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Abstract

Manifold learning (ML), also known as non-linear dimension reduction,

is a set of methods to find the low-dimensional structure of data. Di-

mension reduction for large, high-dimensional data is not merely a way

to reduce the data; the new representations and descriptors obtained

by ML reveal the geometric shape of high-dimensional point clouds and

allow one to visualize, denoise and interpret them. This review presents

the underlying principles of ML, its representative methods, and their

statistical foundations, all from a practicing statistician’s perspective.

It describes the trade-offs and what theory tells us about the parameter

and algorithmic choices we make in order to obtain reliable conclusions.
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1. Introduction

Modern data analysis tasks often face challenges in high dimensions. Thus nonlinear dimen-

sion reduction techniques emerge as a way to construct maps from high-dimensional data to

corresponding low-dimensional representations. Finding such representations is beneficial

in several aspects. Reducing dimension, while preserving the relevant geometric features of

the data saves space and processing time. More importantly, the low dimensional represen-

tation frequently provides a better understanding of the intrinsic structure of data, which

often leads to better features that can be fed into further data analysis algorithms; Figure 1

illustrates such a case. This survey paper reviews the mathematical background, methodol-

ogy, and recent nonlinear dimension reduction techniques developments. These techniques

have been developed for two decades since two seminal works: Tenenbaum et al. (2000)

and Roweis & Saul (2000), and are widely used in various data analysis tasks, especially in

scientific research.

Before nonlinear dimension reduction emerged, Principal Component Analysis (PCA)

was already widely accepted (I.T.Jolliffe 2002). Intuitively, PCA assumes that high dimen-

sional data living in R
D lie around a lower-dimensional linear subspace of RD. It aims to

identify an optimal linear subspace such that data points projected onto this subspace have

minimal reconstruction error. Nonlinear dimension reduction algorithms extend this idea by

assuming data are supported on smooth nonlinear low-dimensional geometric objects (i.e.,

manifolds embedded in R
D) and find maps that send the samples into lower dimensional

coordinates while preserving some intrinsic geometric information.

In this survey, we start with a brief introduction to the central differential geometric

concepts underlying ML, elaborating on the geometric information that manifolds carry

(Section 2). Then, in Section 3, we describe the paradigm of manifold learning, with three

possible sub-paradigms, each producing a different representation of the data manifold. The

rest of the paper focuses on one of these, namely on the so-called embedding algorithms.

In Section 4, we survey representative embedding algorithms and their variants. We also

discuss the parameter choices and some pitfalls, which leads to the discussion in Section

5, where we present the statistical aspects and statistical results supporting these choices.

This section also includes the estimation of crucial manifold descriptors from data: the

Laplace-Beltrami operator, Riemannian metrics, intrinsic dimension. Section 6 discusses

applications, connecting with related statistics problems, and Section 7 concludes the survey.

2. Mathematical background: manifolds, coordinate charts, embeddings

Manifolds and Coordinate Charts Readers are referred to Lee (2003), do Carmo (1992)

for a rigorous introduction to manifolds and differential geometry. Intuitively, a manifold is

a generalization of curves and surfaces with coordinate systems (called charts). On objects

like a sphere or torus, one cannot maintain a globally continuous single coordinate system,

hence, a manifold is described by multiple charts, as in Figure 3. Below, we explain what

they are and why they can be ignored in everyday work with manifold data.

Mathematically, M is a (smooth) manifold of dimension d when it can be covered by

“patches” (open sets) U so that: (1) For each U there is an invertible mapping ϕ : U →

A function f is

smooth when it is
differentiable and its

derivatives are
continuous.

ϕ(U) ⊂ R
d, so that both ϕ,ϕ−1 are smooth. Such pair (U,ϕ) is called a chart ; ϕ(p) ∈ R

d

is the local coordinate of p ∈ M. (2) Whenever two charts (U,ϕ) and (V, φ) overlap, the

change of coordinates ϕ ◦ φ−1 is smooth on φ(U ∩ V ) and has a smooth inverse.

Hence, a manifold has a Euclidean coordinate system (the chart) locally around every
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Figure 1: Left: The ethanol molecule has 9 atoms; a spatial configuration of ethanol has

D = 3 × 9 dimensions. The CH3 group (comprising atoms 2, 6, 7, 8) and the OH group

(atoms 3 and 9) can rotate with respect to the middle group (atoms 1, 4, 5), and the blue

and orange lines represent these angles of rotation. Right: A 2-manifold estimated from

50,000 configurations of the ethanol molecule. The manifold has the topology of a torus,

and the color represents the rotation of the OH group, pointing out that the two above

rotation angles are sufficient to approximate any molecular configuration in these data.

The sharp “corners” are distortions introduced by the embedding algorithm (explained in

Section 5.1). Figure 6 shows the original data; the dataset is from Chmiela et al. (2017).

Figure 2: Examples of manifolds. Left: A swiss roll; Middle: A torus; Right: Data

sampled from a torus that is chopped by a plane.

point, but the coordinate system may not extend to the whole manifold. In this case,

transitions between charts are seamless.

The simplest example of a manifold is R
d itself, which has a single, global coordinate

chart. The “swiss roll” in Figure 2 is a 2-manifold (i.e., a manifold of dimension 2) that

also admits a global coordinate chart (into R
2, by simply unrolling it). A sphere, or a torus

(Figure 2), is also a 2-manifold, but they cannot be covered by a single chart (they each

require at least two), as cartographers well know.

Coordinate charts are not unique; there are infinitely many coverings with patches

U , and changes of variables for each ϕ. While this multiplicity of charts and coordinate

functions can be daunting at first sight, the framework of differential geometry is set up so

that most geometric quantities related to a manifold M are independent of the coordinates
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Figure 3: Manifold and charts. The torus is a manifold with an intrinsic dimension d = 2

situated within the ambient space R
3. The entire torus cannot be unfolded on the R

2 plane

without cutting or collapsing it, but patches of it, such as U and U ′ can. The price paid is

that each patch now has a different coordinate system, and to travel on the torus one must

apply coordinates changes.

chosen. For example, the compatibility of charts shows that the dimension d must be the

same for all charts. Hence, d is called the intrinsic dimension of the manifold M.

