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We report a new result for the 𝑁𝑓 𝐶3
𝐹 contribution to the four-loop anomalous dimensions of non-singlet, twist-

two operators in Quantum Chromodynamics. This result is obtained through computations of off-shell operator 
matrix elements. Employing integration-by-parts reductions and differential equations with respect to a tracing 
parameter allowed us to derive analytic results valid for arbitrary Mellin moment 𝑛.

1. Introduction

The theory predictions of high-energy hadronic collider observables rely on the factorization theorem in Quantum Chromodynamics (QCD), 
which states that the hadronic cross section is factorized into universal parton distribution functions (PDFs) and partonic cross sections. The 
partonic cross sections are perturbatively calculable. The PDFs are non-perturbative quantities, but their scale evolution (the well-known DGLAP 
evolution [1–3]) is governed by splitting functions, which can be evaluated perturbatively in QCD.

Several benchmark partonic cross sections in QCD have been evaluated to next-to-next-to-next-to-leading order (N3LO), see for example [4–7]. 
To achieve the same accuracy for hadronic cross sections, it is necessary to know the N3LO PDFs, which require the knowledge of four-loop splitting 
functions. The splitting functions at three-loop accuracy in QCD were computed almost 20 years ago [8,9], and allowed the complete determination 
of NNLO PDFs. At four-loop order, results are available only for some specific color structures, including the leading-power 𝑁𝑓 contributions to all 
channels [10–12], the 𝑁2

𝑓 contribution to non-singlet splitting functions [12], leading color contribution to non-singlet splitting functions [13], and 
recently the 𝑁2

𝑓 contributions to pure-singlet [14] and quark-to-gluon splitting functions [15]. Beyond these leading color, leading and sub-leading 
𝑁𝑓 contributions, a finite number of Mellin moments were computed for all splitting functions in [13,16–19]. Those results were already used to 
obtain approximate N3LO PDFs [20,21].

The anomalous dimensions 𝛾(𝑛) with Mellin moments 𝑛 are related to splitting functions 𝑃 (𝑥) via the following Mellin transformation,

𝛾(𝑛) = −
1

∫
0

𝑑𝑥𝑥𝑛−1𝑃 (𝑥) . (1)

To go beyond the currently available all-𝑛 results, in this paper, we consider one of the simplest remaining contributions: the 𝑁𝑓 𝐶3
𝐹 contribution 

to the non-singlet splitting functions, that also appear in Quantum Electrodynamics (QED). Following closely references [22,14], we performed 
our computations in the framework of the operator product expansion (OPE), and extracted the splitting functions from the single pole of off-shell 
operator matrix elements (OMEs). The off-shell OMEs are defined as the off-shell matrix elements with an operator insertion, for the case of two 
partons in the external states it is
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𝐴𝑖𝑗 = ⟨𝑗(𝑝)|𝑂𝑖|𝑗(𝑝)⟩ with 𝑝2 < 0 , (2)
where 𝑂𝑖 is a twist-two operator. In the current context, it is the following quark non-singlet operator,

𝑂ns(𝑛) =
𝑖𝑛−1
2

[
𝜓̄𝑖1Δ ⋅ 𝛾(Δ ⋅𝐷)𝑖1𝑖2 (Δ ⋅𝐷)𝑖2𝑖3 ⋯ (Δ ⋅𝐷)𝑖𝑛−1𝑖𝑛

𝜆𝑘
2 𝜓𝑖𝑛

]
, 𝑘 = 3,⋯𝑁2

𝑓 − 1 . (3)

In the above equation, 𝜆𝑘∕2 denotes diagonal generators of the flavor group SU(𝑁𝑓 ), and Δ is a light-like reference vector with Δ2 = 0. The symbol 
𝜓 represents the quark field, and 𝐷𝜇

𝑖𝑗 = 𝜕𝜇𝛿𝑖𝑗 − 𝑖𝑔𝑠𝑇
𝑎
𝑖𝑗𝐴

𝑎
𝜇 is the covariant derivative in the fundamental representation of a general gauge group.

Compared with the conceptually complicated renormalization [23–26,22] in the singlet sector, the non-singlet sector is much easier and allows 
for a straight-forward multiplicative renormalization:

𝑂R
ns(𝜇,𝑛) =𝑍ns(𝜇,𝑛)𝑂B

ns(𝑛) , (4)
where superscripts B and R are used to represent the bare and renormalized operators, respectively. The renormalized operator satisfies the following 
renormalization group equation,

𝑑𝑂R
ns(𝜇,𝑛)
𝑑 ln𝜇 = −2𝛾ns(𝜇,𝑛)𝑂R

ns(𝜇,𝑛) , (5)

which defines the anomalous dimension 𝛾ns of the non-singlet, twist-two operator. From equation (5) and the fact of the bare operator 𝑂B
ns does not 

depend on the scale 𝜇, it is easy to see that
𝑑𝑍ns(𝜇,𝑛)
𝑑 ln𝜇 = −2𝛾ns(𝜇,𝑛)𝑍ns(𝜇,𝑛) . (6)

It is not difficult to solve the above equation order by order in 𝑎𝑠 = 𝛼𝑠∕(4𝜋) with the help of the 𝑑-dimensional QCD 𝛽 function

