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1 Introduction

The parton distribution functions are universal ingredients to the theory prediction of any
collider observable that involves hadrons in the initial state. Their scale evolution [1–3] is
governed by splitting functions, which can be determined order-by-order in perturbative
QCD. Complete analytic expressions for the splitting functions are available up to three
loops in QCD [1, 4–10].

To enable consistent predictions for collider observables, a matching level of precision
is required among the hard subprocess cross sections and the parton evolution: NLO QCD
predictions involve parton distributions evolved according to the two-loop splitting functions
and NNLO QCD implies three-loop evolution. Following pioneering results on the Higgs and
Drell-Yan cross sections [11–13], an increasing number of N3LO calculations for benchmark
collider processes is now being accomplished (see e.g. [14] for a recent review). These highlight
the urgent need for four-loop parton evolution. Partial results at four loops were obtained for
parts of the non-singlet splitting functions [15] and for a finite number of Mellin moments of
the singlet splitting functions [16–18]. This information on the four-loop splitting functions
could already be used to approximate N3LO-accurate parton distributions [19, 20]. The
computation of the full set of the four-loop splitting functions remains an outstanding task,
required to enable fully consistent hadron collider predictions at N3LO accuracy.

In this paper, we employ the framework for computing the splitting functions from the
divergences of massless off-shell operator matrix elements (OMEs). This technique is based
on the operator product expansion (OPE) and has been applied successfully in splitting
function calculations at lower loop orders [4–6, 21–24]. Compared to the extraction of splitting
functions from physical subprocess coefficient functions [9, 10], the OPE-based approach
is particularly attractive, since it typically leads to simpler types of Feynman amplitudes
and Feynman integrals. However, the off-shell nature of the operator matrix elements gives
rise to a complicated mixing between the physical operators and unphysical gauge-variant
operators under renormalization [25–28].

– 1 –



J
H
E
P
0
1
(
2
0
2
4
)
0
2
9

In this paper, we describe the calculation of all contributions with two closed fermion
loops to the pure-singlet splitting functions at four loops, using the OPE technique. To
determine the renormalization counterterms resulting from these gauge-variant operators we
follow the novel procedure proposed by some of us in [24], which is summarized in section 2.
The computation of OMEs to four-loop order is described in section 3. This workflow is then
applied in section 4 to obtain the results for the complete four-loop N2

f contributions to the
pure-singlet splitting functions and to confirm previous results for the N2

f contributions to
the non-singlet splitting functions. We conclude with an outlook in section 5.

2 Renormalization of the twist-two operators

To study the collinear behavior of QCD at leading power, we consider the twist-two operators
from the operator product expansion. With regards to the flavor group, the twist-two
operators are decomposed into non-singlet and singlet parts. The non-singlet operators
of spin n are given by

Oµ1···µn
q,k = in−1

2 S
[
ψ̄i1γ

µ1Dµ2
i1i2D

µ3
i2i3 · · ·D

µn
in−1in

λk
2 ψin − trace terms

]
, k = 3, · · ·N2

f − 1 , (2.1)

while the two singlet quark and gluon operators are

Oµ1···µn
q = in−1

2 S
[
ψ̄i1γ

µ1Dµ2
i1i2D

µ3
i2i3 · · ·D

µn
in−1inψin − trace terms

]
,

Oµ1···µn
g = − in−2

2 S
[
Gµ1

a1,µD
µ2
a1a2 · · ·D

µn−1
an−2an−1G

µnµ
an−1an − trace terms

]
, (2.2)

where S denotes symmetrization of Lorentz indices µ1 · · ·µn and λk/2 are diagonal generators
of the flavor group SU(Nf ). In the above equations, ψ and Ga

µν represent the quark field and
gluon field strength tensor, respectively, and Dµ = ∂µ − igsTaAa

µ is the covariant derivative
in either the fundamental or the adjoint representation of a general gauge group. In this
paper, we consider only the operators associated with zero-momentum transfer.

In practice, it is convenient to extract the information of interest by contracting the
above operators with a fully symmetric external source Jµ1···µn = ∆µ1∆µ2 · · ·∆µn , where ∆
is light-like with ∆2 = 0. In this way, we define the following spin-n operators,

Oq,k = Oµ1···µn
q,k Jµ1···µn ,

Oq = Oµ1···µn
q Jµ1···µn ,

Og = Oµ1···µn
g Jµ1···µn . (2.3)

As usual, the non-singlet operator is renormalized multiplicatively, i.e.,

OR
q,k = ZnsO

B
q,k , (2.4)

where here and below we introduce the superscript R and B to denote the renormalized
and bare operators, respectively.

However, for singlet operators, in addition to mixing among themselves under renor-
malization, they also mix with other unphysical operators, the so-called gauge-variant (GV)
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operators. This mixing was first pointed out by Gross and Wilczek in the first extraction of
the one-loop singlet anomalous dimensions [4]. Subsequently, the renormalization of twist-
two operators and the theory of the renormalization of a general gauge-invariant operator
have been widely studied in the literature, by the seminal works of Dixon and Taylor [25],
Kluberg-Stern and Zuber [29, 30], Joglekar and Lee [31], Collins and Scalise [27]. These
works allowed explicit derivations of the GV operators at order gs and enabled the extraction
of the correct anomalous dimension to two loops [21], thereby resolving earlier inconsistencies
between different groups [5, 6]. However, it is not clear how to generalize those works to
enable the construction of the GV operators beyond order gs. Recently, starting from a
generalized gauge symmetry and promoting it to a generalized BRST symmetry, Falcioni and
Herzog [28] were able to construct the GV operators for fixed n to higher orders.

A general framework has been formulated to derive the renormalization counterterms
resulting from the GV operators with all-n dependence [24]. For completeness, we describe
this framework briefly below, the details can be found in [24]. The framework generalizes
the naive renormalization

(
Oq

Og

)R,naive

=
(
Zqq Zqg

Zgq Zgg

)(
Oq

Og

)B

(2.5)

to
⎛

⎜⎜⎝

Oq

Og

OABC

⎞

⎟⎟⎠

R

=

⎛

⎜⎜⎝

Zqq Zqg ZqA

Zgq Zgg ZgA

0 0 ZAA

⎞

⎟⎟⎠

⎛

⎜⎜⎝

Oq

Og

OABC

⎞

⎟⎟⎠

B

+

⎛

⎜⎜⎝

[ZO]GV
q

[ZO]GV
g

[ZO]GV
A

⎞

⎟⎟⎠

B

, (2.6)

where we introduce GV operator OABC = OA + OB + OC with OA, OB, OC denoting the
gluon, quark, and ghost GV operators respectively. As discussed in [24], the GV operator
OABC alone is insufficient for renormalizing the physical operators Oq and Og. Additional
terms are necessary, denoted in the above equation as [ZO]GV

q , [ZO]GV
g , and [ZO]GV

A , where
Z and O are written together. This notation is used because it becomes impractical to
disentangle the renormalization constants from their associated operators while retaining the
complete dependence on all powers of n. Thus, the renormalization constants here should
be distinguished from those appearing in the first term on the right-hand side of the above
equation. Notice that these additional terms are GV counterterms for the purpose of canceling
the non-physical contributions only. Thus it is not necessary for the above equation to exhibit
the pattern of multiplicative renormalization. In addition to the physical renormalization
constants Zij with i, j = q, g, we also introduce non-physical renormalization constants
ZqA, ZgA, ZAA associated with GV operators OABC . These non-physical renormalization
constants and GV counterterms only start to contribute from a certain order in as = g2s/(4π)2,
specifically:

