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' Abstract—To improve food security and environmental

sustainability amid the global crisis of climate change and
nutrition quality requirements as well as low cost agricultural
needs and electricity issues, particularly in developing countries
like India, it is essential to combine autonomy and newer
energy storage methods with traditional agriculture. Existing field
robotic mechanisms, path planning methods and battery energy
management systems are designed independent of each other. To
ensure energy efficient and safety aware operation of autonomous
agricultural robots, coordination between aforementioned tech-
niques is necessary. With the aim to provide such solution, in this
work we propose a framework to integrate robot mechanism,
path planning and battery management system. Simulations are
performed to validate the performance of the algorithm.

Index Terms—Agriculture, Autonomous Robots, Path Plan-
ning, Batteries.

I. INTRODUCTION

smart agriculture architecture incorporating portable
hardware can alleviate many of the bottlenecks to food
accessibility [1], [2]. In this paper, we propose a multidisci-
plinary framework for energy and safety aware operation of
battery powered autonomous robot in agriculture. There are
numerous instances of large mobile agricultural machinery,
mostly crop harvesters, both in literature [3] as well as in
the commercial domain [4], [S]. However, a design suitable
for the small and fragmented farms seen in large parts of the
developing world, is not available. Whether scaling down the
existing large harvester design needs other structural changes
is an open question. Specifically, though quite a few designs
exist for onion harvesting [3], [6]-[12], a design suitable for
a small and unstructured farm is not available. LePori and
Hobgood [6] have explored a design in which the harvested
onions are reversed as they are conveyed up an inclined
conveyor, making it easy for the plants to be separated from the
onions. The design proposed by Hiroshi [7] which combines
digging, lifting, conveying, topping and separating in a single
machine, seems to have inspired many of the later designs. The
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design given by Nisha and Sridhar [10] is the most simple of
these and is perhaps suitable for a relatively small harvester.
However, choosing one suitable for the small machine is
not trivial. Moreover, a small autonomous mobile agricultural
machine/harvester has not even been theoretically investigated
so far. Designing one would require a model for predicting the
traction and subsequent power requirement, a battery model
for predicting the energy status and a path planning algorithm
for guiding the rover, all integrated in a single simulation
environment. This is an unexplored field to the best of our
knowledge.

The applications of path planning in agriculture are diverse
and cover various topics and scenarios. Extensive studies of
ground agricultural robot are available in [13] and [14], while
[15] surveys the robotic harvester systems and [16] surveys
the uses of drone in agriculture. The applications of path
planning are found in various agricultural settings, including
vineyards [17], orchards [18], greenhouses [19], and paddy
farms [20]. The use cases for path planning encompass tasks
such as navigation, monitoring, targeted spraying, and harvest-
ing. Some studies propose specific path planning algorithms
tailored to agricultural environments (see [14] and references
within) and machinery, while others focus on general-purpose
path planning algorithms applicable to agriculture. Vision-
based navigation and guidance for robotic vehicles is studied
in [21] while the authors in [22] studies path tracking problem
for autonomous harvesting. The work presented in this paper
complements the studies done in [23] where the stereo vision
and deep learning techniques are used to identify the crop rows
and determines the navigation waypoints that the harvester
should follow.

Most of the battery energy management research is focussed
on applications such as passenger automotive vehicles and
renewable energy storage. These existing solutions cannot be
directly transferred to the applications of battery powered
robots in fields due to various factors such as dissimilar
power consumption profiles leading to different energy and
safety conditions, planning priorities for task completion and
locomotion based on robot size and shape. Some works in
the past have tried to address this issue. For example, battery
charge scheduling for longer life robots under uncertainties has
been explored in [24]. In [25], [26] and [27], charge estimation
approaches such as Kalman filters and H., observers were
explored for mobile robots. The work [28] explored energy
estimate models to be used for mobile robot autonomy. In
[29], autonomous battery management has been explored for
mobile robots. These approaches are limited in the sense that



they do not fully capture internal battery physics. These results
in incomplete understanding of internal battery states which
are highly essential for energy and safety aware operation of
autonomous field robots. Hence, we utilize the Single Particle
Model (SPM) which is a physics-based battery model to
capture the battery internal states. We provide an estimate on
the battery instantaneous energy and raise an alarm indicating
whether a fault has occurred resulting in energy and safety
aware operation.

