
Article

The International Journal of
Robotics Research
2023, Vol. 42(6) 433–458
© The Author(s) 2023
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/02783649231170897
journals.sagepub.com/home/ijr

Autogenerated manipulation primitives

Eric Huang, Xianyi Cheng, Yuemin Mao*, Arnav Gupta* and
Matthew T Mason

Abstract
The central theme in robotic manipulation is that of the robot interacting with the world through physical contact. We tend
to describe that physical contact using specific words that capture the nature of the contact and the action, such as grasp,
roll, pivot, push, pull, tilt, close, open etc. We refer to these situation-specific actions as manipulation primitives. Due to the
nonlinear and nonsmooth nature of physical interaction, roboticists have devoted significant efforts towards studying
individual manipulation primitives. However, studying individual primitives one by one is an inherently limited process, due
engineering costs, overfitting to specific tasks, and lack of robustness to unforeseen variations. These limitations motivate
the main contribution of this paper: a complete and general framework to autogenerate manipulation primitives. To do so,
we develop the theory and computation of contact modes as a means to classify and enumerate manipulation primitives.
The contact modes form a graph, specifically a lattice. Our algorithm to autogenerate manipulation primitives (AMP)
performs graph-based optimization on the contact mode lattice and solves a linear program to generate each primitive. We
designed several experiments to validate our approach. We benchmarked a wide range of contact scenarios and our
pipeline’s runtime was consistently in the 10 s of milliseconds. In simulation, we planned manipulation sequences using
AMP. In the real-world, we showcased the robustness of our approach to real-world modeling errors. We hope that our
contributions will lead to more general and robust approaches for robotic manipulation.

Keywords
Contact modeling, dexterous manipulation, kinematics, dynamics

1. Introduction

Let us assume, for the purposes of a thought experiment,
that everyone in the world owns a futuristic home-service
robot. Suppose robots A, B, and C are all tasked with
picking up packages recently delivered to their respective
owners. Robot A walks out the front door and locates the
package which is a medium-sized cardboard box. The robot
slips its hands into the box’s hand-holds, lifts the box into
the air, and walks back home. Robot B is greeted with a
shrink-wrapped case of beverages outside the front door.
Since there are no hand-holds, the robot first attempts to lift
the case of beverages by compressing opposing sides of the
case with its hands. However, the weight of the beverages
cause the hand contacts to slip and the case to thump back
onto the ground. Robot B is forced to devise a different
strategy. Using its hands on the left and right sides, the robot
tilts the case onto the left edge and slides its right hand
underneath the right edge. Next, the robot tilts the case
forward onto the front edge and slides the left hand un-
derneath. Now that both hands are underneath with no
chance of slippage, robot B lifts the package and returns
indoors. Robot C is greeted with a rolled up rug leaning
against the doorway. The rug is too heavy to pick up and the
robot must pivot this column-shaped item until it is resting

on the ground. Through a long sequence of pushes and
pulls, the robot incrementally maneuvers the rug until the
short end is facing the door. Finally, robot C drags the rug
indoors.

The above vignettes about robots A, B, and C illustrate
the need for a library of robotic manipulation primitives
which can generalize across objects and scenarios. In this
work, we define a manipulation primitive as a basic robot
action which can serve as a building block for more
complex behaviors. Examples of manipulation primitives
include pushing, pulling, grasping, lifting, pivoting,
throwing, etc. Robot A represented an ideal case where
the robot could use a single manipulation primitive to
accomplish its task. Robot B encountered a significant
model error during execution. The additional weight of
the beverage case caused the bimanual compressive grasp

Carnegie Mellon University, Pittsburgh, PA, USA

Yuemin Mao and Arnav Gupta contributed equally

Corresponding author:
Xianyi Cheng, Department of Mechanical Engineering, Carnegie Mellon
University, 5000 Forbes Ave, Pittsburgh, PA 15213-3890, USA.
Email: xianyic@andrew.cmu.edu

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/02783649231170897
https://journals.sagepub.com/home/ijr
https://orcid.org/0000-0002-2182-2770
https://orcid.org/0000-0001-8342-9459
mailto:xianyic@andrew.cmu.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F02783649231170897&domain=pdf&date_stamp=2023-05-17

to fail. However, the robot was able to robustly recover
from the model failure by using a different set of prim-
itives from its library. Robot C illustrated how long se-
quences of manipulation primitives are required to
accomplish difficult tasks. We can plan such a sequence
using search-based algorithms and a library of manipu-
lation primitives. The goal of this paper is to introduce a
method for automatically generating a library of robotic
manipulation primitives.

This special issue publication extends and revises the
material first presented in Huang et al. (2020). The previous
publication presented the first-known theoretical and
computational framework for contact mode enumeration in
3D environments. In a system of rigid bodies with friction,
contact modes are an interpretable, but not quite semantic,
description of rigid body motion which classify the relative
motion at each contact point as contacting or separating and
sliding or sticking. The contact mode encodes the velocity
and, therefore, the dynamics of the system at instantaneous
point in time. This framework forms the basis for our efforts
towards the types of dexterous manipulation exemplified by
robots A, B, and C. As a first contribution, this paper
improves the computational complexity of sliding-sticking
contact mode enumeration by a d-th-root factor compared to
the previously state-of-the-art algorithm published in Huang
et al. (2020). For our main contribution, this paper extends
the theoretical and computational framework of contact
modes into a principled method to autogenerate robotic
manipulation primitives (AMP). The AMP method gener-
ates a library of manipulation primitives by enumerating the
contact modes of a target object and selecting the contact
modes, or rather, manipulation primitives, which are quasi-
statically feasible. In this work, we use contact modes to
parameterize the set of possible manipulation primitives.
This parameterization is based on the following idea. First,
the contact modes cover the entire tangent space of the
object. Therefore, the set of contact modes represents all the
ways an object can be moved. Second, under a polyhedral
friction model, each contact mode parameterizes a convex
region of the state space with smooth dynamics. Therefore,
given a contact mode and a convex cost function, we can
quickly and easily find a sequence of controls to move the
object in a desired direction i.e., the manipulation primitive,
using a direct single shooting method (Kelly 2017). Because
the dynamics are convex within each contact mode, the
AMP method can generate an entire library of manipulation
primitives in tens of milliseconds.

The rest of this paragraph outlines the remainder of this
paper and highlights new additions with respect to Huang
et al. (2020). Section 2 discusses related work directly
related to this paper’s technical contributions. Next, contact
modes are formally introduced in Section 3. This section is
the theoretical foundation for the rest of the paper because it
enables us to view contact modes as kinematic, geometric,
and combinatorial structures. Sections 4 and 5 are con-
cerned with the enumeration of contact modes. The latter
also describes a new partial hyperplane arrangement

algorithm for sliding-sticking mode enumeration. To pre-
pare for autogeneration of manipulation primitives, Section
6 interprets contact-modes from the perspective of frictional
contact dynamics. It is shown that the non-convex structure
of linearized frictional contact dynamics can be precisely
decomposed into piece-wise convex components i.e., into
contact modes. Section 7 introduces an algorithm to au-
togenerate manipulation primitive (AMP). Section 8 ex-
amines the validity of our approach through a series of
carefully designed experiments. Section 9 discusses limi-
tations and future work. Finally, Section 10 presents con-
cluding remarks.

2. Related work

2.1. Enumeration of contact modes

This section discusses related work specific to contact
mode enumeration. Mason (2001) sketched an algorithm
for contact mode enumeration in 2D for a single rigid
body that intersects the positive (negative) rotation
centers on the positive (negative) oriented plane and
intersects the rotation centers at infinity on the equator.
Though Mason (2001) upper-bounded the number of
modes at O (n2), by our analysis, the algorithm’s runtime
is actually O (n log n) and the correct number of modes is
Θ(n). Unfortunately, the oriented plane technique does
not generalize to contact mode enumeration in 3D. Later,
Haas-Heger et al. (2018) independently published an
algorithm for partial contact mode enumeration in 2D.
There, they interpret the feasible modes as the regions of
an arrangement of hyperplanes in 3D. However, Haas-
Heger et al. (2018)’s algorithm is at least V (n4) and does
not enumerate separating modes. Disregarding these is-
sues, Haas-Heger et al. (2018)’s work inspired us to
investigate hyperplane arrangements in higher dimen-
sions for our algorithm. Xiao and Ji (2001) created an
algorithm for contacting-separating mode (cs-mode)
enumeration in 3D for the specific case of convex-convex
polyhedra with an explicit limit on the number of allowed
contacts. The authors do not provide a runtime com-
plexity of the algorithm1. However, their work does not
enumerate sliding-sticking modes which are important
for generating dynamically feasible motions. Neither
does their work support non-convex polyhedra, which
our work does. Our work in Huang et al. (2020) and in this
paper represents the most efficient and general method for
contact mode enumeration in 3D to date.

It is well known that frictional contact problems can be
modeled as a complementarity problem or equivalently, a
variational inequality Facchinei and Pang (2007). Within
that theory, it is known that the normal manifold (which is
a linear hyperplane arrangement) divides the solution
space of an affine variational inequality Facchinei and Pang
(2007). Not surprisingly, we found related papers in other
fields containing problems that can be modeled as variational
inequalities Geyer et al. (2010); Potočnik et al. (2004).

434 The International Journal of Robotics Research 42(6)

For example, in the study of digital controllers and power
electronics, Geyer et al. (2010) proposed a mode enu-
meration algorithm for compositional hybrid systems
based on the reverse search technique of Avis and Fukuda
(1996). The contribution of our work (and theirs) is in
presenting the theory in an understandable manner for our
field and optimizing the relevant algorithms for our spe-
cific problem formulation.

The existence of efficient contact mode enumeration algo-
rithms which are polynomial in the number of contacts is not
widely appreciated in the literature. For instance, Greenfield
et al. (2005) used the exponential time algorithm for contact
mode enumeration in 2D. The work in Li et al. (2015) proposed
a 3D contact mode state estimation pipeline that generates the
contact modes offline using the naive exponential enumeration
method. Johnson and Koditschek (2013) published an
optimization-based technique for legged robot leaping which
searched along the contacting-separating mode graph for a
sequence of foot takeoffs. Their application was sufficiently
simple that they could enumerate the modes by hand.

2.2. Autogeneration of manipulation primitives

Our work is based on the linear complementarity formulation
of frictional contact. Horak and Trinkle (2019) compared
various popular frictional contact models used in rigid body
simulation, including the linear complementarity formulation
and the convex relaxation of Todorov (2014), and concluded
that, apart from some minor artifacts, the qualitative be-
haviors of the different models were very similar. Past works
have modeled contact dynamics as a complementarity
problem (Stewart and Trinkle 1996). Several methods exist
for solving complementarity problems, which we categorize
as iterative or direct solution methods. A popular iterative
method is projected Gauss-Seidel (PGS) (Murty and Yu
1988). Stewart and Trinkle (1996) used a direct pivoting
method, Lemke’s algorithm, for solving contacts modeled as
linear complementarity problems.

The theory and algorithms introduced in this paper
were also motivated by the issue of multi-modal con-
strained planning for robotic manipulation. Of the fam-
ilies of methods for constrained motion planning
reviewed by Kingston et al. (2018), our approach falls
into the families of tangent space and atlas methods. Our
publications present the first general tangent space
method for sampling-based robotic manipulation plan-
ning in 2D (Cheng et al., 2021) and 3D (this paper). Prior
work in robotic manipulation planning often focused on
specific manipulation primitives. In the early work of in-
hand regrasping Leveroni (1997), grasp gaits are obtained
from searching on a grasp map developed from the force
closure model. For nonprehensile two-palm manipula-
tion, Erdmann (1998) generated the set of possible mo-
tions by partitioning the configuration space through
primitive operations under different contact modes, and
generate motion plans by searching. More recently,
Chavan-Dafle et al. (2018) combined high-level

sampling-based planning with the motion cones to
achieve prehensible in-hand manipulation with external
pushes. Hou et al. (2018) proposed a fast planning
framework using two reorientation motion primitives for
object reorientation problems. Quite often, researchers
end up designing and implementing their own manipu-
lation primitives (Michelman and Allen 1994; Barry
et al., 2013; King et al., 2015, 2016; Hogan et al.,
2020). Our work in autogenerating manipulation primi-
tives can greatly reduce the engineering effort required
for robotic manipulation planning systems.

Our work is closely related to contact-implicit trajectory
optimization (CITO) (Posa et al., 2014). The output of a CITO
algorithm is a single trajectory which has automatically de-
termined the contact modes at each timestep. One major issue
in CITO is how to solve the non-linear complementarity
constraints generated by frictional contact within an optimi-
zation framework such as SNOPT, IPOPT, mixed integer
convex programming (MICP), differential dynamic pro-
gramming (DDP), etc. (Önol et al., 2018; Posa et al., 2014;
Tassa et al., 2012; Kelly 2017; Landry et al., 2019;Manchester
et al., 2019). Whereas CITO views complementarity con-
straints as a problem to be solved within the trajectory opti-
mizer, our work takes the novel viewpoint that the
complementarity constraints should be solved outside of the
trajectory optimizer. This approach enables us to enumerate
the solutions to the complementarity constraints in tens of
milliseconds, and then perform fixed mode trajectory gener-
ation at a later stage. In addition, a library of manipulation
primitives adds a level of robustness through action diversity
which is difficult to obtain in a principled manner
through CITO.

