
SIAM J. MATH. DATA SCI. © 2023 Society for Industrial and Applied Mathematics
Vol. 5, No. 2, pp. 446--474

Efficient Global Optimization of Two-Layer ReLU Networks: Quadratic-Time
Algorithms and Adversarial Training*

Yatong Bai\dagger , Tanmay Gautam\ddagger , and Somayeh Sojoudi\S

Abstract. The nonconvexity of the artificial neural network (ANN) training landscape brings optimization diffi-
culties. While the traditional back-propagation stochastic gradient descent algorithm and its variants
are effective in certain cases, they can become stuck at spurious local minima and are sensitive to
initializations and hyperparameters. Recent work has shown that the training of a ReLU-activated
ANN can be reformulated as a convex program, bringing hope to globally optimizing interpretable
ANNs. However, naively solving the convex training formulation has an exponential complexity, and
even an approximation heuristic requires cubic time. In this work, we characterize the quality of
this approximation and develop two efficient algorithms that train ANNs with global convergence
guarantees. The first algorithm is based on the alternating direction method of multipliers. It can
solve both the exact convex formulation and the approximate counterpart, and it generalizes to a
family of convex training formulations. Linear global convergence is achieved, and the initial sev-
eral iterations often yield a solution with high prediction accuracy. When solving the approximate
formulation, the per-iteration time complexity is quadratic. The second algorithm, based on the
``sampled convex programs"" theory, is simpler to implement. It solves unconstrained convex formu-
lations and converges to an approximately globally optimal classifier. The nonconvexity of the ANN
training landscape exacerbates when adversarial training is considered. We apply the robust convex
optimization theory to convex training and develop convex formulations that train ANNs robust to
adversarial inputs. Our analysis explicitly focuses on one-hidden-layer fully connected ANNs, but
can extend to more sophisticated architectures.

Key words. robust optimization, convex optimization, adversarial training, neural networks

MSC codes. 68Q25, 82C32, 49M29, 46N10, 62M45

DOI. 10.1137/21M1467134

1. Introduction. The artificial neural network (ANN) is one of the most powerful and
popular machine learning tools. Optimizing a typical ANN with nonlinear activation func-
tions and a finite width requires solving nonconvex optimization problems. Traditionally,
training ANNs relies on stochastic gradient descent (SGD) back-propagation [45]. Despite its
tremendous empirical success, this algorithm is only guaranteed to converge to a local mini-
mum when applied to the nonconvex ANN training objective. While SGD back-propagation

*Received by the editors January 6, 2022; accepted for publication (in revised form) October 24, 2022; published
electronically June 1, 2023.

https://doi.org/10.1137/21M1467134
Funding: This work was supported by grants from ONR and NSF.

\dagger
Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720 USA (yatong bai@

berkeley.edu).
\ddagger
Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA

94720 USA (tgautam23@berkeley.edu).
\S
Department of Mechanical Engineering and Department of Electrical Engineering and Computer Science,

University of California, Berkeley, Berkeley, CA 94720 USA (sojoudi@berkeley.edu).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

446

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/21M1467134
mailto:yatong_bai@berkeley.edu
mailto:yatong_bai@berkeley.edu
mailto:tgautam23@berkeley.edu
mailto:sojoudi@berkeley.edu

EFFICIENT TWO-LAYER NEURAL NET GLOBAL OPTIMIZATION 447

can converge to a global optimizer for one-hidden-layer ``rectified linear unit (ReLU)"" acti-
vated networks when the considered network is wide enough [35, 17] or when the inputs follow
a Gaussian distribution [14], spurious local minima can exist in general applications. More-
over, the nonconvexity of the training landscape and the properties of back-propagation SGD
cause the issues listed below:

\bullet Poor interpretability: With SGD, it is hard to monitor the training status. For ex-
ample, when the progress slows down, we may or may not be close to a local minimum,
and the local minimum may be spurious.

\bullet High sensitivity to hyperparameters: Back-propagation SGD has several im-
portant hyperparameters to tune. Every parameter is crucial to the performance, but
selecting the parameters can be difficult. SGD is also sensitive to the initialization [27].

\bullet Vanishing/exploding gradients: With back-propagation, the gradient at shallower
layers can be tiny (or huge) if the deeper layer weights are tiny (or huge).

While more advanced back-propagation optimizers such as Adam [32] can alleviate the
above issues, avoiding them entirely can be hard. Since convex programs possess the desirable
property that all local minima are global, the existing works have considered convexifying
the ANN training problem [12, 8, 6]. More recently, Pilanci and Ergen proposed ``convex
training"" and derived a convex optimization problem with the same global minimum as the
nonconvex cost function of a one-hidden-layer fully connected ReLU ANN, enabling global
ANN optimization [42]. The favorable properties of convex optimization make convex training
immune to the deficiencies of back-propagation. Convex training also extends to more complex
ANNs such as convolutional neural networks [21], deeper networks [20], and vector-output
networks [46]. This work begins with one-hidden-layer ANNs for simplicity and extends to
a family of convex ANN training formulations, including the results for two-hidden-layer
subnetworks [20, 22] and one-hidden-layer networks with batch normalization [23]. Due to
space restrictions, the extensions are presented in section SM1. Moreover, [11] designed a
layerwise training scheme that concatenates one-hidden-layer ANNs into a deep network,
where each layer provably reduces the training error. This approach can be combined with
this work, ultimately leading toward training deep networks with convex optimization.

Unfortunately, the \scrO (d3r3(nr)
3r) computational complexity of the convex training formu-

lation introduced in [42] is prohibitively high. This complexity arises due to the following two
reasons:

\bullet The size of the convex program grows exponentially in the training data matrix rank
r. This exponential relationship is inherent due to the large number of possible ReLU
activation patterns and thus can be hard to reduce. Fortunately, this problem is not
a deal-breaker in practice: [42] has shown that a heuristic approximation that forms
much smaller convex optimizations performs surprisingly well. In this work, we analyze
this approximation and theoretically show that for a given level of suboptimality, the
required size of the convex training programs is linear in the number of training data
points n.

\bullet The convex training formulation is constrained. The naive choice of algorithm for
solving a general constrained convex optimization is often the interior-point method
(IPM), which has a cubic per-step computational complexity. This paper devel-
ops more efficient algorithms that exploit the problem structure and achieve lower

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

448 YATONG BAI, TANMAY GAUTAM, AND SOMAYEH SOJOUDI

Table 1
Comparisons between the proposed ANN training methods and related methods. The middle column is the

per-epoch complexity when the squared loss is considered. n is the number of training points; d is the data
dimension; r is the training data matrix rank. \dagger : Toward the theoretically minimum loss---further increasing
network width will not reduce the training loss; \S : Toward a fixed desired level of suboptimality in the sense
defined in Theorem 2.2; \ddagger : For an arbitrary network width m. Since there exists a globally optimal neural
network with no more than n+1 active hidden-layer neurons [35], the \scrO (mnd) bound for SGD back-propagation
evaluates to \scrO (n2d).

Method Complexity Global convergence

IPM [42] \scrO
\Bigl(
d3r3(n

r
)3r

\Bigr) \dagger
Superlinear to the global optimum.

ADMM (exact) \scrO
\Bigl(
d2r2(n

r
)2r

\Bigr) \dagger
Rapid to a moderate accuracy;

linear to the global optimum.

ADMM (approximate) \scrO (n2d2)\S Rapid to a moderate accuracy;
linear to an approximate global optimum.

SCP \scrO (n2)\S Toward an approximate global optimum;
\scrO (1/T) rate for weakly convex loss;

linear for strongly convex loss.

SGD back-propagation \scrO (mnd)\ddagger /\scrO (n2d)\dagger No spurious valleys if m\geq 2n+ 2;
no general results.

computational cost. Specifically, an algorithm based on the alternating direction
method of multipliers (ADMM) with a quadratic per-iteration complexity as well
as an algorithm based on a sampled convex program (SCP) with a linear per-iteration
complexity are introduced.

Detailed comparisons among the ADMM-based algorithm, the SCP-based algorithm, the
original convex training algorithm in [42], and back-propagation SGD are presented in Table 1.
While the IPM can converge to a highly accurate solution with fewer iterations, ADMM can
rapidly reach a medium-precision solution, which is often sufficient for machine learning tasks.
Compared with SGD back-propagation, ADMM has a higher theoretical complexity but is
guaranteed to converge linearly to a global optimum, enabling efficient global optimization.

Prior literature has considered applying the ADMM method to ANN training [48, 49].
These works used ADMM to separate the activations and the weights of each layer, enabling
parallel computing. While the ADMM algorithm in [49] converges at an \scrO (1/t) rate (t is the
number of iterations) to a critical point of the augmented Lagrangian of the training formula-
tion, there is no guarantee that this critical point is a global optimizer of the ANN training loss.
In contrast, this paper uses ADMM as an efficient convex optimization algorithm and intro-
duces an entirely different splitting scheme based on the convex formulations conceived in [42].
More importantly, our ADMM algorithm provably converges to a globally optimal classifier.

A parallel line of work has focused on making convex training more efficient. Specifically,
[20, 22] use linear penalty functions to derive unconstrained formulations for convex training.
When the strengths of the penalizations are chosen appropriately, the formulations are exact.
However, the penalization strengths can be difficult to select, since a good choice depends on
the optimization landscape of the problem. Note that the solutions found via this penalty
method can be used to initialize our ADMM algorithm. After our work was submitted for

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

EFFICIENT TWO-LAYER NEURAL NET GLOBAL OPTIMIZATION 449

review, [39] proposed a parallel method aiming to accelerate convex training. [39] considers
two approaches, one using an unconstrained relaxation to the constrained convex training
formulation and the other directly tackling the constrained formulation. Similar to this work,
[39] also proposes to reformulate the constraints into an augmented Lagrangian. However, the
separation scheme in [39] is different. Specifically, we separate the group-sparse regularization
in addition to the constraints, whereas [39] only separates the constraints and thus needs to
use the FISTA algorithm for the primal update step. In comparison, our ADMM separation
allows the primal update subproblem (3.3a) to be solved in closed form for the case of squared
loss. For general losses, our separation embeds strong convexity into the subproblem (3.3a),
allowing the randomized block coordinate descent (RBCD) subroutine to converge linearly.
Furthermore, our ADMM algorithm also achieves linear convergence, whereas [39] claims a
slower \scrO (1

\epsilon \delta) dual convergence rate.
Combining the SCP analysis and the convex training framework leads to a further simpli-

fied convex training program that solves unconstrained convex optimization problems. This
SCP-based method converges to an approximate global optimum. The scale of the SCP convex
training formulation can be larger than the convex problem solved in the ADMM algorithm.
However, the unconstrained nature enables the use of gradient methods, whose per-iteration
complexities are lower than ADMM. The similarities between the SCP-based algorithm and
extreme learning machines (ELMs) [29, 24] show that the training of a sparse ELM can be
regarded as a convex relaxation of the training of an ANN, providing insights into the hidden
sparsity of neural networks. Due to space restrictions, this result is presented in section SM2.

Neural networks can be vulnerable to adversarial attacks. Such a vulnerability has been
observed in the field of computer vision [47, 40, 25] and controls [31]. While there have been
studies on robustness certification [2, 37, 4, 9] and achieving certified robustness at test time
via ``randomized smoothing"" [15, 3], efficiently achieving robustness via training remains an
important topic. To this end, ``adversarial training"" [34, 25, 30] is one of the most effective
methods to train robust classifiers, compared with other methods such as obfuscated gradients
[7]. Specifically, adversarial training replaces the standard loss function with an ``adversarial
loss"" and solves a bilevel min-max optimization to train robust ANNs.

When adversarial training is considered, the aforementioned issues of SGD back-
propagation become worse: adversarial training can be highly unstable in practice, and conver-
gence properties are pessimistic. Therefore, extending convex training to adversarial training
is crucial. In our conference version [10], we built upon the above results to develop ``convex ad-
versarial training,"" explicitly focusing on the cases of hinge loss (for binary classification) and
squared loss (for regression). We theoretically showed that solving the proposed robust convex
optimizations trains robust ANNs and empirically demonstrated the efficacy and advantages
over traditional methods. This work extends the analysis to the binary cross-entropy loss and
discusses the extensibility to more complex ANN architectures (subsections 4.5 and SM5.2).

