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Abstract

In this paper, we study noisy low-rank matrix recovery problems with linear
measurements and arbitrary probability distributions for noise. We investigate the
scenario where the search rank r is equal to the true rank r* of the unknown ground
truth (the exact parameterized case), as well as the scenario where r is greater
than r* (the overparameterized case). The objective is to understand under what
conditions on the restricted isometry property (RIP) the non-convex factorized
formulation of the problem has a benign landscape and thus local search methods
can find the ground truth with a small error. First, we develop a global guarantee
on the maximum distance between an arbitrary local minimizer of the non-convex
problem and the ground truth under the assumption that the RIP constant is smaller
than 1/(1 + /7*/r). As expected, this distance shrinks to zero as the intensity
of the noise reduces, which recovers the state-of-the-art result concerning the
noiseless version of this problem. Our new guarantee is sharp in terms of the RIP
constant and is much stronger than the existing results. We then present a local
guarantee for problems with an arbitrary RIP constant, which states that any local
minimizer is either considerably close to the ground truth or far away from it. Next,
we prove the strict saddle property under the same RIP assumption as above, which
leads to the global convergence of the perturbed gradient descent method. The
developed results demonstrate how the noise intensity, the parameterization and
the RIP constant affect the landscape of the non-convex optimization problem.

1 Introduction

Low-rank matrix recovery problems arise in various applications, such as matrix completion [1, 2],
phase synchronization/retrieval [3-5], robust PCA [6], and several others [7, 8]. In this paper, we
study a class of low-rank matrix recovery problems, where the goal is to recover a symmetric
and positive semidefinite ground truth matrix M* with rank(M™*) = r* > 0 from certain linear
measurements corrupted by noise. In many cases, the exact rank r* is often unknown a priori, which
prompts the user to choose a sufficiently large r with » > r* and formulate the above learning
problem as the following optimization problem:
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Here, A : R"*™ — R™ is a linear operator whose action on a matrix M is given by
A(M) = [(Ar, M), ..., (Am, M)]T,

where Ay, ..., A, € R™*™ are called sensing matrices. In addition, b = A(M™*) represents the
perfect measurement on the ground truth M* and w comes from an arbitrary probability distribution.
Note that only the noisy measurement b — w is available to the user, and indeed b is unknown. In
other words, from a problem-solving perspective, the random variable w is hidden to the user, and it
is explicitly modeled here only for the sake of analysis. In this work, we call r the search rank and
r* the true rank. If » = r*, the problem is said to be exact-parameterized. If » > r*, it is said to be
overparameterized.

Although existing literature such as [1, 2, 9] demonstrated that it is possible to solve (1) using convex
relaxations under appropriate assumptions, the computationally demanding nature of semidefinite
programs makes it difficult to apply such techniques to large-scale problems. A more scalable
approach is to use the Burer-Monteiro factorization [10] by expressing M as X X7 with X € R"*",
which leads to the following equivalent formulation of the aforementioned problem (1):
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Since (2) is unconstrained, it can be easily solved by local search methods such as gradient descent.
However, due to the non-convexity of the objective function f(X), local search algorithms may
converge to a local minimizer, leading to a suboptimal or plainly wrong solution. Hence, it is both
practically and theoretically important to provide guarantees on the maximum distance between these
local minimizers and the ground truth M*. This will be the main focus of this paper. Moreover,
although we focus on the symmetric matrix sensing problem, our results can be also applied to
the asymmetric problem in which M* is allowed to be rectangular. This is due to the fact that any
asymmetric problem can be equivalently transformed into a symmetric one [6].

1.1 Related works

The special noiseless case of the problem (2) can be obtained by setting w = 0. In this case, any
solution Z with ZZ7 = M* is a global minimizer of the problem (2). Several papers such as
[6, 11-21] have shown that the problem has no spurious (non-global) local minimizers under the
assumption of restricted isometry property (RIP). Moreover, as demonstrated in [6], the developed
techniques under the RIP condition can be adopted to show that other low-rank matrix recovery
problems, such as the matrix completion under incoherence condition and the robust PCA problem,
also have benign landscape. The RIP condition is equivalent to the restricted strongly convex and
smooth property used in [19, 22, 23], and its formal definition is given below.

Definition 1. Given a positive integer g, the linear operator A(-) : R™*™ — R™ is said to satisfy the
0-RIP, property for some constant § € [0, 1) if the inequality

(1= O)M|[E < [ADMIP < (1 +8)IM|%
holds for all M € R™*™ with rank(M) < g.

In the recent paper [20], the author developed a sharp bound on the absence of spurious local minima
for the noiseless case of problem (2), which says that the problem has no spurious local minima if the
measurement operator .4 satisfies the 6-RIP,. 1.~ property with § < 1/(1 4+ /7*/r). In the exact
parameterized case, this simplifies to 6 < 1/2, which is a sharp bound due to the counterexample
given in [24] that has spurious local minima under 6 = 1/2.

For the general noisy problem, the relation X*X*7 = M* is unlikely to be satisfied, where X*
denotes a global minimizer of problem (2), due to the influence of noise. However, X * X *T should
be close to the ground truth M * if the noise w is small. As a generalization of the above-mentioned
results for the noiseless problem, it is natural to study whether all local minimizers, including the
global minimizers, are close to the ground truth M * under the RIP assumption. One such result for
the exact parameterized case is presented in [11] and given below.