Traditionally, for battery-powered autonomous robots,
robotic mechanism do not consider battery and path plan-
ning constraints while conventional battery management does
not take into account robot mechanism and path planning
constraints. For increased energy efficiency and safety, co-
ordinated efforts of robot mechanism design, path planning
and battery management are required. Only few works in the
literature have briefly mentioned this issue. For example, an
intelligent power management considering remaining battery
capacity was explored in [30]. In [31], remaining energy esti-
mation was used to intelligent allocate tasks to mobile robots.
Although these studies show the promise, a comprehensive
solution framework still remains an open problem.

In light of the aforementioned research gaps, we propose
an integrated framework of robot mechanism design, path
planning and battery management for energy and safety aware
operation of battery powered autonomous agricultural robots.
Essentially, the main contribution of this paper is an algorith-
mic architecture which enables iterative interaction between
different components of the overall mechanism to ensure
energy efficient and safe locomotion of the robots. The rest of
the paper is organized as follows. In Section II, we start with a
brief overview of our battery powered robot autonomy archi-
tecture, operation and algorithm. Then we proceed to describe
the robot mechanism design, battery model and estimation, and
path planning algorithms in detail. In Section III, we discuss
the results obtained from the simulations. Finally, Section IV
concludes the paper.

II. GENERAL FRAMEWORK FOR ENERGY- AND
SAFETY-AWARE ROBOT OPERATION

A schematic of the proposed algorithmic framework is
shown in Fig. 1. As shown in the figure, a battery-powered
robot performs the locomotion and an agricultural task. In this
paper, the robot is an onion harvester and the agricultural task
is harvesting onions in an onion-field. The robot includes a
proportional-integral type controller which receives reference
position and velocity trajectories from the path planning
algorithm, and in turn commands appropriate force for the
robot to move. Accordingly, the robot moves around the onion-
field and continue performing the harvesting task. In the mean
time, battery system is monitored continuously to track battery
energy and any potential fault occurrences. Once the battery
energy is depleted to a level such that only energy left is just
enough for return, the robot returns to the base. Furthermore,
even if there is enough battery energy left for harvesting, but
there is a battery fault — the robot returns to base for safe
handing of the battery. In the next subsections, we will discuss
various elements of this framework.
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Fig. 1. Schematic of the proposed algorithmic framework.
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Fig. 2. Choosing appropriate model for predicting harvesting force.

A. Robot Mechanism Design

In order to design an onion harvester, it is necessary to
develop a model for predicting the power required to drive
the harvester, both while it is harvesting and while it is
moving on the soft soil but is not harvesting. A review of
literature in this domain shows modelling attempts ranging
from fundamental (first-principle) to empirical. The general
trend has been to model the force required for digging and
force of traction separately. To choose a suitable model for the
former, we analyzed the analytical model developed by Zeng
et al [32], the semi-empirical models of McKyes and Ali [33]
and Wheeler and Godwin [34] the empirical model of Tiwari
[35]. The predictions of these models on the test conditions
described by Tong et al [36], when compared with the test
results given by Tong et al [36] (Fig. 2), allowed us to choose
the model of Zeng et al. [32]. This was used for estimating
the power required for the operation which led to appropriate
motor and battery sizing. For evaluating various terms in the
equations developed by Zeng et al [32], some assumptions
had to be made about the harvester. From a detailed CAD
model (Fig. 3), the weight was estimated to be 50 kg. The
speed was considered to be 1 m/s while harvesting and 2 m/s
while transporting. From the onion cultivation data reported
by Khura [37], the maximum depth to which a plough would
need to dig into the soil for harvesting would be 70 cm and
mean depth would be 35 cm. In this work, we considered
a harvesting depth of 40 cm. A schematic diagram of the
harvester is shown in Fig. 4.
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Fig. 4. A schematic diagram of the harvester.

The following equations from the model of Zeng et al
[32] were used to calculate the force required for digging:
Ty = —Fpiade sin o+ P, cos cos (o — §) + Fiige cos f + %
and Ty = Fpiade cos + Ppsinsin (o — 6) + Fgigesin 8 +
m, where P, is force due to passive earth pressure, a, is
acceleration in vertical direction, Fj;q4. is side friction force,
[ is side friction angle, § is friction angle between soil and
blade, and W}, is weight of blade Zeng et al considered Fi;qqe
to be negligible since the frictional resistance and cohesion of
soil was small. For our application, though the contribution is
somewhat small, it was included as: Fpjqq. = i%zvj where W
is the width of the blade, d is the vertical distance of the tip
of the blade from the soil surface, and « is the acute angle
between blade and soil surface, and ¢, soil tool adhesion. For
calculating the length of failure wedge, assuming it to be of
crescent type, the equations used by McKyes and Ali [33] was
used as follows: Ly = (tan tan o+ cot cot cy,)d where «, is
the inclination angle of soil failure wedge. Solving these two
equations would give us the total digging force required.