Previously, researchers have applied convex relaxation techniques to adversarial training.
These works obtain convex certifications [44, 50] that upper-bound the inner maximization
of the adversarial training formulation and use weak duality to develop robust loss functions.
Note that while these works use convex relaxation, the resulting training formulations are
still nonconvex. In contrast, we apply robust optimization techniques to the entire min-max
adversarial training formulation and obtain convex training problems.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

450 YATONG BAI, TANMAY GAUTAM, AND SOMAYEH SOJOUDI

The main contributions of this work are summarized below:
\bullet a theoretical evaluation of a relaxation that enables tractable convex training

(section 2);
\bullet efficient algorithms that accelerate convex (standard) training (section 3 and SM1);
\bullet an extension of the convex adversarial training formulation for one-hidden-layer scalar-

output ReLU networks (section 4).

1.1. Notation. Throughout this work, we focus on fully connected ANNs with one ReLU-
activated hidden layer and a scalar output, defined as

\widehat y= m\sum
j=1

(Xuj + bj1n)+\alpha j ,

where X \in Rn\times d is the input data matrix with n data points in Rd and \widehat y \in Rn is the
output vector of the ANN. We denote the target output used for training as y \in Rn. The
vectors u1, . . . , um \in Rd are the weights of the m neurons in the hidden layer while the scalars
\alpha 1, . . . , \alpha m \in R are the weights of the output layer. b1 . . . , bm \in R are the hidden layer bias
terms. The symbol (\cdot)+ = max\{ 0, \cdot \} indicates the ReLU activation function which sets all
negative entries of a vector or a matrix to zero. The symbol 1n defines a column vector
with all entries being 1, where the subscript n denotes the dimension of this vector. The
n-dimensional identity matrix is denoted by In.

Furthermore, for a vector q \in Rn, sgn(q) \in \{ - 1,0,1\} n denotes the signs of the entries of
q. [q \geq 0] denotes a boolean vector in \{ 0,1\} n with ones at the locations of the nonnegative
entries of q and zeros at the remaining locations. The symbol diag(q) denotes a diagonal
matrix Q \in Rn\times n where Qii = qi for all i and Qij = 0 for all i \not = j. For a vector q \in Rn and
a scalar b \in R, the inequality q \geq b means that qi \geq b for all i \in [n]. The symbol \odot denotes
the Hadamard product between two vectors and the notation \| \cdot \| p denotes the \ell p norm. For a
matrix A, the max norm \| A\| \mathrm{m}\mathrm{a}\mathrm{x} is defined as maxij | aij | , where aij is the (i, j)th entry. For a
set \scrA , the notation | \scrA | denotes its cardinality, and \Pi \scrA (\cdot) denotes the projection onto \scrA . The
notation proxf denotes the proximal operator associated with a function f(\cdot). The notation
R \sim \scrN (0, In) indicates that a random variable R \in Rn is a standard normal random vector,
and Unif(\scrS n - 1) denotes the uniform distribution on a (n - 1)-sphere. For P \in N+, we define
[P] as the set \{ a\in N+| a\leq P\} , where N+ is the set of positive integers.

2. Practical convex ANN training.

2.1. Prior work---convex ANN training. We define the problem of training the above
ANN with an \ell 2 regularized convex loss function \ell (\widehat y, y) as

min
(uj ,\alpha j ,bj)mj=1

\ell

\biggl(m\sum
j=1

(Xuj + bj1n)+\alpha j , y

\biggr)
+
\beta

2

m\sum
j=1

\Bigl(
\| uj\| 22 + b2j + \alpha 2

j

\Bigr)
.

where \beta > 0 is a regularization parameter. Without loss of generality, we assume that bj = 0
for all j \in [m]. We can safely make this simplification because concatenating a column of ones
to the data matrix X absorbs the bias terms. The simplified training problem is then

(2.1) min
(uj ,\alpha j)mj=1

\ell

\biggl(m\sum
j=1

(Xuj)+\alpha j , y

\biggr)
+
\beta

2

m\sum
j=1

(\| uj\| 22 + \alpha 2
j).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

EFFICIENT TWO-LAYER NEURAL NET GLOBAL OPTIMIZATION 451

Consider a set of diagonal matrices \{ diag([Xu\geq 0])| u\in Rd\} , and let the distinct elements
of this set be denoted as D1, . . . ,DP . The constant P corresponds to the total number of
partitions of Rd by hyperplanes passing through the origin that are also perpendicular to the
rows of X [42]. Intuitively, P can be regarded as the number of possible ReLU activation
patterns associated with X.

Consider the convex optimization problem

min
(vi,wi)Pi=1

\ell

\biggl(P\sum
i=1

DiX(vi - wi), y
\biggr)
+ \beta

P\sum
i=1

\Bigl(
\| vi\| 2 + \| wi\| 2

\Bigr)
(2.2)

s.t. (2Di - In)Xvi \geq 0, (2Di - In)Xwi \geq 0 \forall i\in [P]

and its dual formulation

max
v
 - \ell \ast (v) s.t. | v\top (Xu)+| \leq \beta \forall u : \| u\| 2 \leq 1,(2.3)

where \ell \ast (v) =maxz z
\top v - \ell (z, y) is the Fenchel conjugate function. Note that (2.3) is a convex

semi-infinite program. The next theorem, borrowed from Pilanci and Ergen's paper [42],
explains the relationship between the nonconvex training problem (2.1), the convex problem
(2.2), and the dual problem (2.3) when the ANN is sufficiently wide.

Theorem 2.1 (see [42]). Let (v \star i ,w
 \star
i)
P
i=1 denote a solution of (2.2) and define m \star as | \{ i :

v \star i \not = 0\} | + | \{ i : w \star i \not = 0\} | . Suppose that the ANN width m is at least m \star , where m \star is upper-
bounded by n+ 1. If the loss function \ell (\cdot , y) is convex, then (2.1), (2.2), and (2.3) share the
same optimal objective. The optimal network weights (u \star j , \alpha

 \star
j)
m
j=1 can be recovered using the

formulas

(2.4)

(u \star j1i , \alpha
 \star
j1i) =

\Bigl(v \star i\sqrt{}
\| v \star i \| 2

,
\sqrt{}
\| v \star i \| 2

\Bigr)
if v \star i \not = 0;

(u \star j2i , \alpha
 \star
j2i) =

\Bigl(w \star i\sqrt{}
\| w \star i \| 2

, -
\sqrt{}
\| w \star i \| 2

\Bigr)
if w \star i \not = 0,

where the remaining m - m \star neurons are chosen to have zero weights.

The worst-case computational complexity of solving (2.2) for the case of squared loss is
\scrO (d3r3(nr)

3r) using standard interior-point solvers [42]. Here, r is the rank of the data matrix
X and in many cases r = d. Such complexity is polynomial in n but exponential in r. This
complexity is already a significant improvement over previous methods but still prohibitively
high for many practical applications. Such high complexity is due to the large number of Di

matrices, which is upper-bounded by min \{ 2n,2r(e(n - 1)
r)r\} [42].

2.2. A practical algorithm for convex training. A natural direction of mitigating this
high complexity is to reduce the number of Di matrices by sampling a subset of them. This
idea leads to Algorithm 2.1, which approximately solves the training problem and can train
ANNs with widths much less than m \star . Algorithm 2.1 is an instance of the approximation
described in [42, Remark 3.3], but [42] did not provide theoretical insights regarding its level

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

452 YATONG BAI, TANMAY GAUTAM, AND SOMAYEH SOJOUDI

Algorithm 2.1 Practical convex training.

1: Generate Ps distinct diagonal matrices via Dh\leftarrow diag([Xah \geq 0]), where ah \sim \scrN (0, Id)
i.i.d. for all h\in [Ps].

2: Solve

p \star s1 = min
(vh,wh)

Ps
h=1

\ell
\Bigl(Ps\sum
h=1

DhX(vh - wh), y
\Bigr)
+ \beta

Ps\sum
h=1

(\| vh\| 2 + \| wh\| 2)(2.5)

s.t. (2Dh - In)Xvh \geq 0, (2Dh - In)Xwh \geq 0 \forall h\in [Ps];

3: Recover u1, . . . , ums
and \alpha 1, . . . , \alpha ms

from the solution (v \star sh ,w
 \star
sh)

Ps

h=1 of (2.5) using (2.4).

of suboptimality. The following theorem bridges the gap by providing a probabilistic bound
on the suboptimality of the ANN trained with Algorithm 2.1.

Theorem 2.2. Consider an additional diagonal matrix DPs+1 sampled uniformly, and con-
struct

p \star s2 = min
(vh,wh)

Ps+1
h=1

\ell
\Bigl(Ps+1\sum
h=1

DhX(vh - wh), y
\Bigr)
+ \beta

Ps+1\sum
h=1

(\| vh\| 2 + \| wh\| 2)(2.6)

s.t. (2Dh - In)Xvh \geq 0, (2Dh - In)Xwh \geq 0 \forall h\in [Ps + 1].

It holds that p \star s2 \leq p \star s1. Furthermore, if Ps \geq min\{ n+1
\psi \xi - 1, 2\xi (n+ 1 - log\psi)\} , where \psi and \xi

are preset confidence level constants between 0 and 1, then with probability at least 1 - \xi , it
holds that P\{ p \star s2 < p \star s1\} \leq \psi .

The proof of Theorem 2.2 is presented in subsection SM6.1. Intuitively, Theorem 2.2
shows that sampling an additional DPs+1 matrix will not reduce the training loss with high
probability when Ps is large. One can recursively apply this bound T times to show that the
solution with Ps matrices is close to the solution with Ps+T matrices for an arbitrary number
T . Thus, while the theorem does not directly bound the gap between the approximated
optimization problem and its exact counterpart, it states that the optimality gap due to
sampling is not too large for a suitable value of Ps, and the trained ANN is nearly optimal.

Compared with the exponential relationship between P and r, a satisfactory value of Ps
is linear in n and is independent from r. Thus, when r is large, solving the approximated
formulation (2.5) is significantly (exponentially) more efficient than solving the exact formu-
lation (2.2). On the other hand, Algorithm 2.1 is no longer deterministic due to the stochastic
sampling of the Dh matrices and yields solutions that upper-bound those of (2.2).

Since the confidence constants \psi and \xi are no greater than one, Theorem 2.2 only applies
to overparameterized ANNs, where Ps \geq n. Although [42] has shown that there exists a
globally optimal neural network whose width is at most n+ 1 and Theorem 2.2 seems loose
by this comparison, our theorem bounds a different quantity and is meaningful. Specifically,
the bound in [42] does not provide a method that scales linearly: while a globally optimal
neural network narrower than n + 1 exists, finding such an ANN requires solving a convex
program with an exponential number of constraints. In contrast, Theorem 2.2 characterizes

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

EFFICIENT TWO-LAYER NEURAL NET GLOBAL OPTIMIZATION 453

the optimality of a convex optimization with a manageable number of constraints. In practice,
selecting Ps is equivalent to choosing the ANN width. While Theorem 2.2 provides a guideline
on how Ps should scale with n, selecting a much smaller Ps will not necessarily become an
issue. Our experiments in subsection 5.1 show that even when Ps is much less than n (which
is much less than P), Algorithm 2.1 still reliably trains high-performance classifiers.

3. An ADMM algorithm for global ANN training. The convex ReLU ANN training
program (2.2) may be solved with the IPM. The IPM is an iterative algorithm that repeatedly
performs Newton updates. Each Newton update requires solving a linear system, which has
a cubic complexity, hindering the application of IPM to large-scale optimization problems.
Unfortunately, large-scale problems are ubiquitous in the field of machine learning. This
section proposes an algorithm based on the ADMM, breaking down the optimization problem
(2.2) into smaller subproblems that are easier to solve. Moreover, when \ell (\cdot) is the squared
loss, each subproblem has a closed-form solution. We will show that the complexity of each
ADMM iteration is linear in n and quadratic in d and P , and the number of required ADMM
steps to reach a desired precision is logarithmic in the precision level. When other convex loss
functions are used, a closed-form solution may not always exist. We illustrate that iterative
methods can solve the subproblems for general convex losses efficiently. In section SM1, we
show that the ADMM algorithm extends to a family of convex training formulations.