ZqA = O(a2s), [ZO]GV
q = O(a3s) ,

ZgA = O(as), [ZO]GV
g = O(a2s) . (2.7)

Our strategy [24] is to explicitly extract the counterterm Feynman rules associated to the
GV operators instead of determining the GV operators themselves. The strategy relies
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on considering multi-leg, off-shell operator matrix elements (OMEs), which are defined as
the Green’s functions or matrix elements with an operator insertion. For example, in the
two-point case we have,

Aij = ⟨j(p)|Oi|j(p)⟩ with p2 < 0 , (2.8)

where Oi represents a twist-two operator and j with momentum p denotes a quark, gluon or
ghost external state. The established framework is valid to all orders in gs and we have worked
out in [24] the Feynman rules for OABC to order g2s as well as the counterterm Feynman
rules for [ZO]GV

g to order a2s gs, where as and gs stemming from Z and O respectively. These
counterterm Feynman rules are enough to extract physical renormalization constants as well
as ZqA, ZgA to three-loop order. As we will see below, the counterterm Feynman rules derived
in [24] are sufficient to determine Zqq to four-loop order.

To extract Zqq, we only need to consider the renormalization of Oq,

OR
q = ZqqO

B
q + ZqgO

B
g + ZqAO

B
ABC + [ZO]GV

q . (2.9)

Inserting the above equations into two-quark external states, we obtain

⟨q|OR
q |q⟩=Zq

[
Zqq ⟨q|OB

q |q⟩

+Zqg ⟨q|OB
g |q⟩+ZqA ⟨q|OB

ABC |q⟩+⟨q| [ZO]GV
q |q⟩

]∣∣∣∣
aBs →Zasas,ξ

B→Zgξ

, (2.10)

where we introduced the quark and gluon wave function renormalization constants Zq, Zg, and
the strong coupling renormalization constant Zas . Explicit expressions for them are collected
in appendix A. Further, ξ is the gauge parameter, where ξ = 1 corresponds to Feynman gauge.

For the determination of Zqq at four loops, we need to compute the OME ⟨q|OB
q |q⟩ to

four-loop order, which will be described in detail in section 3 below. In addition we use
the known results for OMEs ⟨q|OB

g |q⟩ and ⟨q|OB
ABC |q⟩ up to three-loop and two-loop orders

respectively [24]. Lastly, the OME ⟨q| [ZO]GV
q |q⟩ needs to be evaluated to four-loop order. It

was shown in the appendix of [24], that the counterterm Feynman rules for the qq, gg and
qqg vertices resulting from [ZO]GV

q are zero, which leads to the following conclusion:

⟨q| [ZO]GV
q |q⟩ = O(a5s) . (2.11)

The renormalization constants above satisfy the renormalization group equations

dZ

d lnµ = −2γ · Z . (2.12)

In the non-singlet case, the anomalous dimension can be extracted from Zns by solving (2.12)
with the help of the d-dimensional QCD β function

β(as, ϵ) =
das
d lnµ = −2ϵ as − 2as

∞∑

i=0
ai+1
s βi , (2.13)
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where ϵ = (4 − d)/2. Explicitly, we have,

Zns = 1 + as
γ(0)ns
ϵ

+ a2s

(
γ(1)ns
2ϵ + 1

2ϵ2
[

− β0γ
(0)
ns +

(
γ(0)ns

)2
])

+ a3s

(
1
3ϵγ

(2)
ns + 1

6ϵ2
[

− 2β1γ(0)ns − 2β0γ(1)ns + 3γ(0)ns γ
(1)
ns

]

+ 1
6ϵ3

[
2β20γ(0)ns − 3β0

(
γ(0)ns

)2 +
(
γ(0)ns

)3
])

+ a4s
24

(
1
ϵ4

[
− 6β30γ(0)ns − 6β0(γ(0)ns )3 + 11β20(γ(0)ns )2 + (γ(0)ns )4

]

+ 1
ϵ3

[
6β20γ(1)ns − 14β0γ(0)ns γ

(1)
ns + 12β0β1γ(0)ns + 6γ(1)ns (γ(0)ns )2 − 8β1(γ(0)ns )2

]

+ 1
ϵ2

[
−6β0γ(2)ns − 6β1γ(1)ns − 6β2γ(0)ns + 8γ(0)ns γ

(2)
ns + 3(γ(1)ns )2

]
+ 6γ(3)ns

ϵ

)

+O(a5s) . (2.14)

The non-singlet anomalous dimension γns can be decomposed into the following form by
separating the even and odd moments,

γns =
1 + (−1)n

2 γ+ns +
1 − (−1)n

2
(
γ−
ns + γsns

)
, (2.15)

where the detailed definitions of γ±ns and γsns can be found, for example, in [9]. Here and in
the rest of this paper, we always expand the anomalous dimension according to

γ =
∞∑

l=1
alsγ

(l−1) , (2.16)

while for the renormalization constants we follow a different convention,

Z =
∞∑

l=0
alsZ

(l) . (2.17)

In the singlet case, our goal is the determination of the physical anomalous dimensions γij .
They can be read off from the physical renormalization constants Zij ,

Zij = +δij + as
γ(0)ij

ϵ
+ a2s

(
γ(1)ij

2ϵ + 1
2ϵ2

[
− β0γ

(0)
ij +

∑

k=q, g

γ(0)ik γ
(0)
kj

])

+ a3s

(
1
3ϵγ

(2)
ij + 1

6ϵ2
[

− 2β1γ(0)ij − 2β0γ(1)ij + 2
∑

k=q, g

γ(1)ik γ
(0)
kj +

∑

k

γ(0)ik γ
(1)
kj

]

+ 1
6ϵ3

[
2β20γ

(0)
ij − 3β0

∑

k=q, g

γ(0)ik γ
(0)
kj +

∑

k=q, g

∑

l=q, g

γ(0)ik γ
(0)
kl γ

(0)
lj

])

+ a4s
24

(
1
ϵ4

[
11β20

∑

k=q, g

γ(0)ik γ
(0)
kj − 6β0

∑

k=q, g

∑

l=q, g

γ(0)ik γ
(0)
kl γ

(0)
lj
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+
∑

k=q, g

∑

l=q, g

∑

m=q, g

γ(0)ik γ
(0)
kl γ

(0)
lm γ

(0)
mj − 6β30γ

(0)
ij

]
+ 1
ϵ3

[
− 5β0

∑

k=q, g

γ(0)ik γ
(1)
kj

− 9β0
∑

k=q, g

γ(1)ik γ
(0)
kj − 8β1

∑

k=q, g

γ(0)ik γ
(0)
kj +

∑

k=q, g

∑

l=q, g

γ(0)ik γ
(0)
kl γ

(1)
lj

+ 2
∑

k=q, g

∑

l=q, g

γ(0)ik γ
(1)
kl γ

(0)
lj + 3

∑

k=q, g

∑

l=q, g

γ(1)ik γ
(0)
kl γ

(0)
lj + 6β20γ

(1)
ij + 12β1β0γ(0)ij

]

+ 1
ϵ2

[
2
∑

k=q, g

γ(0)ik γ
(2)
kj + 3

∑

k=q, g

γ(1)ik γ
(1)
kj + 6

∑

k

γ(2)ik γ
(0)
kj − 6β2γ(0)ij

− 6β1γ(1)ij − 6β0γ(2)ij

]
+

6γ(3)ij

ϵ

)

+O(a5s) , (2.18)

where i, j = q, g. Notice that if we consider only q instead of g for the dummy indices k, l,m
in the above summations, the above equation has the same form as the equation (2.14).
Furthermore, equation (2.18) remains unaltered even when GV operators (counterterms) are
introduced. This is due to the fact that the renormalization of GV operators (counterterms)
does not involve mixing with the physical operators, as demonstrated in [31]. In other
words, the mixing matrix in (2.6) has a block-triangular form. In this paper, we are mainly
interested in the N2

f contributions to both, the non-singlet anomalous dimension γ(3)ns and
the pure-singlet anomalous dimension γ(3)ps defined by

γ(3)ps = γ(3)qq − γ+,(3)
ns , (2.19)

where Nf is the number of massless quark flavors.