Theorem 1. ([11], Theorem 3.1) Suppose that w ~ N (0,02 I,,,), r = r* and A(-) has the 6-RIP,,
property with § < 1/10. Then, with probability at least 1 — 10/n?, every local minimizer X of



problem (2) satisfies the inequality

IXXT = M| < 200/ 2080
m

Theorem 31 in [6] further improves the above result by replacing the §-RIP,, property with the
0-RIP,, property. [25] studies a similar noisy low-rank matrix recovery problem with the /; norm.

There is an apparent gap between the state-of-the-art results for the noiseless and noisy problems.
Even in the exact parameterized regime, the result for the noiseless problem only requires the
RIP constant § < 1/2, but Theorem 1 requires 6 < 1/10 regardless of the intensity of the noise.
Furthermore, the existing results cannot be applied to the overparameterized noisy problem. This gap
will be addressed in this paper by showing that a major generalization of Theorem 1 holds for the
noisy problem under the same RIP assumption as the bound for the noiseless problem in both the
exact parameterized and the overparameterized regimes.
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Figure 1: The evolution of the error between the found solution X X7 and the ground truth M*
during the iterations of the gradient descent method for a noisy problem with the RIP constant
d < 1/2. The error decreases linearly at first, but it cannot be further improved after a certain number
of iterations because at that time the remaining error is almost incurred by the measurement noise

Earlier works such as [19, 26, 27] established the strict saddle property for the noiseless and exact
parameterized problem, which essentially states that any matrix whose gradient is small and whose
Hessian is almost positive semidefinite must be sufficiently close to a global minimizer. This
property, together with certain local regularity property near the ground truth, implies the global linear
convergence for the perturbed gradient descent method. In other words, the algorithm will return a
solution X satisfying || X X7 — M*|» < e after O(log(1/e)) number of iterations. In this paper,
we prove a similar strict saddle property for the noisy problem in both the exact parameterized and
the overparameterized cases. However, in the noisy problem, even if the local search algorithm finds
the global minimum, it cannot recover the ground truth exactly. As such, it is no longer meaningful
to discuss the convergence rate because the error between the found solution and the ground truth
has two sources: the difference between X *X*7 and the ground truth M* where X* denotes an
exact global minimizer of the problem, and the difference between XX7T and X*X*T where X
denotes the approximate solution found by the algorithm. Using our strict saddle property, we can
characterize the time point when the errors induced by the above two sources are roughly equal. As
demonstrated via an example in Fig. 1, it is almost futile to run the algorithm beyond a certain number
of iterations since the error will be dominated by the former one after some time.

1.2 Notations

In this paper, I,, refers to the identity matrix of size n X n. The notation M > 0 means that M is
a symmetric and positive semidefinite matrix. o;(M) denotes the i-th largest singular value of a
matrix M, and \;(M) denotes the i-th largest eigenvalue of M. ||v|| denotes the Euclidean norm
of a vector v, while || M|| 7 and || M |2 denote the Frobenius norm and induced /> norm of a matrix
M, respectively. (A, B) is defined to be tr(AT B) for two matrices A and B of the same size.
The Kronecker product between A and B is denoted as A ® B. For a matrix M, vec(M) is the



usual vectorization operation by stacking the columns of the matrix M into a vector. For a vector

veR, mat(v) converts v to a square matrix and matg(v) converts v to a symmetric matrix, i.e.,
mat(v) = M and matg(v) = (M + M7T)/2, where M € R™ " is the unique matrix satisfying
v = vec(M). Finally, N'(u, X) refers to the multivariate Gaussian distribution with mean p and
covariance X.

2 Main results

2.1 Guarantees on the local minima

We first present the global guarantee on the local minimizers of the problem (2). To simplify the
notation, we use a matrix representation of the measurement operator A as follows:

A = [vec(A1),vec(Ay), ..., vec(An)]T € R™X
Then, A vec(M) = A(M) for every matrix M € R"*™.

Theorem 2. Given arbitrary positive integers v and r* such that r > r*, assume that the linear
operator A satisfies the §-RIP, .~ property with § < 1/(1 + +/r*/r). For every ¢ > 0, with
probability at least P(|ATw|| < €), either of the following two inequalities

(1— 6| XXT = M*|[% < eI XXT — M*||p + 4ey/r|| M* ||, (3a)
L=0 VT N G RRT M < 20V

L+d 24 /r*/r
+20/2e(T+ 0) (| XXT — M| + |17 )11%)

holds for every arbitrary local minimizer X e R*r of problem (2).

(3b)

Note that two upper bounds on the distance || X X7 — M*|| » can be obtained for every local minimizer
X by solving the two quadratic-like inequalities (3a) and (3b), and the larger bound needs to be used
because only one of the two inequalities is guaranteed to hold. The reason for the existence of two
inequalities in Theorem 2 is the split of its proof into two cases. The first case is associated with
the r-th smallest singular value of X being small and the second case is the opposite, which are
respectively handled by Lemma 2 and Lemma 3.

Theorem 2 is a major extension of the state-of-the-art result stating that the noiseless problem
has no spurious local minima under the same assumption of the §-RIP, - property with § <
1/(1 4 4/r*/r). The reason is that in the case when the noise w is equal to zero, one can choose an
arbitrarily small ¢ in Theorem 2 to conclude from the inequalities (3a) and (3b) that XXT = M* for
every local minimizer X . Moreover, when the RIP constant & further decreases from 1 J(L+/r*/r),
the upper bound on ||X XT - M *|| = will also decrease, which means that a local minimizer found
by local search methods will be closer to the ground truth M ™. This suggests that the RIP condition

is able to not only guarantee the absence of spurious local minima as shown in the previous literature
but also mitigate the influence of the noise in the measurements.