The equations for the tractive force were as follows:

Wp—-Ty—W,-W;=0,Rf —F, —F; =T, =0, (1)
W,L, —WyL—-L,)—-T,L,—T,Ly,
— Fgr' — For' + RyL, = 0, )

Here the parameters L, L., L,, W} and r are known, and
can be obtained from the CAD model. The parameters d
and « are defined as inputs. T, and T, were obtained by
solving the model of Zeng et al. The rest of the force
variables Ry, Wy, W, F,. and F; are unknown. Since there
were five unknown variables and only three equations, we used
equations given by Brixius [38] to formulate more equations
to solve for these variables. Knowing certain parameters of

the tire and soil conditions like the cone index (CI) and
tire cross sectional dimensions (width b and height h), tire
diameter d’, tire deflection ¢’ and observed slip, the Brixius
mobility number (B, B,,) can be calculated and from
that, the motion resistance of the wheels can be found using
equations (3). Here the slip (S) was calculated as the average
slip observed while moving the vehicle for 2 m distance and
counting the revolution of the wheels. The cone index was
taken as 150 based on field observation and comparing it
with the information available on research papers for the soil
condition expected in our case.

CIbd 1+5%  CIbd 1+5%

Bn :777377,7’*777 3
7wy 13l W, 18y O

F, 1 0.55

v = 0.04 4

W, = B + + 5 Y e{fr} “4)

Equations (1), (2), (3) and (4) are now solved to obtain
Ry, Wy, W,., F, and F. For validating these models, we built
a mini prototype of the harvester with just the frame and
blades. We utilized a S type 200 kg load cell in combination
with HX711 A/C converter, Micro SD reader and Arduino
Uno for measuring the total pull force required for various
conditions like, (i) Transporting the harvester in the field, and
(ii) Transporting and digging at different rake angles. The
average loads from 4 trials for moving with digging and 3
trials for moving without digging were 186.9 N and 24.7 N
respectively. The corresponding values predicted by our model
were 200.7 N and 30.3 N. The reasonable agreement between
the values predicted by our model and the experimentally
determined values gave us confidence to use this model for
further studies.

Solving all the equations for the tractive force requires itera-
tive equation solving techniques. It was envisaged that it would
be difficult to implement such a model in conjunction with
additional iterative procedures needed for the path planning
controller and the battery model based energy predictor. To
simplify the process and avoid solving the harvester modelling
equations repeatedly, we looked at the major contributors to
the pull force required and identified that for a particular field
with specific operational parameters being set, it is possible
to consider only the speed and mass of the harvester as
variables. Hence, the equations were solved repeatedly only
once for the purpose of generating a database from which the
following regression equations were formulated for predicting
the tractive forces: Torque required for moving and harvesting
= —0.00003t2 + 0.0563t + 0.4881, and Torque required for
moving without harvesting = —0.00003t2 + 0.0444t — 0.2743.
In this exercise, we assumed the average mass of an onion to
be 52 g (as reported by Khura [1]), a speed of 1 m/s while
harvesting and 2 m/s while moving without harvesting.

B. Battery Models and Algorithms

Here, we discuss the battery model and the battery energy
estimation and fault alarm signaling algorithm.

1) Electrochemical and Thermal Models: First, we discuss
the electrochemical part of the battery model. We have used
the SPM framework in our model where the electrodes are



approximated as spherical particles. Particularly we adopted
the anode dynamics from SPM in our work [39], [40], which
the captures the spatio-temporal Lithium concentration in
anode ¢, (r,t) (unit mol/m®, with radial direction  and time
t) as follows:

Jco(r,t) D O [ 50cq(r,t)

o r2or (r oz ’ )
0cg, (7"7 t) o Ocq (7", t) _

67“ —o - Y% 87‘ —re - nI(t)? (6)
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where D is the diffusion coefficient in m“s™", rg is the particle
radius in m, [ is the battery current, n = 1/a, F Dv, with v, is
the anode volume in m?, a,, is the specific surface area in m—!,
and F is the Faraday’s constant in Cmol ~*. The dynamics for
the battery terminal voltage is given by [39], [41]: V.(¢t) =
U(ca(0))—R;I(t)—g(I(t)), where V, is the terminal voltage,
U(cq(0)) captures the open circuit potential, R; captures the
Ohmic resistances effects, and g(I(t)) captures a nonlinear
resistance-like term arising from Butler-Volmer kinetics.