3 Computational method

As demonstrated above, for the purpose of extracting Zqq at the four-loop order, the last
missing contribution is the OME ⟨q|OB

q |q⟩ at four loops. In this section, we focus on the
computation of the N2

f part for this OME. The corresponding Feynman diagrams were
generated by QGRAF [32], see figure 1 for some sample Feynman diagrams. The required
Feynman rules in n-space involve non-standard terms like (∆ ·p)n−1 and are not convenient for
the application of integration-by-parts (IBP) reductions [33–35]. To overcome this problem,
a method first proposed in [36, 37] is adopted. The method sums the non-standard terms
into linear propagators depending on a tracing parameter t. For example,

(∆ · p)n−1 →
∞∑

n=1
(∆ · p)n−1tn = t

1 − t∆ · p . (3.1)

In the following, we always work in parameter-t space, which allows us to use standard IBP
algorithms. To generate the unreduced amplitude in parameter-t space, Mathematica is
used to substitute the Feynman rules into the Feynman diagrams generated by QGRAF [32]
and FORM [38] is used to deal with the Dirac and color algebra. To reduce the size of
the raw amplitude, we first classify the diagrams into different integral families with an
in-house code invoking Reduze 2 [39] and FeynCalc [40, 41]. During the family classification,
partial fractions among the Feynman propagators are needed, especially for the linear
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Oq

Oq

Figure 1. Representative Feynman diagrams for N2
f contributions to the OME ⟨q|OB

q |q⟩ at four loops.
The first diagram contributes to the non-singlet anomalous dimension, while the second diagram
contributes to the pure-singlet anomalous dimension in the quark channel.

propagators, and Apart [42] is used for this task. At later stages of the calculation, we also
use MultivariateApart [43] to decompose rational functions of kinematic invariants and
parameters into multivariate partial fractions (see also [44–46] for alternative decompositions).

To reduce the amplitude and to calculate the master integrals in the differential equation
approach [47], we perform IBP reductions of the four-loop integrals using finite field sampling
and rational reconstruction [48–50]. An optimized input system of equations is prepared
by employing the method of [51] to control the generation of squared propagators. We
note that the unreduced amplitude contains not only irreducible numerators but also higher
powers of the propagators, in particular for the linear ones. For the computation of the
reductions, we group integrals into so-called sectors, which label different sets of denominators.
For each sector, we generate IBP identities by constructing suitable differential operators
and subsequently applying them to so-called seed integrals which have positive powers of
the denominators of the sector. We eliminate redundant equations from the system for
each sector, where for performance reasons we ignore relations which involve only integrals
in sub-sectors, that is, with fewer different denominators. It is well known that ignoring
subsector information in this way can lead to incomplete reductions, since one misses specific
relations, which are sometimes referred to as “hidden” or “anomalous”. In the present case,
we recover such relations from differential equations and dimensional analysis, as will be
explained below. The private code Finred is used to perform the filtering as well as the
final reduction including also all subsector integrals.

We compute the differential equations for the master integrals chosen through a generic
integral ordering (see e.g. [39]) by a straight-forward IBP reduction of their derivatives. Here,
we compute the derivatives both with respect to t and p2. In dimensional regularization,
one can derive a relation between the partial derivatives from the behavior of the integral
under a rescaling of all dimensionful parameters (see e.g. [52]). We observe that some of them
are not manifestly fulfilled, which we interpret as a consequence of incomplete reductions
due to missing “hidden” relations. By enforcing these scaling relations, we obtain a number
of additional identities, which relate integrals from different sectors with the same number
of different propagators (and subsector integrals). These additional relations simplify the
differential equations in t for the remaining master integrals and we cast them into ϵ-form [53]
using the codes CANONICA [54, 55] and Libra [56, 57]. We obtain

dI⃗(t, ϵ) = ϵ
∑

i

d ln(t − ti)A(i)I⃗(t, ϵ) , (3.2)

– 7 –
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where we have set p2 = −1 and ∆ · p = 1. I⃗ is the vector of the new basis integrals, A(i)

are matrices of rational numbers and ti = 0,±1.
Integrals without any t-dependent linear propagators are standard four-loop self-energy

integrals [58, 59], which in the present case were mapped to the planar two-point functions
in [60]. We use these integrals to determine the purely ϵ-dependent prefactors needed to
transition from a basis in ϵ-form to a basis with uniformly transcendental (UT) solutions. In
addition, they provide all the explicit boundary conditions that we need in addition to the
following structural requirement. Due to the fact that we introduce t as a tracing parameter
for a power series about t = 0 and that our transformations of the integral coefficient are
rational, the solutions of interest should have no branch cuts. We take thus the limit t → 0,
solve the differential equation for exact ϵ and require the absence of branch cuts. This gives
additional conditions we can impose on our ϵ-expanded solutions with exact t dependence
in the limit t → 0. In this way, we solve our master integrals as a Laurent expansion in ϵ,
where the coefficients are UT combinations of harmonic polylogarithms (HPLs) [61] with
weights 0,±1 and argument t as well as zeta values.

We reduce the amplitude in terms of UT integrals and reconstruct the d dependence as
well as the t dependence of the coefficients for a given finite field. Here, we take advantage of
the anticipated factorization of denominators and first determine the denominators [43, 62]
(as well as some simple overall numerator factors) in order to simplify the multivariate
reconstruction. We insert the ϵ-expanded solutions for the master integrals into the amplitude
and find the poles of the bare amplitude to contain transcendental functions of up to weight
7. It is at this level of the ϵ-expanded bare amplitude that we reconstruct the rational
numbers from their image in a single finite field of cardinality O(263). A second finite field
is used to check the reconstruction.

The result for the N2
f part of the bare four-loop OME ⟨q|OB

q |q⟩ is then given in parameter-
t space. It is transformed to n-space in terms of harmonic sums [63, 64] with the help of the
package HarmonicSums [65–70], yielding the n-space expression for the bare OME.