For a data scientist, this implies that (1), they can work in the coordinate system of

their choice, and intrinsic quantities like d will remain invariant. But, (2), care must be

taken when the outputs of two different algorithms or from different samples are being

compared because these may not be in the same coordinate system.

Embeddings In differential geometry, an embedding is a smooth map F : M → N between

two manifolds whose inverse F−1 : F(M) ⊂ N → M exists and is also smooth. Commonly

in statistics, the high dimensional data lie originally in R
D. Then D is called the ambient

dimension (of the data). The ML algorithms under consideration aim to find an embedding

F : M → R
m, where m ≥ d and m ≪ D. Notably, if m = d, the embedding F represents a

(global) coordinate chart.

An advantage of embeddings is that one can avoid using multiple charts to describe

a manifold. Instead, one can find a global mapping F : M ⊂ R
D → N ⊂ R

m, where

N is easier to understand. Whitney’s embedding Theorem (Lee 2003) states that every

d−dimensional manifold can be embedded into R
2d. Therefore, if one can find a valid

embedding, a significant dimension reduction can be achieved (from D to O(d)). This is

one of the major targets of manifold learning algorithms.

Tangent spaces The tangent space TpM at a point p ∈ M is a d-dimensional vector

space of tangent vectors to M. The canonical basis of TpM is given by the tangents to

the coordinate functions seen as curves on M, while the tangent vectors can be seen as

tangents (or velocity vectors) at p to smooth curves on M passing through p.

3. Premises and paradigms in manifold learning

The Manifold Assumption Suppose we are given data {xi}ni=1 where each data point

xi ∈ R
D. It is assumed that data are sampled from a distribution P that is supported on,

or close to a d dimensional manifold M embedded in R
D. This is the Manifold Assumption.
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Throughout this survey, with a few exceptions, we will discuss the no noise case when the

data lie on M.

Manifold learning A manifold learning algorithm can be thought of as a mapping F of

xi ∈ R
D to yi ∈ R

m. The embedding dimension m is usually much smaller than D but

could be higher than the intrinsic dimension d. In the regime that P is supported exactly

on M, and sample size n → ∞, a valid manifold learning algorithm F should converge to

a smooth embedding function F . This implies that the algorithm should be guaranteed to

recover the manifold M, regardless of the shape of M.

Can a manifold be estimated? The Manifold Assumption itself is testable. For example

Fefferman et al. (2016) tests whether, given an i.i.d. sample, there exists a manifold M that

can approximate this sample with tolerance ε. These results are currently not practically

useful, as knowledge of usually unknown manifold parameters (d, volume, etc) must be

known or estimated. However, they, as well as Genovese et al. (2012), give us the confidence

to develop and use ML algorithms in practice.

3.1. Neighborhood graphs

Practically all manifold learning algorithms start with finding the neighbors of each data

point xi. This leads to the construction of a neighborhood graph; this graph, with suitable

weights, summarizing the local geometric and topological information in the data, is the

typical input to a non-linear dimension reduction algorithm. Every data point xi represents

a node in this graph, and an edge connects two nodes if their corresponding data points are

neighbors. Throughout the survey, we use Ni to denote the neighbors of xi and ki = |Ni|
the number of neighbors of xi (including xi itself).

There are two usual ways to define neighbors. In a radius-neighbor graph, xj is a

neighbor of xi iff ||xi − xj ||≤ r. Here r is a parameter that controls the neighborhood scale,

similar to a bandwidth parameter in kernel density estimation. Consistency of manifold

learning algorithms is usually established assuming an appropriately selected neighborhood

size that decreases slowly with n (see Section 5.2). In the k-nearest neighbor (k-NN) graph,

xj is the neighbor of xi iff xj is among the closest k points to xi. Since this relation is not

symmetric, usually, the neighborhoods are symmetrized.

The k−NN graph has many computational advantages w.r.t. the radius neighbor graph;

it is more regular, and often connected when the latter is not. More software is available

to construct (approximate) k-NN graphs fast for large samples. Nevertheless, theoretically,

it is much more challenging to analyze, and fewer consistency results are known for k−NN

graphs (Sections 5.1, 5.4). Intuitively, ki the number of neighbors in the radius graph is

proportional to the local data density, and manifold estimation can be analyzed through

the prism of kernel regression;. In contrast, the k-NN graph is either asymmetric or if

symmetrized, becomes more complicated to analyze.

The distances between neighbors are stored in the distance matrix A, with Aij being

the distance ||xi − xj || if xj ∈ Ni, and infinity if xj is not a neighbor of xi.

Some algorithms weight the neighborhood graph by weights that are non-increasing

with distances; the resulting n × n matrix is called the similarity matrix (or sometimes
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kernel matrix). The weights are given by a kernel function,

Kij :=







K
(

||xi−xj ||

h

)

, xj ∈ Ni,

0, otherwise.
1.

The kernel function here is almost universally the Gaussian kernel, defined as K(u) =

exp(−u2) (Belkin et al. (2006), Ting et al. (2010), Coifman & Lafon (2006), Singer & Wu

(2012)). In the above, h, the kernel width, is another hyperparameter that must be tuned.

Note that, even if Ni would trivially contain all the data, the similarity Kij vanishes for

far-away data points. Therefore, equation 1. effectively defines a radius-neighbor graph

with r ∝ h. Hence, a rule of thumb is to select r to be a small multiple of h (e.g., 3–10h).