3. Theory of contact modes

This section reviews the background required to understand
contact modes as kinematic, geometric, and combinatorial
objects. We introduce the normal and tangent velocity con-
straints generated by rigid contacts and describe how they
partition the space of generalized velocities into discrete
contact modes. These constraints form geometric objects
known as polyhedra and partial hyperplane arrangements.
Furthermore, we demonstrate that contact modes exhibit a
partial order. In particular, they form a geometric lattice. The
concepts introduced in this section will be used later on in
developing enumeration and autogeneration algorithms. We
highly recommend working through Figure 1 while reading
this section. In addition, Multimedia Extension one provides
an animated overview of the kinematics, geometry, and
combinatorics of contact modes.

3.1. Contact normal velocity

In a rigid body model of the world, two rigid bodies in
collision cannot penetrate one another. To a first-order
approximation, this generates a linear constraint on their
relative velocities with respect to the contact normal.

Huang et al. 435

This normal velocity constraint can be derived as fol-
lows. Let α and β be two rigid bodies in collision at a point
c2R3. Let gwc 2 SE (3) be the contact frame at a contact
point c with z-axis pointing along β0s surface normal to-
wards α. Let f2R≥0 be the distance between the two
bodies. Taking the derivative of f, we observe that at the
time of contact, the velocity of the two rigid bodies must
satisfy the constraint 0 ≤ _f. This suggests that the relative
motion at the contact point is non-negative in direction of
the contact normal. We can rewrite this in terms of the
generalized (system) velocity _q2Rd

0 ≤ nT
!
J b
αc þ J b

βc

"
_q (1)

where d is the degrees of freedom of the system, n is the
vector [0, 0, 1, 0, 0, 0]T, Jbαc 2R6×d is the body Jacobian of α
to the contact frame, and Jbβc 2R6×d is the body Jacobian of
β to the contact frame. We define a contact to be separating
if (1) is positive and contacting if (1) is equal to zero. We
refer to this classification as the contacting-separating mode
(cs-mode) at that contact. For a system with n contacts, we
can concatenate (1) into a set of linear inequalities

0 ≤N _q,N 2Rn×d (2)

where the i-th row of N is

Ni, : ¼ nTi
!
J b
αici þ J b

βici

"
_q (3)

3.2. Convex polyhedra

Convex polyhedra describe the region of space enclosed
by normal velocity constraints. A hyperplane h = (a, z)
is the set h ¼ ða, zÞ ¼ fx2Rd : aTx ¼ zg. Associated
with each hyperplane h are the positive and negative

halfspaces, h+ and h%. An H polyhedron P4Rd is the
intersection of closed positive halfspaces in the form P ¼
HðA, zÞ ¼ fx2Rd :Ax ≥ zg, for some A2Rn×d , z2Rn. A V
polytope P4Rd is a convex combination of points, i.e. P ¼
VðAÞ ¼ fAt : t ≥ 0,

P
t ¼ 1g for some A2Rn×d . A face F

of a polyhedron P is any set of the form
F ¼ fx2P : cTx ¼ c0g with c2Rd , c0 2R, and cTx ≥ c0
is true for all x 2 P. Figure 2 depicts example polytope faces.
The dimension of a face is defined as the dimension of its
affine hull. The faces of dimensions 0, 1, d% 2, and d% 1 are
called vertices, edges, ridges, and facets, respectively. The
sign of a face F4Rd with respect to a hyperplane h of P is
defined as

signhðFÞ ¼

8
<

:

þ if F4hþ

0 if F4h
% if F4h%

(4)

and the signed vector of a face F with respect to P is the
vector

signðFÞ ¼
#
signh1ðFÞ / signhnðFÞ

$
(5)

where hi is the i-th hyperplane of P. The relative interior of a
face is the set

relintðFÞ ¼ fx2F : ∃ϵs:t:BϵðxÞ\af f ðFÞ4Fg (6)

For a more complete introduction, one can refer to
Ziegler (1995).

3.3. Contacting-separating modes

3.3.1. Theorem. For a system at a given state, let N 2Rn×d

be its normal velocity constraints. The contacting-

Figure 1. From velocity constraints to contact modes (left to right): (a) Input 2D scene with a parallelogram against the wall. The
parallelogram’s coordinate frame is at the geometric center of ‘A’ with x-axis to pointed right and y-axis pointed up. The normals and
tangents are depicted in red and blue, respectively. (b) The normal and tangent velocity constraints are visualized as a hyperplane
arrangementAð½N ; T 'Þ in the velocity space of the parallelogram, ½ _x, _y, _θ'2R3. The positive _x axis is the ray along the visible intersection
of n1, n2, t3. The positive _y axis is the ray along the visible intersection of t1, t2, n3. The positive _θ axis is along the cross-product of the _x
axis and _y axis. The gray sphere serves as a visual aid. Each region of space carved out by the hyperplanes corresponds to a face of the
hyperplane arrangement. The faces which represent feasible (non-penetrating) velocities are marked with a black dot. The faces
correspond exactly with the contact modes of the system and the black dots are example velocities which achieve that contact mode. (c)
For clarity, the hyperplanes are visualized again as their projected geodesics on the visible hemisphere. The partial hyperplane
arrangement Að½N ; T 'Þ\HðN , 0Þ is shaded light gray-blue. The light gray-blue region represents the non-penetrating velocities. (d) The
face lattice L over the feasible faces in the partial hyperplane arrangement. This lattice captures the structure of the contacting-
separating and sliding-sticking modes. The black dots in (c) highlighted with green, purple and orange correspond to the contact modes
highlighted with their respective colors in the lattice in (d).

436 The International Journal of Robotics Research 42(6)

separating modes of this system are the faces of the convex
polyhedra HðN , 0Þ.

Proof. Let mcs be a contacting-separating mode and let
_qcs be a velocity which realizes this mode. SinceHðN , 0Þ
is the disjoint union of the relative interiors of its faces,
_qcs must be contained in the relative interior of a single
face. The sign vector of this face is unique and it is mcs.

3.4. Contact tangent velocity

Coulomb friction is a simple model of dry friction which
characterizes frictional forces based on the relative velocity
of the contact point. The tangent velocity constraints are a
set of hyperplanes that help us classify the relative velocity
of the contact point.

We approximate the infinite tangent velocity directions
by dividing the tangent plane into sectors of equal angles.
Let k be the number of dividing planes (which generate 2k
sectors). We define a basis matrixD such that its i-th column
equals [cos iπ/k, sin iπ/k,0,0,0,0]T. Given a generalized ve-
locity _q, we can use the following equation to determine the
discretized tangent velocity direction

DT
!
J b
αc þ J b

βc

"
_q (7)

where Jbαc and J
b
βc are the body Jacobians from before. We

define a contact to be right-sliding with respect to a
tangent direction if its row in (6) is positive, left-sliding if
its row is negative, and sticking if all rows are zero. We
refer to this classification as the sliding-sticking mode
(ss-mode) at that contact. For a system with n contacts,
we can concatenate (6) into the tangent velocity
constraints

T _q,T 2RðnkÞ×d (8)

3.5. Partial hyperplane arrangements

Hyperplane arrangements describe the regions of space par-
titioned by tangent velocity constraints. A hyperplane ar-
rangement AðHÞ is a set of hyperplanes H = (A, z), for some

A2Rn×d , z2Rn which dissect Rd into different regions of
space. The arrangement is linearwhen z = 0. The signed vector
of a point p with respect to a hyperplane arrangementAðHÞ is
signAðpÞ ¼

#
signh1ðpÞ / signhnðpÞ

$
See Figure 3 for

examples of hyperplane arrangements. The signed vectors of the
points inRd define equivalence classes known as the faces ofA.
That is, given a signed vector s 2 {+,0,%}n, the associated face
is F ¼ fp2Rd : signAðpÞ ¼ sg For a more complete intro-
duction to hyperplane arrangements, one can refer to
Edelsbrunner (2005). A partial hyperplane arrangement is a
hyperplane arrangement with certain hyperplanes restricted to
be one-sided i.e., to be halfspaces. We can express it as
AðHÞ\HðH 0

, 0Þ where H0 is a subset of hyperplanes in H
which are one-sided.

3.6. Sliding-sticking modes

3.6.1. Theorem. For a system at a given state with cs-mode
mcs, let Nc 2Rnc×d be the normal velocity constraints which
are maintaining contact, let Ns 2Rns×d be the normal ve-
locity constraints which are separating, and let Tc 2RðnckÞ×d

be the active tangent velocity constraints. The sliding-
sticking modes are the faces of the hyperplane arrange-
ment AðTcÞ which intersect the relative interior of the
convex polyhedra Hcs ¼ fNc _q ¼ 0,Ns _q ≥ 0g.

Proof. Let mss be a sliding-sticking mode for a given
contacting-separating mode mcs and let _qss be a velocity
which realizes these modes. Since Rd is the disjoint
union of the relative interiors of the faces of AðTcÞ, we
know that the relative interior ofHcs can be written as the
disjoint union of the non-empty intersections of the faces
ofAðTcÞ and Hcs. As before, _qss must be contained in an
unique face of AðTcÞ with sign vector mss.

3.6.2. Corollary. For a system at a given state, let N 2Rn×d ,
f2Rn be its normal velocity constraints and let T 2RðnkÞ×d

be its tangent velocity constraints. The sliding-sticking
modes of this system are contained in the faces of the
hyperplane arrangementAðTÞwhich intersect the boundary
of the convex polyhedra HðN ,fÞ.

3.7. Contact mode lattice

The face lattice describes the hierarchical structure of the
faces of convex polyhedra and hyperplane arrangements.
Consequently, it describes the hierarchical structure of
contact modes and their adjacencies, i.e. it is the contact
mode lattice. A partially ordered set is a set L and a binary
relation ≤ such that for all u, v, w 2 L

u ≤ u ðref lexivityÞ
u ≤ v⋀v ≤w0u ≤w ðtransitivityÞ
u ≤ v⋀v ≤w0u ≤w ðanti-symmetryÞ

(9)

Moreover, a pair of elements u, v are comparable if u ≤ v
or v ≤ u; otherwise, they are incomparable. The faces of a

Figure 2. Faces of a two-dimensional polytope. A one
dimensional face is an edge (left). A zero dimensional face is a
vertex (right).

Huang et al. 437

polyhedra or arrangement form a partially ordered set over
their signed vectors. Signed vectors u, v satisfy u ≤ v if and
only if ui ≤ vi, for all indices i, where individual signs are
compared according to 0 < +, 0 < %, and + and % in-
comparable. A lattice is a partially ordered set L such that
for any elements x, y2L, there exists elements x ⋀ y and
x ⋁ y in L satisfying

ðx⋀y ≥ x, yÞ and ðz2L, z ≥ x, y0z ≥ x⋀yÞ

ðx⋁y ≤ x, yÞ and ðz2L, z ≤ x, y0z ≤ x⋁yÞ (10)

The faces of a polyhedra or arrangement in Rd form a
lattice L known as the face lattice. Figure 4 illustrates
the face lattice of a cube. The face lattice is bounded by
unique minimal and maximal elements which we denote
{0} and {1}, respectively. The face lattice L contains d +
1 proper ranks. The k-th rank contains the faces of
dimension k.

4. Enumeration of
contacting-separating modes

The first step in autogenerating manipulation primitives is to
enumerate contacting-separating modes. Once these modes
are enumerated, we can then enumerate the family of
sliding-sticking modes which belong to each contacting-
separating mode. Geometrically, the contacting-separating
modes are the faces of the polyhedra generated by the
contact normal velocity constraints. This enumeration
problem lies within the domain of computational geometry;
The goal of this section is to reduce the problem into one we
know how to efficiently solve using existing computational
geometry algorithms.

4.1. Polar polytopes

A common technique is to transform the input into a
combinatorially equivalent geometric object, apply some

algorithm, andmap the output back into the input space. The
algorithm drives the choice of transformation, and in this
problem, the convex hull algorithm will allow us to enu-
merate the faces. Therefore, the inputs must be transformed
from halfspaces into points.

Recall that the contact normal velocity constraints
form an H polyhedra. Moreover, the polyhedra is a
polyhedral convex cone which contains the origin. The
cone is combinatorially equivalent to the polytope ob-
tained by taking its vertex-figure (Ziegler 1995). This
allows us to use the following transformation on the
normal velocity constraints. The polar transformation
allows us to easily convert between combinatorially
equivalent H polytopes and V polytopes. Without loss of
generality, let P4Rd be a polytope with 0 2 P. Its polar
polytope P44Rd is the set

P4 ¼
%
c2Rd : cTx ≤ 1,"x2P

&
(11)

The polar polytope can be specified in closed form forH
and V polytopes. If P is a V polytope with 0 2 int(P) and
P ¼ VðAÞ then

P4 ¼ HðA, 1Þ ¼ fx :Ax ≤ 1g (12)

If P is a H polytope with 0 2 int(P) and P ¼ HðA, 1Þ then

P4 ¼ V
!
AT

"
¼
n
AT t : t ≥ 0,

X
t ¼ 1

o
(13)

Figure 5 depicts a 2D H polytope and its polar V
polytope. Polar polytopes are useful because P and PΔ

share the same combinatorial structure. Specifically, the
face lattice of the polar polytope P4 is the opposite of the
face lattice of P

LðP4Þ ¼ LðPÞop (14)

and there is a bijection between the faces

Figure 3. Examples of a hyperplane arrangement in R2 (left) and a linear hyperplane arrangement in R3 (right, visualized on a sphere).
Selected faces are labeled with their signed vectors. For example, in the left, the signed vector (+%%% 0) means that the face lies on the
+ side of h1, % side of h2, % side of h3, % side of h4, and on h5. The signs of sides are marked with + and % by the hyperplanes.