Next, the thermal dynamics is adopted from [42], [43], and
given as follows:

oT
™oy
where 7' is battery temperature, m is the mass, C, in J (kgK)_1
is the specific heat capacity of the cell, i is the convec-
tion heat transfer coefficient between the cell surface and
the environment, T, is the environmental temperature, and
I(U(cq(0)) — Ve i)s the heat generation. Under a thermal fault,
the heat generation will be changed to I(U(c,(0)) — V) + 61
where 61 is the abnormal heat generation due to the fault [44].
2) Energy Estimation and Fault Alarm Signal: Energy
estimation and fault alarm generation are performed by model-
based observer methods. We use the approaches presented
in [44], for designing the voltage and temperature observers.
Following [44], we first convert the Partial Differential Equa-
tion (PDE) model (5)-(6) into an approximated Ordinary
Differential Equation (ODE) model by using finite difference
discretization method. Subsequently, we design a state ob-
server of the form given below:

= hA(T = Ten) + 1(U(ca(0)) = Vo), (7)

b1 = Ay + BoI(t) + K1 (V() = V(1)
Vo(t) = U(er) — RI(t) — g(I(t)),

®)
)

where ¢; and Ve are the estimates of the concentration c,
and voltage V., respectively, A,, and B,, are matrices derived
from finite difference approximation, K; is the observer gain

that amplifies the correction error term V(t) — V'(¢). This

in turn is used to estimate the energy as follows: E‘b(t) =
Vo(t)I(t), Er(t) = Epae — Ey(t), where E, is energy
remaining, Fpq, is maximum battery energy, and F(t) is
the energy consumed by the battery till the time ¢. Similarly,
we use the following temperature observer to generate the fault
alarm.

O oT

b g = AT =To)+1(U (1 = Vo)+ Ko(T=T), (10)
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Fig. 5. Path of the harvester robot on an onion field.

where 7" is the estimated temperature and K is the observer
gain. Based on the temperature estimation, temperature resid-
ual is obtained as 7T,.(t) = T(t) — T(t). We use following
logic for fault alarm generation: if residual |T}.| > ry, raise the
alarm, i.e., f = 1, otherwise no alarm, i.e. f = 0, where ry
is a pre-defined threshold. The battery energy estimation and
fault alarm signalling procedure is summarized in Algorithm
1. The algorithm takes in the measured values of voltage V.,
current I and temperature I' as input, and outputs the values
of E, and f which are the energy remaining and the fault
alarm, respectively.

Algorithm 1: Energy remaining and fault alarm signal

Input: Voltage V', Current I, Temperature 7.
Output: Energy Remaining £, Fault Alarm f.
1 Using I in (9), obtain Ve.

2 Using V. from step 1 and I, obtain E,.

3 Using 7, obtain 7' from (10).

4 Using T from step 4 and T, obtain 7.

5 if |T;| > r¢p, then

6 Display “Fault Occurred”.

7 Return “Energy Remaining = F,., Alarm f = 1.
8 else

9 Display “No Fault”.

10 Return “Energy Remaining = E,., Alarm f = 0.
11 end

C. Path-planning and autonomous navigation

Here, we discuss the path-planning technique for the au-
tonomous navigation of the harvesting robot. The onion fields
typically have rows of long, raised beds of onions, 1-1.5ft
in width, with narrow passages between them. There are no
obstacles on the field. The path of the robot follows the
rows of onion as in Figure 5. The challenge is to decide the
optimal condition when the robot should return to the base for
recharging.

We are considering a base station next to the field for
the robotic system. The robot starts and returns to the base
station. The conditions under which the robot returns to the



base are (a) to unload the harvest when it exceeds its carrying
capability, (b) if it needs battery recharging (c) if there is a
fault in the battery. We assume the following: [A1] The robot
knows the layout of the onion field. [A2] The robot moves at a
constant speed. [A3] The robot localizes using GPS. [A4] The
robot can align appropriately with the rows of onion plants for
harvesting.