𝛽(𝑎𝑠, 𝜖) =
𝑑𝑎𝑠
𝑑 ln𝜇 = −2𝜖 𝑎𝑠 − 2𝑎𝑠

∞∑
𝑖=0

𝑎𝑖+1𝑠 𝛽𝑖 , (7)

where 𝜖 = (4 − 𝑑)∕2. To four-loop order, the explicit result is given by

𝑍ns =
∞∑
𝑙=0

𝑎𝑙𝑠𝑍
(𝑙)
ns

=1 + 𝑎𝑠
𝛾 (0)ns
𝜖

+ 𝑎2𝑠

(
𝛾 (1)ns
2𝜖 + 1

2𝜖2

[
− 𝛽0𝛾 (0)ns +

(
𝛾 (0)ns

)2]
)

+ 𝑎3𝑠

(
1
3𝜖 𝛾

(2)
ns + 1

6𝜖2

[
− 2𝛽1𝛾 (0)ns − 2𝛽0𝛾 (1)ns + 3𝛾 (0)ns 𝛾

(1)
ns

]

+ 1
6𝜖3

[
2𝛽20𝛾

(0)
ns − 3𝛽0

(
𝛾 (0)ns

)2 + (
𝛾 (0)ns

)3]
)

+
𝑎4𝑠
24

(
1
𝜖4

[
− 6𝛽30𝛾

(0)
ns − 6𝛽0(𝛾 (0)ns )

3 + 11𝛽20 (𝛾
(0)
ns )

2 + (𝛾 (0)ns )
4
]

+ 1
𝜖3

[
6𝛽20𝛾

(1)
ns − 14𝛽0𝛾 (0)ns 𝛾

(1)
ns + 12𝛽0𝛽1𝛾 (0)ns + 6𝛾 (1)ns (𝛾

(0)
ns )

2 − 8𝛽1(𝛾 (0)ns )
2
]

+ 1
𝜖2

[
−6𝛽0𝛾 (2)ns − 6𝛽1𝛾 (1)ns − 6𝛽2𝛾 (0)ns + 8𝛾 (0)ns 𝛾

(2)
ns + 3(𝛾 (1)ns )

2
]
+

6𝛾 (3)ns
𝜖

)
+(𝑎5𝑠 ) , (8)

where 𝛾 (𝑙)ns is defined as

𝛾ns =
∞∑
𝑙=0

𝑎𝑙+1𝑠 𝛾 (𝑙)ns . (9)

Therefore, the four-loop, non-singlet anomalous dimension 𝛾 (3)ns can be determined from the single pole in 𝜖 of the renormalization constant 𝑍ns. By 
separating the even and odd moments, 𝛾ns can be decomposed as

𝛾ns =
1 + (−1)𝑛

2 𝛾+ns +
1− (−1)𝑛

2
(
𝛾−ns + 𝛾

s
ns
)
, (10)

where 𝛾sns represents the flavor singlet but valence non-singlet contribution.
To extract the 𝑍ns order by order in 𝑎𝑠, we insert equation (4) between two off-shell external quark states,

⟨𝑞|𝑂R
ns|𝑞⟩ =𝑍𝑞

[
𝑍ns ⟨𝑞|𝑂B

ns|𝑞⟩
B
]||||𝑎B𝑠→𝑍𝑎𝑠 𝑎𝑠 , 𝜉B→𝑍𝑔𝜉

. (11)

Here we also need to consider the renormalization of the wave function, the strong-coupling constant, and the gauge parameter, all for 𝜉 = 1 in 
Feynman gauge. In addition to the explicit expressions for various contributions to 𝑍𝑞 , 𝑍𝑔 and 𝑍𝑎𝑠 that were collected in the appendix of the 
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Fig. 1. Sample Feynman diagrams for the 𝑁𝑓 𝐶3
𝐹 contribution to the four-loop, non-singlet OME with two external quarks. The crossed circle represents the 

non-singlet operator 𝑂ns.

reference [14], we need only one more contribution to these renormalization constants, the 𝑁𝑓 𝐶3
𝐹 part of 𝑍(4)

𝑞 , which we document in appendix A. 
In the following, we compute the 𝑁𝑓 𝐶3

𝐹 contribution to the four-loop corrections to the off-shell OME ⟨𝑞|𝑂B
ns|𝑞⟩

B.

2. Methods and computations

We generated the relevant Feynman diagrams with an insertion of the operator 𝑂ns by QGRAF [27]; some sample diagrams can be found in Fig. 1. 
The required Feynman rules for the operator 𝑂ns exhibit some peculiar patterns, i.e., terms like (Δ ⋅ 𝑝)𝑛−1 appear and thus prevent the application of 
standard integration-by-parts (IBP) [28–30] algorithms in moment 𝑛-space. A method first proposed in [31,32] was used to overcome this difficulty, 
by summing these peculiar terms into linear propagators using a tracing parameter 𝑡. As an example,

(Δ ⋅ 𝑝)𝑛−1 →
∞∑
𝑛=1

𝑡𝑛 (Δ ⋅ 𝑝)𝑛−1 = 𝑡
1− 𝑡Δ ⋅ 𝑝

. (12)

After the desired manipulations have been performed, one can reexpand in 𝑡 to obtain the result for some moment 𝑛. This method allows the 
applications of standard IBP algorithms and has been widely used to study the matching coefficient of heavy flavor quark contributions in deep-
inelastic scattering [32–35] and splitting function calculations [36,37,22] from off-shell OMEs.

We translated the Feynman rules in 𝑛-space to parameter 𝑡-space and then worked in 𝑡-space throughout. For this calculation, we used Mathe-
matica to substitute the Feynman rules in 𝑡-space into the Feynman diagrams. FORM [38] was used to evaluate the traces of Dirac and color matrices. 
Regarding topology classification, we first used Apart [39] and MultivariateApart [40] (see also [41–43]) to eliminate the linear dependence 
among Feynman propagators. Then we classified all resulting topologies into integral families with 18 propagators by an in-house code. The code 
searches for the possible loop momentum transformations to see if one topology can be mapped into another one or not. To reduce the size of the 
unreduced amplitude, we first employed Reduze2 [44] to eliminate integrals from zero sectors, and then applied shift relations to relate integrals 
between different sectors.