438 The International Journal of Robotics Research 42(6)

˘↔P
vertices↔facets
edges↔ridges

/↔/

(15)

4.2. Convex hull enumeration method

Algorithm 1. CS Mode Enumeration with Convex Hull

1: function CS-Mode-Enumerate (N)
2: r ←Relative-Interior-Point(N)
3: if Any(Nr = 0) then
4: Nc, Ns ←Partition(N, r)
5: N ← Ns (Null(Nc)
6: r ← r (Null(Nc)
7: bN← Preprocess ðNÞ
8: z←% bNr
9: bN ½i, : '←bN ½i, : '=z½i'
10: M← ConvexHullðbN

T
Þ

11: Lcs← FaceLatticeðMÞ
12: return Lcs

The contacting/separating mode enumeration algorithm,
or CS-Mode-Enumerate, takes as input the normal velocity
constraint equations N 2Rn×d (see Section 3) and generates
a list of valid contacting/separating sign vectors of the form
m 2 {0,+}n. The algorithm is based on taking the convex
hull in the polar form of the polytope associated with the
normal velocity constraints. The pseudo-code is listed in
Algorithm 1 and we provide explanations for each of the
steps below.

Find an interior point: The polar form PΔ of a polyhedron
P is defined only when 0 2 relint(P). However, 0 is on the
boundary of the polyhedral cone HðN , 0Þ defined by our
normal velocity constraints. Therefore, our first step is to
find a point r2 relintðHðN , 0ÞÞ. This is a classical problem
in linear programming, and for our implementation, it
amounts to solving the following linear program

min
r, c

½ 0 1 ' (
'
r
c

(

s:t:Nr þ c ≥ 0, c ≤ 0

krk∞ ≤ 1, (16)

where krk∞ ≤ 1 constrains r to be within the hypercube in
Rd . Note that if the solution to the linear program is r = 0,
then the only valid mode is all-contacting and the algorithm
can terminate early. The above method was adapted from
the linear program in the documentation of QHull Library
(2020) to work on pointed cones.

Project to contacting hyperplanes: If the interior point is
on the boundary for a subset of the normal velocity con-
straints, then that subset of contact points must always be in
contact (for example, a box sandwiched between two walls).
Let Nc be the set of normal velocity constraints which must
always be in contact and let Ns be the set of normal velocity
constraints which could separate. Then we map Ns into the
nullspace coordinates of Nc, like so Ns = Ns (NullNc, to
reduce the dimension of the problem. We also express the
interior point as coordinates in the null space.

Preprocess hyperplanes: The affine dimension of the
polar polytope dim (affPΔ) may not necessarily be equal to
the dimension of the ambient space Rd . In this situation, we
project PΔ into its affine subspace affPΔ = {NTv: 1Tv = 1}
and further reduce the dimensionality of the convex hull.
Recall that an affine space can also be expressed as a linear
space plus a translate, i.e., affPΔ = {Vx + z} for some Vand z.
If 0ÏaffPΔ, then z ≠ 0 and we translate the affine space until
it contains the origin. Now that 0 2 affPΔ, affPΔ is a linear
subspace and we project each point (column vector) in NT to
coordinates on the column space of NT.

Convert to polar form: Given a strictly interior point r,
we translate the origin to r, resulting in the new H poly-
hedron P ¼ HðbN , % bNrÞ. Next we normalize inequalities
so that P ¼ HðbN , 1Þ and obtain the polar polytope PΔ ¼
VðbN

T
Þ.

Figure 4. Left: Some signed vectors of a cube. Right: The face lattice of the cube. Each element in the face lattice corresponds to a face of
a cube. Except for {1} and {0}, there are three levels of elements in the hierarchy. From top to bottom, three levels of elements
respectively correspond to the 2-dimensional faces, edges, and vertices of the cube.

Huang et al. 439

Compute convex hull: Next, the algorithm constructs the
vertex-facet incidence matrix M of PΔ ¼ VðbN

T
Þ by using a

convex-hull algorithm. The vertex-facet incidence matrix is
a matrix M 2f0; 1gnv×nf , where nv and nf are the number of
vertices and facets, respectively. We associate the vertices
and facets with the index sets IV = {1, …, nv} and IF = {1,
…, nf}, so that mvf = 1 if facet f contains v and mfv =
0 otherwise. The vertex-facet incidence matrix is a standard
return value from convex hull algorithms such as Qhull
Barber et al. (1996).

Build face lattice: Given the facet-vertex incidence
matrixM of PΔ, we can construct the face lattice L (PΔ) using
the algorithm of Kaibel and Pfetsch (2002). Their method is
based on finding the closed sets (= faces) with respect to a
closure map defined over vertex sets. Each face is uniquely
represented by its vertex set.

4.3. Complexity of convex hull method

4.3.1. Theorem. For a set of n contacts in a system of
colliding bodies with d degrees of freedom, Algorithm
1 enumerates the possible contacting and separating modes
in O (d (nPd/2R+2 + l (n, d)) time.

Proof. We analyze correctness first before complexity.
The proof is simple and relies on the combinatorial
equivalences between

CS-MODES↔LðHðN , 0ÞÞ↔L
)
H

)bN , 1
**
↔L

)
V

)bN
T **

(17)

First, we show that HðN , 0Þ and HðbN , 1Þ are affinely
isomorphic and thus, combinatorially equivalent Ziegler
(1995). Two polytopes P and Q are affinely isomorphic if
there exists an affine map f :Rd →Re that is a bijection
between the vertices of the two polytopes. By inspection,
the operations P \ aff(P) and P + r preserve the extremal
points (vertices). Finally, re-scaling the inequalities does not
affect the underlying polytope.

For this next paragraph, let us define P ¼ HðbN , 1Þ and
PΔ ¼ VðbN

T
Þ. Our aim is to show the first and third bi-

jections in (18). Let F 2 L (PΔ) be identified by its vertex set
V(F) = {a: a \ F ≠ ,̆ a 2 vert (PΔ)} and recall that
vertðPΔÞ4colðbN

T
Þ ¼ rowðbNÞ. (That is, each vertex of PΔ

corresponds to a facet of P, i.e. a normal velocity constraint.)
Then by Corollary 2.13 of Ziegler (1995), there is a bi-
jection L (PΔ) ↔ L(P) from F to Fà such that

Fà ¼
n
x : bNx ≤ 1, ax ¼ 1,"a2V ðFÞ

o
(18)

is a non-empty face of P. Because face lattice of a polytope
is coatomic, we can uniquely specify its proper elements as
meets (intersections) n1 ⋀ … ⋀ nk of its coatoms (facets).
Therefore, for each F 2 L (PΔ), the vertex set V(F) maps
bijectively to a valid contacting/separating mode string, and
L (PΔ) enumerates the set of all valid contacting/separating
modes.

The normal velocity constraint matrixN can be constructed
in O (n (d) time. The orthonormal basis and null space can be
computed in O (min{n (d2, n2 (d}) using SVD. An interior
point can be computed in time O (l (n, d)), where l (n, d) is the
cost of linear programming. For a balanced problem like this
one (every input point is extremal), quick hull runs inO (nd/2).
The number of faces in L(P) is bound by O (nPd/2R)
(Edelsbrunner 2005). The combinatorial face enumeration
algorithm runs in time O (d (n2 (nPd/2R) = O (d (nPd/2R+2)
(Kaibel and Pfetsch 2002). The complexity reported in
Kaibel and Pfetsch (2002) uses an α = n (m term, wherem is
the number of facets. For this analysis, we assume that the
number of facets is on the same order as the number of
vertices. In practice, we have found this assumption to be
reasonable. Therefore, the total runtime is O (d (nPd/2R+2 + l
(n, d)).

5. Enumeration of sliding-sticking modes

This section derives two algorithms for sliding-sticking
mode enumeration. Recall that the sliding-sticking modes
are contained in the faces of the partial hyperplane

Figure 5. Example of a 2D H polytope P (left) and its polar V polytope P4 (right). There is a bijection between their faces. The edges
marked with numbers in the H polytope P correspond to the vertices marked with the same numbers in its polar V polytope P4. The
vertices of the H polytope P correspond to the edges of its polar V polytope P4.

440 The International Journal of Robotics Research 42(6)

arrangement generated by the normal and tangent velocity
equations. Therefore, the first algorithmic design is the
combinatorially equivalent geometric object to base the
algorithm on. The two choices, zonotopes or hyperplane
arrangements, used in this work are illustrated in Figure 6.
The zonotope algorithm is based on computing the zono-
tope using an iterative Minkowski sum. The partial hy-
perplane arrangement algorithm iteratively builds the
arrangement directly in the space of hyperplanes. We begin
with the former algorithm.

5.1. Zonotopes

Zonotopes are a special type of convex polytope which
are combinatorially equivalent to linear hyperplane
arrangements. Recall that the Minkowski sum of sets X
and Y is given by X Å Y = {x + y: x 2 X, y 2 Y}. We can
define a zonotope as the Minkowski sum of a set of line
segments

ZðV Þ ¼ ½%v1, v1'Å…Å½%vk , vk ' (19)

where V ¼ ½v1,…, vk '2Rd×k . We can map each face F of a
zonotope to an unique signed vector. Let p =

P
λivi 2 intF

be an interior point of F. Then the signed vector with respect
to vi is

signviðFÞ ¼

8
<

:

þ if λi ¼ þ1
0 if % 1 < λi < 1
% if λi ¼ %1,

(20)

and the signed vector is signZðFÞ ¼
#
signv1ðFÞ,…, signvk

ðFÞ
$
. From Corollary 7.17 in Ziegler (1995), there is a bi-

jection between the signed vectors ofAðV Þ and Z(V).We have
the identification of face lattices

LðZðV ÞÞ↔LðZðV Þ4Þ↔LðAðV ÞÞ (21)

For example, there is a correspondence between the
facets of Z(V), the vertices of Z(V)4, and the rays (un-
bounded edges) ofAðV Þ. Figure 7 maps the equivalencies
between faces and vertices on a hyperplane arrangement

to vertices and faces on a zonotope (and its polar
zonotope).

5.2. Zonotope/Minkowski-sum enumeration
method

Algorithm 2. Zonotope/Minkowski Sum Method

1: function SS-MODE-ENUMERATE-ZONO (N, T, mcs)
2: Nc, Ns, Tc ←Partition(N, T, mcs)
3: H ← [Ns; Tc]
4: H ← H (Null(Nc)
5: V, S ←GetZonotopeVertices(H)
6: L← FACE % LATTICE VðV Þ
7: F ¼ fF 2 LðV Þ : signNsðFÞ ¼ ½þ,…,þ'g
8: Mss← GetSignVectorðF , SÞ
9: return Mss

10: function Get-Zonotope-Vertices (H)
11: V, S ← [0], ˘
12: for h 2 Rows(H) do
13: V0, S0 ← [], ˘
14: for v 2 V do
15: V0 ←Add-Points(v+h, v%h)
16: sv ←GetSignVector(v, s)
17: S0 ← S0 [{(sv, +), (sv, %)}
18: V ←ConvexHullExtremalPoints(V0)
19: S ←GetSignVector(V, S0)
20: return V, S

The algorithm, SS-MODE-ENUMERATE-ZONO takes as input
the normal velocity constraint matrix N 2Rn×d , the tangent
velocity constraint matrix T 2Rnk×d , and the contacting
separating mode string mcs and produces a list of sliding/
sticking sign vectors of the formmss 2 {%,0,+}nk. As before
we provide explanations for each of the steps below.

Partition the hyperplanes: The first step in our algorithm
is to partition the input normal velocity constraint matrix
and tangent velocity constraint matrix into active equality
and inequality constraints. We read off the input contacting-
separating mode mcs and partition in the input matrices into
the normal velocity constraint matrix Nc which must

Figure 6. Combinatorially equivalent representations of sliding-sticking modes. (Left) A pointed finger which is maintaining contact.
(Middle) Hyperplane arrangement in velocity space ½ _x, _y, _θ'2R3, where x, y are along t2, t1 and θ is the rotation about n1. (Right)
Zonotope in the polar space generated by t1, t2, n1. Normals in AðV Þ map to points in Z(V) and vice versa.

Huang et al. 441

maintain contact, the normal velocity constraint matrix Ns

which can separate, and the active tangent velocity con-
straint matrix Tc which corresponds to the maintained
contacts. We then form the set of hyper-planes H = [Ns; Tc].
The algorithm will compute the combinatorial structure of
the arrangement AðHÞ.

Project to contact planes: We project H into null space
coordinates of Nc to reduce dimensionality and thereby
speed up computation. This is step 4 in Algorithm 2.

Construct the zonotope: From the set of hyperplanes H,
we can identify the vertices of its associated zonotope Z(H).
From equation (19), zonotopes can be represented by the
minkowski sum of line segments, which in this case are
½ hi, % hi ' for hi 2 H. Algorithm 2 Function GET-ZONOTOPE-

VERTICES obtains zonotope vertices V through computing the
minkowski sum iteratively for every hi 2 H. We initialize
the vertex set V = [0], and at the i-th iteration we update V to
be the extermal points of the convex hull of [v2V{v + hi, v%
hi}. Simultaneously, we track the sign vectors for every
vertex and update the sign vectors using this rule at every
iteration: signðvþ hiÞ ¼ ðvÞ,þ', sign (v % hi) = [sign(v), %
]. To decrease the zonotope construction cost, one may omit
some separating hyperplanes from H at the expense of
allowing some invalid sliding/sticking modes.