It is sometimes also useful to have kernel function K(u) = 1. Then the similarity

matrix K is the same as the unweighted adjacency matrix of the neighborhood graph. By

construction, K is usually a sparse matrix, which is useful to accelerate the computation.

When the data dimension D and sample size n are large—the latter being essential

for manifold recovery—constructing the neighborhood graph often becomes the algorithm’s

most computationally demanding step. Fortunately, much work has been devoted to speed-

ing up this task, and approximate algorithms are now available, which can run in almost

linear time in n and have very good accuracy (Ram et al. 2009).

3.2. Linear local approximation and Principal Curves and Surfaces

Here we quickly review two methods for manifold estimation: local linear approximation

reduces the dimension locally but offers no global representation, while principal curves

produce a global representation but do not reduce dimension. Then, from Section 4, we

focus on the third class, consisting of algorithms that produce embeddings, representations

of global and low dimensions.

Linear local approximation This idea is derived from classical Principal Component

Analysis, which identifies a global optimal linear subspace to approximate the data. In

linear local approximation, PCA is performed on a weighted covariance matrix, with weights

decaying away from any point x; this approximates data locally around x on a curved

manifold and can produce a chart around specific fixed reference point. To cover the entire

manifold, one needs to obtain multiple such charts.

Principal curves and principal d-manifolds In this paradigm, noise is assumed. Con-

sider data of the form xi = x∗
i +ǫi, where ǫi represents 0-mean noise, and the x∗

i are sampled

from a curve, for instance. This data density has a ridge M̃, called principal curve, and the

Subspace Constrained Mean Shift (SCMS) algorithm of Ozertem & Erdogmus (2011) maps

each xi iteratively to a point yi ∈ R
D lying on the principal curve. This concept can be

extended to principal surfaces and principal d-manifolds.

Usually, the ridge does not coincide with the mean of the data; the bias depends on

the manifold’s curvature: the density is higher on the “inside” of the curve. However, for

their smoothing property, principal d-manifolds are remarkably useful in analyzing manifold

estimation in noise (Genovese et al. 2012, Mohammed & Narayanan 2017).
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Table 1: Three main paradigms for non-linear dimension reduction

Paradigm Representation

Linear local approximation D → d, local coordinates only

Principal Curves and Surfaces D → D, global coordinates, noise removal

Embedding D → m, with D ≫ m ≥ d, global coordinates (or charts)

4. Embedding algorithms

The term ”manifold learning” was proposed in the works of Roweis & Saul (2000) and

Tenenbaum et al. (2000) which introduced the Local Linear Embedding (LLE) and Isomap

algorithms, inaugurating the modern era of non-linear dimension reduction. In this section,

we introduce classical manifold learning algorithms that aim to find a global embedding

y1, . . .yn, also denoted Y ∈ R
n×m (with yi representing row i of Y) of data set D.

Algorithms can be broadly categorized into ”one-shot”, which derive embedding coor-

dinates from principal eigenvectors of a matrix associated with the neighborhood graph

or by solving some other global (usually convex) optimization problem, and ”attraction-

repulsion” algorithms, which proceed from an initial embedding Y (often produced by a

one-shot algorithm) and improve it iteratively. While this taxonomy can rightly be called

superficial, at present, it represents a succinct and relatively accurate summary of the state

of the art.

No matter what the approach, given the neighborhood information summarized in the

weighted neighborhood graph, an embedding algorithm’s task is to produce a smooth map-

ping F of x1, . . .xn which distorts the neighborhood information as little as possible. The

algorithms that follow differ in their choice of information to preserve and in the sometimes

implicit constraints on smoothness.

4.1. “One shot” embedding algorithms

In this section, we focus on the best-studied one-shot embedding algorithm, Diffusion Maps

(DM, Coifman & Lafon (2006)), and its variant Laplacian Eigenmaps (LE, Belkin & Niyogi

(2003)). Other one-shot embedding algorithms include Isomap (Tenenbaum et al. 2000)

and Local Tangent Space Alignment (LTSA), Zhang & Zha (2004)), described in Section A

of the SI, along with PCA and Multidimensional Scaling (MDS).

DM, as well as most one-shot embedding methods, works with a sparse matrix derived

from the similarity K; namely, DM uses the eigenvectors of the Laplacian matrix L to

embed the data.

Laplacian matrix:
generalization of the

Laplacian

differential operator

∆f =
∑

j
∂2f

∂x2
j

on a

graph. To see this,
consider the graph

1–2–. . . –i–. . .n (a

chain) with edge
length h and a

function f with
fi = f(i). By finite

differences ∆f(i) =
1
h

[

fi+1−fi
h

−
fi−fi−1

h

]

=

1
h2

(

∑

j∈Ni
fj − difi

)

.

To construct a Laplacian matrix, define di =
∑

j∈Ni
Kij as the degree of node i and set

D = diag{d1, · · · , dn}. Then multiple choices of graph Laplacian exist:

• Unnormalized Laplacian: Lun = D−K

• Normalized Laplacian: Lnor = I−D−1/2KD−1/2

• Random-walk Laplacian: Lrw = I−D−1K

• Renormalized or Diffusion Maps Laplacian L is defined in Algorithm 1 below

Why choose one Laplacian rather than another? The reason is that, even though in simple

examples the difference is hard to spot, as more sample are collected, one needs to ensure

that the limit of these L matrices is well defined, and the embedding algorithm is unbiased.

It is easy to see that Lnorm and Lrw are similar matrices. Moreover, whenever the degrees
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Algorithm 1 Renormalized Laplacian

Input: Similarity matrix K, kernel bandwitdth h

Normalize columns: dj =
∑n

i=1 Kij , K̃ij = Kij/dj for all i, j = 1, . . . n

Normalize rows: d′i =
∑n

j=1 K̃ij , Pij = K̃ij/d
′
i for all i, j = 1, . . . n

Output: L = (I−P)/h2

di are constant, L ∝ Lrw ∝ Lun, hence all Laplacians produce the same embedding. Dif-

ferences arise when data density is non-uniform, making the degrees di larger in regions of

higher density. The seminal work of Coifman & Lafon (2006), which introduced renormal-

ization, showed that the eigenvectors of Lnorm,Lrw are biased by the sampling density and

that renormalization removes this bias. Sections 5.4, and Figure 6 illustrate this.