The IBP reductions for the amplitude were done by the private code Finred, which employs finite field sampling and rational reconstruction 
techniques [45–47]. It is well-established that optimizing the input IBP system can significantly enhance the efficiency of the reduction process. 
In our study, we achieved this optimization by utilizing the linear algebra method [48] in order to exert control over the generation of squared 
propagators.

We used the differential equation (DE) method [49] to determine the solutions of the master integrals. The derivation of the system of differential 
equations for the master integrals follows the same approach as used for the amplitude reduction. In the first step, we select master integrals 
according to our generic integral ordering, and chose to ignore IBP relations generated from seeds in supersectors even if this leads to missing linear 
relations between the master integrals. The rational functions in the differential equations are therefore somewhat complicated and involve rational 
numbers with many digits. Consequently, for their reconstruction, we employed a significant number of samples for the variables and several finite 
fields, each with a cardinality of order (263). We chose to reveal these missing “hidden” relations by exploring the so-called scaling relations (see 
e.g. [50]) of the master integrals. In our case, the scaling relations read

𝑝2
𝜕𝐼𝑖
𝜕𝑝2

=
[𝐼𝑖]
2 𝐼𝑖 , (13)

where 𝐼𝑖 represents the 𝑖-th master integral and [𝐼𝑖] denotes mass dimension of 𝐼𝑖, and we set [𝑡] = 0, [Δ] = −1 such that both Δ ⋅ 𝑝 and 𝑡 are 
dimensionless. In practice, through IBP reductions, the left-hand side of (13) can not always be reduced to the simple form on the right-hand 
side. By enforcing the above scaling relations, we obtained several extra relations among the master integrals. Those additional relations greatly 
simplified the DE system. In the current case, the 𝑁𝑓 𝐶3

𝐹 contribution, we found 658 remaining master integrals, and the corresponding DE system 
with respect to 𝑡 can be cast into 𝜖-form [51] by applying the codes CANONICA [52,53] and Libra [54,55]. We obtained

d𝐼(𝑡, 𝜖) = 𝜖
∑
𝑖
d ln(𝑡− 𝑡𝑖)𝐀(𝑖)𝐼(𝑡, 𝜖) , (14)

where we had set 𝑝2 = −1 and Δ ⋅ 𝑝 = 1. 𝐼 is the vector of the new canonical master integrals, 𝐀(𝑖) are matrices involving rational numbers only, and 
𝑡𝑖 = 0, ±1, 2. Interestingly, in addition to the letters appearing in harmonic polylogarithms (HPLs) [56], a new letter 𝑡 − 2 appears. This new letter 
enters the solutions of canonical master integrals starting from transcendental weight 7 only and does not contribute to the 𝑁𝑓 𝐶3

𝐹 contributions to 
the non-singlet splitting functions. It would be curious to see if the new letter contributes, e.g., to the finite part of corresponding off-shell OMEs or 
not. We leave it to future study.

The boundary conditions can be conveniently chosen in the limit 𝑡 → 0, where the linear propagators trivialize, and additional relations between 
the master integrals allow for their further reduction. The resulting master integrals are four-loop self-energy integrals [57,58], which in the present 
case were mapped to the master integrals for two-point functions in [59,60]. By mapping to self-energy master integrals, we were able to determine 
the boundary conditions for all 658 master integrals. In practice, it is easier to first apply the regularity conditions: no branch cuts can be generated 
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in the Taylor series of equation (12). We thus solved the canonical differential equations in the limit 𝑡 → 0 by keeping 𝜖 to all orders, and we set 𝑐𝑎
to zero for terms 𝑐𝑎 𝑡±𝑎𝜖 (𝑎 is a positive integer) in the resulting solutions. In this way, we expanded the canonical solutions to transcendental weight 
7 in terms of HPLs and generalized polylogarithms (GPLs) with the letter 𝑡 − 2.

The amplitude reduction was performed directly in terms of the canonical basis, where we can use the anticipated factorization of the 𝜖 and 𝑡
dependence in the denominators, and construct the denominators first [61,40]. This helps to reduce the number of numerical samples required to 
reconstruct the functional dependence in 𝜖 and 𝑡. We subsequently inserted the solutions of the canonical basis into the amplitude and expanded the 
resulting amplitude order by order in 𝜖. We observed the emergence of Harmonic Polylogarithms (HPLs) with weights up to 6 in the single pole of 
the amplitude. For this 𝜖-expanded amplitude, we reconstructed also the rational numbers from their images in various finite fields. It is expected 
that the rational numbers appearing in the 𝜖-expanded amplitude are simpler, thus fewer finite fields are required for their reconstruction.

In this manner, we expressed the result for the 𝑁𝑓 𝐶3
𝐹 contribution to the bare four-loop OME, denoted as ⟨𝑞|𝑂B

ns|𝑞⟩
B, in terms of Harmonic 

Polylogarithms (HPLs) in parameter-𝑡 space. Subsequently, we transformed this expression to 𝑛-space using harmonic sums [62,63], aided by the
HarmonicSums package [64–69]. This transformation yielded the 𝑛-space representation for the bare OME.

