariant under the following infinitesimal gauge
transformations,

Aa
µ → Aa

µ +Dab
µ θ

b , (2.4)
where the covariant derivative Dab

µ in the adjoint representation is given by

Dab
µ = ∂µδ

ab − gsf
abcAc

µ . (2.5)

The gauge freedom causes difficulties when trying to quantize gauge field theories. One
way to deal with it is the introduction of a gauge fixing term in the Lagrangian to eliminate
the problematic gauge freedom. This procedure leads to a ghost term, which cancels the
unphysical longitudinal degrees of the gauge field. The commonly used gauge-fixing and
ghost terms in covariant gauge are

LGF+ghost = − 1
2ξ (∂

µAa
µ)2 − c̄a∂µDab

µ cb , (2.6)

where ca is the ghost field, c̄a is the anti-ghost field and ξ is the gauge parameter with ξ = 1
being the ’t Hooft-Feynman gauge. The full QCD Lagrangian is thus

LQCD = Lc + LGF+ghost , (2.7)

in covariant gauge.

2.2 Twist-two operators
To study the collinear behavior of QCD, we consider the operator product expansion. In
the following, we focus entirely on twist-two operators, which encode the collinear physics
at leading power. According to the flavour group, the twist-two operators are divided into
non-singlet and singlet parts. The non-singlet operators of spin n and twist two are given by

Oµ1···µn
q,k = in−1

2 S
[
ψ̄i1γ

µ1Dµ2
i1i2D

µ3
i2i3 · · ·D

µn
in−1in

λk
2 ψin − trace terms

]
, k = 3, · · ·n2

f − 1 ,
(2.8)

where λk/2 is a diagonal generator of the flavour group SU(nf ) and S denotes the sym-
metrization of Lorentz indices µ1 · · ·µn. Since only the traceless part of the operator is of
relevance, trace terms are subtracted to render the operator definition traceless.

There are two operators in the flavor singlet case. The twist-two singlet quark and
gluon operators that are obtained from the OPE are

Oµ1···µn
q = in−1

2 S
[
ψ̄i1γ

µ1Dµ2
i1i2D

µ3
i2i3 · · ·D

µn
in−1inψin − trace terms

]
,

Oµ1···µn
g = − in−2

2 S
[
Gµ1

a1,µD
µ2
a1a2 · · ·D

µn−1
an−2an−1G

µnµ
an−1an − trace terms

]
, (2.9)
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where the covariant derivatives in the quark and gluon operators are defined in (2.2) and (2.5)
respectively. No momentum transfer is associated with the operators.

Since the operators are traceless, we can extract the information of interest by contract-
ing the operators with an external source

Jµ1···µn = ∆µ1∆µ2 · · ·∆µn (2.10)

where ∆ is a light-like vector ∆2 = 0. We thus define the following spin-n twist-two operators

Oq,k = Oµ1···µn
q,k Jµ1···µn ,

Oq = Oµ1···µn
q Jµ1···µn ,

Og = Oµ1···µn
g Jµ1···µn . (2.11)

Here and in the following, the dependence of Oq,k, Oq and Og on n is understood.
To compute matrix elements of these operators for a given set of external parton states,

one needs the corresponding operator Feynman rules, which can be obtained from (2.9) by a
functional variation. In addition to the primary qq̄ and gg states for Oq and Og respectively,
the covariant derivatives in (2.9) lead to Feynman rules for an arbitrary number of additional
gluons. Since each additional gluon contributes a factor gs, only a finite number of these
operator Feynman rules need to be considered at a given order in perturbation theory.
These Feynman rules can be cast into an all-n form [15], as outlined in section 3 below.

2.3 Renormalization of the twist-two operators

The non-singlet operator Oq,k is distinguished from singlet operators by quark flavour,
and can therefore be renormalized separately. The renormalized non-singlet operator is
defined by

OR
q,k = ZnsO

B
q,k , (2.12)

where Zns is a multiplicative renormalization constant. Here and in the following, the
superscripts R and B denote the renormalized and bare operators, respectively.

The two singlet operators belong to the same irreducible representation and mix with
each other under renormalization. Due to the absence of further physical operators in
the same representation, one could naively expect the following operator renormalization
to hold:

(
Oq

Og

)R,naive

=
(
Zqq Zqg

Zgq Zgg

)(
Oq

Og

)B

. (2.13)

As we will discuss further below, this picture needs to be extended to include further,
non-physical operators.

First let us note that, for non-singlet and singlet operators, the anomalous dimension γ
can be extracted from the renormalization constant according to

dZ

d lnµ = −2γ · Z . (2.14)
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For the non-singlet case, we have Z = Zns and γ = γns. For the singlet case, both Z and γ
are two-by-two matrices due to operator mixing:

Z =
(
Zqq Zqg

Zgq Zgg

)

, γ =
(
γqq γqg
γgq γgg

)

. (2.15)

We expand the renormalization constants perturbatively according to

Z =
∞∑

i=0
ais Z

(i) , (2.16)

where we have defined as = αs/(4π). For the anomalous dimensions, we use

γ =
∞∑

i=0
ai+1
s γ(i) . (2.17)

By using the definition of the d-dimensional QCD β function

β(as, ϵ) =
das
d lnµ = −2ϵ as − 2as

∞∑

i=0
ai+1
s βi , (2.18)

with ϵ being the dimensional regulator ϵ = (4 − d)/2, we can express the renormalization
constant Z in terms of the anomalous dimension. In non-singlet case, the renormalization
constant is

Zns = 1 + as
γ(0)ns
ϵ

+ a2s

(
γ(1)ns
2ϵ + 1

2ϵ2
[

− β0γ
(0)
ns +

(
γ(0)ns

)2
])

+ a3s

(
1
3ϵγ

(2)
ns + 1

6ϵ2
[

− 2β1γ(0)ns − 2β0γ(1)ns + 3γ(0)ns γ
(1)
ns

]

+ 1
6ϵ3

[
2β20γ(0)ns − 3β0

(
γ(0)ns

)2 +
(
γ(0)ns

)3
])

+O(a4s) . (2.19)

In the singlet case, one has

Zij = δij + as
γ(0)ij

ϵ
+ a2s

(
γ(1)ij

2ϵ + 1
2ϵ2

[
− β0γ

(0)
ij +

∑

k=q, g

γ(0)ik γ
(0)
kj

])

+ a3s

(
1
3ϵγ

(2)
ij + 1

6ϵ2
[

− 2β1γ(0)ij − 2β0γ(1)ij + 2
∑

k=q, g

γ(1)ik γ
(0)
kj +

∑

k

γ(0)ik γ
(1)
kj

]

+ 1
6ϵ3

[
2β20γ

(0)
ij − 3β0

∑

k=q, g

γ(0)ik γ
(0)
kj +

∑

k=q, g

∑

l=q, g

γ(0)ik γ
(0)
kl γ

(0)
lj

])

+O(a4s) ,

(2.20)

where i, j = q, g. By extracting the anomalous dimensions, one can subsequently determine
the splitting functions, see the end of section 6.

It was already pointed out by Gross and Wilczek in the first calculation of the one-loop
singlet anomalous dimensions [3] that the quark and gluon operators may mix with further
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GV operators under renormalization. These GV operators originate from the interplay
of gauge-fixing at the QCD Lagrangian level and the OPE, with the twist-two operator
basis (2.9) being obtained from the classical gauge-invariant QCD Lagrangian (2.1) prior to
gauge fixing.

The derivation of a consistent OPE on the basis of the gauge-fixed QCD Lagrangian (2.7)
has been investigated extensively in the literature. In the seminal work of Dixon and
Taylor [12], the set of GV operators relevant at order gs was constructed explicitly. These
results demonstrated that the naive renormalization of the singlet operators is consistent
at the one-loop level, and, subsequently, enabled the construction of the correct singlet
renormalization at two loops [14], thereby resolving earlier inconsistencies [16, 17]. All-
order renormalization conditions for the gauge-invariant operators Oq and Og were derived
by Joglekar and Lee [18], confirming the results of [12] but lacking a procedure for the
construction of GV operators at higher orders in gs. An independent approach to the
renormalization of the singlet operators was based on the renormalization of the QCD
energy-momentum tensor [19, 20], equally yielding [21] the GV operators at order gs. This
order is sufficient for the extraction of the anomalous dimension matrix of the singlet
operators up to two loops. Previous calculations of the three-loop anomalous dimensions
did not employ the OPE, but used the forward scattering amplitude in deep inelastic
scattering [11, 22], inclusive hadron collider cross sections [23, 24] or beam functions [25–29]
to determine the three-loop mass factorization counterterms of parton distributions, which
contain the required anomalous dimensions.

Most recently, Falcioni and Herzog [30] translated the conditions formulated by Joglekar
and Lee [18] into a set of constraint equations, that allow to infer the GV operators and their
associated renormalization constants at fixed n, order-by-order in the number of loops and
powers of the strong coupling constant. They demonstrated their method in the derivation
of the three-loop anomalous dimensions for n ≤ 6 and the four-loop anomalous dimensions
for n ≤ 4.

In the following, we propose to overcome the current lack of understanding of the
full structure of the GV operators by devising a procedure for the direct extraction of
the all-n counterterm Feynman rules resulting from these operators. We start from the
generic form of the renormalization of the singlet operators, including their mixing with the
GV operators.

The most general form of the renormalization for Oq and Og can be written as follows,

OR
q = ZqqO

B
q + ZqgO

B
g +

∞∑

i=1

Ni∑

j=1

(
ZqAi,jO

B
Ai,j

+ ZqBi,jO
B
Bi,j

+ ZqCi,jO
B
Ci,j

)
,

OR
g = ZgqO

B
q + ZggO

B
g +

∞∑

i=1

Ni∑

j=1

(
ZgAi,jO

B
Ai,j

+ ZgBi,jO
B
Bi,j

+ ZgCi,jO
B
Ci,j

)
. (2.21)

In the above equations, the GV operators carry subscripts A ,B and C to distinguish three
kinds of operators: OAi,j involve gluon fields only, OBi,j two quark fields plus gluon fields,
and OCi,j two ghost fields plus gluon fields. The index i assigned to the operators is used
to indicate the order in the strong coupling constant at which each operator starts to
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contribute to the renormalization of the physical quark and gluon operators, such that
the renormalization constants ZqAi,j , ZqBi,j , ZqCi,j start at O(ai+1

s ), and ZgAi,j , ZgBi,j , ZgCi,j

start at O(ais). In principle, the index i extends to infinity. However, we only need operators
up to finite i for practical computations at a given fixed loop order. For example, we
need i ≤ 2 to extract three-loop splitting functions and i ≤ 3 to extract four-loop splitting
functions. We also assign another index j to enumerate Ni different operator structures,
which contribute to the same index i but require their own (n dependent) renormalization
constant. We note that the number Ni is in general not known and could a priori be infinite.

Our key idea is to directly extract the counterterm Feynman rules resulting from a linear
combination of operators instead of determining the operators themselves or determining
the Feynman rules resulting from each operator separately. From explicit computations
described in section 5 below, we find that N1 = 1 and N2 > 1; it even seems possible
that N≥2 = ∞. In other words, we can disentangle the operator from its corresponding
renormalization constant for i = 1, but not for i ≥ 2. Furthermore, we find that the type A,
B, and C renormalization constants for i = 1 are identical at the lowest order in as. We
expect this to hold to all orders, such that the following relations are fulfilled:

ZqA1,1 = ZqB1,1 = ZqC1,1 ≡ ZqA ,

ZgA1,1 = ZgB1,1 = ZgC1,1 ≡ ZgA . (2.22)

It is then sufficient to consider the following combination of i = 1 type operators,

OABC = OA +OB +OC , (2.23)

where we have abbreviated OA1,1 ≡ OA, OB1,1 ≡ OB , and OC1,1 ≡ OC . It is possible to prove
the relations (2.22) in the context of BRST symmetry, noting that only the combination
shown in (2.23) is compatible with the requirement of transversity of the physical gluon
fields. Given the simplicity of the i = 1 type operators, as compared to all i ≥ 2 type
operators, it is natural to treat them separately. By defining the following counterterm
operators as the linear combination of all i ≥ 2 type GV operators,

[ZO]GV
q =

∞∑

i=2

Ni∑

j=1

(
ZqAi,jO

B
Ai,j

+ ZqBi,jO
B
Bi,j

+ ZqCi,jO
B
Ci,j

)
,

[ZO]GV
g =

∞∑

i=2

Ni∑

j=1

(
ZgAi,jO

B
Ai,j

+ ZgBi,jO
B
Bi,j

+ ZgCi,jO
B
Ci,j

)
, (2.24)

equation (2.21) can be simplified as follows:

OR
q = ZqqO

B
q + ZqgO

B
g + ZqA

(
OB

A +OB
B +OB

C

)
+ [ZO]GV

q , (2.25)

OR
g = ZgqO

B
q + ZggO

B
g + ZgA

(
OB

A +OB
B +OB

C

)
+ [ZO]GV

g . (2.26)

We used symbols [ZO]GV
q and [ZO]GV

g for the reason that we can not disentangle the
renormalization constant from the corresponding operator, otherwise, we should write them
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as ZqV OV and ZgV OV , where V stands for any i ≥ 2 type GV operator. The counterterm
operators can be further decomposed as follows according to the number of loops,

[ZO]GV
q =

∞∑

l=3
als [ZO]GV, (l)

q , [ZO]GV
g =

∞∑

l=2
als [ZO]GV, (l)

g , (2.27)

where the expansions apply to the renormalization constants, for example

[ZO]GV, (2)
g =

N2∑

j=1

(
Z(2)
gA2,j

OA2,j + Z(2)
gB2,j

OB2,j + Z(2)
gC2,j

OC2,j

)
. (2.28)

As we stated above, the renormalization of physical operators mixes with GV operators.
However, the renormalization of GV operators can not mix with physical operators, as
shown by Joglekar and Lee [18]. It means that the eigenvalues of the corresponding mixing
matrix factorize into physical and non-physical parts. In our context, it implies that
the inclusion of GV operators affects only the determination of physical renormalization
constants Zkj with k, j = q or g, but not the extraction of physical anomalous dimensions
from the renormalization constants, such that (2.20) remains valid even with the presence
of GV operators. By also considering the renormalization of the i = 1 type GV operators,
the equations (2.25) and (2.26) are written as the following matrix form,

⎛

⎜⎜⎝

Oq

Og

OABC

⎞

⎟⎟⎠

R

=

⎛

⎜⎜⎝

Zqq Zqg ZqA

Zgq Zgg ZgA

0 0 ZAA

⎞

⎟⎟⎠

⎛

⎜⎜⎝

Oq

Og

OABC

⎞

⎟⎟⎠

B

+

⎛

⎜⎜⎝

[ZO]GV
q

[ZO]GV
g

[ZO]GV
A

⎞

⎟⎟⎠

B

, (2.29)

where we have introduced another counterterm operator [ZO]GV
A renormalizing the operator

OABC defined in (2.23).
We emphasize again that the distinction between operators of type i = 1 and of types

i ≥ 2 in (2.29) is a choice made by us for the sake of computational simplicity, and will
be justified in detail in section 5 below. Alternatively, one could choose not to single out
the i = 1 operator OABC and include its contributions in the counterterm operators used
for i ≥ 2.

2.4 Operator matrix elements

To extract the renormalization constants as well as to derive the counterterm Feynman
rules of the GV operators, we need to introduce the concept of OMEs which are defined as
correlation functions or matrix elements with an operator insertion

Aij = ⟨j(p)|Oi|j(p)⟩ , (2.30)

where Oi is a twist-two operator, j denotes a quark, gluon or ghost state, and p is the
momentum of j. Up to three-loop order, the results for the above OMEs can be conveniently
expressed in terms of Casimir invariants CA, CF , and dabcdabc, and the number of massless
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quark flavours Nf . For an SU(Nc) gauge group, the Casimir invariants or color factors read

CA = Nc ,

CF = N2
c − 1
2Nc

,

dabcd
abc = 4Tr[(TaTb + TbTa)Tc] Tr[(T aT b + T bT a)T c] = (N2

c − 1)(N2
c − 4)

Nc
, (2.31)

with Nc = 3 for QCD. We use the normalization

Tr(T aT b) = TF δ
ab = 1

2δ
ab . (2.32)

The OMEs with two-quark external states can be decomposed into their physical part
and an equation-of-motion (EOM) part, which are described by form factors APhy

iq and
AEOM

iq , respectively,

Aiq = ⟨q(p)|Oi|q(p)⟩ = APhy
iq (∆ · p)n−1 /∆ +AEOM

iq (∆ · p)n/p . (2.33)

The OMEs with two-ghost external states involve only a single form factor,

Aic = ⟨c(p)|Oi|c(p)⟩ = Aic, 1 (∆ · p)n , (2.34)

where we use c to represent a ghost state and the index 1 in Aic, 1 is used to distinguish
Aic, 1 from Aic. Similarly, the decomposition of OMEs with two-gluon external states is
given in terms of four form factors,

Aµν
ig = ⟨g(p)|Oi|g(p)⟩µν =

4∑

k=1
Aig, kT

µν
k , (2.35)

with the four tensor structures

Tµν
1 = 1 + (−1)n

2

[
(∆ · p)2gµν − ∆ · p (pµ∆ν + ∆µpν) + ∆µ∆νp2

]
(∆ · p)n−2 ,

Tµν
2 = 1 + (−1)n

2

[
pµpν

p2
(∆ · p)2 − ∆ · p (pµ∆ν + ∆µpν) + ∆µ∆νp2

]
(∆ · p)n−2 ,

Tµν
3 = 1 + (−1)n

2

[
− ∆ · p (pµ∆ν + ∆µpν) + 2∆µ∆νp2

]
(∆ · p)n−2 ,

Tµν
4 = 1 + (−1)n

2

[
∆ · p (pµ∆ν + ∆µpν) + 2∆µ∆νp2

]
(∆ · p)n−2 , (2.36)

where n ≥ 2. The above tensor structures satisfy the relations

pµT
µν
i = 0 (i = 1, 2), pµT

µν
i ̸= 0 (i = 3, 4) , (2.37)

pµpνT
µν
i = 0 (i = 1, 2, 3), pµpνT

µν
i ̸= 0 (i = 4) . (2.38)

Once we determined all GV counterterm Feynman rules for the renormalization of the
physical twist-two operators, the physical, EOM, or non-physical form factors in (2.33)
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and (2.35) should be renormalized independently. For the purpose of extracting the splitting
functions, it is sufficient to consider the renormalization of the following form factors,

Fiq =
1

2Nc
·
Tr
(
/pAiq

)

(∆ · p)n ,

Fig = 1
(d − 2)(N2

c − 1) ·
(−gµνA

µν
ig )

(∆ · p)n ,

Fic =
1

(d − 2)(N2
c − 1) ·

Aic

(∆ · p)n , (2.39)

where we averaged and summed over spins and colors of incoming and outgoing states,
respectively. We employ the perturbative expansion

F =
∞∑

l=0
F (l)als (2.40)

for the form factors. With the above definitions, both Fqq and Fgg are normalized to unity
at lowest order,

F (0)
qq = F (0)

gg = 1 . (2.41)

If the external state j in (2.30) is on-shell, the OMEs of the GV operators do not mix
under renormalization with those of the physical operators and the naive renormalization
procedure (2.13) remains valid. Likewise, the GV operators do not mix with the polarized
analogues of the singlet operators (2.9), which involve the difference of the quark or gluon
spin states instead of their sums. This can be understood from the structure of the Fock
space in a covariant gauge, where the ghost degrees of freedom mix only with the unphysical
gauge field polarization states. In unpolarized OMEs, all polarization states (including the
unphysical ones) are summed over, while polarized OMEs are constructed as differences
between the two physical polarization states, thereby decoupling the unphysical sector of
the Fock space. Consequently, the renormalization of polarized operators also fulfils (2.13).