4 Renormalization and results

With the four-loop results for the bare OME computed in the above section in hand, all
ingredients required for the renormalization procedure in (2.10) are now available. We notice
that the non-physical renormalization constant ZqA needs to be evaluated to three loops and
the three-loop corrections of ⟨q|OB

q |q⟩ need to be obtained to finite terms in ϵ. Both of them
were already obtained previously [24]. Combining all components according to (2.10), the N2

f

part of Zqq is determined to four-loop order and the corresponding anomalous dimension can
be easily extracted from (2.18). Similarly, the N2

f contributions for non-singlet anomalous
dimensions are determined through (2.4) and (2.14) and cross-checked against the results
provided in [71]. We do not repeat them here and restrict ourselves to displaying the new
results for the pure-singlet anomalous dimension in n-space. We find:

γ(3)ps (n)
∣∣
CFN3

f
=

16
(
n2+n+2

)2

9(n−1)n2(n+1)2(n+2) (6ζ3−4S1,1,1)

– 8 –
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+64
(
8n7+37n6+83n5+85n4+61n3+58n2−20n−24

)
S1,1

27(n−1)n3(n+1)3(n+2)2

− 32
81(n−1)n4(n+1)4(n+2)3

[
64n10+464n9+1449n8+2037n7+1012n6

+105n5−411n4−1784n3−1304n2−48n+144
]
S1+

16
81(n−1)n5(n+1)5(n+2)4

[

64n13+576n12+2168n11+3376n10+258n9−4248n8−3615n7−4520n6

−7225n5−1722n4+3304n3+1840n2−336n−288
]
, (4.1)

γ(3)ps (n)
∣∣
C2

FN2
f
=

1
81(n−1)2n7(n+1)7(n+2)5

[
5413n19+57482n18+254354n17

+639426n16+1396536n15+4120966n14+11962810n13+25755742n12

+38724195n11+32487128n10−11246124n9−77944456n8−127667936n7

−142086912n6−123597440n5−83330816n4−43996416n3−18487296n2

−5557248n−829440
]
− 256

(
n2+n+2

)2
S−3

3(n−1)2n3(n+1)3(n+2)2

− 32
(
n9+6n8+14n7+40n6+137n5+506n4+784n3+672n2+560n+224

)
S−2

3(n−1)2n4(n+1)4(n+2)3

− 4
81(n−1)n5(n+1)5(n+2)4

[
6895n13+68895n12+296692n11+703266n10

+1104101n9+1623673n8+2693912n7+3944838n6+4420952n5+3670248n4

+2067520n3+699296n2+91776n−8064
]
S1+

8
81(n−1)n4(n+1)4(n+2)2

[
655n9

+4026n8+8100n7−5502n6−38027n5−67940n4−80336n3−56704n2−20112n

−2880
]
S2

+32
(
77n8+284n7+433n6−31n5−312n4−93n3−498n2+260n+456

)
S3

27(n−1)2n3(n+1)3(n+2)2

− 32
(
23n8+86n7+217n6+461n5+270n4−99n3−18n2−52n+264

)
ζ3

9(n−1)2n3(n+1)3(n+2)2

+ 8
81(n−1)n4(n+1)4(n+2)3

[
2501n10+18325n9+57780n8+96942n7

+120281n6+181533n5+246102n4+221096n3+156608n2+77328n+19296
]
S1,1

− 16
(
5n7+19n6−409n5−2675n4−4388n3−3896n2−2912n−816

)
S1,2

27(n−1)n3(n+1)3(n+2)2
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(
2
0
2
4
)
0
2
9

− 16
(
91n7+425n6+661n5−721n4−2152n3−2080n2−2224n−816

)
S2,1

27(n−1)n3(n+1)3(n+2)2

− 8
(
n2+n+2

)(
133n4+226n3+457n2+284n+4

)
S1,1,1

9(n−1)n3(n+1)3(n+2)

+ 16
(
n2+n+2

)2

9(n−1)n2(n+1)2(n+2)
(
45ζ4−16S4−12S1ζ3−8S1,3+2S2,2−4S3,1

−6S1,1,2+2S1,2,1+14S2,1,1+22S1,1,1,1
)
, (4.2)

γ(3)ps (n)
∣∣
CFCAN2

f
=

− 4
81(n−2)(n−1)2n5(n+1)6(n+2)5

[
7627n17+74941n16

+279109n15+298173n14−931399n13−3113931n12−2639893n11+1581811n10

+4213772n9+2908014n8+1843168n7+3691920n6+7684032n5+11725312n4

+12278016n3+7778304n2+2654208n+373248
]

+16
(
n2+n+2

)(
5n2+5n+6

)
S−4

3(n−1)n2(n+1)2(n+2)

− 16
(
59n8+224n7+489n6+765n5+174n4−565n3−742n2−556n−232

)
S−3

9(n−1)2n3(n+1)3(n+2)2

+ 8
81(n−2)(n−1)2n4(n+1)4(n+2)3

[
209n12−389n11−380n10−10012n9

−20569n8+24309n7+68716n6+129788n5+109304n4−126512n3−190400n2

−109632n−33408
]
S−2+

4
81(n−1)2n5(n+1)5(n+2)4

[
9353n14+87430n13

+345549n12+674794n11+510973n10−273064n9−781035n8−890768n7

−1217312n6−1089848n5−309768n4+26496n3−132544n2−117888n−21888
]
S1

+ 8
81(n−1)2n4(n+1)4(n+2)3

[
59n11−205n10+1091n9+6453n8+10481n7

+11791n6−4815n5−39715n4−37428n3−13424n2−2688n−720
]
S2

− 8
(
367n8+1342n7+2387n6+1195n5−192n4−297n3−3870n2−380n+1752

)
S3

27(n−1)2n3(n+1)3(n+2)2

+16
(
n2+n+2

)(
23n2+23n+34

)
S4

9(n−1)n2(n+1)2(n+2)

+32
(
7n8+29n7+69n6+147n5+94n4−36n3+18n2−32n+88

)
ζ3

3(n−1)2n3(n+1)3(n+2)2

+16
(
n2+n+2

)(
23n2+23n+22

)
S−3,1

9(n−1)n2(n+1)2(n+2) − 64
(
n2+n−10

)(
n2+n+2

)
S−2,−2

9(n−1)n2(n+1)2(n+2)
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(
2
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2
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)
0
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9

+32
(
71n7+367n6+866n5+1609n4+1657n3+994n2+892n+360

)
S−2,1

27(n−1)n3(n+1)3(n+2)2

+32
(
n2+n+2

)(
7n2+7n+2

)
S−2,2

9(n−1)n2(n+1)2(n+2) +128
(
n2+n+1

)(
n2+n+2

)
S1,−3

3(n−1)n2(n+1)2(n+2)

− 64
(
52n7+224n6+541n5+554n4+317n3+164n2−460n−288

)
S1,−2

27(n−1)n3(n+1)3(n+2)2

− 16
81(n−1)2n4(n+1)4(n+2)3

[
1474n11+9886n10+28861n9+43998n8

+35410n7+22892n6+8871n5−36800n4−46032n3−3040n2+11664n+2304
]
S1,1

− 16
(
n2+n+2

)(
40n5+138n4+325n3+471n2+190n+24

)
S1,2

9(n−1)n3(n+1)3(n+2)2

+16
(
n2+n+2

)(
5n2+5n+14

)
S1,3

3(n−1)n2(n+1)2(n+2)

+16
(
n2+n+2

)(
16n6+66n5−87n4−158n3−43n2−58n−24

)
S2,1

27(n−1)2n3(n+1)3(n+2)2

− 32
(
n2+n+2

)(
19n2+19n−10

)
S−2,1,1

9(n−1)n2(n+1)2(n+2) − 64
(
n2+n−10

)(
n2+n+2

)
S1,−2,1

9(n−1)n2(n+1)2(n+2)

+32
(
n2+n+2

)(
38n5+39n4+86n3+29n2−78n−26

)
S1,1,1

9(n−1)2n3(n+1)3(n+2)