Build the face lattice: Using the same method as describe
in Section 4.2, we construct the face lattice L(V) from the
vertices V. Not every F2 L(V) corresponds to a valid sliding/
sticking contact mode. Only the faces that have positive
signs + with respect to normal velocity constraints for all
separating contacts are valid sliding/sticking contact modes.
After building the face lattice L(V), valid faces F are se-
lected by ensuring their sign vectors with respect to Ns are
all +’s

F ¼
%
F 2 LðV Þ : signNsðFÞ ¼ ½þ,…,þ'

&
(22)

The sign vectors of all faces in F with respect to H
represent all valid sliding/sticking contact modes for the
given contact/separating mode.

5.3. Complexity of Zonotope method

5.3.1. Theorem. For a set of n contacts (modeled with k
tangent planes) in a system of colliding bodies with d
degrees of freedom, Algorithm 2 enumerates the possible

sliding/sticking modes in OðdðknÞd
2=2þ2dÞ time for a given

contacting/separating mode.

Proof. As before, we first proceed with a proof of
correctness. For a given contacting/separating mode
string mcs, let H ¼ ½hs1,…, hsk , ht1,…, htm' be the input
hyperplanes to our zonotope construction algorithm,
where k is the number of separating hyperplanes andm is
the number of tangent hyperplanes. We incrementally
construct the zonotope by using the fact that the Min-
kowski sum of two polytopes is the convex hull of the
sums of their vertices Delos and Teissandier (2015). By
Corollary 7.18 of Ziegler (1995), the face lattice of the
zonotope constructed above is the opposite of the face
lattice of the hyperplane arrangement.

Next, we analyze the complexity of our algorithm. The
maximum number of hyperplanes is kn. The number of
vertices, i.e., f0, for a d-zonotope that is the projection of a
p-cube is of the order O (pd%1) Edelsbrunner (2005).
Therefore, our zonotope construction algorithm takes time

O

Xkn

p¼1

!
pd%1

"dþ1
2

!

≈O

Xkn

p¼1

p
d2
2

!

≈O
+
ðknÞ

d2
2

,
(23)

We use Kaibel and Pfetsch (2002) to construct the face
lattice of the resulting zonotope. As before, their algorithm
runs in

Oðkn (d (α (ðknÞd%1Þ ≈OðdðknÞ2d
"

(24)

where α = kn ((kn)d%1 in the worst case (when the zonotope
is simple) Ziegler (1995). The full complexity of SS-MODE-

ENUMERATE-ZONO is therefore OððknÞd
2=2þ2dÞ.

The zonotope algorithm’s strength is its ease of
implementation.

However, it has two major drawbacks.
First, the iterative Minkowski sum is very inefficient. It

requires d orders of magnitude more computation than there
are faces in A.

Second, the algorithm computes the full arrangement,
including invalid modes (faces) that have % signs with
respect to the separating normals.

In the next section, we will address both those of those
issues and derive the partial hyperplane arrangement

Figure 7. Combinatorially equivalent faces in a linear hyperplane arrangement, zonotope, and polar zonotope.

442 The International Journal of Robotics Research 42(6)

algorithm that has runtime nearly proportional to the
number of valid sliding-sticking modes.

5.4. Partial hyperplane arrangement
enumeration method

Algorithm 3. Partial Hyperplane Arrangement Method

1: function SS-MODE-ENUMERATE (N, T, mcs)
2: Nc, Ns, Tc ←Partition(N, T, mcs)
3: [Ns; Tc] ←ProjectNullspace(Nc, [Ns; Tc])
4: [Ns; Tc] ←Preprocess([Ns; Tc])
5: ifRank(Ns) = Rank ([Ns; Tc]) then
6: Lss← HalfspaceIntersectionðNsÞ
7: else
8: Lss← InitPartialArrangementð½Ns; Tc'Þ
9: for h2Rowsð½Ns; Tc'Þ, hÏLss do
10: Lss← IncrementArrangementðh,LssÞ
11: return Lss

This section describes the new sliding-sticking mode
enumeration algorithm proposed by this paper. To avoid
enumerating infeasible modes, our algorithm builds the face
lattice of the partial hyperplane arrangement ∂A for a given
contacting-separating mode mcs

∂A ≡NullðNcÞ\HðNs, 0Þ\AðTcÞ (25)

where Nc are the contacting normal velocity hyperplanes,
Ns are the separating normal velocity hyperplanes, and Tc
are the active tangent velocity hyperplanes. Figure 8
depicts the partial hyperplane arrangement generated
by a single point contact. Nearly half of the tangent space
can be discarded due to non-penetration constraints, al-
lowing us to speed up the enumeration. This approach
improves upon the zonotope method covered in Section
5.2 (Huang et al., 2020), which enumerates both feasible
and infeasible modes.

The Edelsbrunner (2005) incremental hyperplane ar-
rangement algorithm is a natural choice for this method as it
achieves runtime proportional to the number of faces in the
arrangement i.e., O (nd). We further improve the method

with a partial hyperplane arrangement technique based on
the following observation. The normal velocity equations
define one-sided constraints, and as such, the algorithm
should avoid enumerating modes representing invalid,
penetrating velocities. Figure 8 illustrates the key idea. The
ideal location to enforce one-sided hyperplanes is in the
initialization phase of Edelsbrunner’s algorithm. During
initialization, the partial variant of the algorithm either
initializes using a convex hull of the one-sided hyperplanes
or a mixed initialization of deff one-sided and two-sided
hyperplanes, where deff is the effective dimension of the
arrangement. (The mixed method is used when a convex
hull of rank deff is not possible.)

The rest of this section describes in more detail each step
of the pseudo-code, Algorithm 3, SS-MODE-ENUMERATE, for
the partial hyperplane arrangement method. The algorithm
takes normals, separating tangent planes, and contact/
separating mode as inputs, and produces the lattice of
partial hyperplanes corresponding to feasible sliding/
sticking contact modes.

Preprocess hyperplanes based on cs-mode: Based on
the input cs-mode mcs, we partition N and T into Nc, Ns,
and Tc and project [Ns; Tc] into the nullspace coordinates
of Nc. Next we preprocess the hyperplanes using
Algorithm 6.

Initialize partial hyperplane arrangement: Our goal is to
initialize the partial hyperplane arrangement with the region
of space bounded by HðN , 0Þ. Let ds be the rank of Ns. Our
algorithm divides the intialization into two cases:

1. If there are enough linearly independent hyperplanes in
Ns, i.e. ds = d, we compute HðNs, 0Þ using a polar
convex hull.

2. Otherwise, we generate the initial partial arrangement
from the first d linearly independent hyperplanes in [Ns;
Tc]. This can be accomplished by lexicographically
enumerating the 2ds3d%ds faces (signed vectors) in the
initial partial arrangement.

Incrementally add remaining hyperplanes: For
each hyperplane (row) h in [Ns; Tc], we add it to Lss

using Edelsbrunner’s method (Procedures 7.3–7.5 of

Figure 8. (Left) A point finger is contacting a surface. (Right) The partial hyperplane arrangement generated by the normal and tangent
velocity hyperplanes at that point contact.

Huang et al. 443

Edelsbrunner (2005)). This method colors the vertex and
edge nodes of Lss with respect to the incoming hyper-
plane and updates the rest of the lattice-based on that
coloring.

5.5. Complexity of partial arrangement method

5.5.1. Theorem. The partial hyperplane arrangement
computes the sliding-sticking modes in O (nd) time.

We present a sketch of proof. To recap, we are using an
incremental hyperplane arrangement algorithm on a partial
hyperplane arrangement instead of a full hyperplane ar-
rangement. First, we argue the correctness of the algorithm.
The key idea is that faces of the partial hyperplane ar-
rangement are faces in the full hyperplane arrangement. The
correctness of Edelsbrunner’s algorithm is solely based on
the properties of faces outlined in Table 7.3, Observation
7.2, Observation 7.3, and Observation 7.4 Edelsbrunner
(2005). It is straightforward to verify each property holds for
the faces in the partial hyperplane arrangement using proof
by contradiction.

The runtime analysis is based on Section 7.6 of
Edelsbrunner (2005). The key result is that a new hyper-
plane h can be inserted into an existing arrangement with
time proportional to the number of faces properly inter-
secting h. However, it is outside the scope of this work to
derive bounds on the number of k-faces intersecting h, as is
done in Theorem 5.4 of Edelsbrunner (2005). A conser-
vative bound on the runtime is O (nd) which is the cost of
constructing the full hyperplane arrangement.

6. Dynamics of contact modes

This section explains the relationship between contact
modes and dynamics. The first two sections review the
Coulomb friction model and its linearization, the polyhedral
friction model. These models can be expressed as sets of
complementarity constraints. Next, it is shown that the non-
convex structure of frictional contact dynamics can be
precisely decomposed into piece-wise convex components
i.e., into contact modes. Lastly, we show how the polyhedral
friction model fits into the dynamic equations of motion.

6.1. Coulomb friction model

Coulomb friction is a friction model with the property that
the frictional force is both proportional in magnitude to the
normal force and anti-parallel to the sliding direction. The
Coulomb model of friction can be represented using
the friction cone and the principle of maximal dissipation.
The friction cone is defined to be the convex set

F ¼
n
λn, λx, λy : λn ≥ 0, μλ2n % λ2x % λ2y ≥ 0

o
(26)

where μ is the coefficient of friction, λn is the component of
the frictional force in the normal direction n, and λx, λy are
the components of the frictional force in the tx and ty tangent

directions (see Figure 9). The principle of maximal dissi-
pation states that for a tangential sliding velocity v = [vx; vy],
the direction of the frictional force maximizes the dissipated
energy, i.e.

λ⋆n, λ
⋆
x , λ

⋆
y 2 arg max

F
% λxvx % λyvy (27)

Note, when v = 0, any λx, λy 2F satisfies equation (27),
but when v ≠ 0, [λx; λy] must be anti-parallel to v.

We can express Coulomb friction as the solution to a
system of equations comprised of nonlinear complemen-
tarity constraints. This technique is used to encode Coulomb
friction into a form suitable for simulation and optimization.

6.1.1. Definition. A complementarity constraint is a con-
straint on two variables a, b2R such that

a ≥ 0 (28)

b ≥ 0 (29)

ab¼ 0 (30)

Under this constraint, either a > 0 and b = 0, or b > 0 and
a = 0, or a = b = 0. We also write the constraint as 0 ≤ a ’
b ≥ 0.

Let f be a function which returns the minimum sepa-
rating distance between two colliding surfaces. The contact
normal force is zero if the distance is trending positive
fc0. We can model this as the complementarity constraint

0 ≤ λn’fþ _f ≥ 0 (31)

where _f ¼ df=dt is the separating velocity. Next, we show
how to extend this complementarity formulation to Cou-
lomb friction. We can encode the friction cone and principle
of maximum dissipation as a set of equality and comple-
mentarity constraints

0 ¼ μλnvx þ λxσ (32)

0 ¼ μλnvy þ λyσ (33)

0 ≤ σ’μ2λ2n % λ2x % λ2y ≥ 0 (34)

where σ is a slack variable. When the sliding velocity is non-
zero, σ2 evaluates to v2x þ v2y and [λx; λy] is constrained to be
anti-parallel to v. Note, the friction cone is a second-order
cone but the principle of maximal dissipation introduces
bilinear constraints.

6.2. Polyhedral friction model

Because equations (32)–(34) are nonlinear, researchers have
also developed linearized models of Coulomb friction
(Stewart and Trinkle 1996; Horak and Trinkle 2019). Un-
doubtedly, using a linearized model is an engineering
choice. Within the context of this paper, we believe that

444 The International Journal of Robotics Research 42(6)

low-resolution friction models are the right choice (for a
discussion see Section 7).

We can linearize the friction cone by approximating it
with a polyhedral convex cone (Figures 9 and 11)

FΔ ¼
%
λnnþ Δλf : μλn % eTλf ≥ 0, λf ≥ 0

&
(35)

where the frictional force directions Δ ¼ ½d1,…, dnd'2R3×nd

is a matrix whose columns are the generators of the poly-
hedral convex cone projected into the plane, λf 2Rnd are the
components of frictional force for each direction di, and e ¼
½1,…, 1'T 2Rnd is a vector of ones. Figure 10 visualizes di
for a 4-sided friction cone. The principle of maximal dissi-
pation is rewritten as

Dλ⋆f ¼ arg max
Dλf 2FD

% vTDλf (36)

where v ¼ ½vx, vy, 0'T is the sliding velocity. When the
sliding velocity is non-zero, the resultant frictional force is
located on the ray most anti-parallel to v. As opposed to the

Figure 9. (Left) Coulomb friction cone. (Right) polyhedral friction cone with eight sides.

Figure 11. A 4-sided friction cone derived from two tangent
sliding planes (normals pink and blue), with frictional force
generators {f1, f2, f3, f4}, which are the sum of the normal vector
and μ times the frictional force directions.

Figure 10. Right: the contact frame of one contact and two tangent dividing planes (shaded with pink and blue) with their normals. Left:
top view of the contact tangent plane, marked with all feasible sliding modes and frictional force directions {d1, d2, d3, d4} (green
vectors) for a 4-sided friction cone.

Huang et al. 445

Coulomb friction model, the polyhedral friction model can
be expressed as linear complementarity constraints

0 ≤ λf’DTvþ eσ ≥ 0 (37)

0 ≤ σ’μλn % eTλf ≥ 0 (38)

where the inequalities are evaluated element-wise. This
time, σ = % max % vTdi when v is non-zero.