Another approach to avoid GV operators is to perform the quantization in an axial
gauge, which requires to introduce a light-like reference direction nµ for the quantization. In
an axial gauge, the Fock spaces of physical and unphysical polarizations decouple completely,
again allowing for the naive operator renormalization (2.13).

The form factors appearing on the right-hand sides of (2.33), (2.34), and (2.35) are
Lorentz scalars. By dimensional analysis, one finds that they vanish trivially in massless
QCD for external on-shell states if dimensional regularization is applied. To generate a
mass scale, one either needs to insert an internal mass scale or to consider off-shell external
states p2 < 0. Working with an internal quark mass, three-loop on-shell OME have been
used to extract heavy-flavour contributions to the three-loop anomalous dimensions [31–35],
as well as for the computation of a subset of the genuine massless anomalous dimensions at
three loops [36].

In terms of computational simplicity, the calculations of purely massless off-shell OMEs
are preferable over on-shell OMEs with an internal mass, since the underlying all-massless
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Og Oq Oq

Og Og Oq

Figure 1. Representative 3-loop Feynman diagrams with physical operator insertions to extract
3-loop splitting functions.

Feynman integrals are considerably simpler than corresponding integrals involving an
internal mass scale.

Massless off-shell OMEs have been computed up to three-loop order and used for the
determination of the three-loop non-singlet anomalous dimensions [37] and for the polarized
singlet anomalous dimensions at two loops [38, 39] and three loops [40]. In all these cases,
the GV operators do not contribute.

The first successful extraction of the two-loop singlet anomalous dimensions [41–43]
was based on performing QCD quantization in an axial gauge (where the GV operators
decouple [44]) and computing all-massless off-shell OMEs. Owing to the presence of the
gauge vector nµ, the resulting Feynman integrals are considerably more complicated than
in a covariant gauge, such that the use of an axial gauge is not a viable option at the higher
loop orders.

3 Computation of bare OMEs up to three loops

Before working out the Feynman rules for the GV operators, we first explain how to compute
the bare OMEs for the physical operators Oq and Og to three-loop order. The Feynman
rules resulting from these operators are summarized in appendix A.

As the first step, we generate all relevant Feynman diagrams to three-loop order using
QGRAF [45]. Some representative diagrams are shown in figure 1. To translate the diagrams
into expressions, one needs the standard QCD Feynman rules as well as the Feynman
rules for the twist-two operators. As shown in the appendix A, the Feynman rules for the
twist-two operators are non-standard, in the sense that they involve terms like (∆ · p)n with
n being an arbitrary non-negative integer. If n is fixed to a specific integer, as adopted
in [30, 46], the Feynman rules become standard and the relevant Feynman integrals are the
two-point integrals.

Here, we want to keep n arbitrary, in order to directly obtain the all-n splitting
functions. However, it is not immediately obvious how to perform the integration-by-parts
(IBP) reductions [47] with terms like (∆ · p)n present. In the following, we adopt a method
first proposed in [15, 31]. The method sums terms proportional to (∆ · p)n to linear
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propagators with the help of a tracing parameter x, for example,

(∆·p)n →
∞∑

n=0
xn(∆·p)n= 1

1−x∆·p , (3.1)

n−3∑

j=0
(∆·p1)n−3−j(∆·p2)j →

∞∑

n=3
xn

n−3∑

j=0
(∆·p1)n−3−j(∆·p2)j =

x3

(1−x∆·p1)(1−x∆·p2)
.

The above method translates the non-standard terms depending on n into standard linear
propagators depending on x, which can be easily handled by standard IBP algorithms. To
revert back to n space, we symbolically extract the coefficient of xn from the results in the
x-parameter space. It should be noted that the limit x → 0 trivializes the linear propagators
and that the corresponding Feynman integrals converge to massless two-point functions in
this limit. The auxiliary parameter x should not be confused with the Bjorken-x variable,
which relates to n by an inverse Mellin transformation.

We work in parameter-x space throughout, starting at the level of the Feynman rules,
which are all transformed from n space to parameter-x space. Mathematica is used to
substitute the standard QCD Feynman rules and the effective Feynman rules in parameter x-
space into the Feynman diagrams. The Dirac and color algebra is performed with FORM [48].
Subsequently, the Feynman integrals are classified into different integral families with an
in-house code invoking Reduze 2 [49] and the latest version of FeynCalc [50, 51]. During
the topology classification, partial fractions with respect to the Feynman propagators are
also needed, and they are performed using Apart [52].

For the singlet operator insertions, we find 1, 2, and 7 integral families at one, two,
and three loop order, respectively. Here, an integral family is defined as a complete set
of quadratic and linear denominator polynomials, such that any scalar product of a loop
momentum can be expressed in terms of them. In general, one integral family may describe
more than one “top-level topology”. As an example, we give the 2 integral families at
two-loop order,

⎛

⎝ 1 − x∆ · l1 , 1 − x∆ · l2 , l21 , (l1 − p) 2 , l22 , (l2 − p) 2 , (l1 − l2) 2

1 − x∆ · (l2 − l1) , 1 − x∆ · l2 , l21 , (l1 − p) 2 , l22 , (l2 − p) 2 , (l1 − l2) 2

⎞

⎠ , (3.2)

where l1, l2 are the loop momenta. Each integral family contains 7 propagators with the first
two being the linear propagators obtained through (3.1). We perform the IBP reduction
using the combination of LiteRed [53] and FIRE6 [54], Reduze 2 [49] and Kira [55], which
are based on implementations of the Laporta algorithm [56].

To directly compute the master integrals in parameter-x space, we derive differential
equations (DEs) [57] with respect to x for the master integrals. The DE system is turned
into canonical form [58] using a combination of CANONICA [59, 60] and Libra [61, 62]. Due
to (3.1), the master integrals are regular in the limit x → 0 and reduce to two-point integrals.
The two-point integrals are known to four-loop order [63, 64] and serve as the boundary
conditions for the DEs. In this way, we manage to express all master integrals up to three
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loops in terms of harmonic polylogarithms (HPLs) [65], which are defined by

H(a1, a2, · · · , am;x) =
∫ x

0
dt fa1(t)H(a2, · · · , am; t) ,

H (⃗0m, ;x) = lnn x
n! ,

H(x) = 1 , (3.3)

where ai is 0, 1, or −1, and the kernel fa(t) is defined as

f1(t) =
1

1 − t
, f0(t) =

1
t
, f−1(t) =

1
1 + t

. (3.4)

Inserting IBP relations and the solutions for the master integrals into the integrand, we
obtain the final expressions for the bare OMEs.

As the last step before renormalization, we turn the results from the parameter-x space
into n space. The HPLs can be expanded around x = 0,

H(a1, a2, · · · ;x) =
∞∑

n=0
bnx

n , (3.5)

with bn being composed of the harmonic sums [66, 67] of argument n, which are defined
recursively by

S±m1,m2, ···md(n) =
n∑

j=1
(±1)jj−m1Sm2, ···md(j) (mi ∈ N),

S∅(n) = 1 . (3.6)

We use the Mathematica package HarmonicSums [68–73] to perform the expansion (3.5) of
the HPLs. In order to extract the relevant coefficients of xn, one needs to take into account
also the rational prefactors multiplying the HPLs. In our non-singlet computation, we find
powers of x, 1/x, and 1/(1 − x) after partial fraction decomposition. For the singlet case,
we also encounter the factor 1/(1 + x), which can, however, always be mapped to 1/(1 − x)
due to the fact that only even Mellin moments contribute. At this stage, an OME G(x) in
parameter-x space can be written as

G(x) =
mmax∑

m=0
Fm(x) , (3.7)

with Fm(x) being defined as

Fm(x) = Bm(x)
(1 − x)m , (3.8)

where Bm(x) is a linear combination of HPLs with coefficients involving powers of x only,
and m is a non-negative integer. Prior to simplifications, we find mmax = 3 for individual
contributions. We expand both Fm(x) and Bm(x) of (3.8),

Fm(x) =
∑

fnx
n = 1

(1 − x)m
[α−1∑

j1=0
hj1x

j1 +
∞∑

j1=α

cj1x
j1
]
, (3.9)
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where fn is the desired result in Mellin space and α is a small integer that is used to separate
B(x) into two parts. The coefficients hj1 in the first part are stated explicitly for each value
of j1 (since for them typically no closed form for symbolic j1 can be obtained), while cj1
can be written in terms of rational functions or harmonic sums depending on the symbol j1.
For example, if B0(x) equals (1 + x) ln(1 − x), we can express it as follows,

(1 + x) ln(1 − x) =
α−1∑

j1=0
hj1x

j1 +
∞∑

j1=α

cj1x
j1 , (3.10)

with
α = 2, h0 = 0, h1 = −1, cj1 = −1

j1
+ −1

j1 − 1 ,

where c0 and c1 are not well defined. Taking into account the expansion of the 1/(1 − x)m
factor, the resulting fn for generic n in (3.9) can be written down recursively,

fn
∣∣
m=1 = fα +

n∑

j1=α+1
cj1 ,

fn
∣∣
m=2 = fα +

n∑

j1=α+1

⎡

⎣−fα + fα+1 +
j1∑

j2=α+2
cj2

⎤

⎦ ,

fn
∣∣
m=3 =

(
fn
∣∣
m=2

)∣∣∣∣
cj2→fα−2fα+1+fα+2+

∑j2
j3=α+3 cj3

,

...

fn
∣∣
m

=
(
fn
∣∣
m−1

)∣∣∣∣
cjm−1→

∑m−1
k=0 ( k

m−1)(−1)kfα−k+m−1+
∑jm−1

jm=α+m cjm

. (3.11)

The multiple sums appearing on the right side of the above formula can be again transformed
to harmonic sums by HarmonicSums. We note that, after simplification, Bm in (3.8) is
non-zero only for m = 0, 1 for all partonic channels at three loops. Following the steps
outlined above, we are able to get all bare three-loop OMEs of the singlet quark and gluon
operators in terms of harmonic sums.

4 GV counterterm Feynman rules from renormalization conditions

We are now ready to derive the counterterm Feynman rules resulting from the GV operators.
Several ingredients are needed: the renormalization equations in (2.25), (2.26), the OMEs
in (2.30) generalized to any number of external states, and the renormalization conditions.

First, we consider equations (2.25), (2.26). For simplicity, we restrict our discussion
to (2.26), which can be used to determine the Feynman rules for operators OABC as well as
for the counterterm operator [ZO]GV

g . Feynman rules for the other counterterm operator
[ZO]GV

q can be extracted from (2.25) in a similar way. The main point is to consider the
off-shell one-particle-irreducible (1PI) OMEs for both sides of equation (2.26) and impose
the renormalization conditions.
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To determine the vertex Feynman rules for the GV operators, it is sufficient to consider
the following off-shell 1PI OMEs with external states consisting of two particles of type j

and m gluons,

⟨j|Og|j +mg⟩µ1···µm,R
1PI = Zj(

√
Zg)m

[
⟨j|(ZgqOq + ZggOg)|j +mg⟩µ1···µm,B

1PI

]

+ Zj(
√
Zg)m

[
ZgA ⟨j|OABC |j +mg⟩µ1···µm,B

1PI

+ ⟨j| [ZO]GV
g |j +mg⟩µ1···µm,B

1PI

]
. (4.1)

Here, j could denote quarks(q), gluons(g), or ghosts(c),
√
Zj is the corresponding field

renormalization constant, and the renormalization of the strong coupling constant is
implicitly understood on the right-hand side. To make the extraction of counterterm
Feynman rules from the above equation transparent, we expand the OMEs according to
the number of loops and legs,

⟨j|O|j +mg⟩µ1···µm =
∞∑

l=1

[
⟨j|O|j +mg⟩µ1···µm, (l), (m)

]
alsg

m
s , (4.2)

where O denotes a generic operator. For fixed m, we can compute the off-shell OMEs
in the first line of the right-hand side of (4.1) order-by-order in a loop expansion. Since
the left-hand side of (4.1) is an ultraviolet renormalized and infrared finite quantity, the
sum of terms on the right-hand side should also be finite. If the GV operators were not
to contribute, the divergences should cancel within the OMEs of the physical operators.
Otherwise, the remaining divergences should be absorbed into the contribution from GV
operators. Requiring the finiteness of the right-hand side of (4.1), we can extract the
counterterm Feynman rules from the GV operators (or even the Feynman rules for the GV
operators themselves) order-by-order in a loop expansion.

4.1 General formulae to determine the Feynman rules for the OABC operators

Due to the hierarchy of GV operators, the counterterm operators [ZO]GV
j contribute to the

renormalization of the OMEs only from two loops onwards. Consequently, the Feynman
rules for the OABC operators can be extracted from the evaluation of one-loop off-shell
1PI OMEs.

To extract the Feynman rules for OC , we consider the one-loop OMEs in (4.1) with
two ghosts, j = c, and m gluons in the external states. In this case, by employing the
renormalization conditions, equation (4.1) simplifies to the form

Z(1)
gA ⟨c|OC |c+mg⟩µ1···µm, (0), (m)

1PI = −
[
⟨c|Og|c+mg⟩µ1···µm, (1), (m),B

1PI
]

div
, (4.3)

where the subscript ‘div’ denotes the divergent contribution, that is, the poles in ϵ. We
notice that the left-hand side of the above equation is the multiplication of a renormalization
constant and the vertex Feynman rules for the OC operator. By evaluating the right-hand
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side for m = 0 and factorizing the dependence on kinematics, Z(1)
gA can be determined up to

an overall m-independent constant

Z(1)
gA = −1

ϵ

CA

n(n − 1) . (4.4)

For m = 1, a similar method was used to fix the unknown coefficients in an ansatz
constrained by a generalized BRST symmetry in [14].

To determine the Feynman rule for the OB operator, we consider the OMEs with two
quarks and m gluon external states. Setting j to a quark state and expanding to one-loop
order, (4.1) becomes

Z(1)
gA ⟨q|OB|q +mg⟩µ1···µm, (0), (m)

1PI = −
{
Z(1)
gq

[
⟨q|Oq|q +mg⟩µ1···µm, (0), (m)

1PI
]

+
[
⟨q|Og|q +mg⟩µ1···µm, (1), (m),B

1PI
]

div

}
, (4.5)

with Z(1)
gq being the first order renormalization constant for the q → g transition

Z(1)
gq = 1

ϵ

[ 4
n

− 2
n+ 1 − 4

n − 1

]
CF . (4.6)

The results of the OMEs
[
⟨q|Og|q +mg⟩µ1···µm, (1), (m),B

1PI
]

div
contain both CF and CA color

factors. Since Z(1)
gA is proportional to CA, the CF from the one-loop OMEs must cancel

against the one from Z(1)
gq in the above equation.

Finally, to determine the Feynman rule for OA operator, we consider the OMEs with
m+ 2 gluon states in a similar way. Setting j to a gluon state and expanding to one-loop
order, (4.1) becomes

Z(1)
gA ⟨g|OA|g +mg⟩µνµ1···µm, (0), (m)

1PI =

−
{[

⟨g|Og|g +mg⟩µνµ1···µm, (1), (m),B
1PI

]

div

+
[
Z(1)
gg − m

2ϵβ0 +
m+ 2

2 Z(1)
g

]
⟨g|Og|g +mg⟩µνµ1···µm, (0), (m)

1PI

}
, (4.7)

where β0 is the one-loop QCD beta function

β0 =
11CA

3 − 2Nf

3 , (4.8)

Z(1)
g is the first-order gluon field renormalization constant

Z(1)
g = 1

ϵ

[13CA

6 − CAξ

2 − 2Nf

3

]
, (4.9)

and Z(1)
gg is the first order renormalization constant for the g → g transition.

Z(1)
gg = 1

ϵ

[
CA

(
4S1(n) − 4

n − 1 + 4
n

− 4
n+ 1 + 4

n+ 2 − 11
3

)
+ 2Nf

3

]
. (4.10)
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For a one-loop, purely gluonic scattering process involving the operator Og, one expects
that no Nf factor appears. Indeed, through a simple calculation, we found that the Nf

factor cancels out in the combination Z(1)
gg − m

2ϵβ0 + m+2
2 Z(1)

g of equation (4.7).
Through equations (4.3), (4.5) and (4.7), deriving the Feynman rules for the unknown

operators OABC is equivalent to the computation of the divergent contributions to one-loop
off-shell 1PI OMEs with an operator insertion of Og. Since the Feynman rules resulting
from Og are known to all multiplicities, as shown in (2.9), the Feynman rules for OABC

could in principle also be calculated to all multiplicities.