Define Fi :=DiX and Gi := (2Di - In)X for all i\in [P]. Furthermore, we introduce vi, wi,
si, and ti as slack variables and let vi = ui, wi = zi, si = Givi, and ti = Giwi. For a vector
q= (q1, . . . , qn)\in Rn, let the indicator function of the positive quadrant I\geq 0 be defined as

I\geq 0(q) :=

\Biggl\{
0 if qi \geq 0, \forall i\in [N];

+\infty otherwise.

The convex training formulation (2.2) can be reformulated as a convex optimization prob-
lem with positive quadrant indicator functions and linear equality constraints:

min
(vi,wi,si,ti,ui,zi)Pi=1

\ell

\Biggl(
P\sum
i=1

Fi(ui - zi), y

\Biggr)
+ \beta

P\sum
i=1

\| vi\| 2 + \beta

P\sum
i=1

\| wi\| 2 +
P\sum
i=1

I\geq 0(si) +

P\sum
i=1

I\geq 0(ti)

s.t. Giui - si = 0, Gizi - ti = 0, vi - ui = 0, wi - zi = 0 \forall i\in [P].(3.1)

Next, we simplify the notation by concatenating the matrices. Define

u := [u\top 1 \cdot \cdot \cdot u\top P z\top 1 \cdot \cdot \cdot z\top P]\top , v := [v\top 1 \cdot \cdot \cdot v\top P w\top
1 \cdot \cdot \cdot w\top

P]
\top ,

s := [s\top 1 \cdot \cdot \cdot s\top P t\top 1 \cdot \cdot \cdot t\top P]\top ,
F := [F1 \cdot \cdot \cdot FP - F1 \cdot \cdot \cdot - FP], and G := blkdiag(G1, \cdot \cdot \cdot ,GP ,G1, \cdot \cdot \cdot ,GP),

where blkdiag(\cdot , . . . , \cdot) denotes the block diagonal matrix formed by the submatrices in paren-
theses. The formulation (3.1) is then equivalent to the compact notation

min
v,s,u

\ell (Fu,y) + \beta \| v\| 2,1 + I\geq 0(s) s.t.

\biggl[
I2dP
G

\biggr]
u -

\biggl[
v
s

\biggr]
= 0,(3.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

454 YATONG BAI, TANMAY GAUTAM, AND SOMAYEH SOJOUDI

Algorithm 3.1 An ADMM algorithm for the convex ANN training problem.

1: repeat
2: Primal update

uk+1 = argmin
u

\ell (Fu,y) +
\rho

2
\| u - vk + \lambda k\| 22 +

\rho

2
\| Gu - sk + \nu k\| 22(3.3a)

3: Primal update\biggl[
vk+1

sk+1

\biggr]
= argmin

v,s
\beta \| v\| 2,1 + I\geq 0(s) +

\rho

2
\| uk+1 - v+\lambda k\| 22 +

\rho

2
\| Guk+1 - s+ \nu k\| 22(3.3b)

4: Dual update: \biggl[
\lambda k+1

\nu k+1

\biggr]
=

\Biggl[
\lambda k + \gamma a

\rho (u
k+1 - vk+1)

\nu k + \gamma a
\rho (Gu

k+1 - sk+1)

\Biggr]
(3.3c)

5: end repeat

where \| \cdot \| 2,1 denotes the \ell 1-\ell 2 mixed norm group sparse regularization and I2dP is the idendity
matrix in R2dP\times 2dP . The corresponding augmented Lagrangian of (3.2) is

L(u, v, s, \nu ,\lambda) := \ell (Fu,y) + \beta \| v\| 2,1 + I\geq 0(s)

+
\rho

2

\Bigl(
\| u - v+ \lambda \| 22 - \| \lambda \| 22

\Bigr)
+
\rho

2

\Bigl(
\| Gu - s+ \nu \| 22 - \| \nu \| 22

\Bigr)
,

where \lambda := [\lambda 11 \cdot \cdot \cdot \lambda 1P \lambda 21 \cdot \cdot \cdot \lambda 2P]\top \in R2dP and \nu := [\nu 11 \cdot \cdot \cdot \nu 1P \nu 21 \cdot \cdot \cdot \nu 2P]\top \in R2nP are
dual variables, and \rho > 0 is a fixed penalty parameter [28].

We can apply the ADMM iterations described in Algorithm 3.1 to globally optimize (3.2).1

Here, \gamma a > 0 is a step-size constant. As will be shown next, (3.3b) and (3.3c) have simple
closed-form solutions. The update (3.3a) has a closed-form solution when \ell (\cdot) is the squared
loss, and it can be efficiently solved numerically for general convex loss functions. When
we apply ADMM to solve the approximated convex training formulation (2.5), Algorithm
3.1 becomes a subalgorithm of Algorithm 2.1. The following theorem certifies the linear
convergence of the ADMM algorithm, with the proof provided in subsection SM6.2.

Theorem 3.1. If \ell (\widehat y, y) is strictly convex and continuously differentiable with a uniform
Lipschitz continuous gradient with respect to \widehat y, then the sequence \{ (uk, vk, sk, \lambda k, \nu k)\} gener-
ated by Algorithm 3.1 converges linearly to an optimal primal-dual solution for (3.2), provided
that the step size \gamma a is sufficiently small.

Many popular loss functions satisfy the conditions of Theorem 3.1. Examples include the
squared loss (for regression) and the binary cross-entropy loss coupled with the tanh or the
sigmoid output activation (for binary classification).

1The ADMM algorithm is presented in the scaled dual form [13].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

EFFICIENT TWO-LAYER NEURAL NET GLOBAL OPTIMIZATION 455

3.1. \bfits and \bfitv updates. The update step (3.3b) can be separated for vk+1 and sk+1 as

vk+1 =argmin
v

\beta \| v\| 2,1 +
\rho

2
\| uk+1 - v+ \lambda k\| 22;(3.4a)

sk+1 =argmin
s

I\geq 0(s) + \| Guk+1 - s+ \nu k\| 22 = argmin
s\geq 0

\| Guk+1 - s+ \nu k\| 22.(3.4b)

Note that (3.4a) can be separated for each vi and wi (allowing parallelization) and solved
analytically using the formulas

vk+1
i =argmin

v
\beta \| vi\| 2 +

\rho

2
\| uk+1

i - v+ \lambda k1i\| 22 = prox \beta

\rho
\| \cdot \| 2

(uk+1
i + \lambda k1i)

=

\biggl(
1 - \beta

\rho \cdot \| uk+1
i + \lambda k1i\| 2

\biggr)
+

(uk+1
i + \lambda k1i) \forall i\in [P],

wk+1
i =argmin

v
\beta \| wi\| 2 +

\rho

2
\| sk+1
i - w+ \lambda k2i\| 22 = prox \beta

\rho
\| \cdot \| 2

(zk+1
i + \lambda k2i)

=

\biggl(
1 - \beta

\rho \cdot \| zk+1
i + \lambda k2i\| 2

\biggr)
+

(zk+1
i + \lambda k2i) \forall i\in [P],

where prox \beta

\rho
\| \cdot \| 2

denotes the proximal operation on the function f(\cdot) = \beta
\rho \| \cdot \| 2. The computa-

tional complexity of finding vi and wi is \scrO (d). Similarly, (3.4b) can also be separated for each
si and ti and solved analytically using the formulas

sk+1
i =argmin

si\geq 0
\| Giuk+1

i - si + \nu k1i\|
2
2 =\Pi \geq 0(Giu

k+1
i + \nu k1i) = (Giu

k+1
i + \nu k1i)+ \forall i\in [P];

tk+1
i =argmin

ti\geq 0
\| Gizk+1

i - si + \nu k2i\|
2
2 =\Pi \geq 0(Giz

k+1
i + \nu k2i) = (Giz

k+1
i + \nu k2i)+ \forall i\in [P],

where \Pi \geq 0 denotes the projection onto the nonnegative quadrant. The computational com-
plexity of finding si and ti is \scrO (n). The updates (3.4a) and (3.4b) can be performed in
\scrO (nP + dP) time in total.

3.2. \bfitu updates. The u update step depends on the specific structure of \ell (\cdot). For the
squared loss, the u update step can be solved in closed form. For many other loss functions,
the update can be performed with numerical methods.

3.2.1. Squared loss. The squared loss \ell (\widehat y, y) = 1
2\| \widehat y - y\| 2 is a commonly used loss func-

tion in machine learning. It is widely used for regression tasks, but can also be used for
classification. For the squared loss, (3.3a) amounts to

(3.5) uk+1 = argmin
u

\Bigl\{
\| Fu - y\| 2 + \rho

2
\| u - vk + \lambda k\| 22 +

\rho

2
\| Gu - sk + \nu k\| 22

\Bigr\}
.

Setting the gradient with respect to u to zero yields that

(I + 1
\rho F

\top F +G\top G)uk+1 = 1
\rho F

\top y+ vk - \lambda k +G\top sk - G\top \nu k.(3.6)

Therefore, the u update can be performed by solving the linear system (3.6) in each
iteration. While solving a linear system Ax = b for a square matrix A has a cubic time

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

456 YATONG BAI, TANMAY GAUTAM, AND SOMAYEH SOJOUDI

complexity in general, by taking advantage of the structure of (3.6), a quadratic per-iteration
complexity can be achieved. Specifically, the matrix I + 1

\rho F
\top F +G\top G is symmetric, positive

definite, and fixed throughout the ADMM iterations. In general, solving Ax = b for some
symmetric A\in S2dP\times 2dP , A\succ 0, and b\in R2dP can be done via the following procedure:

1. Perform the Cholesky decomposition A = LL\top , where L is lower-triangular (cubic
complexity in 2dP).

2. Solve L\widehat b= b by forward substitution (quadratic complexity in 2dP).
3. Solve L\top x=\widehat b by back substitution (quadratic complexity in 2dP).
Throughout the ADMM iterations, the first step only needs to be performed once, while

the second and third steps are required for every iteration. Since the dimension of the matrix
(I+ 1

\rho F
\top F+G\top G) is 2dP\times 2dP , the per-iteration time complexity of the u update is \scrO (d2P 2),

making it the most time-consuming step of the ADMM algorithm when d and P are large.
Therefore, the overall complexity of a full ADMM primal-dual iteration for the case of squared
loss is \scrO (nP + d2P 2), which is quadratic. In contrast, the linear system for IPM's Newton
updates can be different for each iteration, and thus each iteration has a cubic complexity.
Therefore, the proposed ADMM method achieves a notable speed improvement over IPM.

In the case when the approximated formulation (2.5) is considered and Ps diagonal ma-
trices are sampled in place of the full set of P matrices, obtaining a given level of optimality
requires Ps to be linear in n, as discussed in section 2. Coupling with the above analysis, we
obtain an overall per-iteration complexity of \scrO (d2n2), a significant improvement compared
with the \scrO (d3r3(nr)

3r) per-iteration complexity of [42]. The total computational complexity
for reaching a point uk satisfying \| uk - u \star \| \leq \epsilon a is \scrO (d2n2 log(1/\epsilon a)), where u \star is an optimal
value of u and \epsilon a > 0 is a predefined precision threshold. In subsection 5.2, we use numerical
experiments to demonstrate that the improved efficiency of the ADMM algorithm enables the
application of convex ANN training to image classification tasks, which was not possible be-
fore. Moreover, our experiments show that a favorable prediction accuracy may only require
a moderate optimization precision, which can be reached with a few ADMM iterations.