6.3. Contact mode friction model

In this section, we show that the linear complementarity
representation of the polyhedral friction model can be
precisely decomposed into piece-wise convex components
represented by contact modes. In order to do so, we will first
introduce the concept of a frictional force generator.

Figure 10 shows the contact frame for a single contact
with two tangent directions. On the right side of Figure 10,
we show the top view of the sliding plane. Each sliding-
sticking mode defines a sliding velocity cone. We mark all
sliding-sticking modes beside their corresponding sliding
velocity cones, and visualize the frictional force directions
{d1, d2, d3, d4}. Figure 11 shows the corresponding 4-sided
polyhedral friction coneFD. The frictional force generators
are the generators (rays) of the polyhedral convex cone FD.
The i-th generator is of the form fi = n + μdi. This allows us
to write elements in FD in a simple manner, as conical
combinations of the frictional force generators. With nt
tangent directions, there will be a 2nt-sided polyhedral
friction cone. As nt approaches infinity, the original Cou-
lomb friction cone is recovered.

Next, we derive the force and motion models for each
contact mode based on the sliding velocity and frictional
force generators mentioned above. We use one contact two
tangent directions as an example, but note that the same
applies with more tangent directions. There are two
contacting-separating modes for this single contact, { +,0},
and nine sliding-sticking modes with two tangent dividing
planes, {0 +,0 +,% +,%0,% %,0%, +%, +0, 00}. For each
contact mode, we can write down its corresponding part of
the polyhedral friction model. Let λi be the weights of the
frictional force generators fi. At a high level there are three
cases to consider, when a contact is separating, sticking, or
sliding.

Separating contact: The contacting-separating mode of a
separating contact is +, which means that the contact normal
velocity vn is positive. There is no sliding-sticking mode for
a separating contact. There is no contact force for a sepa-
rating contact. The contact dynamics for a separating
contact can be written as

vn > 0

λi ¼ 0 (39)

Sticking contact: For a fixed contact, its contacting-
separating mode is 0 and its sliding-sticking mode is 00.

Thus, the contact velocity is 0 and the friction force lies
inside the polyhedral friction cone FD shown in Figure 11

vn, vx, vy ¼ 0

λi ≥ 0 (40)

where [vx; vy] 2 R2 is the sliding velocity.
Sliding contact: A sliding contact has a cs-mode 0 and

non-zero components in its ss-mode. Each ss-mode de-
scribes a sliding velocity cone Vss4R2 in the contact
tangent plane. The sliding velocity cones can be one-
dimensional (a single vector) or two-dimensional (the
convex cone of two vectors). Figure 12 shows the sliding
velocity cones for the ss-mode ++ (2D cone) and 0 + (1D
cone). From the force-velocity complementary constraints
in equation (37), we get the tangent friction force direction
to be the one among the friction generators that has the
smallest dot product with the sliding velocity. As a result,
for a sliding velocity in the 2D cone (left, Figure 12), the
tangent friction force direction is the same as the one force
generator that is in the opposite cone of the sliding velocity
cone. For a sliding velocity in the 1D cone (right, Figure 12),
there are two frictional force generators that are of the same
smallest dot product with the sliding velocity. Thus, the
tangent force should be the positive linear combination of
these two friction force generators. The contact dynamics
for sliding contacts can be written as

vn ¼ 0

#
vx; vy

$
2Vss

λ 2F ss (41)

where F ss is the polyhedral convex cone of active frictional
force generator weights for the given sliding velocity cone
Vss. These constraints can be represented using linear
equality and inequality constraints.

6.4. Dynamic equations of motion

Next, we combine the contact mode friction model with
rigid body dynamics to derive the dynamic equations of
motion at a given contact mode. As a motivating example,
consider a system consisting of an object and a manipulator.
This system is modeled with a 4-sided friction cone.

First, we define the variables required at each contact
(Table 1). In a system with n contacts, let ci 2 SE (3) refer to
the i-th contact frame. The origin of ci is at the point of
contact and its z-axis is pointed along the surface normal
into the object. Several variables are shared amongst all
contacts because they exist in the contact frame. They are
the normal direction n ¼ ½0; 0; 1; 0; 0; 0'2R6, the tangent
basis matrix D2R6×4, and the frictional force directions
Δ2R6×4. The coefficient of friction μi 2R is specified per
contact and as a result, the frictional force generators
Fi 2R6×4 are also specified per contact. Finally, we also

446 The International Journal of Robotics Research 42(6)

require the Jacobians Joci, Jrci 2R6×d mapping object and
robot velocities, respectively, to body twists in the contact
frame. If the object/robot is not involved in the contact, then
their Jacobian is comprised of 0s.

Next we show how to construct the dynamic equations
of motion at a given contact mode using the variables
defined in Table 2. Let the cs-mode be mcs 2 {0,+}n and
ss-mode be mss 2 {%,0,+}2c, where c is the number of
contacting contacts i.e., mcs(i) = 0. At each contact, we
have the following kinematic values. Let Jci ¼ Joci % Jrci.
Then the normal and tangent velocity constraints are
given by

N ¼

2

4
nTJc1
«

nTJcn

3

5,T ¼

2

4
DTJc1
«

DTJcn

3

5

Using the contact mode, we can partition N into the
contacting normal velocity constraints Nc 2Rc×d and the
separating normal velocity constraints Ns 2Rs×d , and we
can partition T into the sticking tangent velocity constraints
Tz 2Rz×d and the sliding tangent velocity constraints
Tσ 2Rσ×d . At each contact, we also have the following
dynamic values. The mapping between contact forces and
generalized torques is given by

BT ¼
#
JT
c1
F1 / JT

cn
Fn

$
(43)

The forces at each frictional force generator are pa-
rameterized by λ2R4n. Using the contact mode, we can

partition λ into the active contact forces λzσ 2Rzþσ and the
inactive contact forces λ0 2R4n%z%σ .

We can now present the dynamic equations of motions at
a given contact mode. The dynamics are based on the
implicit velocity-impulse formulation of Stewart and
Trinkle (1996). Let q0, _q0 2Rd be the initial position and
velocity of the system and let q, _q2Rd be the position
and velocity at the next timestep. LetM 2Rd×d be the mass
matrix, C 2Rd be the Coriolis forces, g 2Rd be the po-
tential forces, and τ 2Rd be the actuator forces. With h2R
as the timestep, the dynamics at a given contact mode are
given by

Mð _q% _q0Þ ¼ h
!
BTλþ C þ g þ τ

"
(44)

q ¼ q0 þ h _q (45)

0 ¼ Nc _q (46)

0 ≤ Ns _q (47)

0 ¼ Tz _q (48)

Figure 12. The sliding velocity cones (yellow) and tangent frictional force directions (green) for ss-modes (++) and (0+) respectively.

Table 1. Variables and parameters at the i-th contact.

ci2 SEð3Þ Contact frame
μi 2R Coefficient of friction
n2R6 Vector of ½0, 0, 1, 0, 0, 0'
D2R6×4 Tangent basis matrix
Δ2R6×4 Frictional force directions
Fi 2R6×4 Frictional force generators
Joci 2R6×d Object velocity to contact twist
Jrci 2R6×d Robot velocity to contact twist

Table 2. Variable and parameters for the dynamic equations of
motion.

mcs 2 {0,+}n Contacting-separating mode
mss 2 {%,0,+}2c Sliding-sticking mode
q, _q2Rd Generalized position and velocity
q0, _q0 2Rd Initial position and velocity
M 2Rd×d Mass matrix
C, g, τ 2Rd×1 Coriolis/potential/actuator forces
B2R4n×d Contact force generators
λ2R4n Contact forces
λzσ 2Rzþσ Active contact forces
λ0 2R4n%z%σ Inactive contact forces
Nc 2Rc×d Contacting normal constraints
Ns 2Rs×d Separating normal constraints
Tz 2Rz×d Sticking tangent constraints
Tσ 2Rσ×d Sliding tangent constraints
h2Rþ Timestep

Huang et al. 447

0 ≤Tσ _q (49)

0 ≤ λzσ (50)

0 ¼ λ0 (51)

The constraints state that the

(46) contacting normal velocities maintain contact,
(47) separating normal velocities do not penetrate,
(48) sticking tangent velocities are zero,
(49) sliding tangent velocities are in the correct direction,
(50) active contact forces are non-negative,
(51) inactive contact forces are zero.

The important thing to note is that with contact mode
specified, contact and friction force models are expressed as
simple equality and inequality constraints. This remains true
when we eliminate the inertial terms to produce a quasi-
static model in the next section.

7. Autogeneration of manipulation primitives

The term “motion primitive” can be very inclusive. In
sampling-based planning and control, a motion primitive
can be a pre-design robot motion, a continuous/discrete state
transfer function (LaValle 2006), a family of trajectories, or
a more complicated motion policy (Ratliff et al., 2018). In
task and motion planning, a primitive is a smallest symbolic
unit which may require further geometric planning but not
more discrete symbolic planning (Kaelbling and Lozano-
Pérez 2010). The representations of a motion primitive can
be an abstract symbolic task (e.g. turn on the dishwasher), a
trajectory of motion, a state transfer function, a control
policy, etc. In general, a motion primitive enables us to
generate smooth motions inside the primitive and perform
high-leveling discrete planning on top.

Manipulation is featured by the acyclic contact inter-
actions among the robot, the manipulated objects, and the
environment. In comparison, the design motion primitives
for wheeled or aerial robots often do not need to consider the
discrete changes of dynamics introduced by contact inter-
actions as the trajectories for them are designed to avoid
collisions. We focus on motion primitives for manipulation
(manipulation primitives). To design manipulation primi-
tives, one must consider the contact-rich nature of
manipulation.

While previously studied manipulation primitives are
manually assigned by researchers, we define manipulation
primitives in a more mathematically precise way. We
consider a contact mode as a manipulation primitive. A
contact mode maintains continuous and smooth kinematic
and dynamic constraints, allowing easy and smooth tra-
jectory generation. This is consistent with the general
definition of motion primitives, and not losing the generality
of representations — we can easily derive state transfer
functions, perform geometric planning, or dynamic

trajectory generation inside a contact mode. As enumerated
contact modes effectively capture the transitions of discrete
states of contacts, this representation is also capable of
generating diverse motions when a series of contact modes
are sequenced together.

This section introduces the AMP algorithm, a technique
for autogenerating manipulation primitives. The AMP al-
gorithm automatically creates a library of motion primitives
(contact modes) for a specific system configuration, and
performs fast selection and filtering over these motion
primitives. The auto-generated library can be used to effi-
ciently generate trajectories within a motion primitive, or to
plan a sequence of motion primitives. While the trajectory
generation and planning motion sequence are not covered
by this paper, there are many existing works addressing
these two problems: a sampling-based framework for se-
quencing and generating motions (Cheng et al., 2021;
Kingston et al., 2018), optimization methods for trajectory
generation within one mode or a selected sequence of modes
(Kelly 2017), etc.

We believe this algorithm has a wide range of applica-
tions within robotic manipulation. First, AMP remove the
burden of writing task-specific manipulation primitives.
Second, AMP adds robustness to modeling errors and
failures. For instance if the object is too heavy to pick up,
AMP can provide alternatives which are better adapted to
heavy objects such as pushing or dragging the object.
Lastly, AMP is fast and can be used within planning
frameworks to generate sequences of manipulation primi-
tives. We envision AMP having applications in dexterous
manipulation ranging from real-time replanning to closed-
loop control and more.

The algorithm requires as input the object-environment
contact modes, the hand-object contacts, and the quasi-static
equations of motion. Within this section, contact mode
implies object-environment contact modes. The hand-object
contacts are assumed to be sticking for two reasons: (1)
sliding hand contacts are challenging to control Doshi et al.
(2022), so we filter them out manually; and (2) we delib-
erately choose sticking hand contacts in order to reduce the
number of contact modes. Nonetheless, the AMP algorithm
does allow any mode of hand contacts.

The AMP algorithm is based on two key observations.
First, specifying the contact mode reduces contact and friction
force constraints into equality and inequality constraints
(Section 6). This in turn allows us to solve for quasi-static
feasibility using linear programming. The generated ma-
nipulation primitives are uniquely specified by their contact
mode. Second, the contact mode lattice is effectively a graph
data structure. This allows us to use graph search techniques
when designing our algorithm. Our algorithmwalks along the
contact mode lattice and solves a linear program at each
visited node. When applicable, the algorithm propogates
solution information up and down the lattice to prevent
unnecessary calls to the linear program solver.

The definition of a primitive varies. One planner’s
primitive is another planner’s sequence. For our purposes,

448 The International Journal of Robotics Research 42(6)

a primitive means contact mode, maintained over some
motion for some amount of time to be determined by the
planner. We consider the AMP problem to have been solved
once the feasible contact modes have been determined,
i.e., the library has been generated. The equivalency be-
tween contact modes and manipulation primitives is based
on following idea. Under a polyhedral friction model, each
contact mode parameterizes a convex region of the state
space with smooth dynamics. Therefore, given a primitive
(contact mode), the user can apply any fixed-mode tra-
jectory optimizer to create a sequence of controls for that
primitive. In this work, we use direct single shooting,
identical to our previous work in Cheng et al. (2021).