4.2 Determining the counterterm Feynman rules for [ZO]GV, (2)
g and beyond

In the last subsection, the Feynman rules for the OABC operators were extracted from
one-loop OMEs in (4.1). Similarly, the l-loop corrections of (4.1) can be used to extract
the counterterm Feynman rules for [ZO]GV, (l)

g with l ≥ 2. Firstly, we work out the explicit
formulae for the Feynman rules of [ZO]GV, (2)

g . Considering two ghost plus m gluon external
states, to two-loop order, (4.1) reads

⟨c| [ZO]GV, (2)
g |c+mg⟩

µ1···µm, (0), (m)
1PI =

−
{[

⟨c|Og|c+mg⟩µ1···µm, (2), (m),B
1PI

+
(
Z(1)
c + mZ(1)

g

2 + Z(1)
gg − β0(m+ 2)

2ϵ
)

⟨c|Og|c+mg⟩µ1···µm, (1), (m),B
1PI

+
(
Z(1)
c Z(1)

gA + 1
2mZ(1)

g Z(1)
gA −

β0mZ(1)
gA

2ϵ + Z(2)
gA

)
⟨c|OC |c+mg⟩µ1···µm, (0), (m),B

1PI

+ Z(1)
gA ⟨c|OAC |c+mg⟩µ1···µm, (1), (m),B

1PI

+ Z(1)
g

s∑

t=1
ξt t ⟨c|Og|c+mg⟩µ1···µm, (1), (m), (t),B

1PI

]

div

}∣∣∣∣
ξB→ξ

, (4.11)

where the last term originates from the gauge parameter renormalization

ξB = Zξξ, (4.12)

with Zξ = Zg in covariant gauge. We further decompose the OMEs according to the power
of the gauge parameter,

⟨c|Og|c+mg⟩µ1···µm, (1), (m),B
1PI =

s∑

t=0
(ξB)t ⟨c|Og|c+mg⟩µ1···µm, (1), (m), (t),B

1PI , (4.13)

where s is a small positive integer.
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For the two quark plus m gluon external states, to two-loop order, (4.1) becomes

⟨q| [ZO]GV, (2)
g |q +mg⟩

µ1···µm, (0), (m)
1PI =

−
{[

⟨q|Og|q +mg⟩µ1···µm, (2), (m),B
1PI

+
(mZ(1)

g

2 + Z(1)
gg + Z(1)

q − β0(m+ 2)
2ϵ

)
⟨q|Og|q +mg⟩µ1···µm, (1), (m),B

1PI

+
(1
2mZ(1)

g Z(1)
gA −

β0mZ(1)
gA

2ϵ + Z(1)
gAZ

(1)
q + Z(2)

gA

)
⟨q|OB|q +mg⟩µ1···µm, (0), (m),B

1PI

+
(1
2mZ(1)

g Z(1)
gq − β0mZ(1)

gq

2ϵ + Z(1)
gq Z

(1)
q + Z(2)

gq

)
⟨q|Oq|q +mg⟩µ1···µm, (0), (m),B

1PI

+ Z(1)
gA ⟨q|OAB|q +mg⟩µ1···µm, (1), (m),B

1PI + Z(1)
gq ⟨q|Oq|q +mg⟩µ1···µm, (1), (m),B

1PI

+ Z(1)
g

s∑

t=1
ξt t ⟨q|Og|q +mg⟩µ1···µm, (1), (m), (t),B

1PI

]

div

}∣∣∣∣
ξB→ξ

. (4.14)

Similarly, for m+ 2 gluon external states, to two-loop order, (4.1) reads

⟨g| [ZO]GV, (2)
g |g +mg⟩

µνµ1···µm, (0), (m)
1PI =

−
{[

⟨g|Og|g +mg⟩µνµ1···µm, (2), (m),B
1PI

+
(1
2(m+ 2)Z(1)

g + Z(1)
gg − β0(m+ 2)

2ϵ
)

⟨g|Og|g +mg⟩µνµ1···µm, (1), (m),B
1PI

+
(1
2(m+ 2)Z(1)

g Z(1)
gA −

β0mZ(1)
gA

2ϵ + Z(2)
gA

)
⟨g|OA|g +mg⟩µνµ1···µm, (0), (m),B

1PI

+ Z(1)
gA ⟨g|OABC |g +mg⟩µνµ1···µm, (1), (m),B

1PI + Z(1)
gq ⟨g|Oq|g +mg⟩µνµ1···µm, (1), (m),B

1PI

+
(−1

4β0m(m+ 2)Z(1)
g − 1

2β0mZ(1)
gg − β1m

4
ϵ

+ 1
2(m+ 2)

(
Z(1)
g Z(1)

gg + Z(2)
g

)
+ Z(2)

gg

+ 1
8m(m+ 2)(Z(1)

g )2 + β20m(m+ 2)
8ϵ2

)
⟨g|Og|g +mg⟩µνµ1···µm, (0), (m),B

1PI

+ Z(1)
g

s∑

t=1
ξt t ⟨g|Og|g +mg⟩µνµ1···µm, (1), (m), (t),B

1PI

]

div

}∣∣∣∣
ξB→ξ

. (4.15)

Here, we introduced some short-hand notations, OAB = OA +OB, OAC = OA +OC . The
above equations express the Feynman rules for the counterterm operator [ZO]GV, (2)

g through
the divergent terms of two-loop off-shell OMEs with Og insertion plus contributions from
lower-loop OMEs with other operator insertions. We noticed that the one-loop OMEs need
to be evaluated to order ϵ0.

In addition to the renormalization constants appearing in (4.3), (4.5), (4.7), we need
several further renormalization constants in the above equations, including the first order
quark and ghost field renormalization constants Z(1)

q , Z(1)
c , the second order gluon field

renormalization constant Z(2)
g , the 2-loop QCD beta function β1 as well as the second

order renormalization constants Z(2)
gA , Z

(2)
gq , Z

(2)
gg . The field renormalization constants and
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beta function are known from the computations of diagrams without a twist-two operator
insertion, they are summarized in appendix D. However, Z(2)

gA , Z
(2)
gq , Z

(2)
gg are supposed to be

extracted from two-point two-loop OMEs in the above equations for m = 0, and thus should
be regarded unknown. Therefore, it seems that the equations (4.11), (4.14) and (4.15) can
not be used to determine the Feynman rules for [ZO]GV, (2)

g .
However, as shown in appendix B, the two-point vertex Feynman rules (m = 0) for all

GV operators except OA and OC are zero. Consequently,

⟨c| [ZO]GV, (2)
g |c⟩

(0), (0)
1PI = 0 ,

⟨q| [ZO]GV, (2)
g |q⟩

(0), (0)
1PI = 0 ,

⟨g| [ZO]GV, (2)
g |g⟩

µν, (0), (0)
1PI = 0 . (4.16)

These equations allow us to easily determine Z(2)
gA , Z

(2)
gq , Z

(2)
gg by separately evaluating (4.11),

(4.14) and (4.15) for m = 0. With all renormalization constants determined, the counterterm
Feynman rules for [ZO]GV, (2)

g can, in principle, be determined to an arbitrary number
of legs from (4.11), (4.14) and (4.15), similarly to the case of OABC . Since the vertex
Feynman rules with two legs for [ZO]GV, (3)

q and [ZO]GV, (3)
g are zero, the counterterm

operators [ZO]GV, (3)
q and [ZO]GV, (3)

g contribute to the splitting functions only from four
loops onwards. We leave them for future study.

5 Computation of Feynman rules for the GV operators

We demonstrated in the above section that, in order to derive the Feynman rules of GV
operators, one needs to work with general kinematics and keep all relevant Lorentz structures
when computing the multi-loop, multi-particle OMEs. This task is in general non-trivial.
For a k particle scattering process with Og insertion, the external kinematics introduces a
reference vector ∆ and k − 1 independent momenta p1 , · · · , pk−1 of the scattering particles.
Therefore, the total number of mass scales is

1
2(k − 1)(k + 2) . (5.1)

For example, for a three-particle scattering, one has the 5 scales

p1 · p2, p21, p22, ∆ · p1, ∆ · p2 . (5.2)

For four-particle and five-particle scatterings, we need 9 and 14 scales respectively. The
presence of many mass scales renders the computations complicated, and the number
of independent Lorentz structures increases quickly especially for pure gluon scatterings.
Before considering the symmetries, the 5 Lorentz structures for 2-gluon scattering can be
listed as

∆µ∆ν , ∆µpν , pµ∆µ, gµν , pµpν . (5.3)
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For a 3-gluon scattering, we divide the Lorentz structures into different categories according
to the number of ∆,

3∆ : ∆µ1∆µ2∆µ3

2∆ : ∆µ1∆µ2pµ3
1 , ∆µ1∆µ2pµ3

2 , . . .

1∆ : ∆µ1gµ2µ3 , ∆µ1pµ2
1 pµ3

1 , ∆µ1pµ2
1 pµ3

2 , ∆µ1pµ2
2 pµ3

2 , . . .

0∆ : gµ1µ2pµ3
1 , gµ1µ2pµ3

2 , pµ1
1 pµ2

1 pµ3
1 , pµ1

1 pµ2
1 pµ3

2 , pµ1
1 pµ2

2 pµ3
2 , pµ1

2 pµ2
2 pµ3

2 , . . . (5.4)

where we have eliminated p3 using momentum conservation p3 = −p1 − p2, and the dots
represent Lorentz structures that can be obtained from the permutations of the Lorentz
indices µ1, µ2, µ3. In total, we have 36 Lorentz structures for 3-gluon scattering, 353 Lorentz
structures for 4-gluon scattering, and 4400 for 5-gluon scattering. A naive projection method
will make the computations extremely complicated. However, we observe that many Lorentz
structures do not appear in the Feynman rules of the physical operators Oq and Og, as
shown in appendix A. Since the GV operators are also twist-two operators, the observation
may be used to simplify the computations. To make things explicit, we work out all allowed
Lorentz structures for a general twist-two operator in the following.

5.1 Lorentz structures for the Feynman rules of a general twist-two operator
For the sake of simplicity and without loss of generality, we focus on the Lorentz structures
of Feynman rules for GV operators OABC . The same conclusion also applies to a general
twist-two operator. Our guiding principles are the properties of twist-two operators and
the fact that no inverse mass scale can be generated in the Feynman rule of a vertex.

We first analyze the Lorentz structures of m-gluon Feynman rules for OA. For the
twist-two OA operator, the mass dimension is n+ 2 and the spin is n. By factoring out m
gluon fields, the mass dimension becomes n+ 2 − m. If we denote the number of ∆µ, pµi
and gµν appearing in a Lorentz structure by n1, n2, n3 respectively, then they should sum
up to the total number of Lorentz indices m,

m = n1 + n2 + 2n3 . (5.5)

Next, we count the mass dimension for the coefficient of a Lorentz structure. The coefficient
is composed of Lorentz scalar products formed by the reference vector ∆ and the momentum
pi of scattering particles. The dependence of the coefficients on the scalar products is of
polynomial form, in particular, propagator-type terms (for example 1/(p1 · p2)) can not
appear in the Feynman rule of a vertex. Each monomial is further divided into two factors,
the first one involves the contractions of ∆ and the momenta pi (for example ∆ · p1), and
the second one includes the contractions within the momenta pi (for example p1 · p2). The
mass dimension from the first factor must be n − n1 since the operator should always
include a total number n of ∆ vectors. We set the mass dimension of the second factor to a
non-negative integer 2n4.

By adding up the mass dimensions from the different ingredients, we should recover
the total mass dimensions,

(n − n1) + n2 + 2n4 = n+ 2 − m. (5.6)
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Substituting (5.5) into (5.6) gives us

n2 + n3 + n4 = 1 . (5.7)

Since all n2, n3, n4 should be non-negative, the above equation tells us that each of them
should not be larger than 1 and that their sum must be 1. The equation drastically
constrains the allowed Lorentz structures. For example, the structure ∆µ1pµ2

1 pµ3
1 in (5.4)

can not appear since n2 = 2 > 1. As another example, gµ1µ2pµ3
1 can not appear due to

n2 = 1, n3 = 1.
With the constraint in (5.7), it is easy to write down the general ansatz for the 3-gluon

Feynman rule of OA,
[
⟨g|OA|gg⟩µ1µ2µ3, (0), (1)

1PI
]
=

a1∆µ1∆µ2∆µ3 + a2∆µ1∆µ2pµ3
1 + a3∆µ1∆µ3pµ2

1

+ a4∆µ2∆µ3pµ1
1 + a5∆µ1∆µ2pµ3

2 + a6∆µ1∆µ3pµ2
2 + a7∆µ2∆µ3pµ1

2

+ a8∆µ1gµ2µ3 + a9∆µ2gµ1µ3 + a10∆µ3gµ1µ2 . (5.8)

The number of Lorentz structures is reduced from 36 to 10 for the 3-gluon Feynman rule in
the above equation. Similarly, the general ansatz for the 4-gluon Feynman rule of OA is
obtained as

[
⟨g|OA|ggg⟩µ1µ2µ3µ4, (0), (2)

1PI
]
=

b1∆µ1∆µ2∆µ3∆µ4 + b2∆µ1∆µ2∆µ3pµ4
1

+ b3∆µ1∆µ2∆µ4pµ3
1 + b4∆µ1∆µ3∆µ4pµ2

1 + b5∆µ2∆µ3∆µ4pµ1
1

+ b6∆µ1∆µ2∆µ3pµ4
2 + b7∆µ1∆µ2∆µ4pµ3

2 + b8∆µ1∆µ3∆µ4pµ2
2 + b9∆µ2∆µ3∆µ4pµ1

2

+ b10∆µ1∆µ2∆µ3pµ4
3 + b11∆µ1∆µ2∆µ4pµ3

3 + b12∆µ1∆µ3∆µ4pµ2
3 + b13∆µ2∆µ3∆µ4pµ1

3

+ b14∆µ1∆µ2gµ3µ4 + b15∆µ1∆µ3gµ2µ4 + b16∆µ1∆µ4gµ2µ3 + b17∆µ2∆µ3gµ1µ4

+ b18∆µ2∆µ4gµ1µ3 + b19∆µ3∆µ4gµ1µ2 , (5.9)

where we need only 19 out of the initial list of 353 Lorentz structures.
We also analyze the dependence of the scalar coefficients of Lorentz tensors in (5.8)

and (5.9) on the kinematic invariants. For term a1∆µ1∆µ2∆µ3 , n2 = n3 = 0, therefore,
n4 must be 1. It indicates that the coefficient a1 must be linear in p21, p22, or p1 · p2.
Except for ∆µ1∆µ2∆µ3 and ∆µ1∆µ2∆µ3∆µ4 , other tensor structures have either n2 = 1 or
n3 = 1. Therefore, their corresponding coefficients ai, bi with i > 1 can be only constructed
from scalar products involving ∆. Exploiting the above properties allows for a particularly
efficient determination of the coefficients with modern finite-field and function reconstruction
techniques [74, 75].

Since Lorentz indices can not be carried by the quark fields and ghost fields, the Lorentz
structures appearing in the Feynman rules for the operators OB and OC are much more
constrained. Regarding a vertex involving two quarks plus m gluons, or two ghosts plus
m gluons, (5.5) is still valid by using the same convention as for the pure m-gluon vertex.
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The difference is the extra mass dimension from quark fields or ghost fields. Regarding the
operator OC , (5.6) should be modified to

(n − n1) + n2 + 2n4 = n+ 2 − [c̄c] − m = n+ 2 − 2 − m, (5.10)

where [c̄c] = 2 stands for the mass dimension of a pair of ghost and anti-ghost fields. For
the operator OB, one always needs a factor /∆ to compensate the extra mass dimension
from ψ̄ψ compared with c̄c. Correspondingly, (5.6) is modified to

(n − n1 − 1) + n2 + 2n4 = n+ 2 − [ψ̄ψ] − m = n+ 2 − 3 − m, (5.11)

where [ψ̄ψ] = 3 stands for the mass dimension of a pair of quark and anti-quark fields.
The above equation is equivalent to the equation (5.10). Solving (5.5) and (5.10), the
result reads,

n2 + n3 + n4 = 0 . (5.12)

The above equation indicates, for both Feynman rules of OB and OC , the Lorentz tensors
can be composed of ∆µ only,

[
⟨c|OC |c+mg⟩µ1···µm, (0), (m)

1PI
]
= cm∆µ1∆µ2 · · ·∆µm ,

[
⟨q|OB|q +mg⟩µ1···µm, (0), (m)

1PI
]
= dm∆µ1∆µ2 · · ·∆µm , (5.13)

where the coefficients cm and dm have the same property as the coefficients ai, bi with i > 1
in (5.8) and (5.9).

Since the counterterm operators [ZO]GV
q and [ZO]GV

g are also twist-two operators, the
above considerations remain valid if we replace OA, OB, OC in (5.8), (5.9) and (5.13) by
[ZO]GV

q or [ZO]GV
g . To compute the multi-loop, multi-particle OMEs, we project out the

coefficients of the corresponding Lorentz structures in (5.8), (5.9) and (5.13). In general,
the Lorentz structures that are allowed in the Feynman rules do not form a complete basis
of the vector space, such that we need extra Lorentz structures in the construction of the
projectors. However, the number of independent projectors is the same as the number of
required Lorentz structures in corresponding equations. For example, a single projector
p1, µ1p1, µ2 · · · p1, µm is enough to project out cm and dm in (5.13).

5.2 Feynman rules for OABC up to four legs

From (4.3), (4.5) and (4.7), we observe that the Feynman rules for OABC are either propor-
tional to the divergent terms of the one-loop OMEs, or expressed as a linear combination of
one-loop OMEs and the Feynman rules for physical operators Oq and Og. Therefore, the
same ansatz as in (5.8), (5.9) and (5.13) also applies to the divergent terms of the one-loop
OMEs. Having worked out the simplified ansatz and projectors, we are ready to compute
the one-loop, multi-particle OMEs by adopting the method in section 3. We work directly
in parameter-x space. Since we need just the divergent terms, with generic kinematics, only
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Og Og Og

Figure 2. Sample diagrams to determine Feynman rules with gggg vertex for OA (left), qq̄gg vertex
for OB (middle) and cc̄gg vertex for OC (right). All Feynman diagrams contain an insertion of the
physical operator Og.

two kinds of master integrals contribute. One is the bubble integral, the other one is the
bubble integral with a linear propagator insertion,

I1 = (µ2)ϵ
∫

ddl

iπd/2
1

(l − q1)2l2
,

I2 = (µ2)ϵ
∫

ddl

iπd/2
1

(l − q1)2l2
(
1 − x∆ · (l + q2)

) , (5.14)

where q1 , q2 are a linear combination of momenta p1 , · · · , pk−1 and µ is the ’t Hooft scale.
The two master integrals can be computed easily, and the only special function that appears
in their divergent parts is the logarithm. In particular, we encounter x-dependent logarithms
from the master integral I2,

I2 =
1
ϵ

[ ln(1 − x∆ · q1 − x∆ · q2) − ln(1 − x∆ · q2)
−x∆ · q1

]
+O(ϵ0) . (5.15)

The spurious poles appearing in the results for the OMEs in parameter-x space can be elim-
inated using the MultivariateApart [76] and Singular_pfd [77] packages implementing
multivariate partial fraction algorithms. Using the method in section 3 and the following
type of replacement,

x3

(1 − x∆ · p1) (1 − x∆ · p2)
=

∞∑

n=3
xn

n−3∑

j1=0
(∆ · p1)n−3−j1 (∆ · p2)j1

→
n−3∑

j1=0
(∆ · p1)n−3−j1 (∆ · p2)j1 , (5.16)

we manage to express the divergent terms of one-loop OMEs in terms of a single harmonic
sum S1(n) and multiple summations of the form shown in the last line of the above equation.

We compute the divergent terms of the one-loop OMEs in (4.3), (4.5) and (4.7) for
m = 0 , 1 , 2 with general ξ dependence. The computation of the m = 3 case is also
straightforward, but becomes relevant only for the 4-loop splitting functions. In all cases,
the right-hand sides are found to be proportional to Z(1)

gA . The observation verifies our
statement right above (2.22). Explicitly for m = 0 , 1 , 2, the OMEs involving ghosts have no
dependence on S1(n) and are directly proportional to Z(1)

gA . The OMEs involving quarks also
have no dependence on S1(n) and their dependence on CF cancels against the Z(1)

gq terms.
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The dependence on S1(n) of OMEs involving only gluons cancels against the Z(1)
gg terms.

By dividing out the common factor Z(1)
gA in the left-hand and right-hand side of (4.3), (4.5)

and (4.7), we manage to obtain all-n Feynman rules up to 4 legs for the operators OA, OB

and OC . We emphasize that all Feynman rules are found to be ξ independent.
Up to three legs, the Feynman rules for the operators OA and OC were already available

in [14], we find full agreement with them upon corrections of typographical errors according
to [78]. The Feynman rule up to 3 legs for OB was given in [79], and we find full agreement
in that case as well. Our all-n Feynman rules for operators OABC with four legs are new.
For completeness, we present all Feynman rules up to 4 legs in the following with the
convention of all momenta flowing into the vertices.