Algorithm 2: Energy Aware Path Planning

1 Input: energy_remaining, energy_required,
return_to_base, fault_alarm, weight_of_harvest

2 Output: robot_position

3 if return_to_base is False

4 if energy_required is more than energy_remaining

5 return_to_base is True

6 end

7 end

8 if return_to_base is False or fault_alarm is Off or
weight_of_harvest is within limits

9 new_robot_position = harvest_mode(current
robot_position)

10 else

11 new_robot_position = return_mode(current
robot_position)

12 end

At each time step, we calculate the energy the robot will
need to reach the base station. If this energy is less than what
is remaining in the battery, the robot can continue to harvest.
However, when the energy is about to exceed the energy in
the battery, the robot stops harvesting and returns to the base.

Algorithm 3: Harvest Mode

Input: current robot_position, field_layout
Output: new robot_position
if end of row reached

move to the next row

else
move forward

NN R W N -

end

We present the path planning strategy in the Algorithms 2,
3, and 4. We first describe Algorithm 3 and 4. There are two
modes for the robot - harvesting (Algorithm 3) and return to
base (Algorithm 4). In the harvesting mode, the robot moves
along a row (line 4 of Algo 3), and once the end of the row is
reached, it turns and moves to the next row (line 6 of Algo 3)
in a rusted scan pattern. We denote the point where the robot
starts a row as the start-point of the row and similarly where
it ends as the end-point (refer to Figure 5). In return to base
mode, the robot first moves back to the start point of the row
it is in (line 6 of Algo 4) and then moves along the periphery
of the field to reach the base station (line 4 of Algo 4). The
robot can calculate the distance to the base, which is required
in Algo. 2 to find the energy required. The energy required is
equal to the distance times force. Algorithm 2 checks the mode

Fig. 6. Onion-bed detection using OpenCV. The picture illustrates the onion
plant during its initial growth phase, which appears less dense when contrasted
with the period of harvest. However, the bed remains the same.

in which the robot needs to operate. Once the return to base
is triggered, the robot does not go back to harvesting mode.
During the harvesting mode, three conditions are checked for
returning to base in line 8. If any of them are true, line 9 is
executed else, line 11 is executed.

Algorithm 4: Return Mode

1 Input: current robot_position, field_layout,
base_station

2 Output: new robot_position

3 if at the start of the row

4 move straight to the base station

5 else

6 move towards the start of the row

7 end

The Assumption A4 can be handled using a camera with
on-board image processing capabilities. We can use image
segmentation and contour detection to identify the onion bed
as shown in Fig. 6. If the robot is not properly aligned, issuing
a re-orientation command can ensure that the robot is aligned
correctly. A detailed image processing method for onion-bed
detection is available in [23].

III. RESULTS AND DISCUSSIONS

Here, we discuss simulation case studies. The robot model
parameters were identified as discussed in Section II.A, and
the battery and path planning algorithms were developed
as discussed in Sections IL.B and II.C, respectively. Battery
parameters were taken from [44] and battery was assumed to
have a parallel configuration of 58 cells. The framework was
implemented in MATLAB R2022b environment. Specifically,
we will discuss two cases: one under no-fault scenario when
the robot returns as the battery is depleted, and the second
case is under faulty scenario when the robot returns as there
is a battery thermal fault.

A. Case Study 1

In this study, we create a nominal or no-fault scenario.
The robot navigates the onion-field harvesting onions and
returns when the battery is depleted. The robot trajectory
under X — Y coordinates is shown in Fig. 7(a) where the
“blue” part represents moving and harvesting whereas the
“red” part indicates returning. The velocity trajectory is shown
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Fig. 7. (a) Trajectory of the robot under nominal scenarios and (b) velocity
of the robot under nominal scenarios.

in Fig. 7(b) with “red” indicating commanded velocity by the
path planning algorithm and “blue” indicating actual velocity
tracking by robot proportional-integral control. The closeness
of the commanded and actual tracking velocity verifies that
the robot control performed reasonably well. The moving
and harvesting were performed under 1 m/s velocity until
approximately at 4712 s the battery energy was depleted to
a level such that only energy left is just enough for return.
Subsequently, the robot starts its return to the base with 2 m/s
velocity. The battery parameters for a single cell are shown
in Fig. 8. As can be seen from the top subplot of the figure,
battery current is different under moving and harvesting part
until 4712 s and changed to a higher current after that due
to return. This is justified as the velocity changed from 1
to 2 m/s at 4712 s requiring more power from the battery.
Furthermore, during the harvesting phase, it can be noted that
battery current is increasing with respect to time reflecting
the increase in mass as onions are collected. Corresponding
battery voltage and temperature profiles are shown in bottom
subplots of Fig. 8. Both of these subplots show the actual
variables in “blue” and estimated variables in “red”. Both
of these estimates started from an incorrect initial condition
and quickly converged to the actual values — which verifies
that the battery estimation algorithms performed reasonably
well. Furthermore, throughout the operation, the closeness of
estimated and actual temperature verifies that the temperature
residual does not cross the threshold — determining there is no
fault.