Using the defined graph Laplacian matrix L, we can summarize the DM procedure

presented in algorithm 2. Similar to PCA, the data are mapped to the principal directions

Algorithm 2 Diffusion Maps/Laplacian Eigenmaps

Input: Laplacian L (or Lnor), embedding dimension m.

1: Compute {vi}mi=0, eigenvectors of smallest m+ 1 eigenvalues of L, with vi ∈ R
n.

2: Discard v0 (this is typically a constant vector (Shi & Malik 2000))

3: Represent each xj by yj = (v1j , · · · , vmj )⊤ ∈ R
m

Output: Y

of a positive definite matrix. While in PCA, these eigenvectors represent directions of

maximum variance, in DM they represent the smoothest (least varying) eigenvectors of L;

therefore, they correspond to the lowest eigenvalues (see also Section 6.1). The Laplacian

Eigenmaps (LE) algorithm resembles DM but uses a different Laplacian, namely Lnorm

above.

The idea of spectral embedding also appeared independently in graph visualization, then

in Shi & Malik (2000) as a method for clustering, and was then generalized as a data

representation method in Belkin & Niyogi (2003) as LE. They connect the graph Laplacian

with the Laplace-Beltrami operator ∆M of manifold M (Rosenberg 1997). Estimating the

Laplace-Beltrami operator itself is an important geometric estimation problem that will be

reviewed in Section 5.4.

4.2. “Horseshoe” effects, neighbor embedding algorithms, and selecting
independent eigenvectors

4.2.1. The Repeated Eigenvectors Problem (REP). Algorithms that use eigenvectors, such

as DM, are among the most promising and well-studied in ML (see Sections 5.1,5.2,5.4).

Unfortunately, such algorithms fail when the data manifold has a large aspect ratio, such as a

long, thin strip or a slender torus. This problem has been called the Repeated Eigendirections

Problem (REP) in ?. The REP has been demonstrated theoretically for DM/LE, LTSA,

LLE (Goldberg et al. 2008), and in real data sets.

From a mathematical standpoint, the REP is due to eigenvectors (or eigenfunctions, in

the limit) that are harmonics of previous ones, as shown in Figure 4. Consider, for example,

the rectangle [0, l] × [0, 1] in (x1, x2) space, where the length l > 1; l in this case, is the

aspect ratio. It is easy to show that (in the continuum limit), the first ⌈l⌉ − 1 eigenvectors
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vary in the x1 direction, as shown in the top row of Figure 4. Hence, if we use (v1,v2)

in the DM algorithm, we obtain a 1-dimensional mapping, even though the rectangle is

2-dimensional.

Moreover, in this simple case, the scatterplot of (v1
i ,v

2
i )i=1,...n from step 3 of theDM fol-

lows a parabola. This is a relevant diagnosis for REP in practice: when an embedding looks

like a “horseshoe”, this may not represent a property of the data but an artifact signalling

that one of the data dimensions is collapsed or poorly reflected in the embedding (Diaconis

et al. 2008).

4.2.2. Relaxation-based neighbor embedding algorithms. The pervasiveness of the REP

stimulated the development of algorithms that balance attraction between neighbors in the

original space, with repulsion between neighbors in the embedding space (van der Maaten

& Hinton 2008, McInnes et al. 2018, Jacomy et al. 2014, Carreira-Perpiñan 2010, Im et al.

2018). Usually, the embedding coordinates Y are optimized iteratively until equilibrium is

reached.

The t-SNE algorithm of van der Maaten & Hinton (2008), one variant of which (Böhm

et al. 2022) we briefly describe here, exemplifies this approach. Hinton & Roweis (2002),

proposed to match the (normalized) data similarities by (normalized) output similarities

around each embedded point yi, which motivates the name Stochastic Neighbor Embedding

(SNE, Hinton & Roweis (2002)). In van der Maaten & Hinton (2008), the authors pro-

posed to use a Student-t distribution to model the output similarities, and, as t-SNE, this

algorithm became widely used. Uniform manifold approximation and projection (UMAP,

Algorithm 3 t-SNE

Input: Similarity matrix K (from k-nearest neighbor graph), initial embedding y1, . . .yn,

step size η, repulsion parameter ρ

1: Compute normalized input similarity V = (D−1K+KD−1)/(2n)

2: while not converged do

3: Compute all squared distances in embedding spaceAout
ij = ‖yi−yj‖2, for i, j = 1, . . . n

4: Compute similarities in embedding space Wij = 1
1+Aout

ij

, for i, j = 1, . . . n, wtot =
∑n

i,j=1 Wij

5: Update embedding by yi ← yi+η
[

∑n
j=1 VijWij(yi − yj)− n

ρ

∑n
j=1

Wij

wtot
(yi − yj)

]

.

6: end while

Output: Y

McInnes et al. (2018)) is another popular heuristic method. On a high level, UMAP min-

imizes the mismatches between topological representations of high-dimensional data set

{xi}ni=1 and its low-dimensional embeddings yi. Theoretical understanding of UMAP is

still limited.

The t-SNE algorithm has the advantage of being sensitive to local structure and to

clusters in data (Linderman & Steinerberger 2019, Kobak et al. 2020), but does not explicitly

preserve the global structure. We note that the propensity for finding clusters comes partly

from the choice of neighborhood graph (Section 5.1). However, this is not the whole story.