3.2.2. General convex loss functions. When a general convex loss function \ell (\widehat y, y) is
considered, a closed-form solution to (3.3a) does not always exist and one may need to use
iterative methods to solve (3.3a). One natural use of an iterative optimization method is
gradient descent. However, for large-scale problems, a full gradient evaluation can be too
expensive. To address this issue, we exploit the symmetric and separable property of each
ui and zi in (3.3a) and propose an application of the RBCD method. The details of RBCD
are presented in Algorithm 3.2. The superscript + denotes the updated quantities for each
iteration, and the notation \gamma r is the step size. Steps 5 and 6 of Algorithm 3.2 are derived
via the chain rule of differentiation. It can be verified that (3.3a) is always strongly convex
because its second term is strongly convex while the first and third terms are convex. [36,
Theorem 1] has shown that when minimizing strongly convex functions, RBCD converges
linearly. The theoretical convergence rate is higher when the convexity of (3.3a) is stronger
and P is smaller.

In practice, the RBCD step size \gamma r can be adaptively chosen via the backtracking line
search. While Algorithm 3.2 updates one block in each iteration, it is possible to update

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

EFFICIENT TWO-LAYER NEURAL NET GLOBAL OPTIMIZATION 457

Algorithm 3.2 Randomized block coordinate descent.

1: Initialize \widehat y=\sum P
i=1Fi(ui - zi);

2: Fix \~si =G\top
i (si - \nu 1i), \~ti =G\top

i (ti - \nu 2i) for all i\in [P];
3: Select accuracy thresholds \tau > 0,\varphi > 0;
4: repeat
5: \~y\leftarrow \nabla \widehat y\ell (\widehat y, y)
6: Uniformly select i from [P] at random;
7: u+i \leftarrow ui - \gamma rF\top

i \~y - \gamma r\rho (ui - vi + \lambda 1i +G\top
i Giui - \~si);

8: z+i \leftarrow zi + \gamma rF
\top
i \~y - \gamma r\rho (zi - wi + \lambda 2i +G\top

i Gizi - \~ti);
9: \widehat y+\leftarrow \widehat y+ Fi((u

+
i - z

+
i) - (ui + zi));

10: until \| \nabla uL(u, v, s, \nu ,\lambda)\| 2 \leq
\varphi

max\{ \tau ,\| u\| \}
.

multiple blocks at once by sampling multiple indices if desired. Moreover, while each iteration
utilizes the gradient associated with the entire dataset in Algorithm 3.2, when the dataset con-
sists of a large number of examples, a random portion of the dataset can be used as a surrogate.

Furthermore, G\top
i Gi = X\top X for all i \in [P]. To see this, recall that Gi = (2Di - In)X

by definition. Since (2Di - In) is a diagonal matrix with all entries being \pm 1, it holds that
(2Di - In)\top (2Di - In) = In. Thus, G

\top
i Gi =X\top (2Di - In)\top (2Di - In)X =X\top X. Consequently,

X\top X can be assembled in advance, and there is no need to compute G\top
i Gi in each iteration.

The most expensive calculations per RBCD update thus have the following complexities:

F\top
i \~y Fi((u

+
i - z+i) - (ui + zi)) (X\top X)ui (X\top X)zi

\scrO (nd) \scrO (nd) \scrO (d2) \scrO (d2).

While it can be costly to solve (3.3a) to a high accuracy using iterative methods, especially
during the early iterations of ADMM, [19, Proposition 6] has shown that even when (3.3a) is
solved approximately, as long as the accuracy threshold \varphi of each ADMM iteration forms a
convergent sequence, the ADMM algorithm can eventually converge to the global optimum of
(3.2). Each iterative solution of the u-update subproblem can also take advantage of warm-
starting by initializing at the result of the previous ADMM iteration. As a result, we alternate
between an ADMM update and several RBCD updates in a delicate manner.

4. Convex adversarial training. The inherent difficulties with adversarial training can be
addressed by taking advantage of the convex training framework and the related algorithms.

4.1. Background about adversarial training. A classifier is considered robust against
adversarial perturbations if it assigns the same label to all inputs within an \ell \infty bound with
radius \epsilon [25]. The perturbation set can then be defined as

\scrX =
\Bigl\{
X +\Delta \in Rn\times d

\bigm| \bigm| \bigm| \Delta = [\delta 1, . . . , \delta n]
\top , \delta k \in Rd, \| \delta k\| \infty \leq \epsilon \forall k \in [n]

\Bigr\}
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

458 YATONG BAI, TANMAY GAUTAM, AND SOMAYEH SOJOUDI

In this work, we consider the ``white box"" setting, where the adversary has complete
knowledge about the ANN. One common method for training robust classifiers is to minimize
the maximum loss within the perturbation set by solving the following min-max problem [38]:

(4.1) min
(uj ,\alpha j)mj=1

\Biggl(
max

\Delta :X+\Delta \in \scrX
\ell

\biggl(m\sum
j=1

((X +\Delta)uj)+\alpha j , y

\biggr)
+
\beta

2

m\sum
j=1

(\| uj\| 22 + \alpha 2
j)

\Biggr)
.

This process of ``training with adversarial data"" is often referred to as ``adversarial train-
ing,"" as opposed to ``standard training"" that trains on clean data. In the prior literature, the
fast gradient sign method (FGSM) and projected gradient descent (PGD) are commonly used
to numerically solve the inner maximization of (4.1) and generate adversarial examples [38].
Specifically, PGD generates adversarial examples \~x by running the iterations

(4.2) \~xt+1 =\Pi \scrX

\biggl(
\~xt + \gamma p \cdot sgn

\Bigl(
\nabla x\ell

\Bigl(m\sum
j=1

(x\top uj)+\alpha j , y
\Bigr) \Bigr) \biggr)

for t= 0,1, . . . , T , where \~xt is the perturbed data vector at the tth iteration, \gamma p > 0 is the step
size, and T \geq 1 is the number of iterations. The initial vector \~x0 is the unperturbed data x.
FGSM can be regarded as a special case of PGD where T = 1.

4.2. The convex adversarial training formulation. While PGD adversaries have been
considered ``universal"" in the literature, adversarial training with PGD adversaries has several
limitations. Since the optimization landscapes are generally nonconcave over the perturbation
\Delta , there is no guarantee that PGD will find the true worst-case adversary. Furthermore,
traditional adversarial training solves complicated bilevel min-max optimization problems,
exacerbating the instability of nonconvex ANN training. Our experiments show that back-
propagation gradient methods can struggle to converge when solving (4.1). Moreover, solving
the bilevel optimization (4.1) requires an algorithm with a computationally cumbersome nested
loop structure. To conquer such difficulties, we leverage Theorem 2.1 to recharacterize (4.1)
as robust, convex upper-bound problems that can be efficiently solved globally.

We first develop a result about adversarial training involving general convex loss functions.
The connection between the convex training objective and the nonconvex ANN loss function
holds only when the linear constraints in (2.2) are satisfied. For adversarial training, we need
this connection to hold at all perturbed data matrices X +\Delta \in \scrX . Otherwise, if some matrix
X+\Delta violates the linear constraints, then this perturbation \Delta can correspond to a low convex
objective value but a high actual loss. To ensure the correctness of the convex reformulation
throughout \scrX , we introduce some robust constraints below.

Since the Di matrices in (2.2) reflect the ReLU patterns of X, these matrices can change
when X is perturbed. Therefore, we include all distinct diagonal matrices diag([(X+\Delta)u\geq 0])
that can be obtained for all u \in Rd and all \Delta : X +\Delta \in \scrU , denoted as D1, . . . , D \widehat P , where\widehat P is the total number of such matrices. Since D1, . . . , D \widehat P include D1, . . . , DP in (2.2), we

have \widehat P \geq P . While \widehat P is at most 2n in the worst case, since \epsilon is often small, we expect \widehat P to
be relatively close to P , where P \leq 2r(e(n - 1)

r)r as discussed above.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

EFFICIENT TWO-LAYER NEURAL NET GLOBAL OPTIMIZATION 459

Finally, we replace the objective of the convex standard training formulation (2.2) with
its robust counterpart, giving rise to the optimization problem

min
(vi,wi)

\widehat P
i=1

\left(max
\Delta :X+\Delta \in \scrU

\ell

\biggl(\widehat P\sum
i=1

Di(X +\Delta)(vi - wi), y
\biggr)
+ \beta

\widehat P\sum
i=1

(\| vi\| 2 + \| wi\| 2)

\right) (4.3a)

s.t. min
\Delta :X+\Delta \in \scrU

(2Di - In)(X +\Delta)vi \geq 0, min
\Delta :X+\Delta \in \scrU

(2Di - In)(X +\Delta)wi \geq 0 \forall i\in [\widehat P],(4.3b)

where \scrU is any convex additive perturbation set. The next theorem shows that (4.3) is an
upper bound to the robust loss function (4.1), with the proof provided in subsection SM6.5.

Theorem 4.1. Let (v \star \mathrm{r}\mathrm{o}\mathrm{b}i
,w \star \mathrm{r}\mathrm{o}\mathrm{b}i

)
\widehat P
i=1 denote a solution of (4.3) and define \widehat m \star as | \{ i : v \star \mathrm{r}\mathrm{o}\mathrm{b}i

\not =
0\} | + | \{ i : w \star \mathrm{r}\mathrm{o}\mathrm{b}i

\not = 0\} | . When the ANN width m satisfies m \geq \widehat m \star , the optimization problem
(4.3) provides an upper bound on the nonconvex adversarial training problem (4.1). The robust
ANN weights (u \star \mathrm{r}\mathrm{o}\mathrm{b}j

, \alpha \star \mathrm{r}\mathrm{o}\mathrm{b}j
) \widehat mj=1 can be recovered using (2.4).

When the perturbation set is zero, Theorem 4.1 reduces to Theorem 2.1. In light of
Theorem 4.1, we use optimization (4.3) as a surrogate for the optimization (4.1) to train the
ANN. Since (4.3) includes all Di matrices in (2.2), we have \widehat P \geq P . While \widehat P is at most
2n in the worst case, since \epsilon is often small, we expect \widehat P to be relatively close to P , where
P \leq 2r(e(n - 1)

r)r as discussed above. As will be shown in subsection 4.3, an approximation to
(4.3) can be applied to train ANNs with width much less than \widehat m \star .

The robust constraints in (4.3b) force all points within the perturbation set to be feasible.
Intuitively, for every j \in [\widehat m \star], (4.3b) forces the ReLU activation pattern sgn((X +\Delta)u \star \mathrm{r}\mathrm{o}\mathrm{b}j

)
to stay the same for all \Delta such that X +\Delta \in \scrU . Moreover, if \Delta \star

\mathrm{r}\mathrm{o}\mathrm{b} denotes a solution to the
inner maximization in (4.3a), then X +\Delta \star

\mathrm{r}\mathrm{o}\mathrm{b} corresponds to the worst-case adversarial inputs
for the recovered ANN.

Corollary 4.2. For the perturbation set \scrX , the constraints in (4.3b) are equivalent to

(4.4) (2Di - In)Xvi \geq \epsilon \| vi\| 1, (2Di - In)Xwi \geq \epsilon \| wi\| 1 \forall i\in [\widehat P].
The proof of Corollary 4.2 is provided in subsection SM6.6. Note that the left side of each

inequality in (4.4) is a vector while the right side is a scalar, which means that each element
of the corresponding vector should be greater than or equal to that scalar.

We will show that the new problem can be efficiently solved in important cases. Specif-
ically, (4.3) reduces to a classic convex optimization problem when \ell (\widehat y, y) is the hinge loss,
the squared loss, or the binary cross-entropy loss. Due to space restrictions, the result for the
squared loss is presented in subsection SM5.1.

4.3. Practical algorithm for convex adversarial training. Since Theorem 2.2 does not rely
on assumptions about the matrix X, it applies to an arbitrary X +\Delta matrix and naturally
extends to the convex adversarial training formulation (4.3). Therefore, an approximation to
(4.3) can be applied to train robust ANNs with widths much less than \widehat m \star . Similar to the
strategy rendered in Algorithm 2.1, we use a subset of the Di matrices for practical adversarial
training. Since the Di matrices depend on the perturbation \Delta , we also add randomness to
the data matrix X in the sampling process to cover Di matrices associated with different

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

460 YATONG BAI, TANMAY GAUTAM, AND SOMAYEH SOJOUDI

Algorithm 4.1 Practical convex adversarial training.