+ 16
(
n2+n+2

)2

9(n−1)n2(n+1)2(n+2)
(
−45ζ4−6S2,−2−8S2,2+15S3,1+44S1,1,−2

+29S1,1,2+15S1,2,1+2S2,1,1−22S1,1,1,1
)
, (4.3)

where we omit the argument n of the harmonic sums defined by

S±m1,m2, ···md(n) =
n∑

j=1
(±1)jj−m1Sm2, ···md(j) (mi ∈ N),

S∅(n) = 1 . (4.4)

The N3
f contribution in (4.1) was derived in [71, 72] and we find full agreement. The N2

f

contributions with symbolic n dependence in (4.2) and (4.3) are new and constitute one of
the main results in this paper. The all-n coefficient of the ζ4 contribution was first predicted
in [73], and we find full agreement upon correction of a typographical error according to [17].
Evaluating our all-n results for numerical n, we find full agreement with the fixed n ≤ 20
results derived recently in [17]. The anomalous dimensions are related to the splitting
functions through the following Mellin transformation,

γij(n) = −
∫ 1

0
dxxn−1 Pij(x). (4.5)

By an inverse Mellin transformation implemented in HarmonicSums, or by the method
proposed in [74], the above pure anomalous dimensions are transferred to the corresponding

– 11 –
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P
0
1
(
2
0
2
4
)
0
2
9

splitting functions:

P (3)
ps (x)

∣∣
CFN3

f
=

− 64
27(x−1)

(
4x2+7x+4

) 1
x
H1,1,1+

64
27
(
4x2−7x−13

)
H2,1

− 64
9 (x+1)ζ2H0,0− 2336

81 (x+1)H0,0− 64
9 (x−1)(2x−5)H1,1− 128

9 (x+1)H3,1

− 464
27 (x+1)H0,0,0+

128
9 (x+1)H2,1,1− 32

9 (x+1)H0,0,0,0

+64
81

1
x
(x−1)

(
34x2−49x−2

)
H1− 64

81
1
x
(x−1)

(
7x2−12x+3

)

+64
27

1
x

(
2x3−3x2−6x−6

)
ζ3+

32
81
(
64x2−11x−59

)
H0− 64

81
(
38x2−x−49

)
H2

− 928
27 (x+1)ζ2H0− 128

9 (x+1)ζ3H0+
928
27 (x+1)H3+

64
9 (x+1)H4

+64
81
(
38x2−x−49

)
ζ2− 160

9 (x+1)ζ4 , (4.6)

P (3)
ps (x)

∣∣
C2

FN2
f
=

(x−1)
(
6632656x2+2333383x+4127560

)

2187x

− 2
729

1
x

(
885688x3+1171023x2+473367x+105088

)
H0

− 4
243

1
x
(x−1)

(
17492x2+52305x+9746

)
H1+

8
243

(
4040x2+28557x+28128

)
H2

− 8
81
(
4072x2−167x−677

)
H3+

32
27
(
88x2+362x+365

)
H4+

224
9 (x+1)H5

− 8
243

1
x

(
4040x3+48645x2+28128x−9936

)
ζ2

+ 8
81

1
x

(
4072x3+6421x2−677x+736

)
H0ζ2

+16
81

1
x
(x−1)

(
884x2−403x+308

)
H1ζ2

− 64
27
(
46x2+49x−14

)
H2ζ2+

1088
9 (x+1)H3ζ2

− 64
27

1
x

(
266x3−162x2+69x−84

)
ζ3+

32
27

1
x

(
44x3+653x2+149x−24

)
H0ζ3

− 320
9 (x+1)H2ζ3− 1024

9 (x+1)ζ2ζ3+
8
27

1
x

(
1788x3+3746x2−151x−288

)
ζ4

− 8
9(743x+959)H0ζ4− 32

9 (73x+109)ζ5− 128
3 (3x+7)H−4,0

+128
27 (x+3)(16x−21)H−3,0− 32

81
1
x

(
680x3−1647x2+2835x−184

)
H−2,0

+64
9

1
x
(x+1)

(
79x2−172x+46

)
H−1,0+

32
243

(
8741x2+13596x+19725

)
H0,0
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H
E
P
0
1
(
2
0
2
4
)
0
2
9

− 32
27
(
88x2+254x+365

)
ζ2H0,0− 128

9 (19x+10)ζ3H0,0

+ 8
243

1
x
(x−1)

(
4484x2+2237x+1910

)
H1,0

+ 16
243

1
x
(x−1)

(
496x2+12181x+2971

)
H1,1− 16

81
1
x
(x−1)

(
884x2−403x+308

)
H1,2

− 16
81
(
1852x2+995x+878

)
H2,0− 128

9 (x+1)ζ2H2,0

− 8
81
(
2616x2+3013x+7771

)
H2,1

− 64
9 (x+1)ζ2H2,1+

64
27
(
46x2+49x−14

)
H2,2+

128
9 (x+1)H2,3

+32
27
(
100x2+239x+179

)
H3,0+

32
27
(
164x2+60x−99

)
H3,1− 1088

9 (x+1)H3,2

− 640
9 (x+1)H4,0− 2144

9 (x+1)H4,1− 256
3 (x+1)H−3,0,0

+256
27

1
x
(x−1)

(
2x2+11x+2

)
H−2,0,0− 512

81
1
x
(x+1)

(
11x2+43x+11

)
H−1,0,0

− 8
27
(
3072x2−751x−2259

)
H0,0,0− 32

9 (43x+7)ζ2H0,0,0

− 32
81

1
x
(x−1)

(
200x2−853x+56

)
H1,0,0− 16

81
1
x
(x−1)

(
1276x2+127x+556

)
H1,1,0

− 8
27

1
x
(x−1)

(
616x2+831x+376

)
H1,1,1+

32
27

1
x

(
64x3−91x2−163x+8

)
H2,0,0

+64
27
(
54x2+104x+29

)
H2,1,0+

32
27
(
44x2+270x+207

)
H2,1,1+

64
9 (x+1)H2,1,2

− 64
9 (x+1)H2,2,0+

448
9 (x+1)H2,2,1− 64

9 (7x+19)H3,0,0− 1088
9 (x+1)H3,1,0

− 32
9 (x+1)H3,1,1+

32
9
(
32x2−167x+476

)
H0,0,0,0+

1
27

1
x
(x−1)

(
4x2+7x+4

)[

+160H1ζ3+64ζ2H1,0+32ζ2H1,1−64H1,3−32H1,1,2+32H1,2,0−224H1,2,1

+256H1,0,0,0−128H1,1,0,0+96H1,1,1,0+352H1,1,1,1
]
− 512

9 (x+1)H2,0,0,0

+256
9 (x+1)H2,1,0,0− 64

3 (x+1)H2,1,1,0− 704
9 (x+1)H2,1,1,1

−64(x−4)H0,0,0,0,0+320(x+1)H0,0,0,0,0,0 , (4.7)

P (3)
ps (x)

∣∣
CFCAN2

f
=

− 2(x−1)
(
2687020x2+672220x+725839

)

2187x

+ 2
729

1
x

(
929808x3+647385x2+501678x+46688

)
H0

+ 2
729

1
x
(x−1)

(
268144x2+471253x+161755

)
H1
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J
H
E
P
0
1
(
2
0
2
4
)
0
2
9

− 4
243

1
x

(
20860x3+72921x2+79896x+3296

)
H2+

8
81
(
1106x2−2935x−2224

)
H3

+ 8
27
(
48x2−125x−88

)
H4− 32

9 (13x−19)H5

+ 4
243

1
x

(
20860x3+89265x2+79896x−13014

)
ζ2+64(x−3)H−3ζ2

+32
27
(
96x2+25x−148

)
H−2ζ2− 32

81
1
x
(x+1)