B. Case Study 2

In this study, we consider a case when a battery thermal
fault occurs during the operation. In the beginning, the robot
starts moving and harvesting onions as shown in the X —Y
coordinates in Fig. 9(a). The “blue” line indicates the normal
operation until the fault occurrence. In the battery simulation,
we have injected a battery thermal fault around 4500 s, which
leads to battery heat generation increase from 0.052W to
1.124W. Accordingly, battery algorithm raises an alarm and
the robot returns to the base, as shown in “red” part of the
trajectory in Fig. 9(a). Corresponding velocity is shown in
Fig. 9(b) where moving and harvesting velocity of 1 m/s is
changed to return velocity of 2 m/s after the fault occurrence
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Fig. 8. Battery current, voltage, and temperature under nominal scenarios.
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Fig. 9. (a) Trajectory of the robot under battery fault and (b) velocity of the
robot under battery fault.

and detection. Again, the closeness of commanded velocity
by path planning (in “blue”) and actual tracking velocity (in
“red”) by the robot controller verifies its effectiveness. The
battery variables are shown in Fig. 10. As expected, battery
current in Fig. 10(a) changed after the fault occurrence and
detection when the robot starts returning. The harvesting part
shows steady increase in current, again reflecting increase in
mass as more and more onions are collected. The temperature
response is shown in Fig. 10(c). It can be seen that there
is a significant increase in temperature after 4500 s due to
the injection of thermal fault induced abnormal heat. Under
normal scenario, temperature remained within 300 K while
under fault it crossed 310 K — leading to more than 10 K
increase. Corresponding response of the temperature residual
is shown in Fig. 10(d). At the beginning, the residual starts
at non-zero value due to incorrect initialization, but quickly
converges to 0 K. After the fault injection around 4500 s, the
residual signal changes from 0 K to beyond 0.1 K — indicating
a fault occurrence. Accordingly, as mentioned before, the
algorithm raised an alarm and the robot started returning to
the base. In summary, this study verifies the effectiveness of
the algorithmic framework under faulty scenario.

Next, we will briefly compare our proposed framework with
some of the most relevant existing approaches [30], [31]. In
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Fig. 10. Battery (a) current, (b) voltage, (c) temperature, and (d) temperature
residual under fault.

[31], remaining energy is estimated using the battery voltage-
energy curve in an “open-loop” manner and without consid-
ering battery internal states. In [31], the remaining battery
capacity was tracked using phenomenological approach such
as coulomb counting. Such “open-loop” estimation without
consideration of internal battery physics can be prone to
uncertainties and lead to possibly inaccurate estimates. In our
approach, we combined physics-based battery model which
captures internal states and coupled it with feedback-based
estimator. Use of physics model and feedback can potentially
suppress the effect of uncertainties. Finally, none of the
aforementioned approaches provided a mechanism to handle
battery faults nor they provided any framework for combining
mechanism design, path planning, and battery management —
which are the key contributions of our work.

IV. CONCLUSIONS

In this work, we have developed an algorithmic frame-
work for energy and safety-awareness of battery-powered
autonomous robots in agricultural operation. The specific case
study is an onion-harvesting application where the autonomous
robot moves and harvests onions. The results indicate the
promise of model-based energy- and safety-aware algorithms
for autonomous robot operation in agriculture. Despite the
promise, it is important to mention some potential limitations
of the proposed framework: (i) As the harvestor model param-
eters heavily depend on soil conditions, the harvestor model
developed in this paper may not be readily transferrable to
other types of soil conditions; (ii) A shorter path to return
the base can be planed through the field that can increase
the harvesting time for the robot. (iii) To realize the battery
estimation and detection approach, knowledge of battery phys-
ical parameters are essential which may require additional
experimental characterization. Addressing these limitations
should be considered as future work.
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