The all-n Feynman rules for the OB operator with up to 4 legs are given by

p1, i1 p2, i2

→ 0 , (5.17)

p1, i1 p2, i2

p3, µ3, a3

→ −1 + (−1)n
2 gs ∆µ3T a3

i2i1
/∆
(
∆ · (p1 + p2)

)n−2 , (5.18)

p1, i1 p2, i2

p3, µ3, a3 p4, µ4, a4

→ −1
4
1 + (−1)n

2 g2s∆µ3∆µ4 (T a3T a4 − T a4T a3)i2i1 /∆
n−3∑

j1=0

(
3 (∆ · (p1 + p2))−j1+n−3

×
[
(−∆ · p3) j1 − (−∆ · p4) j1

]
− (−∆ · p4) j1 (∆ · p3)−j1+n−3

)
. (5.19)

The all-n Feynman rules for the OC operator with up to 4 legs are given by

p1, a1 p2, a2

→ 1+(−1)n
2 δa1a2(∆·p1)n , (5.20)
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p1, a1 p2, a2

p3, µ3, a3

→ −i

4
1+(−1)n

2 ∆µ3gsf
a1a2a3

(
3∆·p1∆·p2

n−3∑

j1=0

(
(−∆·p2) j1 (∆·p1)−j1+n−3

)

+(∆·p1−∆·p2)(∆·(p1+p2))n−2−(∆·p1)n−1+(∆·p2)n−1
)
, (5.21)

p1, a1 p2, a2

p3, µ3, a3 p4, µ4, a4

→ 1
24

1+(−1)n
2 g2s∆µ3∆µ4

{
fa1a3afa2a4a

(
6(−∆·p4)n−2+6(∆·p3)n−2

+6(∆·(p1+p3))n−2+6(∆·(p2+p3))n−2−
n−2∑

j1=0

[

+
[
(−∆·p3) j1+(−∆·p4) j1

][
3(∆·p1)n−j1−2

+3(∆·p2)n−j1−2+(∆·(p1+p2))n−j1−2]

+9
[
(∆·p1)n−j1−2+(−∆·p2)n−j1−2][(∆·(−p2−p3)) j1+(∆·(p1+p3)) j1

]]

+13
n−2∑

j1=0

j1∑

j2=0

[
(−∆·p2) j1−j2 (∆·p1)n−j1−2[(∆·(−p2−p3)) j2+(∆·(p1+p3)) j2

]])

+fa1a2afa3a4a
(

−6(∆·p3)n−2−6(∆·(p2+p3))n−2

+
n−2∑

j1=0

[
3(−∆·p4) j1 (∆·p1)n−j1−2

+3(−∆·p3) j1 (∆·p2)n−j1−2+
[
5(−∆·p3) j1 −4(−∆·p4) j1

]
(∆·(p1+p2))n−j1−2

+9
[
(∆·p1)n−j1−2+(−∆·p2)n−j1−2](∆·(−p2−p3)) j1

]
−3∆·p2

n−3∑

j1=0

[

3
[
(−∆·p3) j1 −(−∆·p4) j1

]
(∆·(p1+p2))n−j1−3−(−∆·p4) j1 (∆·p3)n−j1−3

]

+
n−2∑

j1=0

j1∑

j2=0

[
(−∆·p2) j1−j2 (∆·p1)n−j1−2[(∆·(p1+p3)) j2 −14(∆·(p1+p4)) j2

]])

– 25 –



J
H
E
P
0
4
(
2
0
2
3
)
0
4
1

+6da1a2a3a4A

CA

(
−

n−2∑

j1=0

[[
(−∆·p3) j1+(−∆·p4) j1

]
(∆·(p1+p2))−j1+n−2

]

+
n−2∑

j1=0

j1∑

j2=0

[
(−∆·p2) j1−j2 (∆·p1)−j1+n−2[(∆·(p1+p4)) j2+(∆·(p1+p3)) j2

]])}
.

(5.22)

Finally, the all-n Feynman rules for the operator OA and up to 4 legs are given by

p1, µ1, a1 p2, µ2, a2

→ δa1a2
1 + (−1)n

2

[
− ∆ · p1 (pµ1

1 ∆µ2 + ∆µ1pµ2
1 ) + 2∆µ1∆µ2p1 · p1

]
(∆ · p1)n−2 , (5.23)

p1, µ1, a1 p2, µ2, a2

p3, µ3, a3

→ −i

4
1 + (−1)n

2 gsf
a1a2a3

(
− 4∆µ3gµ1µ2∆ · p1 (∆ · (p1 + p2)) n−2

− 3∆µ1∆µ3pµ2
2

n−2∑

j1=0

(
(−∆ · p2) j1 (∆ · p1)−j1+n−2

)

+ 2∆µ1∆µ2 (4pµ3
2 + pµ3

3 ) (∆ · p1) n−2 − ∆µ1∆µ2∆µ3 (p1 · p1 − p1 · p2 + p2 · p2)

×
n−3∑

j1=0

(
(−∆ · p2) j1 (∆ · p1)−j1+n−3

))
+ permutations , (5.24)

p1, µ1, a1 p2, µ2, a2

p3, µ3, a3 p4, µ4, a4

→ 1
48

1 + (−1)n
2 g2s

{
3∆µ1∆µ2gµ3µ4

(
8 (2faa1a3faa2a4 − faa1a2faa3a4) (∆ · p1) n−2

− faa1a2faa3a4 (∆ · p1 + ∆ · p2 + 2∆ · p3)

×
n−3∑

j1=0

[[
6 (∆ · (−p1 − p2)) j1 + (∆ · p2) j1

]
(−∆ · p1)−j1+n−3

])

+ ∆µ1∆µ2∆µ3∆µ4
(
(p1 · p1 + p2 · p2 + p3 · p3 + p4 · p4) faa1a3faa2a4

+ (13p1 · p1 − 5p2 · p2 + 13p3 · p3 − 5p4 · p4) faa1a2faa3a4
)
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×
n−4∑

j1=0

j1∑

j2=0

(
(−∆ · p3) j2 (∆ · (p1 + p2)) j1−j2 (∆ · p1)−j1+n−4

)

− ∆µ2∆µ4 (faa1a3faa2a4 + 13faa1a2faa3a4) (∆µ1pµ3
3 − ∆µ3pµ1

1 )

×
n−3∑

j1=0

j1∑

j2=0

(
(∆ · (−p1 − p2)) j1−j2 (∆ · p3) j2 (−∆ · p1)−j1+n−3

)
+ 3∆µ1∆µ2∆µ4

× (4pµ3
1 + pµ3

3 ) faa1a3faa2a4
n−3∑

j1=0

[[
4 (∆ · (p1 + p3)) j1 + (∆ · p4) j1

]
(−∆ · p2)−j1+n−3

+ 2 (∆ · p4) j1 (∆ · (−p1 − p3))−j1+n−3
]
+ 12da1a2a3a4A

CA

(

− ∆µ2∆µ3∆µ4pµ1
1

n−3∑

j1=0

j1∑

j2=0

[
(−∆ · p2) j1−j2 (∆ · (p1 + p4)) j2 (∆ · p1)−j1+n−3

]

+ ∆µ1∆µ2∆µ3∆µ4 (p1 · p1 + p3 · p3)

×
n−4∑

j1=0

j1∑

j2=0

[
(−∆ · p2) j1−j2 (∆ · (−p2 − p3)) j2 (∆ · p1)−j1+n−4

])}
+ permutations ,

(5.25)

where plus permutations indicates the summation over all the external gluon indices
(simultaneous permutation of µi, ai, pi). In the above equations, the fully symmetric color
structure da1a2a3a4A in the adjoint representation is defined by

da1a2a3a4A = 1
4!

[
Tr (T a1

A T a2
A T a3

A T a4
A ) + symmetric permutations

]
, (5.26)

with (TA)a1a2a3 = −ifa1a2a3 .

5.3 Two-loop counterterm Feynman rules for [ZO]GV
g

As discussed in subsection 4.2, the second order renormalization constants Z(2)
gA , Z

(2)
gq and

Z(2)
gg can be derived from (4.11), (4.14) and (4.15) for m = 0. In practice, this can be done

following the same computational method as described in section 3. As a reference, we
write down the result for Z(2)

gA extracted from (4.11),

Z(2)
gA = 1

ϵ2 n(n − 1)

[
C2
A

(
56n4 + 115n3 − 8n2 − 85n+ 30

12(n − 1)n(n+ 1)(n+ 2) − 11S1(n)
4

)

− 2CANf

3

]

+ 1
ϵn(n − 1)

[
C2
A

(
− 5

4S1,1(n) +
(
35n2 − 11n − 12

)
S1(n)

12(n − 1)n + S−2(n) + 3S2(n)

− 301n8 + 1195n7 + 539n6 − 2102n5 − 1747n4 + 1159n3 + 1555n2 − 72n − 180
36(n − 1)2n2(n+ 1)2(n+ 2)2

)

+ (1 − ξ)C2
A

(
2n3 + n2 − 1

8(n − 1)n(n+ 1) − S1(n)
8

)

+ CANf

(16
9 − 2S1(n)

3

)]
, (5.27)
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where two color structures, C2
A and CANf , appear in the result. The three-loop correction

to ZgA is documented in appendix C. Unlike the physical renormalization constants Zij

with i, j = q or g, ZgA depends on the gauge parameter ξ.
In the following, we focus on equations (4.11), (4.14) and (4.15) with m = 1, especially

on the computation of the off-shell, two-loop, three-leg OMEs. We follow closely the method
described in section 3 and work directly in parameter-x space. However, the computations
are much more involved compared to the two-leg case, due to the larger number of scales:

p1 · p1, p2 · p2, p1 · p2, ∆ · p1 = 1, ∆ · p2 = z1 , (5.28)

where we consider an off-shell, three-particle interaction with all momenta incoming, and
eliminate p3 using momentum conservation p3 = −p1 − p2. We also set ∆ · p1 to 1 and
∆ · p2 to z1.

According to the analysis in subsection 5.1, for a twist-two operator, the Feynman
rules involving quarks or ghosts do not depend on the Mandelstam variables. Further, the
Feynman rules containing only gluons are linear in the Mandelstam variables. Therefore,
we can perform an IBP reduction by setting p1 · p1, p2 · p2, p1 · p2 to some random non-zero
rational numbers. A single numeric sample is then sufficient to determine the Feynman
rules involving quarks or ghosts. Another sample is used as a cross-check. For the case
involving only gluons, we also need only one numeric sample to fix the single unknown
parameter, due to the symmetry constraint resulting from gluons obeying Bose statistics.

Another simplification is due to the application of simplified Lorentz structures in
the Feynman rules of a twist-two operator, as discussed in subsection 5.1. In contrast to
the last subsection, the application to the present case requires us to consider each of the
right-hand sides of equations (4.11), (4.14) and (4.15) as a whole. To explain the reason,
we analyze the Lorentz structures of each term in (4.11) for the case m = 1. The same
analysis also applies to (4.14) and (4.15). The left-hand side of (4.11) is composed of one
Lorentz structure only:

⟨c| [ZO]GV, (2)
g |c g⟩

µ1, (0), (1)
1PI = d1 ∆µ1 . (5.29)

The sum on the right-hand side of (4.11) also yields the same Lorentz structure, which is
however not true for each term individually. For example, the following two-loop OMEs
depend on three Lorentz structures

[
⟨c|Og|c g⟩µ1, (2), (1),B

1PI
]

div
= c1 ∆µ1 + c2 p

µ1
1 + c3 p

µ1
2 , (5.30)

where c2 and c3 are in general non-zero, but they cancel with the corresponding structures
from the O(ϵ0) part of the one-loop OMEs. Even if we do not care about the values of c2
or c3, three projectors are still needed to determine the value of c1. To resolve this problem,
we postpone the evaluation of c1 and only evaluate the right-hand side of (4.11) as a whole.
Explicitly, we contract p1, µ1 with each term in the right-hand side of (4.11) and sum them
up. The contributions from the last two Lorentz structures in (5.30) cancel in the result.
Therefore, d1 in (5.29) is determined by dividing the result by ∆ · p1, i.e.,

d1 =
1

∆ · p1
p1, µ1 · [right-hand side of (4.11) for m = 1] . (5.31)

– 28 –



J
H
E
P
0
4
(
2
0
2
3
)
0
4
1

Og Og Og

Figure 3. Sample 2-loop Feynman diagrams to determine the counterterm Feynman rules with 3
legs stemming from [ZO]GV, (2)

g .

With the above two simplifications, the computations become much more feasible.
Since they otherwise follow a standard chain of steps described in section 3, we do not need
to go into much further detail. We stress that the IBP reductions and the constructions
of DEs are done by setting p1 · p1, p2 · p2, p1 · p2 to three different non-zero prime integers.
About 500 master integrals appear in the result, for which we derive only the DEs with
respect to x, not with respect to z1. For the solutions of the DEs, we fix the boundary
conditions in the limit of x → 0, where the integrals coincide with the all-off-shell, two-loop,
3-leg integrals without operator insertion [80]. Only a few master integrals are needed to fix
the boundary conditions, but their solutions are in terms of rather complicated Goncharov
multiple polylogarithms (GPLs) or Bloch-Wigner functions. From subsection 5.1, we know
that Feynman rules should not contain GPLs with Mandelstam variables as their arguments.
Moreover, as two-loop counterterm Feynman rules, the results are free from transcendental
numbers for a fixed n, similarly to (5.27). Thus we can simplify the boundary conditions
by only keeping the transcendental-weight zero contributions, which involve the following
three types of master integrals only,

J1 = (µ2)2ϵ
∫

ddl1
iπd/2

ddl2
iπd/2

1
l21 l

2
2 (l1 + l2 + p1)2

= −p21
2ϵ(1 − 2ϵ)(2 − 3ϵ)(1 − 3ϵ) +O(λ) ,

J2 = (µ2)2ϵ
∫

ddl1
iπd/2

ddl2
iπd/2

1
l21 (l1 + p1)2 l22 (l2 + p2)2

= 1
ϵ2(1 − 2ϵ)2 +O(λ) ,

J3 = (µ2)2ϵ
∫

ddl1
iπd/2

ddl2
iπd/2

1
l21 (l1 + p1)2 l22 (l2 − l1 + p2)2

= 1
2ϵ2(1 − 2ϵ)(1 − 3ϵ) +O(λ) ,

(5.32)

where λi indicates the contribution from polylogarithmic functions and numbers of tran-
scendental weight i and µ is the ’t Hooft scale. We do not try to solve the DEs in terms of
special functions. Instead, we extract fixed Mellin moments of master integrals by solving
the DEs in terms of a power series expansion in x. For each master integrals fi we write

fi(ϵ, z1) =
∞∑

j=0
aij(ϵ, z1)xj , (5.33)

where it is straightforward to expand to high powers in x. We stress that we do not need
to include ln(x) or xϵ terms due to our interpretation of x as a tracing parameter, see (3.1).
In practice, we also expand in ϵ and set z1 to some random prime numbers to speed up
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the expansion. The reconstruction of the z1 dependence is then performed after combining
different contributions to a Feynman rule for fixed n.

For the one-loop OMEs appearing in (4.11), (4.14) and (4.15), we adopt the same
method as described above, since they are required to be evaluated to order ϵ0. We obtain
all counterterm Feynman rules with 3 legs for [ZO]GV, (2)

g up to n = 96. In order to obtain
all-n Feynman rules, we match our results against a heuristic ansatz. While we find that
harmonic sums (3.6) are not sufficient to express the Feynman rules, we were successful in
expressing them using also generalized harmonic sums [81] defined by

S±m(y;n) =
n∑

j=1
j∓myj , S0(y;n) =

n∑

j=1
yj ,

S±m1,m2,···md(y1, y2, · · · yd;n) =
n∑

j=1
j∓m1yj1Sm2,···md(y2, · · · yd; j) . (5.34)

From the structure of the leading poles, we expect sums up to weight two with integer mi

and arguments
yi ∈

{
1,±z1,±(z1 + 1),± 1

z1
,± 1

z1 + 1 ,±
z1

z1 + 1

}
. (5.35)

We reconstruct the all-n Feynman rules from fixed Mellin moments up to n = 76, and then
cross-check our symbolic result against the remaining numerical data for moments up to
n = 96. The package FiniteFlow [82] was used to speed up the reconstruction process.

As shown in (4.16), the two-leg counterterm Feynman rules for [ZO]GV, (2)
g are zero,

g, 2
p1, i1 p2, i2

→ 0 , (5.36)

g, 2
p1, a1 p2, a2

→ 0 , (5.37)

g, 2
p1, µ1, a1 p2, µ2, a2

→ 0 . (5.38)

The two-loop counterterm Feynman rules contributing to [ZO]GV
g , i.e, the left-hand sides

of (4.11), (4.14), (4.15), are listed in the following, with the convention of all momenta
flowing into the vertices,

g, 2
p1, i1 p2, i2

p3, µ3, a3

→ 0 , (5.39)
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g, 2
p1, a1 p2, a2

p3, µ3, a3

→ 2igsC2
Af

a1a2a3 1 + (−1)n
256n(n − 1) (∆ · p1)n−1 ∆µ3

{
F−2,0 + (1 − ξ)F−2,1

ϵ2

+ F−1,0 + (1 − ξ)F−1,1
ϵ

}
, (5.40)

g, 2
p1, µ1, a1 p2, µ2, a2

p3, µ3, a3

→ 2igsC2
Af

a1a2a3 1 + (−1)n
256n(n − 1)

(∆ · p1)n−2

∆ · p2

(
− ∆µ1∆µ2∆µ3 (p1 · p1 + p2 · p2 + p3 · p3)

+ ∆µ2∆µ3pµ1
1 ∆ · p1 + ∆µ1∆µ3pµ2

2 ∆ · p2 + ∆µ1∆µ2pµ3
3 ∆ · p3

)

×
{
F−2,0 + (1 − ξ)F−2,1

ϵ2
+ F−1,0 + (1 − ξ)F−1,1

ϵ

}
, (5.41)

where the quark-quark-gluon counterterm Feynman rule for [ZO]GV, (2)
g is zero. The

counterterm Feynman rules for 3-gluon and ghost-ghost-gluon vertices are proportional to
each other, indicating they are related by a generalized BRST symmetry. The scalar form
factors in (5.41) are as follows:

F−2,1 =−(z1−1)(1+z1)n
(z1+1)2 +(z1+2)zn1

z1 (z1+1) − (2z1+1)1n
z1+1 , (5.42)

F−2,0 = zn1

[
− 2(z1−2)
z1 (z1+1)S1

(
− 1
z1

;n
)
+2(3z1+2)
z1 (z1+1)S1

(z1+1
z1

;n
)

−
2(z1+2)

(
2n2z1+2n2−2nz21−9nz1−9n+2z21+3z1+3

)

(n−1)nz1 (z1+1)2 − 6(z1+2)
z1 (z1+1)S1(n)

]

+(1+z1)n
[2(z1+3)
(z1+1)2 S1

( 1
z1+1;n

)
− 2(3z1+1)

(z1+1)2 S1
( z1
z1+1;n

)

+2(z1−1)
(
2n2z1+2nz21−5nz1+2n−2z21−z1−2

)

(n−1)nz1 (z1+1)2 +6(z1−1)
(z1+1)2 S1(n)

]

+1n
[
− 2(2z1−1)

z1+1 S1 (−z1;n)−
2(2z1+3)
z1+1 S1 (z1+1;n)+ 6(2z1+1)

z1+1 S1(n)