Compared with the existing results such as Theorem 1, our new result has two advantages even when
specialized to the exact parameterized case r = r*. First, by improving the RIP constant from 1/10
to 1/2, one can apply the results on the location of spurious local minima to a much broader class
of problems, which can often help reduce the number of measurements. For example, in the case
when the measurements are given by random Gaussian matrices, it is proven in [28] that to achieve
the §-RIP,. property the minimum number of measurements needed is on the order of O(1/62). By
improving the RIP constant in the bound, we can significantly reduce the number of measurements
while still keeping the benign landscape. In applications such as learning for energy networks, there
is a fundamental limit on the number of measurements that can be collected due to the physics of the
problem [29]. Finding a better bound on RIP helps with addressing the issues with the number of
measurements needed to reliably solve the problem. Second, Theorem 1 is just about the probability
of having all spurious solutions in a fixed ball around the ground truth of radius O(c,,) instead of
balls of arbitrary radii, and this fixed ball could be a large one depending on whether the noise level



0y 1s fixed or scales with the problem. On the other hand, in Theorem 2, we consider the probability
P(||ATw|| < €) for any arbitrary value of . By having a flexible €, our work not only improves the
RIP constant but also allows computing the probability of having all spurious solutions in any given
ball.

In the special case of rank » = r* = 1, the conditions (3a) and (3b) in Theorem 2 can be substituted
with a simpler condition as presented below.

Theorem 3. Consider the case r = r* = 1 and assume that the linear operator A satisfies the
§-RIP2 property with § < 1/2. For every € > 0, with probability at least P(|| ATw|| < ¢), every
arbitrary local minimizer X € R"™*" of problem (2) satisfies

3(1+ v2)e(1+6)

v v * <
IXXT - are < VR

4)

In the case when the RIP constant ¢ is not less than 1/(1 + +/r*/r), it is not possible to achieve a
global guarantee similar to Theorem 2 or Theorem 3 since it is known that the problem may have a
spurious solution even in the noiseless case. Instead, we turn to local guarantees by showing that

every arbitrary local minimizer X of problem (2) is either close to the ground truth M * or far away
from it in terms of the distance || X X7 — M*||p.

Theorem 4. Assume that the linear operator A satisfies the §-RIP . .- property for some § € [0, 1).
Consider arbitrary constants ¢ > 0 and T € (0,1) such that § < /1 — 1. Every arbitrary local
minimizer X € R"<" of problem (2) satisfying

IXXT = M*||p < A (M) (5)
will satisfy at least one of the following inequalities
(1= O XXT = M|} < eV XXT = M*||p + dev/r|| M"|| (6a)
Vel +6)3/2C(t, M)

IXXT — M*||p < (6b)

Vi—1-4
with probability at least P(||ATw)|| < €), where
C(1, M*) = /2 (M*) + T (M*)).

The upper bounds in (5), (6a) and (6b) define an outer ball and an inner ball centered at the ground
truth M *. Theorem 4 states that there is no local minimizer in the ring between the two balls, which
means that bad local minimizers are located outside the outer ball. Note that the problem could be
highly non-convex when § is close to 1, while this theorem shows a benign landscape in a local
neighborhood of the solution. Furthermore, similar to Theorem 2 and Theorem 3, as € approaches
zero, the inner ball shrinks to the ground truth. Hence, when the problem is noiseless, Theorem 4
shows that every local minimizer X satisfying (5) must have XXT = M*. In the noiseless and exact
parameterized case, this exactly recovers Theorem 5 in [16]. Our theorem significantly generalizes
the previous result by showing that the same conclusion also holds in the overparameterized regime.

As a remark, all the theorems in this section are applicable to arbitrary noise models since they make
no explicit use of the probability distribution of the noise. The only required information is the
probability P(||ATw|| < ¢), which can be computed or bounded when the probability distribution of
the noise is given, as illustrated in Section 4.

2.2 Strict saddle property and global convergence

The results presented above are all about the locations of the local minimizers. They do not automati-
cally imply the global convergence of local search methods with a fast convergence rate. To provide
performance guarantees for local search methods, the next theorem establishes a stronger property
for the landscape of the noisy problem that is similar to the strict saddle property in the literature,
which essentially states that all approximate second- order critical points are close to the ground truth.
For notational convenience, in the following V2 f(X ) refers to the Hessian of the objective function

f in the matrix form, i.e., V2 f(X ) is the matrix satisfying the equatron

(vec(U)TV2f(X) vee(V (X)Uij Vi,

Z 6X” axkl



forall U,V € R™*".

Theorem 5. Given arbitrary positive integers v and v* such that r > r*, assume that the linear
operator A satisfies the 6-RIP,. 1.« property with § < 1/(1 + \/r*/r). For every ¢ > 0 and x > 0,
with probability at least P(|ATw|| < €), either of the following two inequalities

(1= OIXXT = M|} < (e + w/2Vr|XXT = M*||p + (4 + 26)VF | M*||p,  (Ta)
(;g - 2%) | XXT — M*||p < (26 + £)Vr*
+2v/@e+ R) T+ O (IXXT — M| + |27 [)

holds for every matrix X e Rm*r satisfying
IVFEON < wl X2, V2F(X) = =Rl (®)

(7b)

By Theorem 5, the error || X X7 — M*|| in both (7a) and (7b) is induced by the measurement noise
characterized by e, together with the inaccuracy of the local search algorithm captured by &. XXT
will be close to the ground truth if € and « are relatively small, and the contribution from & to the
bounds is exactly half of that from e. Since € is a constant which cannot be decreased during the
iterations, it is reasonable to design an algorithm to find an approximate solution X satisfying (8)
with € = k/2 to strike a balance between the probabilistic lower bound and the required number of
iterations.