Recently, it has been shown that this property stems from the last term of the update in

step 5 above. The first term in the change of yi is an attraction between graph neighbors,
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Figure 4: Embedding algorithms failing to find a full rank mapping, if they greedily

select the first m = 2 eigenvectors, and correction by a more refined choice of eigenvectors.

Top row: embeddings of a swiss roll with length seven times the width. Left: first

two eigenvectors from DM/LEform a 1-dimensional curve; hence v2 does not add a new

dimension, but “repeats” v1; middle the same after UMAP: repulsion expands the curve

to a strip, but is not able to produce a full-rank embedding everywhere; the “knots”,

the horseshoe and the three clusters are all artifacts. Right: UMAP with selection of

eigenvectors by Chen & Meila (2021). Bottom row: Embeddings of galaxy spectra from

the SDSS (Section 6) by DM ; left “horseshoe” when first 2 eigenvectors are used; right

the same data, by eigenvectors (v1,v3), selected by Chen & Meila (2021). Plots by Yu-Chia

Chen.

while the second represents repulsive forces between the embedded points y1:n (Böhm et al.

2022, Zhang et al. 2022). The parameter ρ (originally called early exaggeration) controls the

trade-off between attraction and repulsion. In Böhm et al. (2022), it is shown that varying

ρ from small to large values decreases the cluster separation and makes the embedding

more similar to the LE embedding. Moreover, quite surprisingly, Böhm et al. (2022) show

that by varying ρ, the t-SNE can emulate a variety of other algorithms, most notably

UMAP (McInnes et al. 2018) and ForceAtlas (Jacomy et al. 2014). Other works that

analyze the attraction-repulsion behavior of t-SNE are Zhang & Steinerberger (2021). One

yet unsolved issue with t-SNE is the choice of the number of neighbors k. Most applications

use the default k = 90 (Poličar et al. 2019); this choice, as well as other behaviors of this

class of algorithms, are discussed in Zhang et al. (2022).

Finally, inMinimum Variance Unfolding (MVU), proposed in Weinberger & Saul (2006),

Arias-Castro & Pelletier (2013), repulsion is implemented via a Semidefinite Program, hence

the embedding Y is obtained by solving a convex optimization. This algorithm can be seen

both as a one-shot and as an attraction-repulsion algorithm; Diaconis et al. (2008) show that

MVU is related to the fastest mixing Markov chain on the neighborhood graph. Note also

that since the REP can be interpreted as extreme distortion, theRiemannianRelaxationof

Perrault-Joncas & Meila (2014) (see also Section 5.5) can also be used to improve the

conditioning of an embedding in an iterative manner.
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4.2.3. Avoiding the REP in spectral embeddings. The REP has a theoretically straight-

forward solution for algorithms like DM, and LTSA. From the sequence of eigenfunctions

F 1, . . . , Fm′

. . . on M (or eigenvectors v1, . . . vm′

in the finite sample case), with m′ > m,

sorted by their corresponding eigenvalues, one needs to select F j1 = F 1, then (recursively)

F j2 , . . . F jm so that the rank of the Jacobian [(dF 1)p, . . . (dF
jm)p] is d at every point

p ∈ M. E.g., for the l × 1 rectangle, eigenvectors v1 and v⌈l⌉ should be selected. This

is called Independent Eigendirection Selection (IES). In a finite sample, the rank condition

must be replaced with the well-conditioning of dF at the data points. Dsilva et al. (2018)

proposed to measure dependence by regressing vjk+1
on the previously selected vj1,...jk ;

in Chen & Meila (2021), a condition number derived from the embedding metric (Section

5.5) is used to evaluate entire sets of m eigenvectors. The manifold deflation method (Ting

& Jordan 2020) proposes to bypass eigenvector selection by choosing a linear combination

of all optimized eigenvectors w.r.t. rank. Finally, the Low Distortion Local Eigenmaps

(LDLE) (Kohli et al. 2021) solves the REP by essentially covering the data manifold with

contiguous patches (discrete versions of the U neighborhoods) and performing IES on each

patch separately. LDLE avoids REP and is a first step towards the algorithmic use of charts

and atlases to complement global embeddings.

In summary, attraction-repulsion algorithms such as t-SNE, which are heuristic, enjoy

large popularity due in part to their immunity to the REP, while eigenvector-based methods,

although better grounded in theory, are less useful in practice without post-processing by an

IES method. On the other hand, unlike global search in eigenvector space, a local relaxation

algorithm cannot resolve the rank deficiency globally, and it may become trapped in a local

optimum (Figure 4).

4.3. Summary of embedding algorithms

A variety of embedding algorithms have been developed. Here we presented representative

algorithms of two types. One-shot algorithms that (typically) embed the data by eigen-

vectors, of which Isomap, DM and LTSA are the best understood and computationally

scalable. The main drawback of this class of algorithms is the Repeated Eigendirections

Problem, which requires post-processing of the eigenvectors. Neighbor embedding algo-

rithms are (typically) iterative, starting with the output of a one-shot algorithm (LE for

UMAP) or even PCA. The presence of repulsion makes these algorithms robust to REP,

affecting one-shot algorithms. Quantifying the repulsion, smoothness, large-sample limits,

and other properties of the neighbor embedding algorithms are less developed. Hence, for

the moment, neighbor embedding algorithms remain heuristic for ML, while they remain

useful for visualization, and clustering (for which guarantees exist, e.g., in Linderman &

Steinerberger (2019)).

Neither algorithm guarantees against local singularities, such as the “crossing” in Figure

4. It is not known how these can be reliably detected or avoided. Additionally, all algorithms

distort distances except in special cases (as discussed in Section 5.5).

All algorithms depend on hyperparameters: intrinsic dimension d (Section 5.3) or em-

bedding dimension m, and k or r for the neighborhood scale (Section 5.2). Iterative al-

gorithms often depend on additional parameters controlling the repulsion (such as ρ in

t-SNE) or the step size η.