(
868x2+623x+418

)
H−1ζ2

− 8
81

1
x

(
1106x3+2575x2−2224x+368

)
H0ζ2

+16
81

1
x
(x−1)

(
31x2+727x+130

)
H1ζ2+

16
27

1
x

(
68x3−120x2−213x−16

)
H2ζ2

− 64
9 (13x+11)H3ζ2+

16
81

1
x

(
3561x3+259x2−1172x−180

)
ζ3− 416

3 (x−1)H−2ζ3

− 16
3

1
x
(x+1)

(
8x2−35x+8

)
H−1ζ3− 32

27
1
x

(
198x3+767x2+598x−36

)
H0ζ3

− 64
27

1
x
(x−1)

(
65x2+161x+65

)
H1ζ3+

2752
9 (x+1)H2ζ3− 32

9 (59x+23)ζ2ζ3

− 2
27

1
x

(
3560x3+12229x2+4664x−2192

)
ζ4+

16
9 (157x+178)H0ζ4

+32
9 (230x+9)ζ5+

64
9 (9x+29)H−4,0− 16

27
(
216x2+99x+98

)
H−3,0

− 64
3 (x−5)H−3,2+

448
3 (x−1)ζ2H−2,−1

+16
81

1
x

(
2560x3−2755x2+4000x−184

)
H−2,0− 64

9 (x−1)ζ2H−2,0

− 32
27
(
56x2−19x−47

)
H−2,2− 352

9 (x−1)H−2,3

+32
9

1
x
(x+1)

(
20x2−53x+20

)
ζ2H−1,−1

− 8
243

1
x

2
(x+1)

(
19756x3−27928x2+8131x+24

)
H−1,0

+32
27

1
x
(x+1)

(
20x2+19x+20

)
ζ2H−1,0+

32
81

1
x
(x+1)

(
584x2+277x+332

)
H−1,2

− 16
27

1
x
(x+1)

(
68x2−65x+68

)
H−1,3− 8

81
(
9108x2+10984x+3451

)
H0,0

− 8
27
(
48x2+73x−88

)
ζ2H0,0+

32
9 (121x+23)ζ3H0,0

+ 4
243

1
x
(x−1)

(
9184x2−3725x−2093

)
H1,0− 128

27
1
x
(x−1)

(
11x2+26x+11

)
ζ2H1,0

+ 16
243

1
x
(x−1)

(
1949x2−13441x−2218

)
H1,1− 16

81
1
x
(x−1)

(
599x2+35x+302

)
H1,2

− 8
81

1
x

(
242x3+911x2−1357x−160

)
H2,0+

896
9 (x+1)ζ2H2,0
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0
1
(
2
0
2
4
)
0
2
9

− 16
81

1
x

(
366x3−2633x2−2891x−80

)
H2,1+

224
9 (x+1)ζ2H2,1

+16
27

1
x

(
12x3+32x2+11x+16

)
H2,2− 160

3 (x+1)H2,3+
8
27
(
16x2+134x−7

)
H3,0

+32
27
(
8x2+66x+75

)
H3,1+

64
9 (7x−1)H3,2− 16

9 (23x−5)H4,0+
128
9 (x−4)H4,1

+256
3 (x−2)H−3,−1,0+

32
9 (3x+29)H−3,0,0− 64

3 (x−1)H−2,−2,0

+64
27
(
40x2+44x−101

)
H−2,−1,0− 640

9 (x−1)H−2,−1,2

− 16
27

1
x

(
136x3−213x2+69x−16

)
H−2,0,0− 64

9 (x−1)H−2,2,0+
320
9 (x−1)H−2,2,1

− 32
9

1
x
(x+1)

(
4x2−7x+4

)
H−1,−2,0− 128

81
1
x
(x+1)

(
142x2+173x+43

)
H−1,−1,0

− 64
27

1
x
(x+1)

(
8x2−41x+8

)
H−1,−1,2+

16
81

1
x
(x+1)

(
1112x2+679x+752

)
H−1,0,0

− 32
27

1
x
(x+1)

(
16x2−x+16

)
H−1,2,0− 32

27
1
x
(x+1)

(
28x2+59x+28

)
H−1,2,1

− 8
81
(
8x2+3121x−2472

)
H0,0,0+

32
9 (31x−19)ζ2H0,0,0

− 64
27

1
x
(x−1)

(
8x2+41x+8

)
H1,−2,0+

8
27

1
x
(x−1)

(
136x2−1455x−8

)
H1,0,0

+16
27

1
x
(x−1)

(
85x2−3x+82

)
H1,1,0+

32
81

1
x
(x−1)

(
385x2+481x+205

)
H1,1,1

+640
9 (x+1)H2,−2,0− 8

27
1
x

(
176x3−791x2−971x+32

)
H2,0,0

− 16
27
(
44x2+240x+195

)
H2,1,0− 128

27
1
x

(
11x3+63x2+39x−11

)
H2,1,1

+160
3 (x+1)H2,1,2+

256
9 (x+1)H2,2,0+

64
9 (x+1)H2,2,1+

16
9 (17x+73)H3,0,0

− 64
9 (5x−3)H3,1,0+

64
9 (10x+13)H3,1,1+

1408
9 (x−1)H−2,−1,−1,0

+128
3 (x−1)H−2,−1,0,0+32(x−1)H−2,0,0,0+

704
27

1
x
(x+1)

(
4x2−7x+4

)
H−1,−1,−1,0

+128
3

1
x
(x+1)

(
x2−x+1

)
H−1,−1,0,0+

16
9

1
x
(x+1)

(
16x2−19x+16

)
H−1,0,0,0

+16
27(551x−486)H0,0,0,0− 16

27
1
x
(x−1)

(
80x2+113x+80

)
H1,0,0,0

+16
3

1
x
(x−1)

(
8x2+17x+8

)
H1,1,0,0+

1
27(x−1) 1

x

(
4x2+7x+4

)[

−112ζ2H1,1+240H1,3−240H1,1,2−128H1,2,0−32H1,2,1−464H1,1,1,0

−352H1,1,1,1
]
+544

9 (x+1)H2,0,0,0− 224
3 (x+1)H2,1,0,0

+928
9 (x+1)H2,1,1,0+

704
9 (x+1)H2,1,1,1+

448
9 xH0,0,0,0,0 . (4.8)
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Here, we use the symbol H to denote harmonic polylogarithms (HPLs) and omit the argument
x. The HPLs are defined recursively by

Ha1, a2, ··· , am(x) =
∫ x

0
dt fa1(t)Ha2, ··· , am(t) ,

H0⃗m(x) =
logm x

m! ,

H(x) = 1 , (4.9)

where ai is 0, 1, or −1, and the kernel fa(t) is defined as

f1(t) =
1

1 − t
, f0(t) =

1
t
, f−1(t) =

1
1 + t

. (4.10)

In the above, we adopt an abbreviated notation proposed in [61, 75], for example

H0,−1,0,0,1 = H−2,3; H1,0,1,0 = H1,2,0. (4.11)

Our result for N3
f shown in (4.6) validated the corresponding result presented in [71]. The N2

f

contributions shown in (4.7) and (4.8) are presented for the first time. We observe that these
contributions are expressed through functions up to transcendental weight 6. Interestingly,
the only transcendental function of the highest weight is log6 x.