To simplify the analysis, our strict saddle property in Theorem 5 is different from the traditional ones
which are usually stated as that || X XT — M* || is small if X satisfies

IVAX)| <R, V2F(X) = —Rlp, )

for a sufficiently small £ > 0. In [26], it is proven that the perturbed gradient descent method with an
arbitrary initialization will find a solution X satisfying (9) with a high probability in O(poly(1/%))
iterations. Using the assumption that r* > 0 and thus 0,,,, is not the ground truth, in the proof
of the next theorem, we will see that the conditions in (9) will imply the ones in (8) if < is chosen
appropriately. This establishes the global convergence for the noisy low-rank matrix recovery
problems in both the exact parameterized regime and the overparameterized regime.

Theorem 6. Let D € (0, 1] and \g > 0 be constants such that
)\min(VQfo(X)) < =X

holds for every matrix X € R™ " with HX llo < D, where fy is the noiseless objective function, i.e.
the function f in (2) satisfying w = 0. Assume that the linear operator A satisfies the 6-RIP .1 .«

property with & < 1/(1 + +/r*/r). For every € € (0, \g), the perturbed gradient descent method

will find a solution X satisfying either of the two inequalities (3a) and (3b) with probability at least
P(||ATw]|| < €/2) in O(poly(1/€)) number of iterations.

Note that the constants D and )\ stated above always exist. As we mentioned before Theorem 6, 0, x 1,
is not the ground truth. Since the RIP assumption implies the unique recovery, 0,,x,- is not a global
minimizer of the function fj, and Theorem 2 (or the previous equivalent result in the noiseless case)
implies that 0,,,. is also not a local minimizer of fy. As V fo(0nxr) = 0, V2 fo(0,,%,) cannot be
positive semidefinite, which implies the existence of D and A by a smoothness argument. Moreover,
the two constants can be directly calculated out after the measurement operator A is explicitly given.

3 Proofs of main results

Before presenting the proofs, we first compute the gradient and the Hessian of the objective function

f(X) of the problem (2):
Vi(X)=XTAT(Ae +w),
V2f(X) = 2I, ® matg(AT (Ae + w)) + XTATAX,



where .
e =vec(XXT — M),

and X € R™"*"" is the matrix satisfying

Xvec(U) = vee(XUT + UXT), VYU e R"*".

3.1 Proofs of Theorem 2, Theorem 5 and Theorem 6

The first step in the proofs of Theorem 2 and Theorem 5 is to derive necessary conditions for a matrix
X € R™ 7 to be an approximate second-order critical point, which depend on the linear operator

A, the noise w € R™, the solution X , and the parameter ~ characterizing how close X is to a true
second-order critical point.

Lemma 1. Given s > 0, assume that X € Rnxr satisfies
IVFX) < RlIXNl2e V2F(X) = =Kl
Then, it must also satisfy the following inequalities:
IXTHe|| < (2|ATw] + )| X]2, (10a)
21, ® mats(He) + XTHX = —(2|ATw]|| 4 &)L, (10b)
where H = ATA.

Proof. To obtain condition (10a), notice that ||V f(X)|| < [/ X2 implies that
IXTHel| < [|XTATw| +[|VF(X)| < [X|2[|ATw]| + £ X2 < 2 ATw] + 5)[| X]|2,
in which the last inequality is due to
X vec(U)[| = | XUT + UXT||r < 2| X]|2]|U||r,
for every U € R™*". Similarly, V2f(X) = —kI,,, implies that
21, ® matg(He) + XTHX = —2I, ® mats(ATw) — kI,

On the other hand, the eigenvalues of I,, ® mats(A”Zw) are the same as those of mats (AT w), and
each eigenvalue \;(mats(ATw)) of the latter matrix further satisfies

[\i(mats(ATw))| < [mats(ATw)|r < [ATw],

which proves condition (10b). O]

If X is a local minimizer of the problem (2), Lemma 1 shows that X satisfies the inequalities (10a)
and (10b) with k = 0. Similarly, Theorem 2 can also be regarded as a special case of Theorem 5 with
k = 0. The proofs of these two theorems consist of inspecting two cases. The following lemma deals

with the first case in which X is an approximate second-order critical point with o, (X ) being close
to zero.

Lemma 2. Assume that the linear operator A satisfies the 6-RIP,., . property. Given X e R*r
and arbitrary constants € > 0 and k > 0, the inequalities

00(%) <\ T ORI < RIX e, VR AR) =

and || ATw|| < e will together imply the inequality (7a).

Proof. Let G = matg(He) and v € R™ be a unit eigenvector of G corresponding to its minimum
eigenvalue, i.e.,
lu =1, Gu= Apin(G)u.

In addition, let v € R" be a singular vector of X such that

loll =1, | Xvl| = on(X).