With respect to computation, constructing the neighborhood graph is the most expen-

sive step, typically for n large. To compound this problem, finding k or r in a principled way

www.annualreviews.org • Manifold Learning 11



(a) Isomap (b) LE (c) LLE

(d) LTSA (e) t-SNE (f) UMAP

Figure 5: Embeddings of the chopped torus from Figure 2 by various algorithms;

Isomap and LTSA are described in the Supplementary Materials. This manifold cannot be

embedded isometrically in d = 2 dimensions; each algorithm stretches/contracts (distorts)

it differently. Figure 7 in the SI visualizes the local distortions.

often requires constructing multiple graphs, one for each scale. One-shot algorithms that

compute eigenvectors are quite efficient for n up to 106 when the neighborhood graph is not

dense (?). Neighbor embedding algorithms work, in theory, with dense matrices (e.g., W);

however, accelerated approximate versions for these algorithms have been developed, such

as the Barnes-Hut trees approximation (van der Maaten 2014), and the negative sampling

heuristic for UMAP (Böhm et al. 2022, McInnes et al. 2018).

5. Statistical basis of manifold learning

The output or result of manifold learning algorithms depends critically on algorithm pa-

rameters such as the type of neighborhood graph (k-nearest neighbor or radius neighbor),

the neighborhood scale (k or r), and embedding dimension m (and intrinsic dimension d,

in some cases).

This section is concerned with making these choices in a way that ensures some sta-

tistical consistency, whenever possible. Neglecting statistical consistency and theoretical

guarantees in general, is risky. In the worst case, it can lead to methods that have no limit

when n → ∞ (e.g. for LLE without any regularization (Ting et al. 2010)), and in milder

cases to biases (e.g., due to variations in data density), and artifacts, i.e., features of the

embedding, such as clusters, arms, and horseshoes that have no correspondence in the data.

Here we discuss in more general terms what is known about graph construction methods

(Section 5.1), the neighborhood scale (Section 5.2), and the intrinsic dimension (Section

5.3). We revisit the estimation of the manifold Laplacian (the limit of L), as the natural

representation of the manifold geometry, and the basis for the Diffusion Maps embedding,
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Figure 6: Effects of graph construction and renormalization, when the sampling density

is highly non-uniform, exemplified on the configurations of the ethanol molecule. Left:

original data, after preprocessing, is a noisy torus (shown here in the first two principal

components), with three regions of high density, around local minima of the potential energy.

Center: Embeddings by DM (gray), and by the same algorithm with L constructed from

the k-nearest neighbor graph (green). The sparse regions are stretched, while the dense

regions appear like “corners” of the embedding. Note that DM should remove the effects

of the density; in this case, the variations in density are so extreme that the effect persists.

The effect is somewhat stronger for the k-nearest neighbor graph. Right: Embedding by

DM (gray) and by LE (green), which uses the singly normalized Lrw.

which can be seen as the archetypal embedding, in Section 5.4. Finally, in Section 5.5, we

turn to mitigating the distortions induced by embedding algorithms.

5.1. Biases in ML. Effects of sampling density and graph construction

Biases due to non-uniform density Many embedding algorithms tend to contract re-

gions of M where the data are densely sampled and to stretch the sparsely sampled regions.

In attraction-repulsion algorithms, such as t-SNE, this is explained by the repulsive forces

between every pair of embedding points yi,yj , while the attractive forces act only along

graph edges, between neighbors. If fewer graph edges connect two dense regions, repulsion

will push them apart, exaggerating clusters.

For one-shot algorithms, the effect is similar, albeit less intuitive to explain, as shown in

Figure 6. For DM, LE, and their Laplacian matrices, the effect was calculated in Coifman

& Lafon (2006); they also showed that renormalization removes this bias (asymptotically).

Moreover, the degree values d′i obtained in the Laplacian algorithm are estimators of the

density around data point xi. An alternative method, applicable to low d, is to use a simple

estimator of the local density and to use it to renormalize Lrw (Luo et al. 2009).

If enough samples are available, one can resample the data to obtain an approximately

uniform distribution. For example, the farthest point heuristic chooses samples sequentially,

with the next point being the farthest away from the already chosen points.

Effect of neighborhood graph (Figure 6) Radius neighbor graph of k-nearest neighbors?

Ting et al. (2010) and later Calder & Trillos (2019) show that the k-nearest neighbor graph,

with the similarity matrix with constant kernelK(u) = 1 exhibits qualitatively similar biases

from non-uniform sampling as the normalized radius-neighbor graphs.
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5.2. Choosing the scale of neighborhood

Whatever the task, a manifold learning method requires the user to provide an external

parameter, be it the number of neighbors k or the kernel bandwidth h, that sets the scale

of the local neighborhood.

Asymptotic results and what they mean The asymptotic results of Giné & Koltchinskii

(2006), Hein et al. (2007), Ting et al. (2010) and Singer (2006) provide the necessary rates

of change for h with respect to n to guarantee convergence of the respective estimate. For

instance, Singer (2006) proves that the optimal bandwidth parameter for Laplacian estima-

tion is given by h ∼ n− 1
d+6 using a random-walk Laplacian. For the k-neareast neighbor

graph, Calder & Trillos (2019) show that the number of neighbors k must grow slowly with

n, and a recommended rate is k ∼ n
4

d+4 (log n)
d

d+4 , again for Laplacian estimation. The

hidden constant factors in these rates are not completely known, but they depend on the

(typically not known) manifold volume, curvature, and injectivity radius τ . Even so, these

statistical results suggest that, in practice, the number of neighbors k should be sufficiently

large and grow with n (Linderman & Steinerberger 2019).