3. Results

In the previous section, we obtained the 𝑁𝑓 𝐶3
𝐹 contribution to four-loop bare OME to the single pole in 𝜖 in 𝑛-space. The constant 𝑍ns can be 

readily extracted from the renormalization equation (11). Notice that we also need the 3-loop corrections to the bare OME to order 𝜖0, which was 
obtained previously for all color structures in [22]. We checked explicitly that the obtained 𝑍ns has the same form as in equation (8), and thus 
allows the determination of the 𝑁𝑓 𝐶3

𝐹 contributions to 𝛾 (3)ns from the single pole of 𝑍ns. The flavor singlet but valence non-singlet contribution 𝛾sns
in (10) vanishes for the color structure 𝑁𝑓 𝐶3

𝐹 , which allows us to write down our result in the following unified form,

𝛾 (3) ,±ns (𝑛)|||𝑁𝑓 𝐶3
𝐹
= 1 ± (−1)𝑛

2 𝛾 (3)ns (𝑛)
|||𝑁𝑓 𝐶3

𝐹
, (15)

with

𝛾 (3)ns (𝑛)
|||𝑁𝑓 𝐶3

𝐹
= (−1)𝑛

{(
448

3(𝑛+ 1) +
448

3(𝑛+ 1)2
− 448

3𝑛 + 448
3𝑛2

)
𝑆−4

+
(
− 1184
3(𝑛+ 1) −

320
(𝑛+ 1)2

+ 640
3(𝑛+ 1)3

+ 1184
3𝑛 − 448

𝑛2
+ 128

3𝑛3

)
𝑆−3

+
(

480
𝑛+ 1 + 544

3(𝑛+ 1)2
+ 128

3(𝑛+ 1)3
+ 64

3(𝑛+ 1)4
− 480

𝑛
+ 800

3𝑛2
− 128
𝑛3

+ 64
3𝑛4

)
𝑆−2

+
(
− 1968
𝑛+ 1 − 1376

3(𝑛+ 1)2
− 464

3(𝑛+ 1)3
+ 128

(𝑛+ 1)4
− 128

(𝑛+ 1)5
+ 1968

𝑛
− 4384

3𝑛2
+ 1136

𝑛3

− 1152
𝑛4

+ 896
3𝑛5

)
𝑆1 +

(
− 416

3(𝑛+ 1) −
224

3(𝑛+ 1)2
+ 64

3(𝑛+ 1)3
− 320

3(𝑛+ 1)4
+ 416

3𝑛 − 224
3𝑛2

− 64
3𝑛3

− 320
3𝑛4

)
𝑆2 +

(
− 32

3(𝑛+ 1) +
64

3(𝑛+ 1)3
+ 32

3𝑛 − 64
3𝑛3

)
𝑆3

+
(

64
𝑛+ 1 + 64

(𝑛+ 1)2
− 64
𝑛

+ 64
𝑛2

)
𝑆4 +

(
− 32
𝑛+ 1 − 128

(𝑛+ 1)2
+ 1088

3(𝑛+ 1)3
+ 32
𝑛

− 256
𝑛2

− 320
3𝑛3

)
𝜁3 +

(
256
𝑛+ 1 + 256

(𝑛+ 1)2
− 256

𝑛
+ 256
𝑛2

)
𝑆1𝜁3 +

(
96
𝑛+ 1 + 96

(𝑛+ 1)2
− 96
𝑛

+ 96
𝑛2

)
𝜁4

+
(

128
𝑛+ 1 + 128

(𝑛+ 1)2
− 128

𝑛
+ 128
𝑛2

)
𝑆−2,−2 +

(
128
3𝑛 − 128

3(𝑛+ 1)