Let U = vec(uvT). Then, ||U|| < 1 and (10b) imply that
—2¢ — r < 2UT (I, ® matg(He))U + UTXTHXU
< 2tr(vu’ GuoT) + (1 + 8) | XvuT + uw T XT)|%

< 2min (@) + 4(1 + 8o, (X)?
< 22nin(G) + 4e + 2k. (11)

On the other hand,
(1—0)|XXT — M*||2 < e"He = vec(X XT)THe — vec(M*)THe

1 A~ N
=3 vec(X)TX"He — (M*, matg(He))

1 N 3
51X | X He| + (3e+ 2“) (M)

N

IN

E v |2 3j *
(e+5) IXI% + (3e+ . )tr(M )

in which the second last inequality is due to (11) and the last inequality is due to (10a). Furthermore,
the right-hand side of the above inequality can be relaxed as

N 3
(e+35) 1X1E+ <3e + 2“) (M)
K 5 oT 3K N
< <e+ 5) VIIXXT e+ (3e+ 5 ) VIE M|
K o v T * K * 3K’ *
< (e+5) VIIRET =M lr + (e+ 5) VRIM | + (3e+ 5 ) VAIM Ik
= (e+5) VAIRXT = M"|lr + (e + 2)V/FIM |,
which leads to the inequality (7a). O

The remaining case with

N e+ k/2
o (X) > 1+(/5

will be handled in the following lemma using a different method.

Lemma 3. Assume that the linear operator A satisfies the §-RIP,., .« property with 6 < 1/(1 +
\/r*/r). Given X € R™*" and arbitrary constants € > 0 and r > 0, the inequalities

00(%) >\ LRI < 8K s VRAR) = kL

and || ATw|| < e will together imply the inequality (7b).

The proofs of both Lemma 3 and the local guarantee in Theorem 4 later generalize the proof of the
absence of spurious local minima for the noiseless problem in [15]. Our innovation here is to develop
new techniques to analyze approximate optimality conditions for the solutions because unlike the
noiseless problem the local minimizers of the noisy one are only approximate second-order critical
points of the distance function ||A(X X7) — b||2. For a fixed solution X and noise w, one can find an
operator A satisfying the 6-RIP, .~ property with the smallest possible § such that X and A satisfy
the necessary conditions stated in Lemma 1. Let 6* (X ) be the RIP constant of the found measurement
operator A in the worst-case scenario. Then, if X in Lemma 3 is a solution of the current problem
with the linear operator A satisfying the §-RIP, .« property, it holds that § > §* (X ), which can

further lead to an upper bound on the distance || X X7 — M*||p.



Proof of Lemma 3. The 5*(X ) defined above is the optimal value of the following optimization
problem:

min 6
S.H

st. |XTHel|| < (2¢+ k)| X2,
21, ® matS(I:Ie) +XTHX = —(2e 4+ &)1y,
H is symmetric and satisfies the J-RIP,., .« property.

(12)

Here, a matrix H € R™" %"’ is said to satisfy the 0-RIP,., .~ property if
(1-9)|U|* < UTHU < (1 +9)|U]?

holds for every matrix U € R™*" with rank(U) < r 4+ r* and U = vec(U). Obviously, for a linear
operator A, H = AT A satisfies the §-RIP,., .~ property if and only if A satisfies the 5-RIP,. .-
property. By the discussion above, we have 6 > 6*(X).

However, since problem (12) is non-convex due to the RIP constraint, we instead solve the following
convex reformulation:

min ¢
5 H

s.t. || XTHe|| < (2¢ + &)|| X |2,
21, ® matg(He) + XTHX = —(2¢ + &)1,
(1=0)L2 < H =< (1468)I,.

13)

Lemma 14 in [17] proves that problem (12) and problem (13) have the same optimal value. The

remaining step is to solve the optimization problem (13) for given X, e and . To further simplify
(13), one can replace its decision variable § with 77 and introduce the following optimization problem:

max 7
n,H

s.t. ||XTHe|| < (2e + 5)|| X |2,
21, ® matg(He) + XTX = —(2¢ 4 k)1,
nl,2 2 H < 1I,>2.

(14)

Given any feasible solution (6, H) to (13), the tuple
1-6 1 .
—\ —H
(1 +0'1+06 )

is a feasible solution to problem (14). Therefore, if the optimal value of (14) is denoted as n* (X ),
then it holds that

oy 10X 16

(X = . 15
T %) T 1Te (1>

In the remaining part, we will prove the following upper bound on 7*(X):

e NI (26 + K)VT + 24/ (2e + &) (1 + 0)|| X |2
TS S e T el | (1o

The inequality (7b) is a consequence of (15), (16) and the inequality

It S < 1/2 S <> w1 1/2 w«nl/2
X2 < [XXT|Y? < | XXT — M*(32 + || 7] 2



The proof of the upper bound (16) can be completed by finding a feasible solution to the dual problem
of (14):
jmin o tr(Us) + (XTX, W) 4 (2¢ + &) tr(W) + (2¢ + £)2|| X ||2A + tr(G)

s.t. tr(Up) =1,
Xy —w)el +e(Xy —w)T =U; — Uy,

[ GT —y} =0,

A (17
Wl,l ng

Uy =0, Uy>=0, W= : =0,
Wr,l W’I‘T

Before describing the choice of the dual feasible solution, we need to represent the error vector e
in a different form. Let P € R™*"™ be the orthogonal projection matrix onto the range of X, and

P € R™™™ be the orthogonal projection matrix onto the orthogonal complement of the range of X.
Furthermore, let Z € R™*" be a matrix satisfying ZZ1 = M*. Then, rank(Z) = r*, and Z can be

decomposed as Z = PZ + P, Z, so there exists a matrix R € R"*" such that PZ = X R. Note that
T =pzZ'P+PZZ"P, + P, 2Z"P+ P, ZZ7P,.
Thus, if we choose
Yy = %X - %X’RRT —PLZRT,  §=vec(Y), (18)
then it can be verified that
XYT+YXT —pzZ2"P, = XXT - 227, (19)
(XYT +YXT P, zZ"P,) =0.
Moreover, we have
IXYT + Y XT)2 = 2tr(XTXYTY) + tr(XTY XTY) + tr (YT XY T X) 0,
> 2tr(XTXYTY) > 20, (X)?||V ]2,

in which the first inequality is due to
RN 1 PPN 1 A N
tr(XTY XTY) = 1 tr(XTX(I, — RRT))?) = 7 tr((X (1 = RRT)XT)?) > 0.