With the analytic results in x-space, it is easy to extract the limit around x = 0 to high
powers. For simplicity, we only present the results to the next-to-leading power,

P (3)
ps (x)

∣∣
CFN3

f
=

1
x

[64
27− 128ζ3

9

]
+
(

−32ζ2
9 − 1168

81

)
log2(x)

+
(

−928ζ2
27 − 128ζ3

9 − 1888
81

)
log(x)− 4

27 log
4(x)− 232log3(x)

81

− 3136ζ2
81 − 128ζ3

9 − 160ζ4
9 − 832

81 +O(x) , (4.12)

P (3)
ps (x)

∣∣
C2

FN2
f
=

1
x

[(5888ζ2
81 − 256ζ3

9 − 210176
729

)
log(x)+ 2944ζ2

9

+1792ζ3
9 − 256ζ4

3 − 4127560
2187

]
+
(8524

81 − 112ζ2
27

)
log3(x)

+
(

−5840ζ2
27 − 640ζ3

9 +104432
81

)
log2(x)

+
(

−6184ζ2
81 +4768ζ3

27 − 7672ζ4
9 − 75598

81

)
log(x)+ 4log6(x)

9 +32log5(x)
15

+1904log4(x)
27 − 79168ζ2

81 − 1024ζ2ζ3
9 − 5056ζ3

27 − 1208ζ4
27 − 3488ζ5

9 +43195
81 +O(x) , (4.13)

P (3)
ps (x)

∣∣
CFCAN2

f
=

1
x

[(
−2944ζ2

81 +128ζ3
3 +92800

729

)
log(x)− 1928ζ2

9 − 320ζ3
9
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+4384ζ4
27 +1453406

2187

]
+
(160

3 − 304ζ2
27

)
log3(x)+

(352ζ2
27 +368ζ3

9 − 1196
9

)
log2(x)

+
(23936ζ2

81 − 19136ζ3
27 +2848ζ4

9 +9424
9

)
log(x)−12log4(x)+ 84160ζ2

81

− 736ζ2ζ3
9 − 9728ζ3

81 − 9328ζ4
27 +32ζ5− 15964

81 +O(x) . (4.14)

The terms log2 x/x at leading power for P (3)
ps have been predicted some time ago in [76] and

they vanish for the N2
f contributions. The terms logk x with k = 6 , 5 , 4 at sub-leading power

were predicted in [77]. Our results are consistent with [76, 77] and provide extra information
that may be helpful to generalize the frameworks in [76, 77].

In the limit of x → 1, the pure-singlet splitting function is power-suppressed [78], we
only show the result to the lowest power (proportional to 1 − x),

P (3)
ps (x)

∣∣
CFN3

f
=

(1 − x)
[

− 32
27 log3(1 − x) − 160

27 log2(1 − x)

− 1088
81 log(1 − x) − 32ζ3

3 + 64
81

]
+O

(
(1 − x)2

)
, (4.15)

P (3)
ps (x)

∣∣
C2

FN2
f
=

(1 − x)
[(16ζ2

3 − 6800
81

)
log2(1 − x)

+
(

−368ζ2
27 − 160ζ3

9 − 4660
27

)
log(1 − x) − 44

27 log4(1 − x) − 356
27 log3(1 − x)

− 4136ζ2
81 + 3056ζ3

27 − 952ζ4
9 + 8567

81

]
+O

(
(1 − x)2

)
, (4.16)

P (3)
ps (x)

∣∣
CFCAN2

f
=

(1 − x)
[(7904

81 − 56ζ2
9

)
log2(1 − x)

+
(80ζ2

27 − 80ζ3
9 + 21604

81

)
log(1 − x) + 44

27 log4(1 − x) + 16 log3(1 − x)

+ 124ζ2
81 − 2392ζ3

27 + 236ζ4
3 + 2968

27

]
+O

(
(1 − x)2

)
. (4.17)

For the limit x → 1, the terms (1 − x)j log(1 − x)k with k = 3, 4 have been predicted for all
j in [78]. Their results for j = 1 agree with our results shown above and we also provide
the previously unknown contributions with k = 2, 1, 0.

It is interesting to compare our analytic results in x-space with an approximation based
on all previously known information for the N2

f contribution to P (3)
ps . We determine this

approximation by closely following the methodology outlined in [17], adopting the two
representative functional forms A and B that were introduced therein,

P (3)
ps, A(x)

∣∣
N2

f
= pps, 0(x)

∣∣
N2

f
+

8∑

i=1
ai fi(x) + a9 (1 − x)(1 + 2x) + a10 (1 − x)x2 , (4.18)
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Figure 2. The N2
f contribution to the four-loop pure-singlet splitting function P (3)

ps . The exact result
derived in this work (blue) and an approximation based on n ≤ 20 fixed moments and known x → 0, 1
terms (orange) are compared. The methodology to determine the approximation and its uncertainty
are explained in the text. The bottom panel shows the ratio to the exact result.

P (3)
ps, B(x)

∣∣
N2

f
= pps, 0(x)

∣∣
N2

f
+

8∑

i=1
bi fi(x) + b9 (1 − x) + b10 (1 − x)x(1 + x) , (4.19)

fi =
{
(1 − x) log(x)

x
,
1 − x

x
, log3(x), log2(x), (1 − x) log(x), (4.20)

(1 − x) log2(1 − x), (1 − x) log(1 − x), (1 − x)2 log2(1 − x)
}

where pps, 0
∣∣
N2

f
contains the terms {log6(x), log5(x), log4(x), (1 − x) log3(1 − x), (1 −

x)2 log3(1 − x), log4(1 − x)} that are predicted in [77, 78]. The coefficients {ai}, {bi} are
fitted using the fixed n ≤ 20 result. The average of the two fits is then used as the central
prediction, and the spread between as an uncertainty estimate. We furthermore check the
consistency of our approximation by extracting the N2

f coefficient from the approximations
presented in [17] with fixed Nf = 3, 4, 5, using the ansatz: P (3)

ps = c1Nf + c2N2
f + c3N3

f ,
finding good agreement with our fitted approximation described above.

In figure 2 we compare the approximation with our exact result. We observe that the
approximation describes the exact result well in the large and moderate-x region, with the
deviations being below at most a few percent. However, the small-x region below x ! 10−3

is not captured correctly by the approximation. Its uncertainty is underestimated and the
best-fit values are systematically above the exact result. This highlights the importance of
the divergent terms in the x → 0 limit which were previously unknown and are difficult to
constrain from a limited number of Mellin moments.
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It is worth noting that our exact results allow one to construct a simple power-logarithmic
approximation (involving only the terms of the form xj logk(x), (1 − x)j logk(1 − x)) that
is precise over the whole x range. For the readers’ convenience, we provide such an ap-
proximation below:

P (3)
ps (x)

∣∣
N3

f
= − 19.6341

x
−0.197531log4(x)−3.81893log3(x)−27.0245log2(x)

−129.255log(x)−147.059−0.660017x5+0.752343x4−34.9402x3

+x2
[
0.252007log4(x)+0.378676log3(x)+8.79762log2(x)+32.774log(x)

+106.766
]
+(1−x)

[
−1.57998log3(1−x)−7.89567log2(1−x)

−17.8746log(1−x)
]
+(1−x)2

[
−0.185609log3(1−x)−1.90667log2(1−x)

−7.06942log(1−x)
]
+x
[
−0.198775log4(x)−3.87072log3(x)−27.8681log2(x)

−110.358log(x)+94.7747
]
, (4.21)

P (3)
ps (x)