)
𝑆−2,1

+
(

1984
3(𝑛+ 1) +

1664
3(𝑛+ 1)2

− 1280
3(𝑛+ 1)3

− 1984
3𝑛 + 2432

3𝑛2
− 256

3𝑛3

)
𝑆1,−2

+
(
1280
𝑛+ 1 + 1408

3(𝑛+ 1)2
+ 640

3(𝑛+ 1)3
− 1280

𝑛
+ 2432

3𝑛2
− 1664

3𝑛3
+ 512
𝑛4

)
𝑆1,1

+
(
− 512
3(𝑛+ 1) −

256
3(𝑛+ 1)2

− 256
3(𝑛+ 1)3

+ 512
3𝑛 − 256

3𝑛2
+ 256

3𝑛3

)
𝑆1,2

+
(
− 128
𝑛+ 1 − 128

(𝑛+ 1)2
+ 128

𝑛
− 128
𝑛2

)
𝑆1,3 +

(
128
𝑛+ 1 + 128

(𝑛+ 1)2
− 128

𝑛
+ 128
𝑛2

)
𝑆2,−2

+
(
− 512
3(𝑛+ 1) −

256
3(𝑛+ 1)2

− 256
3(𝑛+ 1)3

+ 512
3𝑛 − 256

3𝑛2
+ 256

3𝑛3

)
𝑆2,1

+
(
− 128
𝑛+ 1 − 128

(𝑛+ 1)2
+ 128

𝑛
− 128
𝑛2

)
𝑆3,1 +

(
− 512
𝑛+ 1 − 512

(𝑛+ 1)2
+ 512

𝑛
− 512
𝑛2

)
𝑆1,1,−2

+ 1488
𝑛

− 1488
𝑛+ 1 − 1376

𝑛2
− 80

(𝑛+ 1)2
+ 952
𝑛3

+ 328
(𝑛+ 1)3

− 1120
3𝑛4

+ 656
3(𝑛+ 1)4

+ 288
𝑛5

+ 928
3(𝑛+ 1)5

− 128
𝑛6

− 1024
3(𝑛+ 1)6

}
+ 512𝑆−6 +

(
− 704
𝑛+ 1 − 352 + 704

𝑛

)
𝑆−5
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+
(

6016
3(𝑛+ 1) −

64
3(𝑛+ 1)2

− 272− 6016
3𝑛 + 704

𝑛2

)
𝑆−4 +

(
− 1584
𝑛+ 1 − 1696

3(𝑛+ 1)2
+ 1024

3(𝑛+ 1)3

− 784
3 + 1584

𝑛
− 5536

3𝑛2
+ 1280

3𝑛3

)
𝑆−3

+
(

656
3(𝑛+ 1) −

800
3(𝑛+ 1)2

− 512
(𝑛+ 1)3

+ 192
(𝑛+ 1)4

− 304
3 − 656

3𝑛 + 512
3𝑛2

− 640
3𝑛3

+ 64
𝑛4

)
𝑆−2

+
(
− 656

3(𝑛+ 1) −
856

3(𝑛+ 1)2
− 360

(𝑛+ 1)3
− 1760

3(𝑛+ 1)4
+ 2048

3(𝑛+ 1)5
+ 572

9 + 656
3𝑛 − 216

𝑛2

+ 184
3𝑛3

− 224
3𝑛4

+ 256
3𝑛5

)
𝑆1 +

(
− 88
𝑛+ 1 − 72

(𝑛+ 1)2
− 96

(𝑛+ 1)3
+ 544

3(𝑛+ 1)4
− 638

3 + 88
𝑛

− 568
3𝑛2

− 224
3𝑛3

+ 160
3𝑛4

)
𝑆2 +

(
1184

3(𝑛+ 1) +
896

3(𝑛+ 1)2
+ 8

3 − 1184
3𝑛 + 448

3𝑛2
+ 128

3𝑛3

)
𝑆3

+
(
− 928
3(𝑛+ 1) −

32
3(𝑛+ 1)2

+ 136 + 928
3𝑛 + 160

𝑛2

)
𝑆4 +

(
− 64
𝑛+ 1 + 928

3 + 64
𝑛

)
𝑆5 −

256𝑆6
3

+
(
− 920
3(𝑛+ 1) −

512
3(𝑛+ 1)2

− 640
3(𝑛+ 1)3

− 212
3 + 920

3𝑛 − 704
3𝑛2

+ 256
3𝑛3

)
𝜁3 + 256𝑆−3𝜁3

+
(
− 256
𝑛+ 1 + 640 + 256

𝑛

)
𝑆−2𝜁3 +

(
− 128
(𝑛+ 1)2

+ 592
3 + 128

𝑛2

)
𝑆1𝜁3

+
(
− 128
𝑛+ 1 + 192 + 128

𝑛

)
𝑆2𝜁3 −

128𝑆3𝜁3
3 − 192𝑆−2𝜁4 − 120𝜁4

+
(
− 160
𝑛+ 1 + 240 + 160

𝑛

)
𝜁5 − 320𝑆1𝜁5 −

1408𝑆−5,1
3 − 256

3 𝑆−4,−2

+
(

512
3(𝑛+ 1) + 1600− 512

3𝑛

)
𝑆−4,1 + 256𝑆−4,2 − 128𝑆−3,−3

+
(

128
3(𝑛+ 1) +

1024
3 − 128

3𝑛

)
𝑆−3,−2 +

(
− 7040
3(𝑛+ 1) +

1024
3(𝑛+ 1)2

− 160 + 7040
3𝑛 − 512

3𝑛2

)
𝑆−3,1

+
(
− 1280
3(𝑛+ 1) +

640
3 + 1280

3𝑛

)
𝑆−3,2 −

896
3 𝑆−2,−4 +

(
− 128
𝑛+ 1 + 640 + 128

𝑛

)
𝑆−2,−3

+
(

896
3(𝑛+ 1) −

896
3(𝑛+ 1)2

− 896
3𝑛 − 128

𝑛2

)
𝑆−2,−2 +

(
6880

3(𝑛+ 1) +
1088

(𝑛+ 1)2
− 1280

3(𝑛+ 1)3
+ 64

− 6880
3𝑛 + 6848

3𝑛2
− 1280

3𝑛3

)
𝑆−2,1 − 512𝜁3𝑆−2,1 +

(
128

3(𝑛+ 1) +
896

3(𝑛+ 1)2
− 128

3𝑛 + 896
3𝑛2

)
𝑆−2,2

+
(128
𝑛

− 128
𝑛+ 1

)
𝑆−2,3 − 128𝑆−2,4 − 1408𝑆1,−5 +

(
2560

3(𝑛+ 1) +
6656
3 − 2560

3𝑛

)
𝑆1,−4

+
(
− 8960
3(𝑛+ 1) +

512
(𝑛+ 1)2

+ 160 + 8960
3𝑛 − 512

𝑛2

)
𝑆1,−3

+
(
− 1792
3(𝑛+ 1)2

+ 512
3(𝑛+ 1)3