+ 2(2z1+1)
(
2n2z21+2n2z1−9nz21−9nz1−2n+3z21+3z1+2

)

(n−1)nz1 (z1+1)2
]
, (5.43)
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F−1,1 = zn1

[
−
(z1+2)

(
n2z1+n2−nz21+2nz1+2n+z21−z1−1

)

(n−1)nz1 (z1+1)2

+
S1
(

− 1
z1
;n
)

z1
+
S1
(
z1+1
z1

;n
)

z1 (z1+1)

]
+(1+z1)n

[S1
(

z1
z1+1 ;n

)

(z1+1)2 −
z1S1

(
1

z1+1 ;n
)

(z1+1)2

+(z1−1)
(
n2z1+nz21+4nz1+n−z21−3z1−1

)

(n−1)nz1 (z1+1)2
]
+1n

[
−S1 (−z1;n)

− z1S1 (z1+1;n)
z1+1 + (2z1+1)

(
n2z21+n2z1+2nz21+2nz1−n−z21−z1+1

)

(n−1)nz1 (z1+1)2
]
, (5.44)

F−1,0 = zn1

[
− 4n
z1 (z1+1)S2

( 1
z1

;n
)
+8n(z1+2)

z1 (z1+1) S−2(n)−
4(n+1)(z1+2)

z1 (z1+1) S2(n)

+ 6(z1+2)
z1 (z1+1)S1,1(n)+

4(n+z1)
z1 (z1+1)S2

(z1+1
z1

;n
)

− 2(3z1+2)
z1 (z1+1)S1,1

(
1, z1+1

z1
;n
)

+4(z1n+n−z1)
z1 (z1+1) S2

(
− 1
z1

;n
)

− 4n
z1

S2
(

− z1+1
z1

;n
)

− 4n
z1

S1,1
(

− 1
z1

,1;n
)

−
2(z1+2)

(
6z1n3+6n3−4z21n2−15z1n2−15n2+6z21n+16z1n+16n−2z21−3z1−3

)

(n−1)n2z1 (z1+1)2

−
2(z1+2)

(
2z21n2+z1n2+n2−2z21n−7z1n−7n+2z1+2

)

(n−1)nz1 (z1+1)2 S1(n)

−
2
(
2nz31−nz21+2z21−5nz1+2z1−4n

)

nz1 (z1+1)2 S1
(z1+1

z1
;n
)
+4n

z1
S1,1

(
− 1
z1

,−z1;n
)

+2
(
2nz31+3nz21+2z21+7nz1+2z1+4n

)

nz1 (z1+1)2 S1
(

− 1
z1

;n
)

− 4n
z1

S1,1
(

− 1
z1

,z1+1;n
)

− 4n
z1 (z1+1)S1,1

(z1+1
z1

,1;n
)

−
4nS1,1

(
z1+1
z1

, 1
z1+1 ;n

)

z1 (z1+1) +
4nS1,1

(
z1+1
z1

, z1
z1+1 ;n

)

z1 (z1+1)

+ 2(z1−2)
z1 (z1+1)S1,1

(
1,− 1

z1
;n
)]

+(1+z1)n
[
− 4(nz1−z1−1)

(z1+1)2 S2
( 1
z1+1;n

)

− 2(z1+3)
(z1+1)2 S1,1

(
1, 1

z1+1;n
)
+2(3z1+1)

(z1+1)2 S1,1
(
1, z1

z1+1;n
)

− 4n
(z1+1)2S2

(
− 1
z1+1;n

)

−
2(z1−1)

(
2z21n2+3z1n2+2n2−2z21n+3z1n−2n−2z1

)

(n−1)nz1 (z1+1)2 S1(n)

+ 2(z1−1)
(
6z1n3+4z21n2−7z1n2+4n2−6z21n+4z1n−6n+2z21+z1+2

)

(n−1)n2z1 (z1+1)2

+2
(
2nz31+3nz21−2z21+7nz1−2z1+2n

)

nz1 (z1+1)2 S1
( 1
z1+1;n

)
+ 4nz1
(z1+1)2S2

(
− z1
z1+1;n

)

−
2
(
2nz31+7nz21−2z21+3nz1−2z1+2n

)

nz1 (z1+1)2 S1
( z1
z1+1;n

)
− 4n
(z1+1)2S1,1

( z1
z1+1 ,1;n

)

− 4n
(z1+1)2S1,1

( z1
z1+1 ,−

1
z1

;n
)
+
4nS1,1

(
z1

z1+1 ,
z1+1
z1

;n
)

(z1+1)2 +4(n−z1−1)
(z1+1)2 S2

( z1
z1+1;n

)

− 8n(z1−1)
(z1+1)2 S−2(n)+

4(n+1)(z1−1)
(z1+1)2 S2(n)−

6(z1−1)
(z1+1)2 S1,1(n)

+
4nz1S1,1

(
1

z1+1 ,1;n
)

(z1+1)2 +
4nz1S1,1

(
1

z1+1 ,−z1;n
)

(z1+1)2 −
4nz1S1,1

(
1

z1+1 ,z1+1;n
)

(z1+1)2
]
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+1n
[
4nS2 (−z1−1;n)+4nS1,1 (−z1,1;n)−4nS1,1

(
−z1,−

1
z1

;n
)

+4nS1,1
(

−z1,
z1+1
z1

;n
)
+2(2z1−1)

z1+1 S1,1 (1,−z1;n)−
8n(2z1+1)

z1+1 S−2(n)

+ 4(n+1)(2z1+1)
z1+1 S2(n)−

6(2z1+1)
z1+1 S1,1(n)+

2(2z1+3)
z1+1 S1,1 (1,z1+1;n)

− 4(nz1+1)
z1+1 S2 (z1+1;n)− 4(z1n+n−1)

z1+1 S2 (−z1;n)

+ 2(2z1+1)
(
z21n

2+z1n2+2n2−7z21n−7z1n−2n+2z21+2z1
)

(n−1)nz1 (z1+1)2 S1(n)

+ 1
(n−1)n2z1 (z1+1)2

[
2(2z1+1)

(
6z21n3+6z1n3−15z21n2−15z1n2

−4n2+16z21n+16z1n+6n−3z21−3z1−2
)]

−
2
(
4nz31+5nz21−2z21+nz1−2z1−2n

)

nz1 (z1+1)2 S1 (z1+1;n)+ 4nz1
z1+1S1,1 (z1+1,1;n)

−
2
(
4nz31+7nz21+2z21+3nz1+2z1+2n

)

nz1 (z1+1)2 S1 (−z1;n)+
4nz1
z1+1S2 (z1;n)

−
4nz1S1,1

(
z1+1, 1

z1+1 ;n
)

z1+1 +
4nz1S1,1

(
z1+1, z1

z1+1 ;n
)

z1+1

]
, (5.45)

where
z1 =

∆ · p2
∆ · p1

,

and the following 46 (generalized) harmonic sums up to weight 2 appear
{
S1(n), S1

(
− 1

z1
;n
)
, S1

(
−z1;n

)
, S1

( 1
z1+1 ;n

)
, S1

(
z1

z1+1 ;n
)
, S1

(
z1+1;n

)
,

S1
(
z1+1
z1

;n
)
, S−2(n), S2(n), S1,1(n), S2

(
−z1−1;n

)
, S2

(
− 1

z1
;n
)
, S2

( 1
z1
;n
)
,

S2
(

−z1;n
)
, S2

(
z1;n

)
, S2

(
− 1

z1+1 ;n
)
, S2

( 1
z1+1 ;n

)
, S2

(
− z1

z1+1 ;n
)
,

S2
(

z1
z1+1 ;n

)
, S2

(
z1+1;n

)
, S2

(
− z1+1

z1
;n
)
, S2

(
z1+1
z1

;n
)
, S1,1

(
1,− 1

z1
;n
)
,

S1,1
(
1,−z1;n

)
, S1,1

(
1, 1

z1+1 ;n
)
, S1,1

(
1, z1

z1+1 ;n
)
, S1,1

(
1,z1+1;n

)
,

S1,1
(
1, z1+1

z1
;n
)
, S1,1

(
− 1

z1
,1;n

)
, S1,1

(
− 1

z1
,−z1;n

)
, S1,1

(
− 1

z1
,z1+1;n

)
,

S1,1
(

−z1,1;n
)
, S1,1

(
−z1,−

1
z1
;n
)
, S1,1

(
−z1,

z1+1
z1

;n
)
, S1,1

( 1
z1+1 ,1;n

)
,

S1,1
( 1
z1+1 ,−z1;n

)
, S1,1

( 1
z1+1 ,z1+1;n

)
, S1,1

(
z1

z1+1 ,1;n
)
,

S1,1
(

z1
z1+1 ,

z1+1
z1

;n
)
, S1,1

(
z1+1,1;n

)
, S1,1

(
z1+1, 1

z1+1 ;n
)
,

S1,1
(
z1+1, z1

z1+1 ;n
)
, S1,1

(
z1+1
z1

,1;n
)
, S1,1

(
z1+1
z1

,
1

z1+1 ;n
)
,

S1,1
(

z1
z1+1 ,−

1
z1
;n
)
, S1,1

(
z1+1
z1

,
z1

z1+1 ;n
)}

. (5.46)

We used HarmonicSums to evaluate these (generalized) harmonic sums throughout.
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We stress that our counterterm Feynman rules are given in closed form with symbolic n

dependence. Due to the appearance of the generalized harmonic sums, by keeping the all-n
dependence, it is not possible to disentangle the renormalization constants (characterized
by their independence of z1 in this case) from the corresponding operators (which are
independent of harmonic sums). Therefore, it appears impossible to determine the individual
i = 2 operators in a closed form for symbolic n in this way.

It is, however, possible to work out the operator basis n-by-n, as considered in [30].
Typically, more and more operators are needed as n increases, and the number is expected
to go to infinity when n tends to infinity. For a given value of n, only a finite number
of operators are contributing through their operator Feynman rules. From our all-n
counterterm Feynman rules, we can deduce the operator basis n-by-n by setting n to a
specific number. For example, the scalar products in (5.45) for n = 12 are

F−2,1
∣∣∣
n=12

= − (z1 − 1) z1 (z1 + 2) (2z1 + 1)
(
z21 + z1 + 2

) (
2z21 + z1 + 1

) (
2z21 + 3z1 + 2

)
,

F−2,0
∣∣∣
n=12

= 1
630 (z1 − 1) z1 (z1 + 2) (2z1 + 1)

[
34126z61 + 102378z51 + 215515z41

+ 260400z31 + 215515z21 + 102378z1 + 34126
]
,

F−1,1
∣∣∣
n=12

= (z1 − 1) z1 (z1 + 2) (2z1 + 1)
27720

[
180899z61 + 542697z51 + 1137425z41

+ 1370355z31 + 1137425z21 + 542697z1 + 180899
]
,

F−1,0
∣∣∣
n=12

= (z1 − 1) z1 (z1 + 2) (2z1 + 1)
1164240

[
9395264z61 + 28185792z51

+ 53213569z41 + 59450818z31 + 53213569z21 + 28185792z1 + 9395264
]
, (5.47)

where the results are polynomials in z1 with constant coefficients, which makes it straight-
forward to separate the renormalization constants (rational numbers) and the Feynman
rules of the corresponding operators. To infer the operators from the corresponding Feyn-
man rules, we need to replace a momentum with the derivative of a field, for example,
(∆ · p1(1 + z1))n = (−∆ · p3)n → (−∆ · ∂)nAa

µ, where Aa
µ is a gluon field.

5.4 Comparison with previous fixed n results

In a recent work [30], Falcioni and Herzog have used gauge and BRST symmetry to derive a
set of constraint equations for the GV operators. By applying these constraint equations to
a general ansatz for the GV operators at fixed values of n, they were able to determine the
required operator bases for low Mellin moments n = 2, 4, 6 and to compute the associated
renormalization constants.

In the following, we compare our all-n counterterm Feynman rules evaluated at n = 2, 4
and 6 with their results. Since our approach does not allow to disentangle GV operators and
renormalization constants, the comparison requires us to first determine the GV operator
Feynman rules resulting from [30], which are subsequently multiplied with corresponding
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renormalization constants in order to determine the counterterm Feynman rules. It can
be easily verified from (5.40) and (5.41) that the counterterm Feynman rules from [ZO]GV

g

are non-zero only for n ≥ 6. Therefore, for n = 2, 4 the GV operator basis is contained in
the operators OABC . We presented detailed comparisons for each n separately below. All
comparisons are truncated up to four legs, and we find full agreement with [30].

For n = 2, the GV operators were expressed as O(2)
1 and O(2)

2 in [30], and we find that
they are related to our results as follows:

Og

∣∣∣
n=2

= −O(2)
1 ,

ZgA
(
OAC

∣∣
FR
)∣∣∣
n=2, Nf=0

= −δZ(2)
12 O(2)

2 |FR , (5.48)

where we use ‘FR’ to indicate the Feynman rules resulting from the corresponding operators.
The renormalization constant δZ(2)

12 in the above equation is given to order a3s with full
ξ dependence in [30]. Our result for ZgA|n=2, Nf=0, in (C.8), is in full agreement with
δZ(2)

12 presented in [30]. The overall minus sign in the above equation is due to different
normalizations of Og and O1,

Og = −in−2O1 . (5.49)

For n = 4, the GV operator basis in [30] consists of three elements, which relate to our
results as follows:

Og

∣∣∣
n=4

= O(4)
1 ,

ZgA
(
OAC

∣∣
FR
)∣∣∣
n=4, Nf=0

= δZ(4)
12 O(4)

2 |FR + δZ(4)
13 O(4)

3
∣∣
FR , (5.50)

where the operators O(4)
2 , O(4)

3 are distinguished from each other by their different color
structures with O(4)

3 being proportional to da1a2a3a4A as defined in (5.26). In [30], the constant
δZ(4)

12 was given to a3s with a3s(1 − ξ)2 being dropped, and δZ(4)
13 was given to a1s with

δZ(4)
13 = as

CA

24ϵ +O(a2s) . (5.51)

We find the following relations between the renormalization constants:

ZgA

∣∣∣
n=4, Nf=0

− δZ(4)
12 = O(a3s(1 − ξ)2) ,

ZgA

∣∣∣
n=4, Nf=0

+ 2δZ(4)
13 = O(a2s) , (5.52)

with ZgA
∣∣
n=4 listed in (C.9). Given that these renormalization constants were truncated [83]

at order (1 − ξ) in [30], we thus find full agreement.
For n = 6, the comparison becomes more interesting, since the counterterm operator

[ZO]GV, (2)
g starts to contribute. In this case, we further decompose the comparison into

three different categories, depending on the number of legs. As the first category, for
counterterm Feynman rules with two legs, we find the following relation,

ZgA
(
OAC

∣∣
FR
)∣∣∣
n=6, Nf=0

= −δZ(6)
12 O(6)

2 |FR . (5.53)
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The above relation is expected to be satisfied to all orders. It is checked explicitly to order
a2s since δZ(6)

12 is given to a2s in [30]. For counterterm Feynman rules with three legs, the
following relation holds,

ZgA
(
OAC

∣∣
FR
)∣∣∣
n=6, Nf=0

+
[
[ZO]GV, (2)

g |FR
]∣∣∣

n=6

= −
{
δZ(6)

12 O(6)
2 |FR + δZ(6)

13 O(6)
3
∣∣
FR

}
+O(a3s) . (5.54)

Interestingly, both δZ(6)
12 and δZ(6)

13 start to contribute at order as, while only the first
term in the left-hand side of the above equation contributes at order as. At order a2s, also
[ZO]GV, (2)

g starts to contribute. The above relation is confirmed explicitly to order a2s. For
counterterm Feynman rules with four legs, the following relation holds1 at order a1s,

ZgA
(
OAC

∣∣
FR
)∣∣∣
n=6, Nf=0

= −
{
δZ(6)

12 O(6)
2 |FR + δZ(6)

13 O(6)
3
∣∣
FR + δZ(6)

14 O(6)
4 |FR + δZ(6)

15 O(6)
5
∣∣
FR

}
+O(a2s) , (5.55)

where the four operators on the right-hand side are assembled into a single operator OAC on
the left-hand side. At order a2s, one more operator O(6)

6 and one more counterterm operator
[ZO]GV, (2)

g will appear on the right-hand side and the left-hand side of this equation,
respectively. We do not consider them in this paper, since they start to contribute to the
OME renormalization first at the four-loop order.

6 Three-loop splitting functions from operator insertions

The final goal of this paper is the application of our framework to the computation of the
three-loop splitting functions. Having worked out the Feynman rules for physical operators
as well as the renormalization counterterms that originate from GV operators, the main
remaining task is the computation of the two-point OMEs with different operator insertions,
i.e. (2.30).

With the insertion of the operator Oq or Og, the two-point OMEs need to be evaluated
to three loops. Regarding the insertion of OABC , we need to compute the corresponding two-
point OMEs to two loops. Finally, the two-point OMEs with the [ZO]GV, (2)

g counterterm
insertion are needed to one loop. In table 1, we list all required OMEs for the extraction of the
three-loop splitting functions, including also the multi-leg OMEs used for the determination
of the counterterms and specifying the respective loop order. Examples for two-point
diagrams with counterterm insertions are depicted in figure 4.

For physical operators as well as for i = 1 GV operators OABC , it is straightforward to
turn the corresponding Feynman rules from n-space into x-parameter space using linear
propagators according to (3.1). However, the all-n Feynman rules for the counterterm
[ZO]GV, (2)

g , as shown in (5.40), (5.41), leads to polylogarithms in x-parameter space. In
1We thank Falcioni and Herzog for pointing out to us, that the term +Aa1∂2Aa2∂ca3 in the third line

of equation (5.31) in [30] defining the operator O(6)
3 should be modified to +4Aa1∂2Aa2∂ca3 [83]. After

correcting this minor typesetting issue, we find full agreement between their and our results.
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!!!!!!!!!Loops
Legs 2 3 4 5

0 [ZO]GV, (2)
g OABC Oq, Og

1 [ZO]GV, (2)
g OABC Og

2 OABC Og

3 Oq, Og

Table 1. Summary of all OMEs entering the calculation of 3-loop splitting functions. OMEs with
two legs have two quarks, two ghosts or two gluons in the external state. The determination of the
counterterm Feynman rules requires also OMEs with additional external gluons. For each operator,
the table denotes the maximal number of loops needed for OMEs with a given number of legs.