1: for h= 1 to Pa do
2: ah \sim \scrN (0, Id) i.i.d.
3: Dh1\leftarrow diag([Xah \geq 0])
4: for j = 2 to S do
5: Rhj\leftarrow [r1, . . . , rd], where r\kappa \sim \scrN (0, In) \forall \kappa \in [d]
6: Dhj\leftarrow diag([Xhjah \geq 0]), where Xhj\leftarrow X + \epsilon \cdot sgn(Rhj)
7: Discard repeated Dhj matrices
8: break if Ps distinct Dhj matrices has been generated
9: end for
10: end for
11: Solve

min
(vi,wi)

\widehat P
i=1

\Biggl(
max

\Delta :X+\Delta \in \scrU
\ell

\biggl(Ps\sum
h=1

Dh(X +\Delta)(vh - wh), y
\biggr)
+ \beta

Ps\sum
h=1

(\| vh\| 2 + \| wh\| 2)

\Biggr)
(4.5)

s.t. min
\Delta :X+\Delta \in \scrU

(2Dh - In)(X +\Delta)vh \geq 0 \forall h\in [Ps],

min
\Delta :X+\Delta \in \scrU

(2Dh - In)(X +\Delta)wh \geq 0 \forall h\in [Ps].

12: Recover u1, . . . , ums
and \alpha 1, . . . , \alpha ms

from the solution (v \star \mathrm{r}\mathrm{o}\mathrm{b}sh ,w
 \star
\mathrm{r}\mathrm{o}\mathrm{b}sh

)Ps

h=1 of (4.5) using
(2.4).

perturbations, leading to Algorithm 4.1. Pa and S are preset parameters that determine the
number of random weight samples with Pa \times S \geq Ps.

4.4. Convex hinge loss adversarial training. While the inner maximization of the robust
problem (4.3) is still hard to solve in general, it is tractable for some loss functions. The
simplest case is the piecewise-linear hinge loss \ell (\widehat y, y) = (1 - \widehat y\odot y)+, which is widely used for
classification. Here, we focus on binary classification with y \in \{ - 1,1\} n.2

Consider the training problem for a one-hidden-layer ANN with \ell 2 regularized hinge loss:

(4.6) min
(uj ,\alpha j)mj=1

\biggl(
1

n
\cdot 1\top

\Bigl(
1 - y\odot

m\sum
j=1

(Xuj)+\alpha j

\Bigr)
+
+
\beta

2

m\sum
j=1

(\| uj\| 22 + \alpha 2
j)

\biggr)
.

The adversarial training problem considering the \ell \infty -bounded adversarial data perturba-
tion set \scrX is

min
(uj ,\alpha j)mj=1

\Biggl(
max

\Delta :X+\Delta \in \scrX

1

n
\cdot 1\top

\biggl(
1 - y\odot

m\sum
j=1

((X +\Delta)uj)+\alpha j

\biggr)
+

+
\beta

2

m\sum
j=1

(\| uj\| 22 + \alpha 2
j)

\Biggr)
.(4.7)

2Other \ell p norm-bounded additive perturbation sets can be similarly analyzed, as shown in subsection SM5.3.
It is also straightforward to extend the analysis in this section to any convex piecewise-affine loss functions.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

EFFICIENT TWO-LAYER NEURAL NET GLOBAL OPTIMIZATION 461

Applying Theorem 4.1 and Corollary 4.2 leads to the following formulation as an upper
bound on (4.7):

min
(vi,wi)

\widehat P
i=1

\left(max
\Delta :X+\Delta \in \scrX

1

n
\cdot 1\top

\biggl(
1 - y\odot

\widehat P\sum
i=1

Di(X +\Delta)(vi - wi)
\biggr)

+

+ \beta

\widehat P\sum
i=1

(\| vi\| 2 + \| wi\| 2)

\right)
s.t. (2Di - In)Xvi \geq \epsilon \| vi\| 1, (2Di - In)Xwi \geq \epsilon \| wi\| 1 \forall i\in [\widehat P].(4.8)

For the purpose of generating the D1, . . . ,D \widehat P matrices, instead of enumerating an infinite
number of points in \scrX , we only need to enumerate all vertices of \scrX , which is finite. This is
because the solution \Delta \star

\mathrm{h}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{e} to the inner maximum always occurs at a vertex of \scrX , as will be
shown in Theorem 4.3. Solving the inner maximization of (4.8) in closed form leads to the
next theorem, whose proof is provided in subsection SM6.7.

Theorem 4.3. For the binary classification problem, the inner maximum of (4.8) is at-

tained at \Delta \star
\mathrm{h}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{e} = - \epsilon \cdot sgn(

\sum \widehat P
i=1Diy(vi - wi)\top), and the bilevel optimization problem (4.8) is

equivalent to the classic optimization problem

min
(vi,wi)

\widehat P
i=1

1

n

n\sum
k=1

\left(1 - yk
\widehat P\sum
i=1

dikx
\top
k (vi - wi) + \epsilon

\bigm\| \bigm\| \bigm\| \bigm\| \widehat P\sum
i=1

dik(vi - wi)
\bigm\| \bigm\| \bigm\| \bigm\|
1

\right)
+

+ \beta

\widehat P\sum
i=1

(\| vi\| 2 + \| wi\| 2)

s.t. (2Di - In)Xvi \geq \epsilon \| vi\| 1, (2Di - In)Xwi \geq \epsilon \| wi\| 1 \forall i\in [\widehat P],(4.9)

where dik denotes the kth diagonal element of Di.

The problem (4.9) is a finite-dimensional convex program that upper-bounds (4.7), the
robust counterpart of (4.6). We can thus solve (4.9) to robustly train the ANN.

4.5. Convex binary cross-entropy loss adversarial training. The binary cross-entropy
loss is also widely used in binary classification. Here, we consider a scalar-output ANN with
a scaled tanh output layer for binary classification with y \in \{ 0,1\} n. The loss function \ell (\cdot) in
this case is \ell (\widehat y, y) = - 2\widehat y\top y+1\top log(e2\widehat y+1). The nonconvex adversarial training formulation
considering the \ell \infty -bounded data uncertainty set \scrX is then

min
(uj ,\alpha j)mj=1

\Biggl(
max

\| \Delta \| \mathrm{m}\mathrm{a}\mathrm{x}\leq \epsilon

1

n

n\sum
k=1

\Bigl(
 - 2\widehat ykyk + log(e2\widehat yk + 1)

\Bigr) \Biggr)
+
\beta

2

m\sum
j=1

(\| uj\| 22 + \alpha 2
j),(4.10)

where \widehat y := m\sum
j=1

((X +\Delta)uj)+\alpha j .

Applying Theorem 4.1 and Corollary 4.2 leads to the following optimization problem as an
upper bound on (4.10):

(4.11)

min
(vi,wi)

\widehat P
i=1

\Biggl(
max

\| \Delta \| \mathrm{m}\mathrm{a}\mathrm{x}\leq \epsilon

1

n

n\sum
k=1

\biggl(
 - 2\widehat ykyk + log(e2\widehat yk + 1)

\biggr) \Biggr)
+ \beta

\widehat P\sum
i=1

\Bigl(
\| vi\| 2 + \| wi\| 2

\Bigr)
s.t. (2Di - In)Xvi \geq \epsilon \| vi\| 1, (2Di - In)Xwi \geq \epsilon \| wi\| 1 \forall i\in [\widehat P],

\widehat yk = \widehat P\sum
i=1

dikx
\top
k (vi - wi) +

\widehat P\sum
i=1

dik\delta
\top
k (vi - wi).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

462 YATONG BAI, TANMAY GAUTAM, AND SOMAYEH SOJOUDI

Consider the convex optimization formulation

min
(vi,wi)

\widehat P
i=1

1

n

\biggl(n\sum
k=1

f \circ gk(\{ vi,wi\}
\widehat P
i=1)

\biggr)
+ \beta

\widehat P\sum
i=1

\Bigl(
\| vi\| 2 + \| wi\| 2

\Bigr)
s.t. (2Di - In)Xvi \geq \epsilon \| vi\| 1, (2Di - In)Xwi \geq \epsilon \| wi\| 1 \forall i\in [\widehat P],

f(u) := log(e2u + 1),(4.12)

gk(\{ vi,wi\}
\widehat P
i=1) := (2yk - 1)

\widehat P\sum
i=1

dikx
\top
k (vi - wi) + \epsilon \cdot

\bigm\| \bigm\| \bigm\| \bigm\| \widehat P\sum
i=1

dik(vi - wi)
\bigm\| \bigm\| \bigm\| \bigm\|
1

\forall k \in [n].

The next theorem establishes the equivalence between (4.12) and (4.11). The proof is
provided in subsection SM6.9.

Theorem 4.4. The optimization (4.12) is a convex program that is equivalent to the bilevel
optimization (4.11) and can be used as a surrogate for (4.10) to train robust ANNs. The

worst-case perturbation is \Delta \star
\mathrm{B}\mathrm{C}\mathrm{E} = - \epsilon \cdot sgn((2y - 1)

\sum \widehat P
i=1Di(vi - wi)\top).

Note that the worst-case perturbation occurs at the same location as for the hinge loss
case, which is a vertex in \scrX . Thus, for the purpose of generating the D1, . . . ,D \widehat P matrices, we
again only need to enumerate all vertices of \scrX instead of all points in \scrX .

5. Numerical experiments. Due to space restrictions, we focus on binary classification
with the hinge loss and defer the squared loss results to subsection SM3.5.

5.1. Approximated convex standard training. In this subsection, we use numerical ex-
periments to demonstrate the efficacy of practical standard training (Algorithm 2.1) and to
show the level of suboptimality of the ANN trained using Algorithm 2.1.3 The experiment
was performed on a randomly generated dataset with n= 40 and d= 2 shown in Figure 1(a).

The upper bound on the number of ReLU activation patterns is 4(e(39)2)2 = 11239. We ran
Algorithm 2.1 to train ANNs using the hinge loss with the number of Dh matrices equal to
4,8,16, . . . ,2048 and compared the optimized loss.4 We repeated this experiment 15 times for
each setting and plotted the loss in Figure 1(b). The error bars show the loss values achieved
in the best and the worst runs. When there are more than 128 matrices (much less than
the theoretical bound on P), Algorithm 2.1 yields consistent and favorable results. Further
increasing the number of D matrices does not produce a significantly lower loss. By Theorem
2.2, Ps = 128 corresponds to \psi \xi = 0.318.

5.2. The ADMM convex training algorithm. We now present the experiment results
with the ADMM training algorithm. We use Algorithm 3.1 to solve the approximate convex
training formulation (2.5) with the sampled Dh matrices. The hyperparameter settings for the
experiments are discussed in subsection SM4.1, where we also present guidelines on selecting
the ADMM hyperparameters.

3For all experiments in this section, CVX [26] and CVXPY [1, 16] with the MOSEK [5] solver were used for
solving optimization on a laptop computer, unless otherwise stated. Off-the-shelf solvers supported by CVX
and CVXPY often treat the convex training problem as a general second order cone program. Among all
solvers that we experimented on the convex training formulation, MOSEK is the most efficient.

4To reliably sample Ps matrices, Pa \cdot S in Algorithm 4.1 was set to a large number (81920), and the sampling
was terminated when a sufficient number of Dh matrices was generated. The regularization strength \beta was
chosen to be 10 - 4.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

EFFICIENT TWO-LAYER NEURAL NET GLOBAL OPTIMIZATION 463

(a) A randomized 2-dimensional dataset used in
this experiment. The red crosses are positive
training points and the white circles are negative
training points. The region classified as positive
is in blue, whereas the negative region is in black.

4 8 16 32 64 128 256 512 1024 2048

Number of D Matrices

10
-1

10
-0.5

10
0

10
0.5

10
1

L
o
s
s

(b) The optimized training loss for each Ps.
When Ps reaches 128, the mean and variance of
the optimized loss become very small.

Figure 1. Analyzing the effect of Ps on convex standard training.

5.2.1. Squared loss (closed-form \bfitu updates)---convergence. For the case of the squared
loss, the closed-form solution (3.6) is used for the u updates. We first demonstrate the
convergence of the proposed ADMM algorithm using illustrative random data with dimensions
n = 6, d = 5, Ps = 8. CVX [26] with the IPM-based MOSEK solver [5] was used to solve the
optimal objective of (2.2) as the ground truth.