Assume firstthat 7| =P, Z 75 0. The other case will be handled at the end of this proof. In the case
when Z, # 0, we also have XYT +YXT +£0. Otherwise, the 1nequahty (20) and the assumption
o (X ) > 0 imply that Y = 0. The orthogonality and the definition of Y in (18) then give rise to
X - XRRT =0, P,ZRT =0.

The first equation above implies that R is invertible since X has full column rank, which contradicts
7, # 0. Now, define the unit vectors

R Xg . vee(Z,27)
U = ——, lg= w——==".
X7l 1Z.Z7 ||r
Then, u; L 45 and
e =|le]|(V1—a?i — ais) (21)
with
1Z.ZT || F

=" . (22)
IXXT - ZZT||Fp
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We first describe our choices of the dual variables W and y (which will be rescaled later). Let
XTX =QsQ", z,z" =pPGPT,

with orthogonal matrices (), P and diagonal matrices .S, G such that S1; = UT(X )2. Fix a constant
~ € [0, 1] that is to be determined and define

V, = kV2GPPELQT, Vie{l,...,r},
W = Zvec vec(V)T, 4y =1y,

with ¢ defined in (18) and

P S SO Vo et ol
lelllZzLZT1r’ lell[[ X3l
Here, E;; is the elementary matrix of size n x r with the (i, j)-entry being 1. By our construction,

XTV; = 0, which implies that

(XX, W) =Y XV + VXT3 =2 u(XTXVV)
=1 i=1

r (23)
= QkO'T(X)2 Z G” = 25’)/,
i=1
with . .
(X))t (Z, 72
B: AAU( ) r( L L)T . (24)
| XXT —ZZT|plZLZ] | F
In addition,
N
tr( ZHVIIF = kZGu =ktr(2,27) < T (25)
i=1 i=1
and . .
w = Zvec(Wi,i) = Z ViViT = k;ZJ_ZI.
i= i=1
Therefore,

Xy w = || H(\/ 1_72/&1 _’Yﬁ’?)?

which together with (21) implies that

lel|Xy —wl| =1, (e,Xy—w) =rya++/1-72V1-a2=19(v). (26)

Next, the inequality (20) and the assumption on UT(X ) imply that

V1 —~2(4e + 2k) < 2¢/(2¢ + K)(1+9)
V2o, (X)lel e '

(4e + 2r)|ly[l < @7

Define R R
M = (Xy —w)e’ +e(Xy —w)?,
and decompose M as M = [M]; — [M]_ in which both [M]; > 0 and [M]_ = 0. Let 6 be the
angle between e and Xy — w. By Lemma 14 in [15], we have
tr((M]5) = llell Xy — wll(1+ cos8),  tr([M]-) = el [Xy — w][(1 - cos6).
Now, one can verify that (U7, Uy, W*, G*, \*, y*) defined as

Yi=hony T wny VT wdy)
N A
Vetomy N T aareEn & oY

11



forms a feasible solution to the dual problem (17) whose objective value is equal to

tr([M]_) + (XTX, W) + (2¢ + &) tr(W) + (4e + 26)|| X 2|y
tr([M]) '

Substituting (23), (25), (26), and (27) into the above equation, we obtain

287 +1—9(7) + (2 + K)Vr* + 2/ + 1) (1 +0)[| X |l2)/le]

n*(X) <
L+ 4(y)
<287 +1-0() | (et KIVT +2+/(2¢ + £) (1 + 6)]| X2
L+ 9(y) el '

Choosing the best value of the parameter v € [0, 1] to minimize the far right-side of the above
inequality leads to

287 +1-49(v) 5
T 007) < no(X),
with
1—+v1—0a? g > o
(%) = LrVI—a® T T
M ifﬁ<$
1-pBa’ T14+V1I—a2

Here, « and § are defined in (22) and (24), respectively. In the proof of Theorem 1.2 in [20], it is
shown that

for every X with X X7 # ZZ7T and rank(Z) = r*. Therefore,
. NG
X)y< V"
wlX) < oy Jrr
which gives the upper bound (16).

Finally, we still need to deal with the case when P Z = 0. In this case, we know that Xg) = e with
7 defined in (18). Then, it is easy to check that (U5, Uy, W*, G*, \*, y*) defined as

T A

* ee * * Y
U = T 9> U = 07 Y =9
P el 2||ef?
wW* = 07 A= — = G* = Fy y
(2e + R)[1X][2

forms a feasible solution to the dual problem (17) whose objective value is (4e + 2x)|| X ||2||y*||. By
the inequality (20), we have

% Xl 2e+ R X2 _ e+ R+ )] X|l2

Hence, the upper bound (16) still holds in this case. O

Finally, Theorem 5 is a direct consequence of Lemma 2 and Lemma 3. Theorem 2 is a special case of
Theorem 5 with x = 0, and the global convergence in Theorem 6 is also a corollary of Theorem 5.