With these rate-wise optimal selections of k or r, the convergence rate for estimating

Laplacian operators, their eigenvectors, and so on, can be established. These rates are non-

parametric, implying that the sample size n must grow exponentially with the dimension d.

For example, using the previously mentioned rate of k, one can calculate that, for a 10-fold

decrease in error, n must increase ≈ 10(d+4)/3-fold.

For neighbor embedding algorithms, such as t-SNE, less is known theoretically; how-

ever, practically, the defaults are for larger values of k, e.g., k = 90 (Poličar et al. 2019)

and some research (Linderman & Steinerberger 2019) suggests k ∼ n, which would create

very dense graphs.

Practical methods Unfortunately, cross-validation (CV), a widely valuable model selection

method in, e.g., density estimation, is not applicable in manifold learning for the lack of a

criterion to cross-validate. (However, CV is still applicable in semi-supervised learning on

manifolds (Belkin et al. 2006).) The ideas we describe below each mimic CV by choosing

a criterion that measures the “self-consistency” of an embedding method at a particular

scale.

For the k-nearest neighbor graph, Chen & Buja (2009) evaluates a given k with respect

to the preservation of k′ neighborhoods in the original graph. A problem to be aware of

with this approach is that (see Section 5.5) most embeddings distort the data geometry.

Hence Euclidean neighborhoods will not be preserved, even at the optimal k. A variable k

method based on Topological Data Analysis (?) was proposed by Berry & Sauer (2019).

For the radius-neighbor graph, Perraul-Joncas & Meila (2013) exploit the connection

between manifold geometry, represented by the Riemannian metric (see Section 5.5), and

the Laplacian L. The radius neighbor graph width h affects the Laplacian’s ability to

recognize the identity mapping. This method is specific to the DM algorithm, but the h

obtained can be used by other embedding algorithms. Finally, we mention a dimension

estimation algorithm proposed in Chen et al. (2013); a by-product of this algorithm is a

range of scales r where the manifold looks locally linear, hence these scales would also be

correct for the neighborhood graph.
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5.3. Estimating the intrinsic dimension

Knowing the intrinsic dimension of data is important in itself. Additionally, some embed-

ding algorithms (t-SNE, Isomap, LTSA) and all local PCA and Principal d-manifolds

algorithms require the intrinsic dimension d as input.

How hard is dimension estimation? The dimension of a manifold is a non-negative

integer, and therefore, intuitively, it should require fewer samples to estimate than a real-

valued geometric parameter. Indeed, it is known (Kim et al. 2019, Genovese et al. 2012,

Koltchinskii 2000) that the minimax rate for dimension estimation is exponential (i.e., the

error is proportional to qn for some q < 1) or faster. Unfortunately, the empirical experience

belies the optimistic theoretical results. Due primarily to the presence of noise, which does

not conform to simple assumptions, and secondarily to non-uniform sampling, estimating d

for real data is a hard problem for which no satisfactorily robust solutions have been found

yet (see Altan et al. (2020) for some empirical results).

Principles and methods for estimating d An idea that appears in various forms through

the dimension estimation literature is to find a local statistic that scales with d by a known

law. For example, the volume of a ball of radius r contained in a manifold M is proportional

to rd. Hence, log ki,r ≈ d log r + constant (where ki,r is the number of radius r neighbors

of data point xi), and a regression line of (log r, log avg(ki,r)) should have slope d. This is

known as correlation dimension (Grassberger & Procaccia 1983). Other methods consider

statistics such as
ki,2r

ki,r
≈ 2d, or covering number, which lead respectively to the so-called

doubling dimensions (Assouad 1983), and Box Counting dimension (Falconer 2003).

Modern estimators consider other statistics, such as distance to k-th nearest neighbor

(Pettis et al. 1979, Costa et al. 2005), the volume of a spherical cap (Kleindessner & von

Luxburg 2015) (both statistics can be computed without knowing actual distances, just

comparisons between them), or Wasserstein distance between two samples of size n on M,

which scales like n−1/d(Block et al. 2022); the algorithm of Levina & Bickel (2004), analyzed

in Farahmand et al. (2007), proposes a Maximum Likelihood method based on k-nearest

neighbor graphs.

An algorithm for dimension estimation in noise is proposed by Chen et al. (2013). The

algorithm is based on the maximum eigengap of the local covariance matrix at multiple

scales. This algorithm can be simplified by using a neighborhood radius selection algorithm

such as Joncas et al. (2017) (Section 5.2).

5.4. Estimating the Laplace-Beltrami operator

We have seen that the eigenvectors of Laplacian-Beltrami operator ∆M can embed the data

in low dimensions by the DM algorithm. Additionally, graph Laplacian estimators of ∆M

are used in many different scenarios, described in Section 6.1. The question is which of the

Laplacian matrices L, Lnorm, Lrw, etc., converge to ∆M when the sample size n tends to

infinity?

Laplace-Beltrami

operator:

∆Mf ≡div grad(f)
plays a central role
in modern

differential
geometry. See Sogge

(2014), Rosenberg

(1997) for details.

Denote the limit of the discrete operator Lrw by L∞, a continuous differential operator

acting on smooth functions. Two types of convergence, have been investigated. Pointwise

convergence indicates the proximity of (Lrwf)i to L∞f(xi), while spectral convergence

involves the similarity between fLunf/fDf and the eigenvalues of L∞.

When a radius neighbor graph is used, L∞ = ∆M is established for pointwise conver-
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gence in the case of uniform sampling density, while L∞ will be ∆M+some density-related

bias term in non-uniform case. Ting et al. (2010) demonstrated the pointwise convergence

of the random-walk graph Laplacian to ∆M scaled by p2/d for k−nearest neighbor graphs,

where p denotes the sampling density. Spectral convergence is similarly discussed in Belkin

& Niyogi (2007), Berry & Sauer (2019), Garćıa Trillos & Slepčev (2018), Garćıa Trillos et al.