∣∣
N2

f
= 114.438log(x)

x
− 356.614

x
+0.790123log6(x)+3.79259log5(x)

+77.3663log4(x)+314.204log3(x)+1258.40log2(x)+949.678log(x)−49.9323

+33.627x5−287.064x4+9680.22x3+x2
[
−4.63175log6(x)−11.7058log5(x)

−393.364log4(x)−418.965log3(x)−8435.97log2(x)+1319.27log(x)−21652.5
]

+(1−x)2
[
−4.84858log4(1−x)+8.27339log3(1−x)−92.6823log2(1−x)

+161.418log(1−x)
]
+(1−x)

[
3.63945log4(1−x)+41.3407log3(1−x)

+228.914log2(1−x)+761.999log(1−x)
]
+x
[
0.783717log6(x)+0.335522log5(x)

+1.53492log4(x)−192.192log3(x)+358.62log2(x)−884.842log(x)+12632.2
]

+0.0000703741 , (4.22)

where we have set CA = 3, CF = 4/3 and truncated the numerical values of the coefficients
to 6 digits. This approximation has an accuracy better than 10−5 over the whole range of
x. And it can be readily included in the programs implementing scale evolution of parton
distribution functions.

5 Conclusions and outlook

In this paper, we derived the renormalization of the quark singlet operator to four-loop order.
We observe that it does not require the computation of new renormalization counterterms
beyond those that were already obtained for symbolic Mellin-n in [24].

As a first non-trivial application, we computed the N2
f contributions to the four-loop

pure-singlet splitting functions. Our workflow to calculate the relevant four-loop OMEs is
described in detail and we validate it on an independent rederivation of the four-loop N2

f
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contributions to the non-singlet splitting functions, giving full agreement with [71]. We
employ our setup to derive the pure-singlet contributions involving two closed fermion loops,
for the first time for symbolic n. This allowed us to derive the exact results in x-space and
to perform a comparison with an approximation obtained from the fixed n ≤ 20 results.
We demonstrated that the approximation is adequate for large to moderate values of x,
but fails to correctly capture the behavior at small values of x. It would be interesting
to investigate if this has tangible implications for the construction of approximate N3LO
parton distributions functions [19, 20].

Building on the methodology presented here, the complete computation of all color and
flavor structures for the singlet, four-loop splitting functions can be envisaged. Towards this
objective, we expect a considerable increase in complexity, in particular for the required
integral reductions. Moreover, the computation of the splittings into gluons involves the
renormalization of the gluon operator up to four loops and will likely require new counterterms
whose Feynman rules remain to be determined.
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A Standard QCD renormalization constant

The strong coupling renormalization constant Zas can be expressed through the QCD
β function,

Zas = 1 − β0
ϵ
as +

(
β20
ϵ2

− β1
2ϵ

)

a2s +
(

−β30
ϵ3

+ 7β0β1
6ϵ2 − β2

3ϵ

)

a3s +O(a4s). (A.1)

Up to three loops, the QCD beta function reads [79]

β0 =
11CA

3 − 2Nf

3 , (A.2)

β1 = −10CANf

3 + 34C2
A

3 − 2CFNf , (A.3)

β2 = −1415
54 C2

ANf + 79
54CAN

2
f − 205

18 CACFNf + 2857C3
A

54 + 11
9 CFN

2
f + C2

FNf . (A.4)

The gluon field renormalization constant

Zg =
∞∑

l=0
Z(l)
g als (A.5)
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is required to three-loop order [79, 80] for this work. The relevant expansion coefficients read

Z(0)
g = 1 , (A.6)

Z(1)
g = 1

ϵ

[(13
6 − ξ

2

)
CA − 2Nf

3

]
, (A.7)

Z(2)
g =1

ϵ

[
− 5CANf

4 +
(

−ξ2

8 − 11ξ
16 + 59

16

)

C2
A − CFNf

]

+ 1
ϵ2

[(
ξ

3 + 1
2

)
CANf +

(
ξ2

4 − 17ξ
24 − 13

8

)

C2
A

]
, (A.8)

Z(3)
g = 1

ϵ2

[
CF

{(
ξ

2 + 31
18

)
CANf −

2N2
f

9

}
+
(
ξ2

12 + 19ξ
24 + 481

108

)

C2
ANf − 25

54CAN
2
f

+
(
7ξ3
48 + 13ξ2

24 − 143ξ
96 − 7957

864

)

C3
A

]
+ 1
ϵ

[
CF

{(
−4ζ3 − 5

108

)
CANf +

11N2
f

27

}

+ C2
ANf

(
ξ

3 + 3ζ3 − 911
108

)
+ 19

27CAN
2
f + C3

A

{
− 7ξ3

96 + ξ2
(

− ζ3
16 − 11

32

)

+ ξ
(

−ζ3
4 − 167

96

)
− 3ζ3

16 + 9965
864

}
+ 1

3C
2
FNf

]
+ 1
ϵ3

[(

−ξ2

6 − 5ξ
12 − 11

9

)

C2
ANf

+ 1
9CAN

2
f +

(

−ξ3

8 + ξ2

6 + 47ξ
48 + 403

144

)

C3
A

]
. (A.9)

The quark field renormalization constant

Zq =
∞∑

l=0
Z(l)
q als (A.10)

is required to four-loop order [81, 82]. The relevant expansion coefficients read

Z(0)
q =1 , (A.11)

Z(1)
q = −CF

ξ

ϵ
, (A.12)

Z(2)
q = CF

ϵ

[(

−ξ2

8 −ξ− 25
8

)

CA+
3CF

4 +Nf

2

]
+CF

ϵ2

[(
ξ2

4 +3ξ
4

)

CA+
ξ2CF

2

]
, (A.13)

Z(3)
q = CF

ϵ3

[
CA

((

−ξ3

4 − 3ξ2
4

)

CF+
ξNf

6

)

+
(

− ξ3

12− 3ξ2
8 − 31ξ

24

)

C2
A− 1

6ξ
3C2

F

]

+CF

ϵ2

[
CA

((
ξ3

8 +ξ2+25ξ
8 − 11

6

)

CF+
(

−ξ

2− 47
18

)
Nf

)

+
(
ξ3

8 +3ξ2
4 +73ξ

24 +275
36

)

C2
A+

(1
3− ξ

2

)
CFNf − 3ξC2

F

4 +
2N2

f

9

]

+CF

ϵ

[
CA

((143
12 −4ζ3

)
CF+

(17ξ
24 +287

54

)
Nf

)
−CFNf

2 −C2
F

2 −
5N2

f

27

+C2
A

{
− 5ξ3

48 +ξ2
(

−ζ3
8 − 13

32

)
+ξ
(

−ζ3
4 − 263

96

)
+23ζ3

8 − 9155
432

}]
, (A.14)
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Z(4)
q

∣∣
N3

f
= CF

9ϵ3 − 5CF

54ϵ2 − 35CF

324ϵ , (A.15)

Z(4)
q

∣∣
N2

f
= ξCFCA

18ϵ4 +CF

ϵ3

[(
−ξ

6− 23
12

)
CA+

(1
6− 2ξ

9

)
CF

]

+CF

ϵ2

[(2ξ
27+4

)
CA+

(5ξ
27+

3
8

)
CF

]

+CF

ϵ

[
CA

((269
972− ζ3

3

)
ξ−2ζ3− 293

144

)
+
(
2ζ3− 19

9

)
CF

]
. (A.16)

We note that at four loops, only the N3
f and N2

f terms contribute to the calculation presented
in this paper.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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