Proof of Theorem 6. Assume that || ATw|| < ¢/2 holds. Since
V2f(X) = 2I, @ matg(AT (Ae +w)) + XTATAX = V2 fy(X) + 21, @ mats(ATw),
and ‘
Amas (I © mats (ATw))| < [[mats(A"w)|r < [|[ATw] < 3

12



as shown in the proof of Lemma 1, by the assumption it holds that

“20 > Amin(VZf0(X)) > Amin (V2 £ (X)) = 2Amax (I, © mats(ATw))

N 28
Z )\mln(v2f(X)) — € ( )

for every matrix X € R™*" with || X ||y < D. The perturbed gradient descent method in [26] will
find a solution X satisfying (9) with

R =min{\g — €, De}

in O(poly(1/e€)) number of iterations. The inequality (28) and the second condition in (9) together

imply that || X||, > D, and thus the conditions in (8) are automatically satisfied for X with x = e,
which gives the desired result after we apply Theorem 5 with the original € in Theorem 5 replaced
with €/2 and & replaced with e. O

3.2 Proof of Theorem 3

The proof of Theorem 3 is similar to the above proof of Lemma 3 in the situation with x = 0, and we
will only emphasize the difference here.

Proof of Theorem 3. In the case when X # 0, after constructing the feasible solution to the dual
problem (17), we have

1=6 _ oo te((M]) + (XTX, W) + 2e te(W) + 4 X [|aelly |
m <n (X) < tr([M]Jr) .

Note that in the rank-1 case, one can write o,.(X) = || X||2 and
191 _ < L
X7l ~ V2] X]2]ell

in which the last inequality is due to (20). Substituting (23), (25), (26) and the above inequality into
(29) and choosing an appropriate -y as shown in the proof of Lemma 3, we obtain

(29)

lyll <
le]

1=6 _ Loon 287+ 1—9() + (2¢ + 2v2¢) /|||
GRS L+ 4(y)
1 2¢ + 2v/2¢
3 el

which implies inequality (4) under the probabilistic event that || AT w|| < e.
In the case when X = 0, (U, Us , W*,G*, \*,y*) with

T
ee
1 ||eH27 2 ’ ) )
VA
f= 22 N =0, G*=0
2|le||?

forms a feasible solution to the dual problem (17), which shows that

1-9 - €
— <"(X) < 7.
s ST

The above inequality also implies inequality (4) under the probabilistic event that [|ATw| <e. O
3.3 Proof of Theorem 4

Now, we turn to the proof of the local guarantee in Theorem 4.

13



Proof of Theorem 4. Similar to the proof of Theorem 2, we assume that the probabilistic event
|ATw]|| < € occurs and also break down the analysis into two cases. Consider the case when

5 [ €
O'T(X) > m7

otherwise it is already handled by Lemma 2 that leads to the inequality (6a). Here, we further relax
the optimization problem (14) in Lemma 3 with x = 0 by removing the constraint corresponding to
the second-order optimality condition, which gives rise to the optimization problem

max 7n
n,H

s.t. |[XTHe| < 2€]| X2, (30)
nl,2 = H < I,2.
By denoting the optimal value of (30) as n;(X ), it holds that
N . 1-94§
(X)) >n(X) > ——.
m ) =0 (X) = 1

Without loss of generality, we can assume that X is in the block form

V]

with X; € R"*" being invertible. Otherwise, there exists an orthogonal matrix ¢ € R™*™ such

that Q7 X satisfies this requirement. We can then replace X and M* with Q7 X and QT M*Q
respectively due to the invariance of (30) under the transformation. Moreover, we select a matrix
Z € R"*" such that ZZT = M* and Z is in the form

Zr 0
Zi 0
with Z7 € R™*"", Z5 € R~ Then, | Z5(Z35)T||% > M- (Z0)T Z1)|1 Z5 || %, and
M- ((Z0)125) 2 M (20)7 27 +(23)7 Z3) = M((23) Z3)
>\ (272) = 125(Z3)" | r (32)
> (1= 1)\ (M*) >0,

in which the last inequality is due to the assumption 0 < 7 < 1 and the second last inequality is due
to

€2V

125(23)" Ilr < (125(20)" = X XTI + 20125 (Z5) |15+ 125(23) " 1) (33)
= | XXT = Z2Z"||p < TA- (M7).

To prove the inequality (6b), we need to bound n;‘c (X)) from above, which can be achieved by finding
a feasible solution to the dual problem of (30) given below:

min tr(Us) + 42| X |31 + tr(G)

Ul,Ug,G,)\,y
s. t. tI‘(Ul) = 17
(Xy)e” +e(Xy)T = Uy — Uy, (34)
G -y
|:_yT by :| t 07

U, =0, Uz=0.

If we choose Y and § = vec(Y) as (18) in the proof of Lemma 3, and let 0 be the angle between Xy
and e, then (19) implies that

X9 —el®> _ |PL2Z"P.|}
lel? IXXT — 2272,

_ 1Z5(Z3)" | % .
123(Z0)" = Xa XT 1% + 2021 (Z3)T 1% + 125 (25) 113

sin?6 =

14



Following an argument similar to the one at the end of the proof of Lemma 7 in [16] and using (32)
and (33), we can obtain

sin? 6§ <

<7 (35
-7
Define

M = (Xj)e” +e(Xj)",
and then decompose M as M = [M], — [M]_ with [M]4 > 0 and [M]_ = 0. Then, it is easy to
verify that (U5, Uy, G*, \*, y*) defined as

. g oMy M
V=wony YT w@ny YT wny
T A S ]