We first explain the notation used in the figures. We use l \star \mathrm{C}\mathrm{V}\mathrm{X} to denote the CVX optimal
objective and use l \star \mathrm{A}\mathrm{D}\mathrm{M}\mathrm{M} to denote the objective that ADMM converges to as the number
of iterations k goes to infinity. There are several methods to calculate the training loss
obtained by ADMM. For fair comparisons among ADMM, CVX, and SGD, we use (2.4)
to recover the ANN weights (uj , \alpha j)

m
j=1 from the ADMM optimization variables (vkh,w

k
h)
Ps

h=1

and use (uj , \alpha j)
m
j=1 to calculate the true nonconvex training loss (2.1). The loss at each

iteration calculated via this method is denoted as lu,\alpha \mathrm{A}\mathrm{D}\mathrm{M}\mathrm{M}, and the ADMM solution l \star \mathrm{A}\mathrm{D}\mathrm{M}\mathrm{M}

is also calculated via this method. At each iteration, we also compute the convex objective
of (2.2) using (vkh,w

k
h)
Ps

h=1, denoted as lv,w\mathrm{A}\mathrm{D}\mathrm{M}\mathrm{M}. Since ADMM uses dual variables to enforce
the constraints, while the ADMM solution is feasible as k goes to infinity, the intermediate
iterations may not be feasible. When the constraints in (2.2) are satisfied, it holds that
lu,\alpha \mathrm{A}\mathrm{D}\mathrm{M}\mathrm{M} = lv,w\mathrm{A}\mathrm{D}\mathrm{M}\mathrm{M}. Otherwise, lu,\alpha \mathrm{A}\mathrm{D}\mathrm{M}\mathrm{M} may be different from lv,w\mathrm{A}\mathrm{D}\mathrm{M}\mathrm{M}. The gap between lu,\alpha \mathrm{A}\mathrm{D}\mathrm{M}\mathrm{M}

and lv,w\mathrm{A}\mathrm{D}\mathrm{M}\mathrm{M} indirectly characterizes the feasibility of the ADMM intermediate solutions. When

this gap is small, (vkh,w
k
h)
Ps

h=1 should be almost feasible. When this gap is large, the constraints
may have been severely violated.

While it can be expensive for ADMM to converge to a high precision (note that the
algorithm is guaranteed to linearly converge to a global minimum given an ample computation
time according to Theorem 3.1), an approximate solution is usually sufficient for achieving a
high validation accuracy since decreasing the training loss excessively could induce overfitting.
Therefore, when performing the experiments, we apply early stopping [43], a common training

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

464 YATONG BAI, TANMAY GAUTAM, AND SOMAYEH SOJOUDI

Number of ADMM iterations Number of ADMM iterations Number of ADMM iterations

L
o

s
s
 d

iff
e

re
n

c
e

(a) lu,\alpha \mathrm{A}\mathrm{D}\mathrm{M}\mathrm{M} - l \star \mathrm{A}\mathrm{D}\mathrm{M}\mathrm{M} (b) lu,\alpha \mathrm{A}\mathrm{D}\mathrm{M}\mathrm{M} - l \star \mathrm{C}\mathrm{V}\mathrm{X} (c)
\bigm| \bigm| lu,\alpha \mathrm{A}\mathrm{D}\mathrm{M}\mathrm{M} - lv,w\mathrm{A}\mathrm{D}\mathrm{M}\mathrm{M}

\bigm| \bigm|
Figure 2. Gap between the cost returned by ADMM for the first 25 iterations and the true optimal cost for

the 5 independent runs.

technique that improves generalization. Figures 2(a) and 2(b) show that a precision of 10 - 3

can be achieved within 25 iterations. Moreover, Figure 2(c) shows that the solution after
25 iterations violates the constraints insignificantly. This behavior of ``converging rapidly
in the first several steps and slowing down (to a linear rate) afterward"" is typical for the
ADMM algorithm. As will be shown next, a medium-accuracy solution returned by only a
few ADMM iterations can achieve a better prediction performance than the CVX solution. In
subsection SM3.1, we present empirical results that demonstrate the asymptotic convergence
properties of ADMM.

To visualize how the prediction performance achieved by the model changes as the ADMM
iteration progresses, we run the ADMM iterations on the ``mammographic masses"" dataset
from the UCI Machine Learning Repository [18] and record the prediction accuracy on the
validation set at each iteration. 70\% of the dataset is randomly selected as the training set,
and the other 30\% is used as the validation set. Figure 3 plots the difference between the
ADMM accuracy and the CVX accuracy at each iteration. In all experiments, all variables in
the ADMM algorithm are initialized to be zero.

All 10 runs achieve superior validation accuracy throughout the first 200 iterations com-
pared with the CVX baseline, and even the first 5 iterations outperform the baseline, with
the best run outperforming CVX by 6\%. After about 80 iterations, the accuracy stabilizes at
around 2\% to 4\% better than the CVX baseline. In conclusion, the prediction performance
of the classifiers trained by ADMM is superior even when only a few iterations are run.

5.2.2. Squared loss (closed-form \bfitu updates)---complexity. To demonstrate the compu-
tational complexity of the proposed ADMM method, we used the ADMM method to train
ANNs on a downsampled MNIST handwritten digits dataset with d = 100. The task was
to perform binary classification between digits ``2"" and ``8."" We first fix Ps = 8 and vary n
from 100 to 11809.5 We independently repeat the experiment five times for each n setting and
present the average results in Figures 4(a) and 4(b). In each experiment, ADMM is allowed

511809 is the the total number of 2's and 8's in the training set.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

EFFICIENT TWO-LAYER NEURAL NET GLOBAL OPTIMIZATION 465

Number of ADMM iterations Number of ADMM iterations Number of ADMM iterations

A
cc

ur
ac

yA
D

M
M

 -
A

cc
ur

ac
yC

V
X

lA
D

M
M

 -
lC

V
X

(a) Accuracy\mathrm{A}\mathrm{D}\mathrm{M}\mathrm{M} - Accuracy\mathrm{C}\mathrm{V}\mathrm{X} (positive
means the ADMM solution outperforms CVX).

(b) 3a zoomed-in to the
first five iterations.

Figure 3. Comparing the ANNs trained with ADMM and with CVX over 10 independent runs on the
mammographic masses dataset.

Number of training images (n)

Te
st

 a
cc

ur
ac

y

Number of training images (n)

CP
U

w
al

l t
im

e
(s)

(a) Average validation accuracy for each n.

Number of training images (n)

Te
st

 a
cc

ur
ac

y

Number of training images (n)

CP
U

w
al

l t
im

e
(s)

(b) Average CPU wall time for each n.

Number of sampled hyperplane arrangements (Ps) Number of sampled hyperplane arrangements (Ps)

CP
U

w
al

l t
im

e
(s)

Te
st

 a
cc

ur
ac

y

(c) Average validation accuracy for each Ps.

Number of sampled hyperplane arrangements (Ps) Number of sampled hyperplane arrangements (Ps)

CP
U

w
al

l t
im

e
(s)

Te
st

 a
cc

ur
ac

y

(d) Average CPU wall time for each Ps.

Figure 4. Analyzing the effect of n and Ps on ADMM convex training with the MNIST dataset.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

466 YATONG BAI, TANMAY GAUTAM, AND SOMAYEH SOJOUDI

to run six iterations, which is sufficient to train an accurate ANN. For all choices of n except
n = 100, the ANNs trained with ADMM attain higher accuracy than CVX networks. This
is because while ADMM and CVX solve the same problem, the medium-precision solution
from ADMM generalizes better than the high-precision CVX solution. More importantly,
as n increases, the CPU time required for CVX grows much faster than ADMM's execution
time, which increases linearly in n. While it is also theoretically possible to run the IPM to
a medium precision, even a few IPM iterations become too expensive when n is large. More-
over, since the IPM uses barrier functions to approximate the constraints, a medium-precision
solution produced by the IPM may have feasibility issues, while the ADMM solution sequence
generally has good feasibility, as illustrated in Figure 2.

Similarly, we fix n = 1000 and vary Ps from 4 to 50. The average results over five runs
are shown in Figures 4(c) and 4(d). Once again, the proposed ADMM algorithm achieves a
higher accuracy for each Ps, and the average CPU time of ADMM grows much slower than the
CVX CPU time. When Ps is 20, all five CVX runs achieve low validation accuracy, possibly
because the structure of the true underlying distribution cannot be well approximated with a
combination of 20 linear classifiers. Figures 4(c) and 4(d) also show that the CPU time scales
quadratically with Ps, confirming our theoretical analysis of the \scrO (nPs+ d2P 2

s) per-iteration
complexity.

5.2.3. Squared loss (closed-form \bfitu updates)---MNIST, Fashion MNIST, and CIFAR-
10. We now demonstrate the effectiveness of the proposed ADMM algorithm on all images
of ``2"" and ``8"" in the MNIST dataset without downsampling (n = 11809 and d = 784). The
parameter Ps was chosen to be 24, corresponding to a network width of at most 48. The
prediction accuracy on the validation set, the training loss, and the CPU time are shown in
Table 2. The baseline method ``CVX"" corresponds to using CVX to globally optimize the
ANN by solving (2.2), while ``Back-prop"" denotes the conventional method that performs a
SGD local search on the nonconvex cost function (2.1).

Table 2 shows that the training loss returned by ADMM is higher than the true optimal
cost but lower than the back-propagation solution. Note that the difference between the
ADMM training loss and the CVX loss is due to the early-stopping strategy applied to ADMM.
ADMM will converge to the true global optimal with a sufficient computation time, but we
prematurely terminate the algorithm once the validation accuracy becomes satisfactory so that
the rapid initial convergence of ADMM can be fully exploited. In contrast, back-propagation
does not have this guarantee due to the nonconvexity of (2.1). Moreover, back-propagation
is highly sensitive to the initialization and the hyperparameters. While ADMM also requires
a prespecified step size \gamma a, it is much more stable: its convergence to a primal optimum does

Table 2
Average experiment results with the squared loss on the MNIST dataset over five independent runs. We

run 10 ADMM iterations for each setting.

Method Validation accuracy CPU time (s) Training loss Global convergence

Back-prop 98.86 \% 74.09 422.4 No
CVX 70.99 \% 14879 1.146 Yes
ADMM 98.90 \% 802.2 223.2 Yes

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

EFFICIENT TWO-LAYER NEURAL NET GLOBAL OPTIMIZATION 467

Table 3
Average experiment results with the squared loss over five independent runs.

Fashion MNIST (42 ADMM iterations, Ps set to 18)

Method Validation accuracy CPU time (s) Training loss

Back-prop 99.04\% (.0735\%) 183.6 175.1 (4.246)
ADMM 98.73\% (.0200\%) 167.1 129.7 (13.24)
Back-prop (DS) 98.34\% (.0917\%) 18.31 433.0 (10.40)
ADMM (DS) 98.80\% (.0585\%) 6.840 380.1 (17.74)

Downsampled CIFAR-10 (30 ADMM iterations, Ps set to 18)

Method Validation accuracy CPU time (s) Training loss

Back-prop (DS) 90.90\% (.305\%) 122.7 991.5 (11.68)
ADMM (DS) 86.89\% (.132\%) 118.6 607.6 (10.76)

``DS"" denotes downsampling with a stride of 2. The numbers in parentheses are the standard deviations over five runs. Note that
the ADMM algorithm is theoretically guaranteed to converge to an approximate global minimum, whereas back-propagation
does not have this property.

not depend on the step size [13, Appendix A]. An optimal step size speeds up the training,
but a suboptimal step size is also acceptable.

ADMM achieves a higher validation accuracy than both CVX and back-propagation SGD.
Once again, while ADMM and CVX solve the same problem, the CVX solution suffers from
overfitting and thus cannot generalize well to the validation data.