OA

g, 2

Figure 4. Sample diagrams with GV counterterm insertions entering the calculation of the 3-loop
splitting functions.

practice, it is not clear how to perform IBP reductions of Feynman integrals involving
polylogarithmic dependence on the loop kinematics. Therefore, the method of section 3 can
only be used to compute two-point OMEs with an insertion of Oq, Og or OABC , but not
with [ZO]GV, (2)

g .
The contributions due to [ZO]GV, (2)

g consists of three-gluon and ghost-ghost-gluon
counterterms. In the following, we explain our procedure to compute the corresponding
one-loop, two-gluon OMEs using the example of the ghost-ghost-gluon counterterm (5.40);
the procedure for the three-gluon counterterm (5.41) follows identical steps. For a fixed
value of n, the general structure of the ghost-ghost-gluon vertex (5.40) reads:

igsf
a1a2a3∆µ3

n−2∑

m=1
amn(∆ · p1)m(∆ · p2)n−1−m , (6.1)

where amn can not be written as a closed rational form in (m, n). If amn does not depend
on m and n (this is the case for the Feynman rules of the operators Oq, Og as well as
OABC), or if it has a polynomial dependence on m and n, a single auxiliary parameter x as
used in section 3 is sufficient to express the above equation in terms of linear propagators.
For example, if amn = m, then

∞∑

n=3
xn

n−2∑

m=1
m(∆ · p1)m(∆ · p2)n−1−m = x2∆ · p1

(1 − x∆ · p1)2
x∆ · p2

1 − x∆ · p2
. (6.2)

Without turning (6.1) into a linear propagator, it is still possible to directly evaluate the
corresponding OMEs for low Mellin moments n. However, when n increases (typically
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values of n required for an all-n reconstruction range into the hundreds or thousands),
the numerator degrees of the resulting Feynman integrals become so large that an IBP
reduction seems inefficient.

We thus employ an alternative method to bypass this complexity. In addition to x, we
introduce one more auxiliary parameter t and replace amn in (6.1) with tm,

h(x, t) =
∞∑

n=3
xn

n−2∑

m=1
tm(∆ · p1)m(∆ · p2)n−1−m = x t∆ · p1

1 − x t∆ · p1
x2∆ · p2

1 − x∆ · p2
. (6.3)

In this way, we manage to turn (6.1) into linear propagators depending on two tracing
parameters x and t. By considering the matrix elements with an insertion of the above
linear propagators, we have

⟨g(p)|h(x, t)|g(p)⟩ =
∞∑

n=3
xn

n−2∑

m=1
cmnt

m , (6.4)

where in this way we can perform a standard IBP reduction with the corresponding Feynman
integrals without encountering high numerator degrees (at the expense of an extra symbolic
parameter t in the IBP relations). The cmn can be determined from differential equations
in x up to high values of n. Using the following formula, we can then read out the results
of OMEs for multiple fixed values of n easily,

⟨g(p)|
n−2∑

m=1
amn(∆ · p1)m(∆ · p2)n−1−m|g(p)⟩ =

n−2∑

m=1
amncmn . (6.5)

Using the all-n counterterm Feynman rules, we can thus efficiently compute the OMEs at
fixed Mellin moments up to high values of n. By introducing the auxiliary parameter t, we
avoid the growth in complexity for the IBP reduction at fixed numerical n with increasing
n, and the IBP-reduced results are expressed as simple one-loop bubble integrals with a
linear propagator insertion.

We compute all required two-point OMEs as listed in table 1 in a covariant gauge
with full ξ dependence. The all-n results for OMEs with an operator insertion of Oq, Og

or OABC are computed using the method described in section 3. The 3-loop non-singlet
splitting functions can be determined in the off-shell approach without the GV counterterms
presented in this paper; the required OMEs have been computed in [37], and we find full
agreement with them. The OMEs with the counterterm operator [ZO]GV, (2)

g insertion are
computed for fixed Mellin moments up to n = 500 with the procedure described above.
These moments are then used for a reconstruction and cross-check of the all-n results to
order ϵ0, with the following combination contributing to the 3-loop splitting functions,

1
(d − 2)(N2

c − 1)

[
− gµν ⟨g| [ZO]GV, (2)

g |g⟩
µν,(1), (0)
1PI − 2 ⟨c| [ZO]GV, (2)

g |c⟩
(1), (0)
1PI

]
=

(1 − ξ)C3
A

128n(n − 1)ϵ2
{

− 4
(
4n2 + 13n − 13

)
S1(n)

(n − 1)n + 4(n+ 1)
(
8n2 − 7n − 3

)

(n − 1)2n2

+ (1 − ξ)
(2(n+ 1)(2n − 3)

(n − 1)n − 2S1(n)
)

− 8S−2(n) + 12S2(n) + 12S1,1(n)
}
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+ (1 − ξ)C3
A

128n(n − 1)ϵ

{
(1 − ξ)2

[
S(1, n) − (n+ 1)(2n − 3)

(n − 1)n

]

+ (1 − ξ)
[2
(
4n2 + 18n − 21

)
S(1, n)

(n − 1)n + 8S(−2, n) − 8S(2, n) − 8S(1, 1, n)

+ 2
(
6n4 − 28n3 + 16n2 + 17n − 3

)

(n − 1)2n2

]
+ 8

(
2n2 − n+ 1

)
S(−2, n)

(n − 1)n

− 8
(
n2 + 6n − 6

)
S(2, n)

(n − 1)n + 4
(
12n2 − 31n+ 15

)
S(1, 1, n)

(n − 1)n

− 4
(
20n4 − 24n3 − 23n2 + 44n − 7

)
S(1, n)

(n − 1)2n2 + 4(6n − 7)S(−3, n)

− 8(2n − 3)S(3, n) − 8(10n+ 1)S(−2, 1, n) + 16S(1,−2, n) + 28S(1, 2, n)

− 8(n+ 1)S(2, 1, n) + 8
(
4n5 + 2n4 − 13n3 + 12n2 − 10n+ 3

)

(n − 1)3n2

}
+O(ϵ0) . (6.6)

The quantity in the above equation is zero in Feynman gauge with ξ = 1. It implies that the
correct three-loop splitting functions can be extracted without considering the contribution
from the counterterm operator [ZO]GV, (2)

g if we work in Feynman gauge, which is exactly
what we found in [84]. We point out that we compute all two-parton OMEs to one order
higher in ϵ than what is needed for the extraction of the three-loop splitting functions,
since those contributions will enter the renormalization at the four-loop level. That is, we
compute the OMEs at three-loop, two-loop and one-loop order to ϵ0, ϵ1 and ϵ2, respectively.
We collect results of all two-parton OMEs in supplementary material attached to this paper
and provide instructions for their usage in appendix E.

Having the results for all required OMEs at hand, it is straightforward to extract the
physical renormalization constants according to the renormalization procedure in (2.25)
and (2.26). We find that the ξ dependence indeed cancels for the physical renormalization
constants, stressing that the inclusion of (6.6) is crucial for this cancellation. According
to (2.20), we extract the physical singlet anomalous dimensions γij(n) to three loops. Our
results are in full agreement with the results in [11]. Through a similar procedure, we also
extract non-singlet anomalous dimension γns(n) to three loops. Separating even and odd
moments, γns can be decomposed as follows:

γns =
1 + (−1)n

2 γ+ns +
1 − (−1)n

2
(
γ−
ns + γsns

)
, (6.7)

where the definitions of γ±ns and γsns can be found for example in [10]. The anomalous
dimension γsns starts to contribute at the three-loop level and is proportional to the color
structure dabcdabc at this loop order. Our results for these quantities agree with those in [10].
Through the equations

γij(n) = −
∫ 1

0
dz zn−1 Pij(z), (6.8)

γ±, s
ns = −

∫ 1

0
dz zn−1 P±,s

ns (z), (6.9)
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the physical anomalous dimensions are related to the splitting functions in momentum
fraction z space. Using HarmonicSums, the splitting functions Pij(z) (P±, s

ns (z)) are obtained
from γij (γ±, s

ns ) by an inverse Mellin transformation. Also for the splitting functions, we
find complete agreement with the results in [10, 11].

7 Summary and conclusions

The operator-product expansion (OPE) allows to systematically separate short-distance
and long-distance contributions to hadron-induced processes in QCD. The anomalous
dimensions of the resulting quark and gluon operators determine the scale evolution of
parton distributions. More specifically, these anomalous dimensions are directly related to
the Altarelli-Parisi splitting functions by a Mellin transformation.

The quantization of QCD in a covariant gauge enlarges the particle spectrum by ghosts
and induces an a priori infinite number of gauge-variant (GV) operators, which contribute
to the renormalization of the physical quark singlet and gluon operators (2.21). Only a
finite number of these GV operators contribute to the renormalization of the quark and
gluon operators for a fixed Mellin moment and at a given loop order. The fully general
structure of the GV operators is only poorly understood at present, thus preventing the
calculation of anomalous dimensions beyond the two-loop order in the OPE up to now.

In this setup, the anomalous dimensions of the quark and gluon operators are determined
from the divergences of the simplest operator matrix elements (OMEs) with two external,
off-shell partons. Compared to alternative methods to determine anomalous dimensions
or splitting functions, the calculation of off-shell OMEs is generally considered to involve
lower computational complexity at the level of amplitudes and Feynman integrals. It is
therefore highly desirable to extend the applicability of the OPE to higher loop orders by
developing a consistent renormalization framework for the quark and gluon operators.

In this paper, we developed a new approach to systematically determine the counterterm
Feynman rules that result from the GV operators. These counterterm Feynman rules are
sufficient to determine the renormalization of operator matrix elements (OMEs) for a fixed
number of external partons at a given loop order, even without full knowledge of the GV
operators themselves. As an example, the first line of table 1 summarizes which Feynman
rules for operators or counterterms are required for the computation of the three-loop,
two-parton OMEs and their renormalization. With increasing loop order, OMEs with an
increasing number of additional gluons need to be considered, corresponding to vertices
with increasing multiplicity entering the bare matrix elements.

Our approach is based on the extraction of the counterterm Feynman rules from the
divergent parts of multi-leg OMEs in general off-shell kinematics. The renormalization of
these OMEs for two partons and an arbitrary number of gluons is illustrated at two-loop
order in (4.11), (4.14), (4.15). The central observation is that the computation of the
divergent parts of the OME for a given external state at a given loop order can be used to
infer the counterterm Feynman rules for this external state at this loop order.

A special role is played by the GV operators that contribute to the renormalization
of the quark and gluon operators already at one loop. At this order, only three operators
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contribute, and they are highly constrained in their structure. We collectively denote
them by OABC , and their contribution to the one-loop renormalization of the physical
operators is controlled by a single renormalization constant (4.4). It is thus possible to
extract the operator Feynman rules for OABC for a fixed multiplicity of external partons.
These turn into the respective counterterm Feynman rules only upon multiplication with
the operator renormalization constant. The OABC operator Feynman rules had been
computed previously [14, 78, 79] for external states with up to three partons. We extend
their determination now to four partons in (5.19), (5.22), (5.25). The OABC operators
are particularly special, since they already exhaust all allowed Lorentz structures in GV
operators at the lowest multiplicities (two-gluon, two-ghost and two-quark-plus-gluon), as
we demonstrate in appendix B. Consequently, the counterterm Feynman rules for the lowest
multiplicities must be proportional to the OABC operator Feynman rules, multiplied with
a higher-loop correction to the operator renormalization constant (5.27), which can be
determined from a low-multiplicity OME calculation.

At two loops, an infinite number of GV operators besides OABC contribute to the
operator renormalization. These other GV operators yield, however, only counterterm
Feynman rules starting at higher multiplicities than OABC . By computing the respective
three-parton OMEs in general kinematics, we explicitly determined the two-loop counterterm
Feynman rules relevant to the renormalization of the gluon operator [ZO]GV, (2)

g for the
ghost-ghost-gluon (5.40) and three-gluon (5.41) operator vertices. From the structural
properties of these counterterm Feynman rules (their dependence on n and on the external
kinematics), we can infer that they can not originate from a single operator, but only from
a linear combination of an unknown number of operators.

The computations of multi-leg OMEs are performed for fixed numerical values of
the external kinematics. A finite number of these numerical samples is then sufficient to
reconstruct the full kinematical dependence of the resulting counterterm Feynman rules,
exploiting their symmetries and their dimensional scaling. The full n-dependence of the
OMEs is usually retained through the introduction of resummed propagators (3.1). The
two-loop counterterm Feynman rules can not be cast into this resummed form. Instead,
OMEs with these counterterm insertions are evaluated repeatedly for multiple integer values
of n (based on the all-n Feynman rules as well as a generalized resummed form (6.3), such
that the computational effort does not increase with n), allowing subsequently their all-n
reconstruction.

We applied our newly computed GV operator and counterterm Feynman rules to
rederive the three-loop anomalous dimensions of the unpolarized quark singlet and gluon
operators in a general covariant gauge using the OPE method. These three-loop anomalous
dimensions (or the corresponding splitting functions) were previously computed with several
other approaches [11, 23–29], and we find full agreement with the literature. Our result
establishes the independence of the anomalous dimensions on the gauge parameter, which
was expected and supported by calculations at fixed n, but not proven up to now.

A method for the systematic construction of GV operators and counterterms for the
renormalization of the gluon operator based on BRST symmetry has recently been outlined
in Reference [30]. The resulting constraint equations were, however, solved only for fixed
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low values of n, and they show a substantial growth in complexity with increasing n. Our
method enables the determination of the counterterm Feynman rules for symbolic n, thereby
allowing the computation of counterterm OMEs for multiple values of n without an increase
in complexity towards larger n. Our results reproduce the two-loop counterterm Feynman
rules for low values of n that were obtained in [30].

Owing to the relative computational simplicity of two-parton OMEs at high loop orders,
the OPE method holds the potential for computing the four-loop corrections to anomalous
dimensions or splitting functions, which are of paramount importance to precision collider
physics. While first results on the quark non-singlet [85] and most recently on low-n
moments of the quark singlet and gluon anomalous dimensions [30, 46] were obtained, their
all-n calculation still remains an outstanding challenge. The developments made in this
paper lay out a strategy to determine the renormalization counterterms that are required
in this context, thereby paving the way for a future derivation of the four-loop anomalous
dimensions in the OPE method.
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A Feynman rules for physical operators

As outlined in subsection 2.2, the Feynman rules for physical operators can be obtained
from (2.8) and (2.9) by a functional variation. Equivalently, one can read out the Feynman
rules directly from the definitions of the operators by replacing a derivative of a field with
−i times the associated momentum. As an example, we derive the Feynman rule for one of
the terms in Og,

− in−2

2 S
[(

∆ · ∂Aa1
µ

)
(∆ · ∂)n−1Aµ, a2δa1a2

]

→ − in−2

2 (−i)nδa1a2(∆ · p2)n−1∆ · p1gµ1µ2 + {p1 ↔ p2, µ1 ↔ µ2, a1 ↔ a2}

= −δa1a2(∆ · p1)ngµ1µ2 , (A.1)

where in the last line we use momentum conservation p2 = −p1 to simplify the result. In
the following, the Feynman rules for the physical operators Oq and Og and up to 5 legs are
listed for completeness, with the convention of all momenta flowing into the vertices.
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A.1 Feynman rules for the operator Oq

p1, i1 p2, i2

→ 1
2
/∆δi1i2 (∆ · p1) n−1 , (A.2)

p1, i1 p2, i2

p3, µ3, a3

→ 1
2gs∆

µ3T a3
i2i1

/∆
n−2∑

j1=0

(
(−∆ · p2) j1 (∆ · p1)−j1+n−2

)
, (A.3)

p1, i1 p2, i2

p3, µ3, a3 p4, µ4, a4

→ 1
2g

2
s∆µ3∆µ4 /∆

{ n−3∑

j1=0

j1∑

j2=0
(−∆ · p2) j1−j2 (∆ · p1)−j1+n−3

×
[
(T a3T a4)i2i1 (∆ · (p1 + p4)) j2 + (T a4T a3)i2i1 (∆ · (p1 + p3)) j2

]}
, (A.4)

p1, i1 p2, i2

p3, µ3, a3 p5, µ5, a5p4, µ4, a4

→ 1
2g

3
s∆µ3∆µ4∆µ5 /∆

{ n−4∑

j1=0

j1∑

j2=0

j2∑

j3=0
(∆ · p1)−j1+n−4 (−∆ · p2) j1−j2

×
[
(T a3T a4T a5)i2i1 (∆ · (−p2 − p3)) j2−j3 (∆ · (p1 + p5)) j3

+ (T a3T a5T a4)i2i1 (∆ · (−p2 − p3)) j2−j3 (∆ · (p1 + p4)) j3

+ (T a4T a3T a5)i2i1 (∆ · (−p2 − p4)) j2−j3 (∆ · (p1 + p5)) j3

+ (T a4T a5T a3)i2i1 (∆ · (−p2 − p4)) j2−j3 (∆ · (p1 + p3)) j3

+ (T a5T a3T a4)i2i1 (∆ · (−p2 − p5)) j2−j3 (∆ · (p1 + p4)) j3

+ (T a5T a4T a3)i2i1 (∆ · (−p2 − p5)) j2−j3 (∆ · (p1 + p3)) j3
]}

. (A.5)
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A.2 Feynman rules for the operator Og

p1, µ1, a1 p2, µ2, a2

→ −δa1a2 (∆ · p1) n−2
[
(∆ · p1)2gµ1µ2 − ∆ · p1 (pµ1

1 ∆µ2 + ∆µ1pµ2
1 ) + ∆µ1∆µ2p1 · p1

]
,

(A.6)

p1, µ1, a1 p2, µ2, a2

p3, µ3, a3

→ −i

4 gsf
a1a2a3

{
(∆ · p1) n−2

(
− ∆µ2gµ1µ3∆ · p1

+ ∆µ3gµ1µ2∆ · p1 − ∆µ1∆µ3pµ2
1 + ∆µ1∆µ2pµ3

1
)

+ (−∆ · p3) n−2 (−∆µ1gµ2µ3∆ · p3 + ∆µ2gµ1µ3∆ · p3 − ∆µ2∆µ3pµ1
3 + ∆µ1∆µ3pµ2

3 )
− 2∆µ2 (−gµ1µ3∆ · p1∆ · p3 + ∆µ3pµ1

3 ∆ · p1 + ∆µ1pµ3
1 ∆ · p3 − ∆µ1∆µ3p1 · p3)

×
n−3∑

j1=0

(
(∆ · (p1 + p2)) j1 (∆ · p1)−j1+n−3

)}
+ permutations , (A.7)

p1, µ1, a1 p2, µ2, a2

p3, µ3, a3 p4, µ4, a4

→ 1
8g

2
sf

aa1a2faa3a4
{
2∆µ3

(
∆µ1gµ2µ4∆ · p4 − ∆µ2gµ1µ4∆ · p4 + ∆µ2∆µ4pµ1

4

− ∆µ1∆µ4pµ2
4
) n−3∑

j1=0

(
(∆ · (p1 + p2 + p3)) j1 (∆ · (p1 + p2))−j1+n−3

)

+ 4∆µ2∆µ3 (−gµ1µ4∆ · p1∆ · p4 + ∆µ4pµ1
4 ∆ · p1 + ∆µ1pµ4

1 ∆ · p4 − ∆µ1∆µ4p1 · p4)

×
n−4∑

j1=0

j1∑

j2=0

(
(∆ · (p1 + p2)) j1−j2 (∆ · (p1 + p2 + p3)) j2 (∆ · p1)−j1+n−4

)

+
(

− ∆µ2∆µ4gµ1µ3 + ∆µ1∆µ4gµ2µ3

+ ∆µ2∆µ3gµ1µ4 − ∆µ1∆µ3gµ2µ4
)
(∆ · (p1 + p2)) n−2

+ 2∆µ2 (∆µ3gµ1µ4∆ · p1 − ∆µ4gµ1µ3∆ · p1 + ∆µ1∆µ4pµ3
1 − ∆µ1∆µ3pµ4

1 )

×
n−3∑

j1=0

(
(∆ · (p1 + p2)) j1 (∆ · p1)−j1+n−3

)}
+ permutations , (A.8)
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p1, µ1, a1 p2, µ2, a2

p3, µ3, a3 p5, µ5, a5p4, µ4, a4

→ −i

8 g3sf
aa1a2faba3f ba4a5

{
− 2∆µ2∆µ3

(
∆µ4gµ1µ5∆ · p1 − ∆µ5gµ1µ4∆ · p1 + ∆µ1∆µ5pµ4

1

− ∆µ1∆µ4pµ5
1
) n−4∑

j1=0

j1∑

j2=0

(
(∆ · (p1 + p2)) j1−j2 (∆ · (p1 + p2 + p3)) j2 (∆ · p1)−j1+n−4

)

− 2∆µ3∆µ4 (∆µ1gµ2µ5∆ · p5 − ∆µ2gµ1µ5∆ · p5 + ∆µ2∆µ5pµ1
5 − ∆µ1∆µ5pµ2

5 )

×
n−4∑

j1=0

j1∑

j2=0

(
(∆ · (p1 + p2 + p3)) j1−j2 (−∆ · p5) j2 (∆ · (p1 + p2))−j1+n−4

)

− 4∆µ2∆µ3∆µ4 (−gµ1µ5∆ · p1∆ · p5 + ∆µ5pµ1
5 ∆ · p1 + ∆µ1pµ5

1 ∆ · p5 − ∆µ1∆µ5p1 · p5)

×
n−5∑

j1=0

j1∑

j2=0

j2∑

j3=0

[
(∆ · (p1 + p2)) j1−j2

× (∆ · (p1 + p2 + p3)) j2−j3 (−∆ · p5) j3 (∆ · p1)−j1+n−5
]

+ ∆µ3 (∆µ2∆µ5gµ1µ4 − ∆µ1∆µ5gµ2µ4 − ∆µ2∆µ4gµ1µ5 + ∆µ1∆µ4gµ2µ5)

×
n−3∑

j1=0

(
(∆ · (p1 + p2 + p3)) j1 (∆ · (p1 + p2))−j1+n−3

)}
+ permutations , (A.9)

where plus permutations indicates the summation over all the external gluon indices
(simultaneous permutation of µi, ai, pi).