+ 1760
3 + 1792

3𝑛2
− 512

3𝑛3

)
𝑆1,−2 − 512𝜁3𝑆1,−2

+
(

320
3(𝑛+ 1) +

112
(𝑛+ 1)2

− 192
(𝑛+ 1)3

+ 640
3(𝑛+ 1)4

− 320
3𝑛 + 112

𝑛2
+ 192
𝑛3

− 128
3𝑛4

)
𝑆1,1

+
(
− 896
3(𝑛+ 1)2

+ 128
(𝑛+ 1)3

+ 880
3 + 896

3𝑛2
− 128
𝑛3

)
𝑆1,2 − 256𝜁3𝑆1,2

+
(

512
3(𝑛+ 1)2

+ 320− 512
3𝑛2

)
𝑆1,3 +

(
1280

3(𝑛+ 1) −
2624
3 − 1280

3𝑛

)
𝑆1,4 − 128𝑆1,5

−
4736𝑆2,−4

3 +
( 512
𝑛+ 1 + 7936

3 − 512
𝑛

)
𝑆2,−3

+
(
− 1792
3(𝑛+ 1) +

512
3(𝑛+ 1)2

+ 160 + 1792
3𝑛 − 512

3𝑛2

)
𝑆2,−2

+
(
− 896
3(𝑛+ 1)2

+ 128
(𝑛+ 1)3

+ 880
3 + 896

3𝑛2
− 128
𝑛3

)
𝑆2,1 − 256𝜁3𝑆2,1

+
(
− 896
3(𝑛+ 1) +

128
(𝑛+ 1)2

+ 160 + 896
3𝑛 − 128

𝑛2

)
𝑆2,2 +

(
512

3(𝑛+ 1) −
320
3 − 512

3𝑛

)
𝑆2,3

−
1792𝑆2,4

3 −
3328𝑆3,−3

3 +
( 256
𝑛+ 1 + 512− 256

𝑛

)
𝑆3,−2

+
(
− 1792
3(𝑛+ 1) +

640
3(𝑛+ 1)2

− 64 + 1792
3𝑛 − 640

3𝑛2

)
𝑆3,1 +

(
512

3(𝑛+ 1) +
704
3 − 512

3𝑛

)
𝑆3,2
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− 384𝑆3,3 −
1024𝑆4,−2

3 +
(

1024
3(𝑛+ 1) +

448
3 − 1024

3𝑛

)
𝑆4,1 −

896𝑆4,2
3 −

896𝑆5,1
3

− 1024𝑆−4,1,1 +
256
3 𝑆−3,1,−2 +

(
4096

3(𝑛+ 1) + 256− 4096
3𝑛

)
𝑆−3,1,1

− 512
3 𝑆−3,1,2 −

512
3 𝑆−3,2,1 − 256𝑆−2,−2,−2 +

(
− 256
3(𝑛+ 1) − 1280 + 256

3𝑛

)
𝑆−2,1,−2

+
(
− 1280
𝑛+ 1 − 2560

3(𝑛+ 1)2
+ 1280

𝑛
− 3584

3𝑛2

)
𝑆−2,1,1 +

(
512

3(𝑛+ 1) −
512
3𝑛

)
𝑆−2,1,2 + 256𝑆−2,1,3

− 256𝑆−2,2,−2 +
(

512
3(𝑛+ 1) −

512
3𝑛

)
𝑆−2,2,1 + 256𝑆−2,3,1 +

1024
3 𝑆1,−4,1 +

256
3 𝑆1,−3,−2

+
(

1024
3(𝑛+ 1) −

11008
3 − 1024

3𝑛

)
𝑆1,−3,1 −

2560
3 𝑆1,−3,2 − 256𝑆1,−2,−3

+
(
− 1024
3(𝑛+ 1) +

1792
3 + 1024

3𝑛

)
𝑆1,−2,−2 +

(
3584
𝑛+ 1 − 1024

3(𝑛+ 1)2
+ 320− 3584

𝑛

+ 1024
3𝑛2

)
𝑆1,−2,1 +

(
2048

3(𝑛+ 1) −
1280
3 − 2048

3𝑛

)
𝑆1,−2,2 − 256𝑆1,−2,3 +

5120
3 𝑆1,1,−4

− 12800
3 𝑆1,1,−3 +

2560
3 𝑆1,1,4 + 1024𝑆1,2,−3 −

2560
3 𝑆1,2,−2 −

1280
3 𝑆1,2,2 +

1024
3 𝑆1,2,3

+ 512𝑆1,3,−2 −
2560
3 𝑆1,3,1 +

1024
3 𝑆1,3,2 +

2048
3 𝑆1,4,1 +

512
3 𝑆2,−3,1 +

512
3 𝑆2,−2,−2

+
(
− 1024
3(𝑛+ 1) −

9728
3 + 1024

3𝑛

)
𝑆2,−2,1 −

2048
3 𝑆2,−2,2 + 1024𝑆2,1,−3 −

2560
3 𝑆2,1,−2

− 1280
3 𝑆2,1,2 +

1024
3 𝑆2,1,3 +

1024
3 𝑆2,2,−2 −

1280
3 𝑆2,2,1 + 256𝑆2,2,2 +

1280
3 𝑆2,3,1

+ 2048
3 𝑆3,−2,1 +

1024
3 𝑆3,1,−2 +

(
256

3(𝑛+ 1) −
896
3 − 256

3𝑛

)
𝑆3,1,1 + 256𝑆3,1,2 + 256𝑆3,2,1

+ 512
3 𝑆4,1,1 + 1024𝑆−2,1,1,−2 +

8192
3 𝑆1,−3,1,1 −

512
3 𝑆1,−2,1,−2

+
(
− 2048
𝑛+ 1 − 512 + 2048

𝑛

)
𝑆1,−2,1,1 +

1024
3 𝑆1,−2,1,2 +

1024
3 𝑆1,−2,2,1 +

2048
3 𝑆1,1,−3,1

− 2048
3 𝑆1,1,−2,−2 + 5120𝑆1,1,−2,1 +

4096
3 𝑆1,1,−2,2 −

2048
3 𝑆1,2,−2,1 +

512
3 𝑆1,3,1,1

+ 7168
3 𝑆2,−2,1,1 −

2048
3 𝑆2,1,−2,1 − 4096𝑆1,1,−2,1,1 −

15802
9𝑛 + 15802

9(𝑛+ 1) +
4628
3𝑛2

+ 86
3(𝑛+ 1)2

− 2516
3𝑛3

− 340
(𝑛+ 1)3

+ 1024
3𝑛4

− 536
3(𝑛+ 1)4

− 704
3𝑛5

− 1280
3(𝑛+ 1)5

+ 224
3𝑛6

+ 1184
3(𝑛+ 1)6

− 32 . (16)