The training time of ADMM is considerably shorter than CVX. Specifically, assembling
the matrix I+ 1

\rho F
\top F+G\top G required 22\% of the time, and the Cholesky decomposition needed

34\% of the time, while each ADMM iteration took only 4.4\% of the time. Thus, running more
ADMM iterations will not considerably increase the training time.

We also compare ADMM with back-propagation on the harder and more challenging Fash-
ion MNIST [51] and CIFAR-10 datasets. For Fashion MNIST, we perform binary classification
between the ``pullover"" and the ``bag"" classes on both full data (n= 12000, d= 784) and down-
sampled data (n= 12000, d= 196). For CIFAR-10, we perform binary classification between
``birds"" and ``ships"" and downsample the images to 16\times 16\times 3. The results are presented in
Table 3, and we plot the training loss with respect to time in Figure 5. The results shows
that ADMM converges faster and achieves a lower loss within the same amount of time, even
though it requires some preprocessing before the iterations start. However, on these datasets,
the classifiers learned via back-propagation generalize better to the validation set. Gradient
descent is known to have favorable properties when it comes to machine learning problems,
where solutions with similar losses can have vastly different properties. For applications where
training data is abundant, ADMM is a well-suited method to use since the generalization gap
would be small for these scenarios.

We also note that ADMM is extremely efficient on the downsampled Fashion MNIST
dataset, since the faster convergence of ADMM overshadows the higher complexity associated
with the decomposition when the data dimension is smaller. This result shows that ADMM
is particularly suitable for data with a dimension of around 200.

5.2.4. Binary cross-entropy loss (iterative \bfitu updates)---MNIST. To verify the efficacy
of using the RBCD method to numerically solve (3.3a), we similarly experiment with the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

468 YATONG BAI, TANMAY GAUTAM, AND SOMAYEH SOJOUDI

0 20 40 60 80 100 120 140
Time (seconds)

102

103

104

Tr
ai

ni
ng

 lo
ss

Fashion MNIST
ADMM
Back-prop GD

0 20 40 60 80 100 120
Time (seconds)

103

104

Tr
ai

ni
ng

 lo
ss

Downsampled CIFAR-10

ADMM
Back-prop GD

Figure 5. The learning curves of the closed-form ADMM algorithm and back-propagation gradient descent.
The flat parts of the ADMM curves represent the preprocessing time.

Table 4
Average experiment results with the binary cross-entropy loss over five runs. The main advantage of

ADMM-RBCD is its theoretically guaranteed global convergence.

MNIST (34 ADMM iterations, Ps = 24)

Method Validation accuracy CPU time (s) Training loss

Back-prop 98.91 \% 62.06 437.6
CVX 98.21 \% 14217 1.007
ADMM-RBCD 98.89 \% 555.8 310.3

binary cross-entropy loss coupled with a tanh output activation. The resulting loss function is
\ell (\widehat y, y) = - 2\widehat y\top y+1\top log(e2\widehat y+1). Since the value of the full augmented Lagrangian gradient in
the stopping condition of Algorithm 3.2 is difficult to obtain, we use the amount of objective
improvement as a surrogate.

The experiment results are shown in Table 4. On the MNIST dataset, the ADMM-RBCD
algorithm achieves a high validation accuracy while requiring a training time 94.6\% shorter
than the time of globally optimizing the cost function (2.2) with CVX. ADMM-RBCD also
requires less time to reach a comparable accuracy than the closed-form ADMM method with
the squared loss. On the other hand, ADMM-RBCD is still slower than back-propagation local
search, trading the training speed for the global convergence guarantee. The extremely slow
pace of CVX forbids its application to even medium-scaled problems, while ADMM-RBCD
makes convex training much more practical by balancing between efficiency and optimality.

5.2.5. GPU acceleration. The success of modern deep learning relies on the parallelized
computing enabled by GPUs. Using GPUs to accelerate the proposed ADMM algorithm is
straightforward. All operations required in the ADMM algorithm are implemented in existing
deep learning libraries that support GPUs, such as PyTorch [41]. Consider each step of
Algorithm 3.1. Note that (3.3c) consists of parallelizable algebraic operations, and we have
shown that (3.3b) reduces to parallelizable elementwise operations. Now, consider (3.3a). If
the RBCD algorithm is used to solve (3.3a), then all operations are again parallelizable (as
is the case for traditional back-propagation gradient descent), and auto-differentiation can be
used to obtain the closed-form gradients.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

EFFICIENT TWO-LAYER NEURAL NET GLOBAL OPTIMIZATION 469

To verify the effectiveness of GPU acceleration and show that ADMM-RBCD scales to
wider neural networks and higher dimensions with the help of GPUs, we use the method to
train binary classifiers with Ps set to 120 on the CIFAR-10 dataset. The average validation
accuracy over five runs is 91.23\%. On a MacBook Pro laptop computer, this task takes 474.5
seconds on average. Repeating the experiment on an Nvidia V100 GPU only requires 24.64
seconds, which is a 19.25x speed-up.

5.2.6. Summary of ADMM experiment results. Based on the above experiment results,
we summarize some advantages of our ADMM methods below:

1. While the closed-form ADMM algorithm has a higher theoretical complexity compared
with back-propagation, it is guaranteed to linearly converge to a global optimum if
allowed to run for a sufficiently long time, enabling efficient global optimization of
neural networks. Back-propagation does not have this property.

2. The closed-form ADMM algorithm often converges rapidly in the first few iterations.
Since a moderately accurate solution is sufficient for many machine learning tasks, this
fast initial convergence is very advantageous.

3. For datasets with a relatively small number of dimensions, the closed-form ADMM
algorithm is more efficient than back-propagation (as shown in Table 3), since the
faster convergence outweighs the increased complexity.

4. Compared with closed-form ADMM, ADMM-RBCD applies to general convex loss
functions, and scales better to wide ANNs, but is less efficient, as illustrated in Ta-
ble 4. ADMM-RBCD is then a trade-off between CVX (high solution quality) and
back-propagation (efficient), while maintaining the theoretically provable global con-
vergence.

In summary, the proposed ADMM method is particularly suited for applications where
\bullet abundant training data exists (a low empirical risk translates to a low true risk);
\bullet accuracy is more important than computational efficiency;
\bullet the number of dimensions is not too large.

5.3. Convex adversarial training. All experiment results in this section are obtained using
CVX with the MOSEK solver based on the IPM.

5.3.1. Hinge loss convex adversarial training---two-dimensional illustration. To analyze
the decision boundaries obtained from convex adversarial training, we ran Algorithms 2.1 and
4.1 on 34 random points in two-dimensional space for binary classification. The algorithms
were run with the parameters Ps = 360 and \epsilon = 0.08. A bias term was included by concate-
nating a column of ones to the data matrix X. The decision boundaries shown in Figure 6
confirm that Algorithm 4.1 fits the perturbation boxes as designed, coinciding with the theo-
retical prediction [38, Figure 3]. In subsection SM3.4, we compare the decision boundaries of
convex training methods and back-propagation methods and discuss how the regularization
strength \beta affects the decision boundaries. Additionally, in subsection SM3.3, we compare
the convex and the nonconvex optimization landscapes and demonstrate robust certifications
around the training data points.

5.3.2. Hinge loss convex adversarial training---image classification. We now verify the
real-world performance of the proposed convex training methods on a subset of the CIFAR-10

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

470 YATONG BAI, TANMAY GAUTAM, AND SOMAYEH SOJOUDI

Standard Training (Alg 1) Adversarial Training (Alg 2)

Red crosses: positive training points; Red circles: negative training points.
Blue region: classified as positive; Black region: classified as negative.
The white box around each training data: the \ell \infty perturbation bound.
The white dot at a vertex of each box: the worst-case perturbation.

Figure 5: Visualiza.Figure 6. Visualization of the binary decision boundaries in a two-dimensional space. Algorithm 4.1 fitted
the perturbation boxes, while the standard training fitted the training points.

image classification dataset [33] for binary classification between ``birds"" and ``ships."" The
subset consists of 600 images downsampled to d = 7\times 7\times 3 = 147.6 We use clean data and
adversarial data generated with FGSM and PGD to compare the performances of Algorithm
2.1, Algorithm 4.1, traditional back-propagation standard training (abbreviated as GD-std),
and the widely used adversarial training method: use FGSM or PGD to solve for the inner
maximum of (4.7) and use back-propagation to solve the outer minimization (abbreviated as
GD-FGSM and GD-PGD). The implementation details of FGSM and PGD are discussed in
subsection SM4.2.

The results on the CIFAR-10 subset are provided in Table 5. Convex standard training
(Algorithm 2.1) achieves a higher clean accuracy than GD-std and returns a much lower
training loss, supporting the findings of Theorem 2.2. Note that the nonadversarially convex-
trained model is highly sensitive to adversarial perturbations. Standard training has no control
over the loss of the perturbed inputs, and the high optimization accuracy of convex standard
training exacerbates this issue. This issue highlights the importance of the development of
convex adversarial training (Algorithm 4.1), which achieves a higher accuracy on clean data
and adversarial data compared with GD-FGSM and GD-PGD. While Algorithm 4.1 solves the
upper-bound problem (4.9), it returns a lower training objective compared with GD-FGSM
and GD-PGD, showing that the back-propagation method fails to find an optimal network.
Moreover, we have observed that Algorithms 2.1 and 4.1 are much more stable. Note that our
algorithms are theoretically guaranteed to converge to their global optima.

We also compare the aforementioned SDP relaxation adversarial training method [44] and
the LP relaxation method [50] against our work on the CIFAR-10 subset. While an iteration
of the LP or the SDP method is faster than a GD-PGD iteration, the ANNs trained with
the LP or the SDP method achieve worse accuracy and robustness than those trained with

6The parameters are \epsilon = 10/255, \beta = 10 - 4, and Ps = 36, corresponding to an ANN width of at most 72.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

EFFICIENT TWO-LAYER NEURAL NET GLOBAL OPTIMIZATION 471

Table 5
Average optimal objective and accuracy on clean and adversarial data over seven runs on the CIFAR-10

dataset. The standard deviations across the runs are shown in parentheses.

Method Clean accuracy FGSM adv. PGD adv. Objective CPU time (s)

GD-std 79.56\% (.414\%) 47.09\% (.4290\%) 45.60\% (.4796\%) .3146 108.4
GD-FGSM 75.30\% (3.10\%) 61.03\% (4.763\%) 60.99\% (4.769\%) .8370 154.9
GD-PGD 76.56\% (.604\%) 62.48\% (.2215\%) 62.44\% (.1988\%) .8220 1764
Algorithm 2.1 81.01\% (.809\%) .4857\% (.1842\%) .3571\% (.1239\%) 6.910\times 10 - 3 37.77
Algorithm 4.1 78.36\% (.325\%) 66.95\% (.4564\%) 66.81\% (.4862\%) .6511 1544

Algorithm 4.1: the LP method achieves a 74.05\% clean accuracy and a 58.65\% PGD accuracy,
whereas the SDP method achieves 73.35\% on clean data and 40.45\% on PGD adversaries.7

These results support that Algorithm 4.1 trains more robust ANNs and that the LP and SDP
relaxations can be extremely loose and unstable. While [44, 50] apply the convex relaxation
method to the adversarial training problem, their training formulations are nonconvex.

The presence of an \ell 1 norm term in the upper-bound formulations (4.9) and (4.12) in-
dicates that adversarial training with a small \epsilon has a regularizing effect, which can improve
generalization, supporting the finding of [34]. In the above experiments, Algorithm 4.1 out-
performs Algorithm 2.1 on adversarial data, highlighting the contribution of Algorithm 4.1:
a novel convex adversarial training procedure that reliably trains robust ANNs.

6. Concluding remarks. We use the SCP theory to characterize the quality of the solution
obtained from an approximation method, providing theoretical insights into practical convex
training. We then develop a separating scheme and apply the ADMM algorithm to a family of
convex training formulations. When combined with the approximation method, the algorithm
achieves a quadratic per-iteration computational complexity and a linear convergence toward
an approximate global optimum. We also introduced a simpler unconstrained convex training
formulation based on an SCP relaxation. The characterization of its solution quality shows
that ELMs are convex relaxations to ANNs. Compared to the traditional back-propagation
algorithms, our proposed training algorithms possess theoretical convergence rate guarantees
and enjoy the absence of spurious local minima. Compared with naively solving the con-
vex training formulation using general-purpose solvers, our algorithms have much improved
complexities, making a significant step toward practical convex training.