B Feynman rules for all GV operators at lowest multiplicity

As discussed at the end of subsection 4.2, the two-point vertex Feynman rules for all GV
operators except OA and OC are zero. We prove this statement in the following. For the
vertex Feynman rules with two quark or two ghost legs, the only possible forms are:

⟨q|O|q⟩(0),(0) = h1 /∆(∆ · p)n−1 , (B.1)
⟨c|O|c⟩(0),(0) = h2(∆ · p)n , (B.2)

where O is an arbitrary twist-two operator, and h1 and h2 are constants. We recognize
that the above two equations are exactly the Feynman rules for Oq and OC respectively,
as in (A.2) and (5.20). Therefore, the vertex Feynman rules with two quarks for all GV
operators are zero, and the vertex Feynman rules with two ghosts for all GV operators
except OC are zero.

For the case of the vertex Feynman rules with two gluons, there are four possible tensor
structures Tµν

i with i = 1 . . . 4 as shown in (2.36). From subsection 5.1, Tµν
2 can not be the
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Feynman rule of a twist-two operator. Moreover, the Feynman rules with two gluons are
expected to satisfy the condition of being transverse, which is not the case for Tµν

4 , i.e.,

pµpνT
µν
4 ̸= 0 . (B.3)

The remaining tensor structures Tµν
1 and Tµν

3 are just the Feynman rules of Og and OA

separately, as shown in (A.6) and (5.24). Therefore, all GV operators involving only two
gluon fields except OA are zero.

Based on the symmetry from the exchange of two quarks for a singlet twist-two operator,
and from the Feynman rules in (A.3), (5.18) and (5.39), we conjecture but not prove the
statement: the qq̄g vertex Feynman rules for all GV operators except OB are zero.

C Renormalization constants ZqA and ZgA to three loops

We give the all-n results for the renormalization constants ZqA and ZgA to three loops,
which can be extracted from the OMEs with two-ghost external states. ZqA starts at a2s
and reads as follows,

ZqA= a2sCANf

(n−1)n2(n+1)(n+2)

{(
n2+n+2

)

ϵ2
−
(
n2+5n+2

)(
n3+n2+n+2

)

n(n+1)(n+2)ϵ

}

+ a3sNf

(n−1)n2(n+1)(n+2)

{ 1
ϵ3

[8
9
(
n2+n+2

)
CANf+CACF

(4
3
(
n2+n+2

)
S1(n)

−
(
n2+n+2

)(
3n2+3n+2

)

3n(n+1)

)
+C2

A

(11
6
(
n2+n+2

)
S1(n)

−
(
n2+n+2

)(
100n4+203n3−52n2−173n+30

)

18(n−1)n(n+1)(n+2)

)]

+ 1
ϵ2

[
CACF

(8
3
(
n2+n+2

)
S1,1(n)−

8
3
(
n2+n+2

)
S2(n)

− 4
(
n5+8n4+20n3+35n2+36n+12

)
S1(n)

3n(n+1)(n+2)

+13n7+71n6+176n5+309n4+333n3+182n2+76n+24
3n2(n+1)2(n+2)

)

+C2
A

(
− 11

6
(
n2+n+2

)
S1,1(n)−

10
3
(
n2+n+2

)
S−2(n)−2

(
n2+n+2

)
S2(n)

+(1−ξ)
( 1
12
(
n2+n+2

)
S1(n)−

(
n2+n+2

)(
2n3+n2−1

)

12(n−1)n(n+1)
)

−
(
53n6+219n5+33n4+77n3+310n2−284n−120

)
S1(n)

18(n−1)n(n+1)(n+2)

+ 1
54(n−1)2n2(n+1)2(n+2)2

(
577n10+3302n9+5318n8+1049n7

−4127n6−3430n5−3270n4+291n3+4742n2−780n−1080
))

+CANf

(
4
9
(
n2+n+2

)
S1(n)−

4
(
11n5+50n4+80n3+91n2+68n+12

)

27n(n+1)(n+2)

)]
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+1
ϵ

[
C2
A

( 1
162(n−1)3n3(n+1)3(n+2)3

(
353n14−943n13−5075n12+1993n11

−6788n10−54586n9−38153n8+57445n7+61625n6−49753n5−42370n4

+54772n3+8808n2−25344n−8640
)
+2

(
9n3+19n2+24n+12

)
S−3(n)

3(n+1)

+2
(
6n6+47n5+105n4+129n3+137n2+96n+20

)
S−2(n)

3n(n+1)2(n+2)

− 1
54(n−1)n2(n+1)2(n+2)2

(
28n9−144n8−172n7+1210n6

−379n5−6950n4−6539n3−290n2+1068n+72
)
S1(n)

+
(
5n5+37n4+18n3−14n2+40n+8

)
S2(n)

3n(n+1)(n+2) +
(
11n3+20n2+35n+30

)
S3(n)

3(n+1)

− 8
3n(n+1)S−2,1(n)+

4
(
n3+n2+2n+4

)
S1,−2(n)

3(n+1)

+
(
53n6+219n5+321n4+221n3−122n2−284n−120

)
S1,1(n)

18(n−1)n(n+1)(n+2)

+(1−ξ)
(

− 3n9−7n7−34n6−50n5+3n4+26n3+31n2−8n−12
12(n−1)2n2(n+1)2(n+2)

+
(
n5+5n3+6n2−12n−8

)
S1(n)

12n(n+1)(n+2) + 1
12
(
−n2−n−2

)
S1,1(n)

)

+
(
11n3+21n2+32n+24

)
S1,2(n)

3(n+1) +n
(
n2+3n+4

)
S2,1(n)

3(n+1)

− 13
6
(
n2+n+2

)
S1,1,1(n)−6

(
n2+n+2

)
ζ3

)

+NfCA

(
− 4

(
13n8+13n7+45n6+223n5−51n4−833n3−718n2−60n+72

)

81n2(n+1)2(n+2)2

+8(n−2)
(
n4+4n2+13n+6

)
S1(n)

27n(n+1)(n+2) − 4
9
(
n2+n+2

)
S1,1(n)

)

+CFCA

(
− 2
3n3(n+1)3(n+2)2

(
11n10+101n9+384n8+875n7+1523n6

+2068n5+1886n4+1072n3+448n2+160n+32
)

− 2
(
n8−47n6−202n5−466n4−726n3−708n2−360n−80

)
S1(n)

3n2(n+1)2(n+2)2

+8
(
n5+6n4+11n3+20n2+24n+8

)
S2(n)

3n(n+1)(n+2) − 4
3
(
n2+n+2

)
S3(n)

− 4
(
2n5+13n4+22n3+31n2+36n+12

)
S1,1(n)

3n(n+1)(n+2) − 8
3
(
n2+n+2

)
S1,2(n)

+ 4
3
(
n2+n+2

)
S1,1,1(n)+8

(
n2+n+2

)
ζ3

)]}
+O(a4s) . (C.1)
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ZgA starts at a1s and we gave the first order Z(1)
gA and the second order Z(2)

gA in (4.4) and (5.27),
respectively. The third order contribution to ZgA is obtained as

Z(3)
gA = 1

ϵ3
1

n(n − 1)

[
C3
A

(
− 391

48 S1,1(n) +
(
2636n4 + 5407n3 − 698n2 − 4051n+ 1242

)
S1(n)

144(n − 1)n(n+ 1)(n+ 2)

− 1
144(n − 1)2n2(n+ 1)2(n+ 2)2

(
2736n8 + 11192n7 + 9977n6

− 11572n5 − 14586n4 + 8032n3 + 6901n2 − 3020n+ 1140
)

+ (1 − ξ)
(
S1(n)
96 − (n+ 1)(2n − 3)

96(n − 1)n

)
+ 1

24S−2(n) +
191S2(n)

48

)

+NfC
2
A

(2
(
26n4 + 53n3 − 6n2 − 39n+ 14

)

9(n − 1)n(n+ 1)(n+ 2) − 26S1(n)
9

)

− 2
(
n2 + n+ 2

)2
CACFNf

3(n − 1)n2(n+ 1)2(n+ 2) − 4
9CAN

2
f

]

+ 1
ϵ2

1
n(n − 1)

[
C3
A

(
(1 − ξ)2

( 9n3 + 6n2 + n − 4
192(n − 1)n(n+ 1) − S1(n)

32
)

+ (1 − ξ)
(

− 356n7 + 863n6 + 45n5 − 912n4 − 130n3 + 619n2 + 401n − 90
288(n − 1)2n2(n+ 1)2(n+ 2)

− 1
12S−2(n) +

(
343n4 + 764n3 + 59n2 − 374n − 72

)
S1(n)

288(n − 1)n(n+ 1)(n+ 2) + 5S2(n)
16 − 55

96S1,1(n)
)

+ 1
432(n − 1)3n3(n+ 1)3(n+ 2)3

(
21598n12 + 130274n11 + 217650n10 − 97011n9

− 545042n8 − 168389n7 + 540328n6 + 320207n5 − 220384n4 − 157997n3 + 51298n2

− 9804n − 20520
)
+ 1

4(−n − 20)S−3(n) −
(
63n4 + 133n3 + 102n2 + 128

)
S−2(n)

12(n − 1)n(n+ 1)(n+ 2)

− 1
216(n − 1)2n2(n+ 1)2(n+ 2)2

(
9787n8 + 41377n7 + 30596n6 − 55169n5

− 61462n4 + 36244n3 + 57835n2 − 852n − 6516
)
S1(n)

−
(
385n4 + 872n3 + 158n2 − 527n+ 138

)
S2(n)

18(n − 1)n(n+ 1)(n+ 2) + 1
48(8n − 477)S3(n)

+ 1
6(5n+ 14)S−2,1(n) +

47
6 S1,−2(n)

+
(
2818n4 + 7001n3 + 932n2 − 4901n − 1170

)
S1,1(n)

144(n − 1)n(n+ 1)(n+ 2)

+ 187
12 S1,2(n) +

1
24(2n+ 377)S2,1(n) − 137

16 S1,1,1(n)
)
+
(32
27 − 4S1(n)

9

)
N2

fCA

+
(

− 1
108(n − 1)2n2(n+ 1)2(n+ 2)2

(
1791n8 + 7217n7 + 4685n6 − 11071n5

− 11004n4 + 6286n3 + 6040n2 − 1880n − 768
)

+ 2
3S−2(n) + (1 − ξ)

( 2n3 + n2 − 1
18(n − 1)n(n+ 1) − S1(n)

18
)
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+
(
1205n4 + 2575n3 − 668n2 − 2344n − 120

)
S1(n)

108(n − 1)n(n+ 1)(n+ 2) + 61S2(n)
18 − 71

18S1,1(n)
)
C2
ANf

− 2
(
n2 + n+ 2

) (
2n7 + 10n6 + 13n5 − 12n4 − 30n3 − 15n2 − 20n − 12

)
CACFNf

3(n − 1)n3(n+ 1)3(n+ 2)2
]

+ 1
ϵ

1
n(n − 1)

[
C3
A

({
− 30n6 − n5 − 27n4 − 31n3 + 9n2 + 20n − 8

192(n − 1)2n2(n+ 1)2

+
(
15n3 + 6n2 − 7n − 6

)
S1(n)

192(n − 1)n(n+ 1) − S2(n)
192 − 5

192S1,1(n)
}
(1 − ξ)2

+ (1 − ξ)
{ 1
864(n − 2)(n − 1)3n3(n+ 1)3(n+ 2)2

(
1589n12 + 4922n11 − 6625n10

− 26755n9 − 7874n8 + 40335n7 + 31081n6 − 35477n5 − 16025n4 + 15763n3

+ 14n2 − 8508n − 1512
)

−
(
39n2 + 39n+ 16

)
S−3(n)

96n(n+ 1)

−
(
35n6 − 11n5 − 85n4 − 61n3 − 14n2 + 8n+ 32

)
S−2(n)

48(n − 2)(n − 1)n2(n+ 1)2

− 1
864(n − 1)2n3(n+ 1)2(n+ 2)2

(
1180n9 + 6049n8 + 8192n7 + 1843n6 − 730n5

− 2948n4 − 5456n3 + 4866n2 + 4392n − 2808
)
S1(n)

−
(
281n4 + 345n3 − 164n2 + 306n − 234

)
S2(n)

288(n − 1)n2(n+ 1) −
(
17n2 + 17n − 8

)
S3(n)

48n(n+ 1)

+ 1
12S−2,1(n) +

(
21n2 + 21n+ 16

)
S1,−2(n)

48n(n+ 1)

+
(
60n4 + 201n3 + 135n2 − 82n − 152

)
S1,1(n)

96(n − 1)n(n+ 1)(n+ 2)

+
(
35n3 + 71n2 + 23n+ 39

)
S1,2(n)

48n(n+ 1)2 +
(
67n3 + 132n2 + 91n − 78

)
S2,1(n)

96n(n+ 1)2

− 35
96S1,1,1(n) +

(
n3 + 4n2 − 31n+ 70

)
ζ3

16n(n+ 1)2
}

− 1
1296(n − 2)(n − 1)4n4(n+ 1)4(n+ 2)4

(
57083n17 + 341102n16 + 177962n15

− 2219135n14 − 3448638n13 + 3989078n12 + 11054452n11 − 1139746n10

− 17966031n9 − 7357576n8 + 14022462n7 + 10545037n6

− 4729434n5 − 5907736n4 + 1571152n3 + 1706640n2 − 477216n − 359424
)

+
(
12n6 + 869n5 + 3303n4 + 6881n3 + 5709n2 + 1154n − 504

)
S−3(n)

144(n − 1)n(n+ 1)2(n+ 2)

+ 1
36(n − 2)(n − 1)2n2(n+ 1)3(n+ 2)2

(
629n10 + 1839n9 − 2772n8 − 9854n7

− 1227n6 + 12939n5 + 8026n4 − 7548n3 − 7536n2 + 2336n+ 1440
)
S−2(n)

+ 1
648(n − 1)3n3(n+ 1)3(n+ 2)3

(
17788n12 + 127947n11 + 281430n10 + 30563n9
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− 617061n8 − 517548n7 + 589151n6 + 1063392n5 + 160500n4 − 539150n3

− 192804n2 + 82008n+ 44496
)
S1(n) +

1
16(6n+ 197)S−4(n)

+ 1
432(n − 1)2n2(n+ 1)2(n+ 2)2

(
19838n8 + 80657n7 + 42469n6 − 130108n5

− 109184n4 + 98303n3 + 133133n2 − 1440n − 11196
)
S2(n)

+
(
197n5 + 1036n4 + 2214n3 + 1526n2 + 177n+ 154

)
S3(n)

48(n − 1)n(n+ 1)2(n+ 2) + 1
24(257 − 6n)S4(n)

+ 1
6(−8n − 41)S−3,1(n) +

(
3n2 − 10n − 17

)
S−2,−2(n)

6(n+ 1)

+
(
3n5 − 52n4 − 185n3 − 296n2 − 34n+ 276

)
S−2,1(n)

18(n − 1)n(n+ 1)(n+ 2) + 1
6(n − 22)S−2,2(n)

−
(
48n2 + 937n+ 913

)
S1,−3(n)

48(n+ 1)

−
(
767n5 + 2949n4 + 2771n3 − 933n2 − 3274n − 2136

)
S1,−2(n)

72(n − 1)n(n+ 1)2(n+ 2)

− 1
432(n − 1)2n2(n+ 1)2(n+ 2)2

(
8524n8 + 38614n7 + 37691n6 − 28388n5

− 48148n4 + 12310n3 + 47149n2 + 12780n+ 468
)
S1,1(n)

−
(
1085n5 + 4209n4 + 3803n3 − 1713n2 − 3340n − 1236

)
S1,2(n)

72(n − 1)n(n+ 1)2(n+ 2)

+
(
12n2 − 325n − 321

)
S1,3(n)

24(n+ 1) +
(
3n2 − 123n − 130

)
S2,−2(n)

12(n+ 1)

+
(
12n6 − 2213n5 − 8175n4 − 7625n3 + 1995n2 + 6238n+ 1992

)
S2,1(n)

144(n − 1)n(n+ 1)2(n+ 2)

+
(
n2 − 119n − 122

)
S2,2(n)

6(n+ 1) −
(
5n2 + 347n+ 346

)
S3,1(n)

24(n+ 1) + 1
3(5 − n)S−2,1,1(n)

+ 2
3(3n+ 10)S1,−2,1(n) +

(135n+ 143)S1,1,−2(n)
24(n+ 1)

+
(
989n4 + 2725n3 + 373n2 − 2161n − 1278

)
S1,1,1(n)

144(n − 1)n(n+ 1)(n+ 2) + (173n+ 165)S1,1,2(n)
24(n+ 1)

+ (389n+ 381)S1,2,1(n)
48(n+ 1) −

(
4n2 − 389n − 417

)
S2,1,1(n)

48(n+ 1) − 7
3S1,1,1,1(n)