X 2/ X

forms a feasible solution to the dual problem (34) with the objective value

tr([M]-) + 4e| X o[l

(36)
tr([M] )
Furthermore, it follows from the Wielandt—-Hoffman theorem that
M (XXT) = MM < | XXT — M*||p < A (M7).
Thus, using the above inequality, the inequality (20) and the assumption on a,.(X ), we have
21X 12119 2| X 2(1 + 8) (AL (M*) + T A (M* 146
IXlallgl 201 S\/ ()M OL) £ 7A-OF)) e [TH0 0
X7 V20, (X) € €

Next, according to Lemma 14 of [15], one can write
tr([M]4) = [ X3 [lel|(1 + cos6),
tr([M]-) = [IXg]/[[e]|(1 — cos ).
Substituting the above two equations and (37) into the dual objective value (36), one can obtain

(R) < 1 —cosf +2\/e(1+6)C (1, M*)/| €]
! = 14 cos@ ’

which together with (31) implies that
lell < Vel +6)%2C (7, M*)(cosO — &) 1.
The inequality (6b) can then be proved by combining the above inequality and (35). O

4 Numerical illustration

In the next section, we will empirically study the developed probabilistic guarantees and demonstrate
the distance | X X7 — M*||» between any local minimizer X and the ground truth M* as well as
the value of the RIP constant é required to be satisfied by the linear operator .4, in both the exact
parameterized regime and the overparameterized regime.

Before delving into the numerical illustration, note that the probability P(]|ATw|| < ¢) used in our
theorems can be exactly calculated as long as the distribution of the noise w is explicitly given. On
the other hand, if we only have partial information for the distribution of w, a lower bound for the
probability P(||ATw| < €) can still be obtained using certain tail bounds. For example, if w is a
o-sub-Gaussian vector, then applying Lemma 1 in [30] leads to

w2
1—2e wome? < P(|lw| < wo) < P(|ATw] < e),

where wg = €/||Al|2.
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For numerical illustration, assume that n = 50, m = 10 and ||A||s < 2, while the noise w is a
0.05-sub-Gaussian vector. We also assume that the search rank r is 10, | M*||z = 3.3, the largest
eigenvalue of M™ is 1.5 and its smallest nonzero eigenvalue is 1.

First, we explore the two inequalities (3a) and (3b) in Theorem 2 to obtain two upper bounds
on |XXT — M*||, where X denotes any arbitrary (worst) local minimizer. For both the exact
parameterized case with 7 = r* = 10 and the overparameterized case with 7 = 10 and r* = 2, Fig. 2
gives the contour plots of the two upper bounds on || X X7 — M* ||z, which hold with the probability
given on the y-axis and the RIP constant § from 0 to 1/(1 + y/7* /) given on the x-axis. Regardless
of the parameterization type, when § is close to the maximum allowable value 1/(1 + \/7*/r), (3a)
usually dominates the bound, and as § decreases to 0, (3b) dominates instead. Furthermore, in the
overparameterized regime, (3b) leads to a tighter bound, while (3a) remains the same. A similar
visualization of the upper bounds given by Theorem 4 for the distance | X X7 — M*|| is also
presented in Fig. 3. We only show the exact parameterized case here because the result is the same
for the overparameterized one. It can be observed that (6b) dominates the bound when § is closer to 1
and (6a) dominates when ¢ is closer to 0.
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Figure 2: Comparison of the upper bounds given by Theorem 2 for the distance | X X7 — M*||p
with X being an arbitrary local minimizer

Next, we compare the bounds given by Theorem 2 and Theorem 4. Fig. 4 shows the contour plots of
the maximum RIP constant § that is necessary to guarantee that each local minimizer e (satisfying
the inequality (5) when Theorem 4 is applied) lies within a certain neighborhood of the ground truth
(measured via the distance ||X XT — M~ |7 on the z-axis) with a given probability on the y-axis,
as implied by the respective global and local guarantees. Fig. 4 clearly shows how a smaller RIP
constant § leads to a tighter bound on the distance || X X7 — M*|| with a higher probability. In
addition, the local guarantee generally requires a looser RIP assumption as it still holds even when
d > 1/2. However, as the parameter 7 in Theorem 4 increases, the local bound also degrades quickly.
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Figure 3: Comparison of the upper bounds given by Theorem 4 under 7 = 0.2 for the distance
| XXT — M*||r with X being an arbitrary local minimizer
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Figure 4: Comparison of the maximum RIP constants § allowed by Theorem 2 and Theorem 4 to

guarantee a given maximum distance || X X7 — M* || for an arbitrary local minimizer X satisfying
(5) with a given probability

5 Conclusion

In this paper, we develop global and local analyses for the locations of the local minima of the
low-rank matrix recovery problem with noisy linear measurements in both the exact parameterized
and the overparameterized regimes. For the class of noisy problems, regardless of their RIP constants,
it is now possible to characterize the worst-case quality of the local minimizers. The major innovation
of this work lies in the new proof techniques developed to deal with the overparameterization and
the handling of the random noise via an easy-to-compute concentration bound. Unlike the existing
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results, the guarantees in our results are distribution-agnostic, meaning that the distribution can be
unknown as long as the concentration bound is possible to obtain. The developed results encompass
the state-of-the-art results on the non-existence of spurious solutions in the noiseless case. Last but not
least, we prove a certain form of the strict saddle property, which guarantees the global convergence
of the perturbed gradient descent method in polynomial time regardless of parameterization. Our
analyses show how the value of the RIP constant and the intensity of noise affect the landscape of the
non-convex learning problem and the locations of the local minima relative to the ground truth.
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