This work is intended to be general and allow the user to
determine which primitives to use based on their own
criteria. In our prior work on sample-based planning with
autogenerated manipulation primitives in 2D, we extended
each feasible primitive from the nearest neighbor state to the
sampled state and kept the primitives which made strictly
positive progress (Cheng et al., 2021). However, there are
other methods for filtering the primitives. As a by-product of
the contact mode enumeration, each contact mode is
equipped with an interior point i.e., a velocity, which is a
certificate for the contact mode. The dot product of the target
object velocity with the object velocity component of the
certificate can be used to rank primitives. The Manhattan
distance between the target object velocity’s signed vector
and the contact mode could also be used to rank primitives.
The next section also provides additional details about the
structure of contact modes which can assist in manipulation
primitive selection.

7.1. Classification of primitives

In past research, manipulation primitives are named by the
researchers studying them. For instance, we can identify
papers which study pushing (Lynch and Mason 1996;
Mason 1986), pivoting (Aiyama et al., 1993; Holladay et al.,
2015; Hou et al., 2018), tumbling (Maeda et al., 2004), and
whole-body manipulation (Salisbury 1988). However, the
labels assigned by researchers, while evocative, are ulti-
mately imprecise. To automatically generate manipulation
primitives, we first need a mathematically precise method
for classifying manipulation primitives. Otherwise, we
would not be able to distinguish between different ma-
nipulation primitives. This work uses contact modes
(Section 3) as labels for classifying manipulation primitives.
There are several benefits from the contact mode based
classification.

1. Contact modes are partially ordered. This allows us to
make statements about the primitives such as less than,
greater than, equals, or incomparable. If one primitive
fails, trying an incomparable primitive could be a good
way to ensure the robot explores the space of possible
actions.

2. Contact modes have a geometric lattice structure. Each
lattice rank contains the primitives with a specific
number of degrees of freedom. Selecting a low-rank
primitive can provide additional robustness as the
motion has fewer degrees of freedom.

3. Contact modes are complete in the sense that every
possible primitive can be described in this framework.
Grasping, pushing, toppling, pivoting, peg-in-hole, etc.
can all be distinctly labeled according to their
contact mode.

4. Contact modes provide a description of the motion at
each contact point. While these descriptions are not as
compact as semantic labels, they are still easily in-
terpreted and visualized.

7.2. Quasi-static feasibility test

Many ideas in this paper were developed with the idea
that, “All models are wrong, but some are useful.” We
believe that, in the real world, manipulation primitives
can fail due to all sorts of modeling errors ranging from
bad friction coefficients to incorrect geometry (Rodriguez
2021). Moreover, execution errors compound over time.
Therefore, the ability to resense, replan, and regenerate
relevant manipulation primitives should be prioritized
over the ability to create an optimal manipulation tra-
jectory using techniques such as CITO. For this reason,
we have chosen to use a quasi-static dynamics model.
Though it is less accurate, it simplifies the optimization
problem significantly and allows us to quickly find the
manipulation primitive which is useful despite its
wrongness.

The core routine within the AMP algorithm is deter-
mining the quasi-static feasibility of each contact mode. In
quasi-static dynamics, we assume that the inertial forces are
negligible (Mason, 2001). We use the generator form of the
contact dynamics to formulate quasi-static feasibility as the
following linear program.

7.2.1. Problem. The quasi-static feasibility of a given
contact mode is determined by the existence of a solution to
three constraints. A simple practical technique is to solve the
following linear program

min
λ

0 (52)

s:t: 0 ¼ BTλþ g þ τ (53)

0 ≤ λzσ (54)

0¼ λ0 (55)

where the B is the contact force generators and λ are the
contact forces. The forces λ are further partitioned into the
active contact forces λzσ and the inactive contact forces λ0
based on the contact mode. Because inertial forces are
assumed to be zero, the quasi-static feasibility of a contact

Huang et al. 449

mode does not depend on the velocity. In other words, the
velocity _q and the contact forces λ are separable. The
constraint equations state that

(53) the system is in quasi-static force balance,
(54) the active contact forces are non-negative,
(55) the inactive contact forces are zero.

In our implementation, we used Gurobi Optimization
(2016) to solve the above feasibility program. We set the
solver method to both primal and dual simplex to encourage
solution reuse.

Quasi-static dynamics do not meaningfully restrict the
space of possible manipulation primitives. The types of
manipulation primitives which satisfy quasi-static dynamics
are those which can be paused at anytime in a statically stable
configuration. (Note the reverse is not true.) Examples of
quasi-statically stable primitives include pushing, grasping,
pulling, and pivoting. Counter-examples include toppling,
dropping2, and throwing. In the future, we plan to extend our
models to include quasi-dynamic motions i.e., where the
dynamics contain non-zero inertial terms but each timestep is
integrated with the assumption that the previous velocity was
zero (Mason 2001). This will allow us to generate additional
primitives such as toppling and dropping but not throwing.

7.3. Full mode algorithm

Algorithm 4. The Full Mode Algorithm

1: function FULL-MODE (L)
2: for u2L do
3: f ←Solve-Feasibility (u)
4: Set-Feasible (u, f)
5: return

As a baseline for comparison, we implemented an algorithm
which computes the quasi-static feasibility for each contact
mode. FULL-MODE takes as input the partial hyperplane ar-
rangement lattice and adds a feasibility flag to each element of
the lattice. This is in essence our previously published algorithm
in Cheng et al. (2021) except that the expensive quadratic
program has been replaced with a linear program and the
problem is now in 3D. The pseudo-code is listed inAlgorithm4.

7.4. AMP algorithm

Algorithm 5. The AMP Algorithm

1: function AMP-CS(Lcs)
2: cs Q←AtomsðLcsÞ
3: while Not-Empty(Q) do
4: u ←Pop(Q)
5: if Not-Feasible(u) then
6: continue

(continued)

(continued)

7: AMP-SS(u)
8: if Feasible(u) then
9: for v 2 Super-Modes(u) do
10: if Not-Visited(v) then
11: Push-Back(Q, v)
12: Set-Visited(v), True
13: else
14: Set-Parents-As-Infeasible(u)
15: function AMP-SS(mcs)
16: Lss← Enum-ss-ModesðmcsÞ
17: Q← AtomsðLssÞ
18: Set-Feasible(mcs), False
19: while Not-Empty (Q) do
20: u ←Pop(Q)
21: if Unknown-Feasibility(u) then
22: f ←Solve-Feasibility(u)
23: Set-Feasible(u, f)
24: if Feasible(u) then
25: Set-Feasible(mcs), True
26: for v 2 Super-Modes(u) do
27: if Not-Visited(v) then
28: Push-Front(Q, v)
29: Set-Visited(v), True
30: Set-Children-As-Feasible(u)
31: else
32: Set-Parents-As-Infeasible(u)
33: function SET-PARENTS-AS-INFEASIBLE(u)
34: Q ← u
35: while Not-Empty(Q) do
36: u ←Pop(Q)
37: for v 2 Sub-Modes(u) do
38: if Unknown-Feasibility(v) then
39: Set-Feasible(v), False
40: Push-Back(Q, v)
41: function SET-CHILDREN-AS-FEASIBLE(u)
42: Q ← u
43: while Not-Empty(Q) do
44: u ←Pop(Q)
45: for v 2 Super-Modes(u) do
46: if Unknown-Feasibility(v) then
47: Set-Feasible(v), True
48: Push-Back(Q, v)

The AMP algorithm improves upon the full mode algo-
rithm by propogating feasibility information up and down the
lattice. This strategy reduces the number of calls to the linear
program solver i.e., the most computationally expensive part
of the algorithm. The partial ordering on the contact modes
implies that the active frictional force bases of the parent are
strictly a subset of the child’s active frictional force bases.

7.4.1. Definition. A contacting-separating mode u is fea-
sible if and only if there exists a sliding-sticking mode at u
which is feasible.

7.4.2. Proposition. If a contact mode u is feasible, then all
contact modes v such that v ≤ u are feasible. If a contact

450 The International Journal of Robotics Research 42(6)

mode u is infeasible, then all contact modes v such that u ≤ v
are infeasible. This statement holds for both contacting-
separating modes and sliding-sticking modes.

Proof. We begin by showing the statement holds for
sliding-sticking modes. At a single contact point, the
possible sliding-sticking modes have the following
partial order
Where a line between the left mode u and the right

mode v implies that u ≤ v. Let Λu and Λv be the active set
of frictional force generators for u and v, respectively.
By inspection, if u ≤ v then Λv 4Λu (see Section 6).
Clearly, this relationship holds for sliding-sticking
modes of multiple contact points. The proposition fol-
lows from contradiction. If u is infeasible, there cannot
be a feasible v such that u ≤ v because Λv 4Λu implies u
would be feasible. If u is feasible, there cannot be an
infeasible v such that v ≤ u because Λu 4Λv implies v is
feasible.

Next we show that the proposition holds for contacting-
separating modes. Let u and v be two contacting-separating
modes. Observe that w is a feasible sliding-sticking mode at
u if and only if 0 is also a feasible sliding-sticking mode at u,
because 0 ≤ w and 0 is always a valid contact mode. Let Λu

andΛv be the active frictional force generators for 0 at u and
0 at v, respectively. If u ≤ v, then clearly Λv 4Λu. The
proposition follows from the same proof by contradiction as
before.

The AMP pseudo-code in Algorithm 5 describes a
method to incorporate Proposition 7.3 and the lattice
structure into the feasibility tests at each contact mode. AMP-

CS takes the contact-separating mode lattice as input, and the
output is the revised lattice. The algorithm traverses the
lattice from bottom up in a depth-first manner. The traversal
queue Q is initialized with the set of elements u2Lcs such
that u ≤ v for all comparable v2Lcs. These elements are
known as atoms. We provide a proof of correctness.

7.4.3. Theorem. Algorithm 5 computes the feasibility of each
sliding-sticking mode at every contacting-separating mode.

Proof. We begin by arguing the correctness of AMP-CS,
which is the entry-point of the AMP algorithm. This
function traverses the input contacting-separating mode
lattice Lcs from the bottom up and determines the fea-
sibility of each element u2Lcs. We initiate a traversal
queue Q with the atoms of Lcs. We assume that all el-
ements in Lcs are initialized with feasibility set to un-
known. We claim that the while loop in AMP-CS calls AMP-

SS for all feasible u. First we observe that the set of
feasible elements is connected because for all feasible
u2Lcs the element 0. ≤ u. Next we observe that for every
feasible u 2 Q, the while loop calls AMP-SS and adds the
parents of u to Q. This shows that AMP-SS is called for
every feasible u. As an additional time-saving measure,
when the function encounters an infeasible u, it marks all
v such that u ≤ v as infeasible.

The next step is to argue the correctness of AMP-SS. Let
Lss be the sliding-sticking mode lattice enumerated at the
input contacting-separating mode. Similar to before, the set
of feasible elements in Lss is connected and the while-loop
ensures that every feasible element is pushed into and
popped from Q. This function also includes another run-
time improvement based on Proposition 7.3. Whenever a
feasible element u is encountered, every element v such that
v ≤ u is also set to feasible.

We will conclude this section with a discussion of the
computational complexity of the AMP algorithm. The
number of elements and edges in the contacting-separating
mode lattice is O (nPd/2R) (Edelsbrunner 2005). In the worst
case scenario, the AMP-CS function calls AMP-SS on every
element and traverses every edge. This scenario occurs
when the entire lattice is feasible. The number of elements
and edges in a sliding-sticking mode lattice is O (nd)
(Edelsbrunner 2005). We observe that the AMP-SS function
traverses the lattice in a depth-first manner and can touch
every edge at most twice. Let k be the number of feasible
coatoms in Lss, i.e. feasible u such that for all comparable v,
v ≤ u. In the worst case, the function must call d linear
program solves for every coatom because d is the maximal
chain length in Lss. Therefore the number of linear program
solves is O (nPd/2Rdk) and the number of edges traversed is O
(nP3d/2R). From a performance perspective, the linear pro-
gram solver is the bottleneck in this algorithm. Moreover,
the number of contact modes is typically fairly small for a
single object, on the order of 1000 sliding-sticking modes
over all contacting-separating modes (see Section 8).

8. Experiments

This section presents several experimental results and
benchmarks which support our approach towards dexterous
robotic manipulation. In the first section, we demonstrate the
viability of contact mode enumeration for a single object. We
report results on computation time and mode complexity, an
often misunderstood subject. The second section reports
computational results for the autogeneration of manipulation
primitives. In the final section, we showcase the usefulness of
autogenerated manipulation primitives in simulated planning
problems and real-world experiments.

We created a number of manipulation-specific test cases
for the experiments in this section. These test cases were
chosen to represent a range of possible contact scenarios for a
single object. The number of tangent planes was set to two
i.e., a 4-sided friction cone. We included open environments
like a cup on the table-top and constrained environments like
a book sandwiched between two other books. We generated
32 test environments in total. The experiments were run on a
computer with an Intel i7-7820x CPU (3.5 MHz, 16 threads).

8.1. Enumeration of contact modes

This section reports the results of running our enumeration
algorithms on the test cases. The runtime results are graphed

Huang et al. 451

in Figure 13. The convex-hull method is able to enumerate
contacting-separating modes in less than 1 ms. The time for
enumerating sliding-sticking modes ranges from 1 ms to
63 ms. Moreover, the partial hyperplane arrangement
method is consistently faster than the zonotope method, and
on certain problems, it is up to 10x faster. The most
challenging enumeration problems for the zonotope method
are the contacting-separating modes which have a large
number of contacting contacts i.e., have many 0s. In the
zonotope method, normal velocity hyperplanes are treated
as two-sided hyperplanes. In the partial hyperplane ar-
rangement method, normal velocity hyperplanes are treated
as one-side hyperplanes. As a result, the zonotope method
does twice the work for each 0 in the contacting-
separating mode.