Here, we follow the notation used in [14] and omit the argument 𝑛 of the harmonic sums defined by

𝑆±𝑚1 ,𝑚2 ,⋯𝑚𝑑 (𝑛) =
𝑛∑
𝑗=1

(±1)𝑗 𝑗−𝑚1𝑆𝑚2 ,⋯𝑚𝑑 (𝑗) (𝑚𝑖 ∈ℕ),

𝑆∅(𝑛) = 1 . (17)
Our result contains harmonic sums up to weight 6. Unlike for the singlet anomalous dimensions we computed before, we notice that only two kinds 
of denominators 1∕𝑛 and 1∕(𝑛 + 1) appear in the above equation. Furthermore, the coefficients of the first power of 1∕𝑛 and 1∕(𝑛 + 1) differ by a 
minus sign only, thus we can always write them as a single term, for example,

256
3(𝑛+ 1) −

256
3𝑛 = −256

3𝑛(𝑛+ 1) . (18)

The above all-𝑛 result in (16) is new. Evaluating the result for fixed 𝑛, we found full agreement with the fixed 𝑛 ≤ 16 results derived in [13]. 
Moreover, the all-𝑛 results for 𝜁4 and 𝜁5 terms have been derived in [70] and [13], respectively. For these results, we also found full agreement.

Applying an inverse Mellin transformation to equation (1), we obtained the corresponding splitting functions in momentum fraction 𝑥-space. 
This is achieved with the help of the function InvMellin in the package HarmonicSums; alternatively, the method proposed in [71] could be used. 
The explicit expressions for the corresponding splitting functions are provided in the ancillary files.

It is interesting to study the various limits of the splitting functions. In the limit 𝑥 → 0, the result is free of power divergences and reads

𝑃 (3) ,+
ns

|||𝑁𝑓 𝐶3
𝐹
=− 4

9 log(𝑥)5 − 20
9 log(𝑥)4 +

(
64𝜁2 −

16
3

)
log(𝑥)3 +

(1840
3 𝜁2 +

256
3 𝜁3 −

170
3

)
log(𝑥)2

+
(3592

3 𝜁2 +
2080
3 𝜁3 + 304𝜁4 +

500
3

)
log(𝑥) + 256

3 𝜁3𝜁2 +
5032
3 𝜁2 + 1120𝜁3

− 1928
3 𝜁4 −

304
3 𝜁5 +

2410
9 +(𝑥), (19)
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𝑃 (3) ,−
ns

|||𝑁𝑓 𝐶3
𝐹
=76
45 log(𝑥)5 + 196

9 log(𝑥)4 +
(1072

9 − 128
3 𝜁2

)
log(𝑥)3

+
(
−1744

3 𝜁2 −
320
3 𝜁3 +

2686
3

)
log(𝑥)2 +

(
−2936

3 𝜁2 − 1248𝜁3 − 416𝜁4 +
8756
3

)
log(𝑥)

− 832
3 𝜁3𝜁2 − 984𝜁2 − 1248𝜁3 −

776
3 𝜁4 − 208𝜁5 +

29194
9 +(𝑥) . (20)

For 𝑃 (3),+
ns , the double logarithmically enhanced terms proportional to log(𝑥)𝑘 with 𝑘 = 5, 4 have been derived in reference [72], and we find full 

agreement.
In the limit 𝑥 → 1, 𝑃 (3) ,+

ns
|||𝑁𝑓 𝐶3

𝐹
and 𝑃 (3) ,−

ns
|||𝑁𝑓 𝐶3

𝐹
are identical to next-to-leading power, and the result can be written in the form

𝑃 (3) ,+
ns

|||𝑁𝑓 𝐶3
𝐹
≈ 𝑃 (3) ,−

ns
|||𝑁𝑓 𝐶3

𝐹
=𝐴4

|||𝑁𝑓 𝐶3
𝐹

[ 1
1− 𝑥

]
+
+𝐵4

|||𝑁𝑓 𝐶3
𝐹
𝛿(1− 𝑥)

+𝐶4
|||𝑁𝑓 𝐶3

𝐹
log(1− 𝑥) +𝐷4

|||𝑁𝑓 𝐶3
𝐹
−𝐴4

|||𝑁𝑓 𝐶3
𝐹
+(1− 𝑥) , (21)

where the plus distribution is defined as
[ 1
1− 𝑥

]
+
𝑓 (𝑥) = 1

1− 𝑥

(
𝑓 (𝑥)− 𝑓 (1)

)
(22)

for a continuous test function 𝑓 (𝑥). Our explicit results for the coefficients in (21) read