We also use the robust convex optimization analysis to derive convex programs that train
adversarially robust ANNs. Compared with traditional adversarial training methods, includ-
ing GD-FGSM and GD-PGD, the favorable properties of convex optimization endow convex
adversarial training with the following advantages:

\bullet Global convergence to an upper bound: Convex adversarial training prov-
ably converges to an upper bound to the global optimum cost, offering superior
interpretability.

\bullet Guaranteed adversarial robustness on training data: As shown in Theorem
4.3, the inner maximization over the robust loss function is solved exactly.

7For SDP, the robustness parameter is chosen as \lambda = .04, since a larger \lambda causes the algorithm to fail.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

472 YATONG BAI, TANMAY GAUTAM, AND SOMAYEH SOJOUDI

\bullet Hyperparameter-free: Algorithm 4.1 can automatically determine its step size with
line search, not requiring any preset parameters.

\bullet Immune to vanishing/exploding gradients: The convex training method avoids
this problem completely because it does not rely on back-propagation.

Overall, the analysis of this work makes it easier and more efficient to train interpretable
and robust ANNs with global convergence guarantees, facilitating the potential application of
ANNs in safety-critical applications.

REFERENCES

[1] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, A rewriting system for convex optimization
problems, J. Control Decis., 5 (2018), pp. 42--60.

[2] B. Anderson, Z. Ma, J. Li, and S. Sojoudi, Tightened convex relaxations for neural network robustness
certification, in Proceedings of the IEEE Conference on Decision and Control, 2020.

[3] B. Anderson and S. Sojoudi, Certified robustness via locally biased randomized smoothing , in Proceed-
ings of the 4th Annual Learning for Dynamics and Control Conference, 2022, pp. 207--220.

[4] B. Anderson and S. Sojoudi, Data-driven certification of neural networks with random input noise ,
IEEE Transactions on Control Network Systems, 10 (2023), pp. 249--260.

[5] The MOSEK Optimization Toolbox for MATLAB Manual. Version 9.0, Mosek ApS, 2019.
[6] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee, Understanding deep neural networks with rectified

linear units , in Proceedings of the International Conference on Learning Representations, 2018.
[7] A. Athalye, N. Carlini, and D. Wagner, Obfuscated gradients give a false sense of security: Circum-

venting defenses to adversarial examples , in Proceedings of the International Conference on Machine
Learning, 2018.

[8] F. Bach, Breaking the curse of dimensionality with convex neural networks , J. Mach. Learn. Res., 18
(2017), pp. 1--53.

[9] Y. Bai, B. G. Anderson, and S. Sojoudi, Improving the Accuracy-Robustness Trade-off of Classifiers
via Adaptive Smoothing , preprint, https://arxiv.org/pdf/2301.12554.pdf, 2023.

[10] Y. Bai, T. Gautam, Y. Gai, and S. Sojoudi, Practical convex formulation of robust one-hidden-layer
neural network training , in Proceedings of the American Control Conference, 2022.

[11] E. Belilovsky, M. Eickenberg, and E. Oyallon, Greedy layerwise learning can scale to ImageNet ,
in Proceedings of the International Conference on Machine Learning, 2019.

[12] Y. Bengio, N. Roux, P. Vincent, O. Delalleau, and P. Marcotte, Convex neural networks , in
Proceedings of the Annual Conference on Neural Information Processing Systems, 2006.

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical
learning via the alternating direction method of multipliers , Found. Trends Mach. Learn., 3 (2011),
pp. 1--122.

[14] A. Brutzkus and A. Globerson, Globally optimal gradient descent for a convnet with gaussian inputs ,
in Proceedings of the International Conference on Machine Learning, 2017.

[15] J. Cohen, E. Rosenfeld, and Z. Kolter, Certified adversarial robustness via randomized smoothing ,
in Proceedings of the International Conference on Machine Learning, 2019.

[16] S. Diamond and S. Boyd, CVXPY: A Python-embedded modeling language for convex optimization , J.
Mach. Learn. Res., 17 (2016), pp. 1--5.

[17] S. S. Du, X. Zhai, B. Poczos, and A. Singh, Gradient descent provably optimizes over-parameterized
neural networks , in Proceedings of the International Conference on Learning Representations, 2019.

[18] D. Dua and C. Graff, UCI Machine Learning Repository , University of California, Irvine, 2017.
[19] J. Eckstein and W. Yao, Approximate ADMM algorithms derived from lagrangian splitting , Comput.

Optim. Appl., 68 (2017), pp. 363--405.
[20] T. Ergen and M. Pilanci, Global optimality beyond two layers: Training deep ReLU networks via

convex programs , in Proceedings of the International Conference on Machine Learning, 2021.
[21] T. Ergen and M. Pilanci, Implicit convex regularizers of CNN architectures: Convex optimization of

two- and three-layer networks in polynomial time , in Proceedings of the International Conference on
Learning Representations, 2021.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://arxiv.org/pdf/2301.12554.pdf

EFFICIENT TWO-LAYER NEURAL NET GLOBAL OPTIMIZATION 473

[22] T. Ergen and M. Pilanci, Path Regularization: A Convexity and Sparsity Inducing Regularization for
Parallel Relu Networks , preprint, https://arxiv.org/abs/2110.09548, 2021.

[23] T. Ergen, A. Sahiner, B. Ozturkler, J. Pauly, M. Mardani, and M. Pilanci, Demystifying batch
normalization in ReLU networks: Equivalent convex optimization models and implicit regularization ,
in Proceedings of ICLR 2022.

[24] C. Gallicchio and S. Scardapane, Deep Randomized Neural Networks , preprint, https://arxiv.
org/abs/2002.12287, 2020.

[25] I. J. Goodfellow, J. Shlens, and C. Szegedy, Explaining and harnessing adversarial examples , in
Proceedings of the International Conference on Learning Representations, 2015.

[26] M. Grant and S. Boyd, CVX: Matlab Software for Disciplined Convex Programming, version 2.1, CVX
Research, 2014.

[27] K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level performance
on ImageNet classification , in Proceedings of the IEEE International Conference on Computer Vision,
2015.

[28] M. R. Hestenes, Multiplier and gradient methods , J. Optim. Theory Appl., 4 (1969), pp. 303--320.
[29] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, Extreme learning machine: A new learning scheme of

feedforward neural networks , in Proceedings of the IEEE International Joint Conference on Neural
Networks, Vol. 2, 2004, pp. 985--990.

[30] R. Huang, B. Xu, D. Schuurmans, and C. Szepesv\'ari, Learning with a Strong Adversary , preprint,
https://arxiv.org/abs/1511.03034, 2015.

[31] S. H. Huang, N. Papernot, I. J. Goodfellow, Y. Duan, and P. Abbeel, Adversarial attacks on
neural network policies , in Proceedings of the International Conference on Learning Representations,
2017.

[32] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization , in Proceedings of the Interna-
tional Conference on Learning Representations, 2015.

[33] A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images , 2009.
[34] A. Kurakin, I. J. Goodfellow, and S. Bengio, Adversarial machine learning at scale , in Proceedings

of the International Conference on Learning Representations, 2017.
[35] Y. Wang, J. Lacote, and M. Pilanci, The Hidden Convex Optimization Landscape of Regularized

Two-Layer Re\{ LU\} Networks: An Exact Characterization of Optimal Solutions, in International Con-
ference on Learning Representations, 2022.

[36] Z. Lu and L. Xiao, On the complexity analysis of randomized block-coordinate descent methods , Math.
Program., 152 (2015), pp. 615--642.

[37] Z. Ma and S. Sojoudi, A sequential framework towards an exact SDP verification of neural networks ,
in International Conference on Data Science and Advanced Analytics, 2021.

[38] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, Towards deep learning models
resistant to adversarial attacks , in Proceedings of the International Conference on Learning Repre-
sentations, 2018.

[39] A. Mishkin, A. Sahiner, and M. Pilanci, Fast Convex Optimization for Two-Layer ReLU Networks:
Equivalent Model Classes and Cone Decompositions , preprint, https://arxiv.org/abs/2202.01331,
2022.

[40] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, DeepFool: A simple and accurate method to
fool deep neural networks , in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[41] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, PyTorch: An imperative style,
high-performance deep learning library , in Advances in Neural Information Processing Systems, 2019.

[42] M. Pilanci and T. Ergen, Neural networks are convex regularizers: Exact polynomial-time convex
optimization formulations for two-layer networks , in Proceedings of the International Conference on
Machine Learning, 2020.

[43] L. Prechelt, Early stopping---but when? , in Neural Networks: Tricks of the Trade, Lecture Notes in
Comput. Sci. 7700, 2nd ed., Springer, New York, 2012, pp. 53--67.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

https://arxiv.org/abs/2110.09548
https://arxiv.org/abs/2002.12287
https://arxiv.org/abs/2002.12287
https://arxiv.org/abs/1511.03034
https://arxiv.org/abs/2202.01331

474 YATONG BAI, TANMAY GAUTAM, AND SOMAYEH SOJOUDI

[44] A. Raghunathan, J. Steinhardt, and P. Liang, Certified defenses against adversarial examples , in
Proceedings of the International Conference on Learning Representations, 2018.

[45] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning representations by back-propagating
errors, Nature, 323 (1986), pp. 533--536.

[46] A. Sahiner, T. Ergen, J. M. Pauly, and M. Pilanci, Vector-output ReLU neural network problems
are copositive programs: Convex analysis of two layer networks and polynomial-time algorithms , in
Proceedings of the International Conference on Learning Representations, 2021.

[47] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R. Fergus,
Intriguing properties of neural networks , in Proceedings of the International Conference on Learning
Representations, 2014.

[48] G. Taylor, R. Burmeister, Z. Xu, B. Singh, A. Patel, and T. Goldstein, Training neural networks
without gradients: A scalable ADMM approach , in Proceedings of the 33rd International Conference
on Machine Learning, 2016.

[49] J. Wang, F. Yu, X. Chen, and L. Zhao, ADMM for efficient deep learning with global convergence , in
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining,
2019.

[50] E. Wong and Z. Kolter, Provable defenses against adversarial examples via the convex outer adversarial
polytope, in Proceedings of the International Conference on Machine Learning, 2018.

[51] H. Xiao, K. Rasul, and R. Vollgraf, Fashion-MNIST: A novel image dataset for benchmarking
machine learning algorithms , preprint, https://arxiv.org/pdf/1708.07747.pdf, 2017.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/0

5/
24

 to
 1

36
.1

52
.2

15
.1

65
 .

R
ed

is
tri

bu
tio

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y

	Introduction
	Notation

	Practical convex ANN training
	Prior work—convex ANN training
	A practical algorithm for convex training

	An ADMM algorithm for global ANN training
	<0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	s?></0:tex-math></0:inline-formula> and <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	v?></0:tex-math></0:inline-formula> updates
	<0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	u?></0:tex-math></0:inline-formula> updates
	Squared loss
	General convex loss functions

	Convex adversarial training
	Background about adversarial training
	The convex adversarial training formulation
	Practical algorithm for convex adversarial training
	Convex hinge loss adversarial training
	Convex binary cross-entropy loss adversarial training

	Numerical experiments
	Approximated convex standard training
	The ADMM convex training algorithm
	Squared loss (closed-form <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	u?></0:tex-math></0:inline-formula> updates)—convergence
	Squared loss (closed-form <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	u?></0:tex-math></0:inline-formula> updates)—complexity
	Squared loss (closed-form <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	u?></0:tex-math></0:inline-formula> updates)—MNIST, Fashion MNIST, and CIFAR-10
	Binary cross-entropy loss (iterative <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	u?></0:tex-math></0:inline-formula> updates)—MNIST
	GPU acceleration
	Summary of ADMM experiment results

	Convex adversarial training
	Hinge loss convex adversarial training—two-dimensional illustration
	Hinge loss convex adversarial training—image classification

	Concluding remarks
	References