Figure 14 visualizes the number of contacting-separating
modes and sliding-sticking modes against the number of
contact points. The sliding-sticking mode count was taken
as the total number of sliding-sticking modes across all
contacting-separating modes. We observed that the number
of contacting-separating modes is almost always under 50.
The outlier at 136 belongs to the test case where a book is
flush against a corner in the bookshelf. Interestingly, there
are exactly 136 sliding-sticking modes too for that test case.
We observed that the number of sliding-sticking modes to
be around 1000 or less typically. The larger sliding-sticking
mode counts can be attributed to the bowl-within-a-bowl
test cases. For a single object with (simplified) geometry, the
key take-away message is that the number of contact modes
is within 1000 and the number of visually distinctive ways
to make and break contacts is 50. This may appear to be at
odds with the computational complexity of O (nd) we de-
rived for the enumeration algorithms. One expects a single
object with 12 contacts to have 126 = 2,985,984 contact
modes. This discrepancy is caused by several factors that
reduce the dimensionality of problem. First, contacts often
generate degenerate hyperplanes. In the test case of a cup on
a table, the contacts are all coplanar and share the same
normal. The normal velocity inequalities generated by these
contacts have an affine dimension of two instead of 6.
Second, a contacting-separating mode u restricts a number
of contacts to be contacting i.e., nTv = 0 where n is a normal
velocity constraint and v is the velocity. We use this con-
straint to futher reduce the dimensionality before enumer-
ating the sliding-sticking modes at u. Finally, each
additional contact point restricts the valid object motions.
Therefore, as the number of contacts increase, the dimen-
sionality often decreases.

8.2. Autogeneration of manipulation primitives

We added additional hand contact points to each test case
and computed the feasible manipulation primitives. We
constrained the hand contact points to be sticking. The
computation times for the baseline and the AMP algorithm

Figure 13. Plot of runtime for convex hull, partial arrangement,
and zonotopemethods versus the # of contacts. The y-axis is log-
scale.

Figure 14. Plot of # of contact modes versus the # of contacts.

Figure 15. Figure showing the autogeneration time versus # of
contacts.

452 The International Journal of Robotics Research 42(6)

are plotted in Figure 15. The “no cache” version of the full
modes algorithm resets the linear programming solver after
each feasibility test. Between solves, the only changes to the
feasibility problem defined in Problem 7.1 are to the upper
bounds on contact forces. The cached version reuses so-
lution basis and the matrix factorization from the previous
solve to speed up computation. On average, we observed
that the cached full modes algorithm results in a 10x speed-
up over the uncached version. By propagating feasibility
information throughout the lattice, the AMP algorithm runs
on average 6x faster than the (cached) full-modes algorithm.

8.3. Sequencing manipulation primitives

One use case is an intensively studied yet not solved problem:
planning through contacts Posa et al. (2014); Manchester and
Kuindersma (2020). Themain difficulty of this problem is the
nonlinearity and nonconvexity introduced by frictional
contacts dynamics. With the algorithms in this paper, we can
use the framework of contact modes to decompose the search
space into multiples subspaces and guide the search process
along contact-mode based manipulation primitives. Figures
16 and 17 shows two test cases in 3D: “pick up a book” and
“retrieve a bottle”. Both test cases need dexterous maneuvers
to achieve the goals. In the “pick up a book” task, the object is
too thin to be picked up directly. In Figure 16, a contact mode
guided sampling-based planner from Cheng et al. (2021,
2022) uses autogenerated manipulation primitives to help it
find a solution of first sliding the object to the edge of the
table, then making contact on the object bottom surface to
pick the object up. In the “retrieve a bottle” task, the object is
occluded, and there is no space to form a grasp. As shown in
Figure 17, the planner comes up with pivoting the object first
to create some space to form a grasp. This generated strategy
is similar to “simultaneous levering out and grasp formation”
observed in human grasping by Nakamura et al. (2017). The
generated trajectories can be viewed in Multimedia
Extension 2.

8.4. Robustness to model uncertainty

We designed three real-world experiments that highlight
how a library of manipulation primitives adds robustness to
model uncertainty. These experiments can be viewed in
Multimedia Extension 3. The first experiment in Figure 18

demonstrates how AMP could provide robustness in the
presence of an incorrect mass model. Suppose a robot was
tasked with moving a box. In the top sequence, the robot
grasped and lifted the box which was empty. In the middle
sequence, the robot attempted to grasp and lift the same box,
but this time the box was filled with chess pieces and it
slipped out of the grasp. In the bottom sequence, robot
successfully press-pulled the filled box to the right, despite
the additional weight. The experiment in Figure 19 dem-
onstrates how AMP could provide robustness in the pres-
ence of incorrect model geometry. Suppose a robot was
tasked with rotating a rectangular block onto its side. In the
top sequence, the robot made contact with the top-right of
the block, pivoted it on the right edge, and squeezed the
block from the left to finish the rotation. In the middle
sequence, the robot attempted to pivot the block, but this
time the block was replaced with a rhomboid. The obtuse
top-right edge caused the finger contact to slip and the robot
failed to finish the rotation. In the bottom sequence, the
robot approached the rhomboid from a different orientation.
This primitive could sampled by running AMP on a mir-
rored set of contact points. During this execution, the acute
top-right edge enabled the pivot motion to complete and the
robot successfully rotated the rhomboid. The experiment in
Figure 20 demonstrates how AMP could provide robustness
in the presence of incorrect or unknown friction coefficients.
Suppose a robot was tasked with moving a block from left to
right. In the top sequence, the robot successfully press-
pulled the block because the friction coefficient between the
block and the hand was greater than the friction coefficient
between the surface and the block. We created this scenario
by gluing high-friction felt to the top of the block. In the
middle sequence, the robot attempted to press-pull the
block, but this time the high-friction felt was on the bottom
of the block. The sliding motion was no longer dynamically
feasible and the block toppled over in failure. In the bottom
sequence, the robot successfully pushed the block. The
high-friction felt-surface contact had no impact on the
pushing primitive, unlike on the press-pull primitive.

9. Limitations & future work

In our implementation, we observed that numerical errors in
the inputs to the sliding sticking mode algorithm can cause
the algorithm to return an incorrect enumeration. As our

Figure 16. The generated motion sequence for the test case “pick up a book” (use case: sequencing manipulation primitives). Left to
right: sliding the object, making a contact from the bottom surface, and levering up.

Huang et al. 453

Figure 17. The generated motion sequence for the test case “retrieve a bottle” (use case: sequencing manipulation primitives). Left to
right: pivoting, forming a grasp, and picking up.

Figure 18. (Top) successful grasp of an empty box. (Middle) failed grasp of a weighted box. (Bottom) successful press-pull of weighted
box.

Figure 19. (Top) successful pivot of a rectangle. (Middle) failed pivot when applied to a rhomboid. (Bottom) successful pivot when
applied to rhomboid at a different orientation.

454 The International Journal of Robotics Research 42(6)

algorithm tries to satisfy the input constraints exactly, large
enough errors can cause the algorithm to decide that no
motion is possible. Typically, this causes the autogenerated
manipulation primitives to be missing a small number of
primitives. In practice, we have observed that the generated
library is still sufficient for planning purposes (Cheng et al.,
2021).

In our experiments, we assumed sticking contacts between
the hand and the object for two reasons. First, controlling
sliding modes between the hand and the object on robotic
hardware experiments was outside the scope of this work.
Second, the contact modes between the object-environment
and between the object-hand are independent. The inde-
pendence implies that the number of contact modes in the
system are product of each contact subsystem. For future
work, we hope to improve the performance of the AMP
algorithm to also reason about the object-hand contact modes.

Algorithm 6. Preprocess hyperplanes

1: function PREPROCESS (AT)
2: C ←Column-Space(A)
3: A ← CTA
4: A ←Remove-Zeros(A)
5: A [:, i] ← A [:, i]/kA [:, i]k
6: A ←Remove-Parallel (A)
7: return AT

10. Conclusion

This paper extended the theory and computation of contact
modes introduced in Huang et al. (2020) into a principled

method for autogenerating manipulation primitives. The
main contributions are a d-th root complexity improvement
in sliding-sticking mode enumeration and the AMP algo-
rithm for autogenerating manipulation primitives. We val-
idated our algorithms on a number of experiments. The
computational experiments demonstrated the efficacy of
contact mode enumeration and AMP on 3D manipulation
problems. The entire pipeline runs in 10s of milliseconds.
We also demonstrated the usefulness of having libraries of
manipulation primitives for planning dexterous manipula-
tion and for robustness to model errors. We hope that our
contributions will lead to more general and more robust
approaches for robotic manipulation.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: This
work was supported by the National Science Foundation; IIS-
1637908; National Science Foundation; IIS-1813920 and National
Science Foundation; IIS-1909021.

ORCID iDs

Eric Huang  https://orcid.org/0000-0002-2182-2770
Xianyi Cheng  https://orcid.org/0000-0001-8342-9459

Figure 20. (Top) successful press-pull with a high-friction hand contact. (Middle) failed press-pull with a low-friction hand contact.
(Bottom) successful push despite high-friction surface contact.

Huang et al. 455

https://orcid.org/0000-0002-2182-2770
https://orcid.org/0000-0002-2182-2770
https://orcid.org/0000-0001-8342-9459
https://orcid.org/0000-0001-8342-9459

Supplemental Material

Supplemental material for this article is available online.

Notes

1. Our interpretation of their work is that the runtime of their
algorithm is at least O (num-cs-modes × n2 × work-per-cs-
mode-hypothesis) where n is the number of potentially adjacent
contacts. It is unclear to us what the complexity of testing each
cs-mode hypothesis is in their algorithm.

2. Both toppling and dropping can be accomplished with a mix of
other quasi-static primitives, like pivoting and placing.

References

Aiyama Y, InabaM and Inoue H (1993) Pivoting: A newmethod of
graspless manipulation of object by robot fingers. In Pro-
ceedings of 1993 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 93), Tokyo, Japan,
July 26–30, 1993. vol. 1: 136–143

Avis D and Fukuda K (1996) Reverse search for enumeration.
Discrete Applied Mathematics 65(1): 21–46.

Barber CB, Dobkin DP and Huhdanpaa H (1996) The quickhull
algorithm for convex hulls. ACM Transactions on Mathe-
matical Software 22(4): 469–483.

Barry J, Hsiao K, Kaelbling LP, et al. (2013) Manipulation with
multiple action types. In Experimental Robotics. Berlin:
Springer. 531–545.

Bjorner A, Björner A, Las Vergnas M, et al. (1999) Oriented
Matroids. Cambridge: Cambridge University Press.

Chavan-Dafle N, Holladay R and Rodriguez A (2018) Planar in-
hand manipulation via motion cones.The International
Journal of Robotics Research 39, 163–182.

Cheng X, Huang E, Hou Y., et al. (2021) Contact mode guided
sampling-based planning for quasistatic dexterous manipu-
lation in 2d. In Robotics and Automation (ICRA), 2021 IEEE
International Conference on, Xi’an, China, May 30–June 5,
2021. IEEE.

Cheng X, Huang E, Hou Y, et al. (2022) Contact mode guided
motion planning for quasidynamic dexterous manipulation in
3d. In 2022 International Conference on Robotics and Au-
tomation (ICRA), Philadelphia, USA, May 23–27, 2022.
IEEE. 2730–2736.

Delos V and Teissandier D (2015) Minkowski sum of polytopes
defined by their vertices. Journal of Applied Mathematics and
Physics 3(1): 62–67.

Doshi N, Taylor O and Rodriguez A (2022) ‘Manipulation of
unknown objects via contact configuration regulation’.
(2022). In IEEE International Conference on Robotics and
Automation (ICRA), Philadelphia, USA, May 23–27, 2022.

Edelsbrunner H (2005) Algorithms in Combinatorial Geometry.
Berlin: Springer-Verlag.

Erdmann M (1998) ‘An exploration of nonprehensile two-palm
manipulation’ The International Journal of Robotics Re-
search 17: 485–503

Facchinei F and Pang JS (2007) Finite-dimensional Variational
Inequalities and Complementarity Problems. Berlin: Springer
Science & Business Media

Geyer T, Torrisi FD and Morari M (2010) Efficient mode enu-
meration of compositional hybrid systems. International
Journal of Control 83(2): 313–329

Greenfield A, Saranli U and Rizzi AA (2005) Solving models of
controlled dynamic planar rigid-body systems with frictional
contact. The International Journal of Robotics Research
24(11): 911–931

Gurobi Optimization I (2016) Gurobi Optimizer Reference
Manual. https://www.gurobi.com

Haas-Heger M, Papadimitriou C, Yannakakis M, et al. (2018) Passive
static equilibrium with frictional contacts and application to
grasp stability analysis. In Proceedings of Robotics: Science and
Systems. Pittsburgh, PA, June 26–30, 2018.

Hogan FR, Ballester J, Dong S, et al. (2020). Tactile dexterity:
Manipulation primitives with tactile feedback. In 2020 IEEE
International Conference On Robotics And Automation
(ICRA), Palais des Congrès de Paris in Paris, France, May
31–June 4, 2020. IEEE. 8863–8869.

Holladay A, Paolini R and Mason MT (2015), A general
framework for open-loop pivoting. In 2015 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
Washington State Convention Center in Seattle, Washington,
USA, May 26–30, 2015. IEEE. 3675–3681.