𝐴4
|||𝑁𝑓 𝐶3

𝐹
= 592

3 𝜁3 − 320𝜁5 +
572
9 ,

𝐵4
|||𝑁𝑓 𝐶3

𝐹
= 224𝜁23 − 256

3 𝜁2𝜁3 − 308𝜁3 + 162𝜁2 − 204𝜁4 + 912𝜁5 −
6434
9 𝜁6 + 32 ≃ 80.779482 ,

𝐶4
|||𝑁𝑓 𝐶3

𝐹
= 256𝜁3 −

880
3 ,

𝐷4
|||𝑁𝑓 𝐶3

𝐹
= 80𝜁2 − 192𝜁3 +

464𝜁4
3 − 638

3 . (23)

We note that in this notation, the perturbative expansions of the coefficients are again defined in powers of 𝑎𝑠 , that is,

𝐴(𝑎𝑠) =
∞∑
𝑙=1

𝑎𝑙𝑠𝐴𝑙 , (24)

and similarly for the other coefficients. Interestingly, all results shown in equation (23) have been derived before, numerically for 𝐵4
|||𝑁𝑓𝐶3

𝐹
[73], 

analytically for the others [74–78]. We find perfect agreement with the literature, thus providing another strong check of our all-𝑛 result in (16).
The coefficient of 

[
1

1−𝑥

]
+
denoted by 𝐴(𝑎𝑠) determines the cusp anomalous dimension [79], and we find that our result above agrees with the 

𝑁𝑓 𝐶3
𝐹 contribution to four-loop cusp anomalous dimension in [74–76]. The coefficient of 𝛿(1 − 𝑥) denoted by 𝐵(𝑎𝑠) is called the virtual anomalous 

dimension. In [73], the numerical result 𝐵4
|||𝑁𝑓 𝐶3

𝐹
= 80.780 ±0.005 has been obtained, which agrees well with our analytic result shown above. The 

numeric result of [73], the analytic four-loop collinear anomalous dimensions of [80,76], together with the soft-rapidity correspondence derived 
in [81–83], allowed the numerical determination of the four-loop rapidity anomalous dimensions [84,85]. With our new result for 𝐵4

|||𝑁𝑓 𝐶3
𝐹
in (23)

in hand, we obtained the 𝑁𝑓 𝐶3
𝐹 contribution to the four-loop rapidity anomalous dimension analytically. In the convention of [84], it reads

𝛾R3
|||𝑁𝑓 𝐶3

𝐹
= 40𝜁23 −

2212𝜁3
9 − 37𝜁4 +

800𝜁5
3 + 100𝜁6 −

21037
216 . (25)

Finally, it was conjectured in [77,78] that the all-order results of 𝐶(𝑎𝑠) and 𝐷(𝑎𝑠) can be written in terms of 𝐴(𝑎𝑠) and 𝐵(𝑎𝑠):

𝐶(𝑎𝑠) =
[
𝐴(𝑎𝑠)

]2 , 𝐷(𝑎𝑠) =𝐴(𝑎𝑠)
[
𝐵(𝑎𝑠) +

1
2𝑎𝑠

𝛽(𝑎𝑠)
]

(26)

where for 𝛽(𝑎𝑠) the limit 𝜖 → 0 of equation (7) is implied. Performing expansions for all-order results in the equation (26) to 𝑎4𝑠 , it reads (see 
also [13])

𝐶4 = 2𝐴1𝐴3 +𝐴2
2 , 𝐷4 =

3∑
𝑙=1

𝐴𝑙
(
𝐵4−𝑙 − 𝛽3−𝑙

)
, (27)

where the four-loop quantities 𝐶4 and 𝐷4 depend on 𝐴, 𝐵 and the 𝛽 function from lower-loop orders only. Our results verify the above conjecture 
for the color factor 𝑁𝑓 𝐶3

𝐹 explicitly.

4. Conclusions

We analytically computed the 𝑁𝑓 𝐶3
𝐹 contribution to the four-loop, non-singlet anomalous dimension for arbitrary Mellin moments 𝑛 for the first 

time. The method is based on the framework of the operator product expansion, through the computations of off-shell operator matrix elements. In 
contrast to the singlet case, the renormalization of the non-singlet contributions computed here is conceptually straight-forward. We introduced a 
tracing parameter to replace symbolic exponents depending on 𝑛. In this way, we were able to employ standard integration-by-parts reductions and 
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the method of differential equations to perform the computations. The obtained result in Mellin space is quite simple and involves the denominators 
1∕𝑛 and 1∕(𝑛 + 1) only. We successfully cross-checked our expressions with the expressions for fixed moments 𝑛 ≤ 16 in [13]. From the 𝑛-space 
result, the corresponding splitting function was obtained through an inverse Mellin transformation. For the splitting functions, we discussed the 
limits 𝑥 → 0 and 𝑥 → 1. The limit 𝑥 → 1 is particularly interesting and involves the cusp and virtual anomalous dimensions. The sub-leading power 
contributions have been known before, either numerically or analytically. Our result for the virtual anomalous dimension allowed us to derive the 
𝑁𝑓 𝐶3

𝐹 contribution to the four-loop rapidity anomalous dimension analytically, which had been known only numerically before.
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Appendix A. The quark wave function renormalization constants

The quark wave function renormalization constant

𝑍𝑞 =
∞∑
𝑙=0

𝑍(𝑙)
𝑞 𝑎

𝑙
𝑠 (A.1)

is required to four-loop order [86,87]. The lower order results were collected in the appendix of reference [14], we do not repeat them here, and 
list only the additional contribution needed for this paper:

𝑍(4)
𝑞

|||𝑁𝑓 𝐶3
𝐹
=

𝜉2
4 − 𝜉

3
𝜖3

+
𝜉
2 +

7
8

𝜖2
+

8𝜁3 −
19
6

𝜖
. (A.2)

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .physletb .2023 .138427.
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