+
(19n5 + 12n4 − 27n3 + 18n2 − 30n − 4

4(n − 1)n(n+ 1)2(n+ 2) − (n+ 3)S1(n)
n+ 1

)
ζ3

)

+
(32S1(n)

27 − 4
9S1,1(n) − 16

27

)
N2

fCA

+ C2
ANf

( 1
648(n − 1)3n3(n+ 1)3(n+ 2)3

(
8065n12 + 48004n11 + 65499n10

− 81506n9 − 224797n8 − 10924n7 + 311121n6 + 187594n5 − 180704n4 − 169280n3
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+ 19376n2 + 38496n+ 4608
)

− 8
9S−3(n)

−
(
29n4 + 58n3 − 21n2 − 50n − 64

)
S−2(n)

9(n − 1)n(n+ 1)(n+ 2)

− 1
324(n − 1)2n2(n+ 1)2(n+ 2)2

(
3701n8 + 16697n7 + 13876n6 − 23791n5

− 34295n4 + 3380n3 + 21920n2 + 6432n − 144
)
S1(n)

−
(
236n3 + 27n2 − 278n − 9

)
S2(n)

27(n − 1)n(n+ 1) − S3(n)
2 + 8

9S−2,1(n) +
16
9 S1,−2(n)

+ (1 − ξ)
{

− 14n6 + 16n5 + n4 − 23n3 − 6n2 + 7n+ 3
54(n − 1)2n2(n+ 1)2

+
(
19n3 + 6n2 − 7n − 6

)
S1(n)

54(n − 1)n(n+ 1)

+ S2(n)
9 − 1

6S1,1(n)
}
+
(
547n4 + 1445n3 + 116n2 − 1172n − 576

)
S1,1(n)

108(n − 1)n(n+ 1)(n+ 2)

+
(
28n2 + 59n+ 25

)
S1,2(n)

9(n+ 1)2 +
(
29n2 + 55n+ 32

)
S2,1(n)

9(n+ 1)2 − 25
18S1,1,1(n)

+ 2
(
2n2 + 5n+ 1

)
ζ3

(n+ 1)2
)
+ CFCANf

( 1
9(n − 1)n4(n+ 1)4(n+ 2)3

(
67n12 + 603n11

+ 2168n10 + 3846n9 + 3021n8 − 387n7 − 3292n6 − 4758n5 − 4748n4 − 3384n3

− 2544n2 − 1536n − 384
)

− 32S−2(n)
3(n − 1)n(n+ 1)(n+ 2) − 4S1(n)

3 − 16ζ3
3

)]
. (C.2)

In view of applications at fixed n, we also summarize ZqA and ZgA for n = 2, . . . , 10,

ZqA

∣∣∣
n=2

CA
= a2sNf

( 1
6ϵ2 − 2

9ϵ

)
+ a3sNf

{ 1
ϵ3

(4Nf

27 + 4CF

27 − 7CA

12

)

+ 1
ϵ2

[
− 5Nf

27 + 7CF

27 +
(61
72 − 5(1 − ξ)

216

)
CA

]

+ 1
ϵ

[
− 67Nf

486 +
(4ζ3

3 − 895
486

)
CF

+ CA

(7(1 − ξ)
432 − ζ3 +

329
432

)]}
, (C.3)

ZqA

∣∣∣
n=4

CA
= a2sNf

( 11
720ϵ2 − 817

43200ϵ

)
+ a3sNf

{ 1
ϵ3

[11Nf

810 + 1727CF

64800 − 3773CA

129600

]

+ 1
ϵ2

[
− 601Nf

48600 + 209633CF

3888000 +
(

−11(1 − ξ)
28800 − 14989

2592000

)
CA

]

+ 1
ϵ

[
− 58907Nf

2916000 +
(11ζ3

90 − 7092241
29160000

)
CF

+ CA

(
−6179(1 − ξ)

1728000 − 11ζ3
120 + 4233367

29160000

)]}
, (C.4)
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ZqA

∣∣∣
n=6

CA
= a2sNf

{ 11
2520ϵ2 − 221

42336ϵ

}
+ a3sNf

{ 1
ϵ3

[11Nf

2835 + 7799CF

793800 − 2123CA

423360

]

+ 1
ϵ2

[
− 3263Nf

1190700 + 1585219CF

66679200 +
(209(1 − ξ)

2540160 − 2683601
177811200

)
CA

]

+ 1
ϵ

[
− 3611983Nf

500094000 +
(11ζ3
315 − 11494299613

140026320000

)
CF

+ CA

(
−1533541(1 − ξ)

1066867200 − 11ζ3
420 + 699651481

14002632000

)]}
, (C.5)

ZqA

∣∣∣
n=8

CA
= a2sNf

( 37
20160ϵ2 − 15529

7257600ϵ

)
+ a3sNf

{

1
ϵ3

[ 37Nf

22680 + 365671CF

76204800 − 35039CA

30481920

]

+ 1
ϵ2

[
− 10393Nf

11430720 + 119144021CF

9144576000 +
(3737(1 − ξ)

43545600 − 1352619283
128024064000

)
CA

]

+ 1
ϵ

[
− 506429639Nf

144027072000 +
( 37ζ3
2520 − 574815689173

15122842560000

)
CF

+ CA

(
−26006693(1 − ξ)

36578304000 − 37ζ3
3360 + 2769495158803

120982740480000

)]}
, (C.6)

ZqA

∣∣∣
n=10

CA
= a2sNf

( 7
7425ϵ2 − 2641

2450250ϵ

)
+ a3sNf

{

1
ϵ3

[ 56Nf

66825 + 2411CF

882090 − 37199CA

176418000

]

+ 1
ϵ2

[
− 24421Nf

66156750 + 820067201CF

101881395000 +
(2491(1 − ξ)

39204000 − 35096312513
4890306960000

)
CA

]

+ 1
ϵ

[
− 3690429931Nf

1833865110000 +
( 56ζ3
7425 − 352770630827569

16944913616400000

)
CF

+ CA

(
−9807967(1 − ξ)

24149664000 − 14ζ3
2475 + 23337173703212867

1897830325036800000

)]}
, (C.7)

ZgA

∣∣∣
n=2

CA
= − as

2ϵ + a2s

{ 1
ϵ2

(19CA

24 − Nf

3

)
+ 1
ϵ

[(5(1 − ξ)
48 − 35

48

)
CA + 7Nf

18

]}

+ a3s

{ 1
ϵ3

[71CANf

54 − 779C2
A

432 − 4CFNf

27 −
2N2

f

9

]

+ 1
ϵ2

[(5(1 − ξ)
108 − 73

36

)
CANf

+
( 5
288(1 − ξ)2 − 35(1 − ξ)

216 + 2807
864

)
C2
A − 16CFNf

27 +
7N2

f

27

]

+ 1
ϵ

[
CANf

(
− 7

216(1 − ξ) + 19ζ3
9 − 194

243

)
+ C2

A

(
− 65(1 − ξ)2

1728 − 16759
7776

− 11ζ3
72 + (1 − ξ)

(5ζ3
72 + 377

1728
))

+
(3059

972 − 8ζ3
3

)
CFNf +

11N2
f

54

]}
, (C.8)
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ZgA

∣∣∣
n=4

CA
= − as

12ϵ + a2s

{ 1
ϵ2

[
− 97CA

1440 − Nf

18

]
+ 1
ϵ

[(1 − ξ

320 − 8641
86400

)
CA + 7Nf

216

]}

+ a3s

{ 1
ϵ3

[
CANf

324 + 9437C2
A

86400 − 121CFNf

32400 −
N2

f

27

]

+ 1
ϵ2

[(1 − ξ

720 − 277
129600

)
CANf

+
(

−13(1 − ξ)2
23040 + 853(1 − ξ)

86400 − 1520341
15552000

)

C2
A − 224719CFNf

1944000 +
7N2

f

324

]

+ 1
ϵ

[
CANf

(457(1 − ξ)
43200 + 53ζ3

150 − 5748673
23328000

)
+ C2

A

(
− 2357(1 − ξ)2

460800

+ (1 − ξ)
( 37ζ3
9600 + 37199

648000
)

− ζ3
2400 − 166178237

466560000

)

+
(11814181
29160000 − 4ζ3

9

)
CFNf +

193N2
f

3888

]}
, (C.9)

ZgA

∣∣∣
n=6

CA
= − as

30ϵ + a2s

{ 1
ϵ2

(
−653CA

10080 − Nf

45

)

+ 1
ϵ

[(
−19(1 − ξ)

20160 − 185093
4233600

)
CA + 13Nf

2700

]}

+ a3s

{ 1
ϵ3

[
− 22CANf

567 +
(7(1 − ξ)

57600 + 600331
12700800

)
C2
A − 121CFNf

198450 −
2N2

f

135

]

+ 1
ϵ2

[( 11761
381024 − 19(1 − ξ)

45360

)
CANf − 253187CFNf

5556600 +
13N2

f

4050

+
(

−37(1 − ξ)2
48384 + 585157(1 − ξ)

169344000 − 275019229
1778112000

)

C2
A

]

+ 1
ϵ

[
CANf

(88439(1 − ξ)
19051200 + 103ζ3

735 − 203978813
2000376000

)
+ C2

A

(
− 195683(1 − ξ)2

101606400

+ (1 − ξ)
( 61ζ3
35280 + 4629063223

213373440000
)
+ 1219ζ3

176400 − 385478104231
2240421120000

)

+
( 4970689127
35006580000 − 8ζ3

45

)
CFNf +

5231N2
f

243000

]}
, (C.10)

ZgA

∣∣∣
n=8

CA
= − as

56ϵ + a2s

{ 1
ϵ2

(
−2749CA

56448 − Nf

84

)

+ 1
ϵ

[(
−101(1 − ξ)

80640 − 18855769
711244800

)
CA − 43Nf

70560

]}
+ a3s

{ 1
ϵ3

[

− 11281CANf

317520 +
(11(1 − ξ)

94080 + 26350343
2133734400

)
C2
A − 1369CFNf

7620480 −
N2

f

126

]

+ 1
ϵ2

[( 68655941
3200601600 − 101(1 − ξ)

181440

)
CANf + C2

A

(
− 1151(1 − ξ)2

1935360
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+ 112333(1 − ξ)
213373440 − 25862266399

199148544000

)
− 22126259CFNf

914457600 −
43N2

f

105840

]

+ 1
ϵ

[
CANf

(1022971(1 − ξ)
457228800 + 169ζ3

2268 − 48152267873
896168448000

)

+ C2
A

(
− 4988429(1 − ξ)2

4877107200 + (1 − ξ)
( 295ζ3
290304 + 333783455249

32262064128000
)

+ 14029ζ3
2540160 − 730008394755263

6775033466880000

)

+
( 835100678591
12098274048000 − 2ζ3

21

)
CFNf +

1028201N2
f

88905600

]}
, (C.11)

ZgA

∣∣∣
n=10

CA
= − 1

90
1
ϵ
as + a2s

{ 1
ϵ2

(
− Nf

135 − 369361CA

9979200

)

+ 1
ϵ

[(
−2491(1 − ξ)

2217600 − 1030030931
55324684800

)
CA − 661Nf

340200

]}

+ a3s

{ 1
ϵ3

[
− 784CFNf

11026125 − 327427CANf

11226600 − 2
405N

2
f

+
(143(1 − ξ)

1451520 − 2899927799
829870272000

)
C2
A

]
+ 1
ϵ2

[
− 27254752CFNf

1819310625

+
( 2071551877
155600676000 − 2491(1 − ξ)

4989600

)
CANf −

661N2
f

510300

+
(

−12121(1 − ξ)2
26611200 − 100407731(1 − ξ)

147532492800 − 15087045196453
142000024320000

)

C2
A

]

+ 1
ϵ

[( 167914071891373
4236228404100000 − 8ζ3

135

)
CFNf

+ CANf

(158792849(1 − ξ)
138311712000 + 251ζ3

5445 − 560285942701061
17253002954880000

)

+ C2
A

(
− 79286117(1 − ξ)2

122943744000 + (1 − ξ)
( 29ζ3
43560 + 67751391198259

12268802101248000
)

+ 1333ζ3
338800 − 24201974825379990307

318835494606182400000

)
+

8972717N2
f

1285956000

]}
. (C.12)

D Standard QCD renormalization constants

In our computations, we need the QCD beta function to two-loop order [86, 87],

β0 =
11CA

3 − 2Nf

3 , (D.1)

β1 = −10CANf

3 + 34C2
A

3 − 2CFNf , (D.2)

where βi is defined with the following convention,

das
d lnµ = β(as) = −2as

∞∑

i=0
ai+1
s βi. (D.3)
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The computations of off-shell OMEs requires also wave function renormalizations.
The quark and gluon field renormalization constants in the MS scheme are needed up to
three-loop order [88, 89], and the ghost field renormalization constant is required up to
two-loop order. We list all these ingredients in our convention (2.16):

Z(0)
q = 1 , (D.4)

Z(1)
q = − CF

ξ
ϵ
, (D.5)

Z(2)
q = CF

ϵ

[(
−ξ2

8 − ξ − 25
8

)
CA + 3CF

4 + Nf

2

]
+ CF

ϵ2

[(
ξ2

4 + 3ξ
4

)
CA + ξ2CF

2

]
, (D.6)

Z(3)
q = CF

ϵ3

[
CA

((
− ξ3

4 − 3ξ2

4

)
CF + ξNf

6

)
+
(

− ξ3

12 − 3ξ2

8 − 31ξ
24

)
C2
A − 1

6ξ
3C2

F

]

+ CF

ϵ2

[
CA

((
ξ3

8 + ξ2 + 25ξ
8 − 11

6

)
CF +

(
− ξ

2 − 47
18

)
Nf

)

+
(

ξ3

8 + 3ξ2

4 + 73ξ
24 + 275

36

)
C2
A +

(1
3 − ξ

2

)
CFNf − 3ξC2

F

4 + 2N2
f

9

]

+ CF

ϵ

[
CA

((143
12 − 4ζ3

)
CF +

(17ξ
24 + 287

54

)
Nf

)
− CFNf

2 − C2
F

2 − 5N2
f

27

+ C2
A

{
− 5ξ3

48 + ξ2
(
−ζ3

8 − 13
32

)
+ ξ

(
−ζ3

4 − 263
96

)
+ 23ζ3

8 − 9155
432

}]
, (D.7)

Z(0)
g = 1 , (D.8)

Z(1)
g = 1

ϵ

[ (13
6 − ξ

2

)
CA − 2Nf

3

]
, (D.9)

Z(2)
g = 1

ϵ

[
− 5CANf

4 +
(

−ξ2

8 − 11ξ
16 + 59

16

)
C2
A − CFNf

]

+ 1
ϵ2

[ (
ξ
3 + 1

2

)
CANf +

(
ξ2

4 − 17ξ
24 − 13

8

)
C2
A

]
, (D.10)

Z(3)
g = 1

ϵ2

[
CF

{(
ξ
2 + 31

18

)
CANf − 2N2

f

9

}
+
(

ξ2

12 + 19ξ
24 + 481

108

)
C2
ANf − 25

54CAN
2
f

+
(
7ξ3

48 + 13ξ2

24 − 143ξ
96 − 7957

864

)
C3
A

]
+ 1

ϵ

[
CF

{(
−4ζ3 − 5

108

)
CANf + 11N2

f

27

}

+ C2
ANf

(
ξ
3 + 3ζ3 − 911

108

)
+ 19

27CAN
2
f + C3

A

{
− 7ξ3

96 + ξ2
(
− ζ3

16 − 11
32

)

+ ξ
(
−ζ3

4 − 167
96

)
− 3ζ3

16 + 9965
864

}
+ 1

3C
2
FNf

]
+ 1

ϵ3

[(
−ξ2

6 − 5ξ
12 − 11

9

)
C2
ANf

+ 1
9CAN

2
f +

(
−ξ3

8 + ξ2

6 + 47ξ
48 + 403

144

)
C3
A

]
, (D.11)

Z(0)
c = 1 , (D.12)

Z(1)
c = 1

ϵ

(3
4 − ξ

4

)
CA , (D.13)

Z(2)
c = 1

ϵ2

[
CANf

4 +
(
3ξ2

32 − 35
32

)
C2
A

]
+ 1

ϵ

[ (
ξ
32 + 95

96

)
C2
A − 5CANf

24

]
. (D.14)
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Object In supplementary
material

Fns Fns[q, q]
Fqq Fs[q, q]
Fqg Fs[q, g]
Fqc Fs[q, c]
Fgq Fs[g, q]
Fgg Fs[g, g]
Fgc Fs[g, c]

FABC, q Fs[ABC, q]
FABC, g Fs[ABC, g]
FABC, c Fs[ABC, c]

F[ZO]GV, (2)
g , q

Fs[zogGV2, q]
F[ZO]GV, (2)

g , g
Fs[zogGV2, g]

F[ZO]GV, (2)
g , c

Fs[zogGV2, c]

Object In supplementary
material

z1 z1
as as
abs asb
ξ xi
ξb xib
ϵ eps
CA ca
CF cf
Nf nf

16dabcdabc d33c
TF tf

Harm. sum S...(n) S[..., n]
G. H. sum S...(..;n) S[..., {..}, n]

Riemann ζn zeta[n]

Table 2. Objects appearing in this paper and notation used in the supplementary material.

E Instructions for supplementary material

The Mathematica files ‘NSingletOMEs.m’ and ‘SingletOMEs.m’ contain all results for
two-parton OMEs in the non-singlet and singlet case, respectively. All OMEs are normalized
according to (2.39), and expanded to order ajsϵ3−j (j ≤ 3), where the highest order is relevant
only at the four-loop level. A Mathematica notebook ‘ExtractSpFromOMEs.nb’ is used
to combine all OMEs and to derive the physical anomalous dimensions. In the same
notebook, we also compare our results with the literature results, which we assembled in
‘RefNSsp.m’ and ‘RefSingletsp.m’, finding perfect agreement for both, the non-singlet
and the singlet physical anomalous dimensions. The file ‘FRzogGV2.m’ contains the
result for the last line of equation (5.41). We also provide the results for the renormalization
constants ZqA and ZgA shown in appendix C in the files ‘zqA.m’ and ‘zgA.m’, respectively.

The generic notation for two-parton OME with an insertion of a general twist-two
operator is defined in (2.30). More explicitly, for OMEs with an operator insertion of Oq or
Og, we follow this notation closely, for example,

Aqg = ⟨g(p)|Oq|g(p)⟩ ,
Agc = ⟨c(p)|Og|c(p)⟩ , (E.1)

while for OMEs with the insertion of GV counterterms, we use slightly different notations,
for example,

AABC, g = ⟨g(p)|OABC |g(p)⟩ ,
A[ZO]GV, (2)

g , c
= ⟨c(p)| [ZO]GV, (2)

g |c(p)⟩ . (E.2)
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Similarly, in (2.39) we use FABC, q, F[ZO]GV, (2)
g , q

, and so on to represent form factors with
the insertion of a GV counterterm. The above OMEs apply to the singlet case only. In the
non-singlet case, we need a single OME,

Fns =
1

2Nc

Tr
(
/p ⟨q(p)|Oq,k|q(p)⟩

)

(∆ · p)n . (E.3)

In table 2, we provide a list of the objects that appear in this paper along with the
corresponding notation used in the supplementary material.
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