Horak PC and Trinkle JC (2019) On the similarities and differences
among contact models in robot simulation. IEEE Robotics
and Automation Letters 4(2): 493–499.

Hou Y, Jia Z and MasonMT (2018) Fast planning for 3d any-pose-
reorienting using pivoting. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), Brisbane
Convention & Exhibition Centre in Brisbane, Australia, May
21–25, 2018. IEEE. 1631–1638.

Huang E, Cheng X and Mason MT (2020) Efficient contact mode
enumeration in 3d. In Workshop on the Algorithmic Foun-
dations of Robotics, Sokos Hotel Eden, Oulu, Finland, June
21–23, 2021.

Johnson AM and Koditschek DE (2013) Toward a vocabulary of
legged leaping. In 2013 IEEE International Conference on
Robotics and Automation, Germany, Karlsruhe, May 6–10,
2013: 2568–2575

Kaelbling LP and Lozano-Pérez T (2010) Hierarchical planning in
the now. In Workshops at the Twenty-Fourth AAAI Con-
ference on Artificial Intelligence, Westin Peachtree Plaza in
Atlanta, Georgia, USA, July 11–15.

Kaibel V and Pfetsch ME (2002) Computing the Face Lattice of a
Polytope from Its Vertex-Facet Incidences. Computational
Geometry Elsevier. 23 (3), 281–290.

Kelly M (2017) An introduction to trajectory optimization:
How to do your own direct collocation. SIAM Review
59(4): 849–904.

King J, Haustein J, Srinivasa S, et al. (2015) Nonprehensile whole
arm rearrangement planning with physics manifolds. In IEEE
International Conference on Robotics and Automation

King J, Cognetti M and Srinivasa S (2016) Rearrangement
planning using object-centric and robot-centric action spaces.
In IEEE International Conference on Robotics and Auto-
mation, Stockholm Waterfront Congress Centre in Stock-
holm, Sweden, May 16–21, 2016.

456 The International Journal of Robotics Research 42(6)

https://www.gurobi.com

Kingston ZK, Moll M and Kavraki LE (2018) Sampling-based
methods for motion planning with constraints. Annual Review
of Control, Robotics, and Autonomous Systems 1: 159–185.

Landry B, Lorenzetti J, Manchester Z, et al. (2019) Bilevel op-
timization for planning through contact: A semidirect
method. In Proceedings of International Symposium on
Robotics Research (ISRR 19), Hanoi, Vietnam, October 6–
10, 2019.

LaValle SM (2006) Planning Algorithms. Cambridge: Cambridge
University Press.

Leveroni SR (1997) Grasp Gaits for Planar Object Manipulation.
PhD Thesis. Cambridge, MA: Massachusetts Institute of
Technology.

Li S, Lyu S and Trinkle J (2015) State estimation for dynamic
systems with intermittent contact. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), Wash-
ington State Convention Center in Seattle, Washington, USA,
May 26–30, 2015. IEEE. 3709–3715.

Lynch KM and Mason MT (1996) Stable pushing: Mechanics,
controllability, and planning. The International Journal of
Robotics Research 15(6): 533–556.

Maeda Y, Nakamura T and Arai T (2004). Motion planning of
robot fingertips for graspless manipulation. In IEEE Inter-
national Conference on Robotics and Automation,
2004 Proceedings ICRA 04 2004, Hilton New Orleans
Riverside, New Orleans, LA, USA, April 26–May 1, 2004.
Vol. 3. IEEE: 2951–2956.

Manchester Z, Doshi N, Wood RJ, et al. (2019) Contact-implicit
trajectory optimization using variational integrators. The
International Journal of Robotics Research 38(12):
1463–1476.

Manchester Z and Kuindersma S (2020) Variational contact-
implicit trajectory optimization. Robotics Research: The
18th International Symposium ISRR, Puerto Varas, Chile,
December 11–14, 2017. Springer. 985–1000.

Mason MT (1986) Mechanics and planning of manipulator
pushing operations. The International Journal of Robotics
Research 5(3): 53–71.

Mason MT (2001) Mechanics of Robotic Manipulation, Cam-
bridge, MA: MIT Press.

Michelman P and Allen PK (1994) Forming complex dextrous
manipulations from task primitives. Proceedings of the
1994 IEEE International Conference on Robotics and Au-
tomation, San Diego (CA), USA, May 8–13, 1994. vol. 4:
3383–3388.

Murty KG and Yu FT (1988) Linear Complementarity, Linear And
Nonlinear Programming Citeseer. 3

Nakamura YC, Troniak DM, Rodriguez A., et al. (2017) The
complexities of grasping in the wild. In 2017 IEEE-RAS 17th
International Conference on Humanoid Robotics (Human-
oids), The REP Theatre in Birmingham, UK, November 15–
17, 2017. IEEE. 233–240.

Önol AÖ, Long P and Padir T (2018) Contact-implicit Trajectory
Optimization Based on a Variable Smooth Contact Model and
Successive Convexification. In 2019 International Conference
on Robotics and Automation (ICRA), Montreal, Canada,
May 20, 2019. 2447–2453

Oxley JG (2006) Matroid theory. Oxford: Oxford University Press
Posa M, Cantu C and Tedrake R (2014). A direct method for

trajectory optimization of rigid bodies through contact. The
International Journal of Robotics Research 33(1): 69–81.

Potočnik B, Mušič G and Zupančič B (2004). A new technique for
translating discrete hybrid automata into piecewise affine
systems. Mathematical and Computer Modelling of Dy-
namical Systems 10(1): 41–57

QHull Library (2020) QHalf notes. https://www.qhull.org/html/
qhalf.htm

Ratliff ND, Issac J, Kappler D, et al. (2018) Riemannian Motion
Policies. arXiv preprint arXiv:1801.02854

Rodriguez A (2021) The unstable queen: Uncertainty, mechanics,
and tactile feedback. Science Robotics 6: eabi4667

Salisbury K (1988)Whole armmanipulation, In Proceedings of the
4th international symposium on Robotics Research, Cam-
bridge, MA, October 7–1988. MIT Press. 183–189

Stewart DE and Trinkle JC (1996) An implicit time-stepping
scheme for rigid body dynamics with inelastic collisions
and coulomb friction. International Journal for Numerical
Methods in Engineering 39(15): 2673–2691.

Tassa Y, Erez T and Todorov E (2012) Synthesis and stabilization
of complex behaviors through online trajectory optimization.
In 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Vilamoura, Algarve, Portugal, October
7–12, 2012. IEEE. 4906–4913

Todorov E (2014) Convex and analytically-invertible dynamics
with contacts and constraints: Theory and implementation in
Mujoco. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), The Hong Kong Convention and
Exhibition Center, Hong Kong, China, May 31–June 5, 2014.
IEEE. 6054–6061.

Xiao J and Ji X (2001) Automatic generation of high-level contact
state space. The International Journal of Robotics Research
20(7): 584–606.

Ziegler GM (1995) Lectures on polytopes. Graduate Texts in
Mathematics, New York: Springer-Verlag

Appendix

A.1. Preprocessing hyperplanes for contact
mode enumeration

A.1.1. Matroid theory. This section provides the pertinent
details of matroid theory which will help us preprocess the
input normal and tangent velocity constraints. Specifically, it will
help us remove degenerate hyperplanes and reduce problem
dimensionality. Amatroid is the pair ðE, IÞ of afinite setE and a
collection I of subsets of E such that

(I1) ˘2I
(I2) If I 2I and I0 4 I, then I

0 2 I .
(I3) If I1 and I2 are in I and |I1| < |I2|, then there is an element

e of I2 % I1 such that I1[e2I .

Let A2Rd×n be a matrix. Let E be the set of column
vector indices of A and I the collection of subsets I 4 E

Huang et al. 457

https://www.qhull.org/html/qhalf.htm
https://www.qhull.org/html/qhalf.htm

such that the corresponding vectors in A are linearly in-
dependent. This matroid M [A] is known as a vector mat-
roid. The signed covectors of M [A] are the elements of the
set V*ðAÞ ¼ fsignðcTAÞ : c2Rdg The signed covectors are
one of several sets of data which uniquely define a matroid.
If we interpret c as a point in Rd , then the signed covectors
of M [A] are the signed vectors of the arrangement AðAT Þ.

The matroid M [A] is unchanged if one performs any of
the following operations on A.

(E1) Interchange two rows.
(E2) Multiply a row by a non-zero member of R.
(E3) Replace a row by the sum of that row and another.
(E4) Adjoin or remove a zero row.
(E5) Interchange two columns (moving their labels with

their columns).
(E6) Multiply a column by a non-zero member of R.
(E7) Replace each matrix entry by its image under some

automorphism of R

Using operations (E1)-(E5), one can always reduce a
matrix A into the form [I|D]. The only automorphism of the
real numbers is the identity map. Therefore, ignoring (E7),
we arrive at the following notion of projective equivalence.
Matrices A1,A2 2Rd×n are projectively equivalent repre-
sentations of a matroid if and only if there exists a non-
singular matrix X 2Rd×d and non-singular diagonal matrix
Y 2Rn×n such that A2 = XA1Y. For further reading, the books
by Oxley and Bjorner are excellent references Oxley (2006);
Bjorner et al. (1999).

A.1.2. Preprocessing Hyperplanes. The preprocessing
routine is an important step which removes degeneracies
from the input hyperplanes and reduces problem dimen-
sionality. Recall from Section A.1.1 that a linear hyperplane
arrangement AðAT Þ is combinatorially equivalent to the
vector matroidM [A]. This section outlines a matroid-based

preprocessing routine for reducing the set of normal and
tangent velocity hyperplanes into a minimal set of pro-
jectively equivalent hyperplanes. For simplicity, we first
present our preprocessing routine for the zero offset case,
i.e. N _q≤0. Afterwards, we will describe how to extend this
test to non-zero offsets.

Let A ¼ ½N ; T 'T 2Rd×m be the input hyperplane
normals in column vector form. We want to find in-
vertible matrices X and Y, with Y diagonal, such that
XAY ¼ A

0 ¼ ½N 0
; T

0 'T 2Rd
0
×m

0
has minimal dimensions.

We can accomplish this in two steps.

1. Reduce dimension: To minimize the dimension d, we
can choose X = [CT; LT] where C 2Rd

0
×d is the an or-

thonormal basis for the column space of A and
L2Rðd%d

0 Þ×d is a basis of the left nullspace of A. After
multiplying X and A, we can remove the bottom d % d0

rows (E4). Note that this operation does not change the
orientation of the hyperplanes.

2. Remove duplicate/zero hyperplanes: First, we re-
move any hyperplanes with zero magnitude. Next, we use Y
to normalize each hyperplane and remove any hyperplanes
that are parallel to a previous column in A. This operation
maintains projective equivalence because M [A] is defined
over the set of column vectors in A.

We can extend the above test to handle non-zero offsets
by lifting the hyperplanes into dimension d + 1. Given a
hyperplane h ¼ fx2Rd : ax ¼ bg, observe that h is the
orthogonal projection of a d + 1 dimensional linear hy-
perplane onto the unit vertical plane

fy : ½a, % b'y ¼ 0g\fy : ydþ1 ¼ 1g, y2Rdþ1 (56)

Therefore, we can extend this test to the non-zero offset
case by changing the inputs to N0 = [N, f] and T0 = [T, 0],
where f is the offset.

458 The International Journal of Robotics Research 42(6)

	Autogenerated manipulation primitives
	1. Introduction
	2. Related work
	2.1. Enumeration of contact modes
	2.2. Autogeneration of manipulation primitives

	3. Theory of contact modes
	3.1. Contact normal velocity
	3.2. Convex polyhedra
	3.3. Contacting-separating modes
	3.3.1. Theorem

	3.4. Contact tangent velocity
	3.5. Partial hyperplane arrangements
	3.6. Sliding-sticking modes
	3.6.1. Theorem
	3.6.2. Corollary

	3.7. Contact mode lattice

	4. Enumeration of contacting-separating modes
	4.1. Polar polytopes
	4.2. Convex hull enumeration method
	4.3. Complexity of convex hull method
	4.3.1. Theorem

	5. Enumeration of sliding-sticking modes
	5.1. Zonotopes
	5.2. Zonotope/Minkowski
	5.3. Complexity of Zonotope method
	5.3.1. Theorem

	5.4. Partial hyperplane arrangement enumeration method
	5.5. Complexity of partial arrangement method
	5.5.1. Theorem

	6. Dynamics of contact modes
	6.1. Coulomb friction model
	6.1.1. Definition

	6.2. Polyhedral friction model
	6.3. Contact mode friction model
	6.4. Dynamic equations of motion

	7. Autogeneration of manipulation primitives
	7.1. Classification of primitives
	7.2. Quasi
	7.2.1. Problem

	7.3. Full mode algorithm
	7.4. AMP algorithm
	7.4.1. Definition
	7.4.2. Proposition
	7.4.3. Theorem

	8. Experiments
	8.1. Enumeration of contact modes
	8.2. Autogeneration of manipulation primitives
	8.3. Sequencing manipulation primitives
	8.4. Robustness to model uncertainty

	9. Limitations & future work
	10. Conclusion
	Declaration of conflicting interests
	Funding
	ORCID iDs
	Supplemental Material
	Notes
	References
	Appendix
	A.1. Preprocessing hyperplanes for contact mode enumeration
	Outline placeholder
	A.1.1. Matroid theory
	A.1.2. Preprocessing Hyperplanes