(2020).

More broadly, an entire class of manifold learning algorithms can be studied by similar

theoretical methods. Many embedding algorithms , including LE(Belkin & Niyogi 2003),

DM(Coifman & Lafon 2006), LTSA(Zhang & Zha 2004), etc, that use matrices derived from

the similarity K (called linear smoothing algorithms) are related to Laplacian-like second-

order differential operator on M. On the other hand, unregularized LLE fails to converge

to any differential operator. Details can be found in Ting & Jordan (2018).

5.5. Embedding distortions. Is isometric embedding possible?

Figure 5 shows the outputs of various embedding algorithms on a simple 2-manifold M ⊂
R

3. It is easily seen that the results depend on the algorithm (and parameter choices) and

the input (manifold and sampling density on M). While most embedding algorithms work

well, in the sense of producing smooth embeddings, the algorithm-dependent distortions,

i.e., the local stretching or contraction – which amount to different coordinate systems –

make these embeddings irreproducible and incomparable.

Empirical observations commonly reveal the presence of distortion. The distortions do

not disappear when the sample size n increases, when the sampling density is uniform, or

even when the consistent graph and Laplacian are used. This section is concerned with

recovering reproducibility, by preserving the intrinsic geometry of the data.

Geodesic distances, intrinsic geometry and isometry For the data in Figure 1, a sci-

entist may be interested in the distance between two molecular configurations x1,x2, seen

as points of M ⊂ R
D. Their Euclidean distance ‖x1 − x2‖ is readily available. However,

this value may not be of physical interest since most of the putative configurations along

the segment x1 to x2 in R
D are not physically possible. To deform from state x1 to x2,

the ethanol molecule must follow a path contained in (or near) the manifold M of possible

configurations, and the distance dM(x1,x2) shall naturally be defined as the shortest pos-

sible length of such a path; this is the geodesic distance. Geodesic distances, angles between

curves in a manifold M, and volumes of subsets of M represent intrinsic geometric quan-

tities that can be defined without reference to the ambient space R
D, and are independent

of the choices of coordinate charts. Ideally, we would like an embedding (algorithm) to

preserve these, and we call such an embedding an isometric embedding.

Attempts at isometric embedding Isometric (i.e., distortionless) embedding is possible,

as proved by the celebrated Nash embedding theorem (Lee 2003) and more recently for Dif-

fusion Maps by Bérard et al. (1994) and Portegies (2016). Unfortunately, these remarkable

mathematical results are not easily amenable to numerically stable implementation.

Many ML methods focus on promoting isometry in local neighborhoods; Minimum

Variance Unfolding aims to preserve local distances (Weinberger & Saul 2006), Con-

formal Eigenmap maps triangles in each neighborhood, thus preserving angle (Sha & Saul

2005), LTSA (Zhang & Zha 2004) and Local Linar Embedding (Roweis & Saul 2000)
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preserve linear reconstructions. The works of Yu & Zhang (2010) and Lin et al. (2013) ap-

proach global isometry by means of constructing normal coordinates recursively from a point

p ∈ M, or, respectively, by mutually orthogonal parallel vector fields, and Verma (2011) is

the first attempt to implement Nash’s construction. The Isomap algorithm (Tenenbaum

et al. 2000) aims to preserve all shortest paths. We note that, with the exception of Verma

(2011), and of Isomap for flat manifolds (i.e., manifolds that can be “unrolled” into R
d

without stretching), these methods do not guarantee isometric embedding except in limited

special cases.

Preserving isometry by estimating local distortion While finding a practical isometric

embedding algorithm has been unsuccessful so far, estimating the local distortions is pos-

sible. Once the distortions are known, whenever a distance, angle, or volume is calculated,

one applies local corrections that amount to obtaining the same result as if the embedding

was isometric. The distortion at embedding point yi = F (xi) ∈ R
m is a symmetric, positive

m×m matrix Hi of rank d. In Figure 7 the same embeddings of Figure 5 are shown, with

Hi at selected points visualizing the local distortion induced by each algorithm. When the

embedding F is isometric, and m = d, Hi = Id the unit matrix; otherwise, Hi’s eigenvalues

and vectors define the principal axes of stretch or compression around point i. A matrix

function such as H on a manifold is called a Riemannian metric (see e.g. Perraul-Joncas &

Meila (2013), Lee (2003)). The local correction at yi is the pseudoinverse Gi of Hi; Gi is

also a Riemannian metric, called the embedding (push-forward) Riemannian metric.

With Gi, the geodesic distance between yi and a neighbor yj is given1 by

d̂M(yi,yj)
2 ≡ ‖yj − yi‖2Gi

= (yj − yi)
⊤
Gi(yj − yi). 2.

For any other yi,yj , the geodesic distance is the shortest path length from yi to yj with

the corrected distances above. The resulting distance is an undistorted approximation of

the original. Perraul-Joncas & Meila (2013) proposed a method to estimate Hi for every

embedded data point yi, using the renormalized Laplacian L described in Algorithm 12.

Hence, for any Y = F (X) output by an embedding algorithm, it is sufficient to estimate, at

all points y1:n, the matrices G1:n, which represent the auxiliary information allowing one

to correct distance computations in the non-isometric embedding F . The same G1:n can

be used to preserve not only geodesic distances but also other geometric quantities such as

angles between curves in M or volumes of subsets of M.

Estimating the metrics H1:n and G1:n, offers even more insights into the embedding.

For instance, the singular values of Hi (which has numeric rank m, but theoretical rank d)

may offer a window into estimating d by looking for a singular value gap. The d singular

vectors form an orthonormal basis of the tangent space to F (M) at point yi, providing a

natural framework for constructing a normal coordinate chart around p.

Normal

coordinate chart:

a specifically designe

coordinate chart
(U,ϕ) at each point

p ∈ M. In ϕ(U)

(recall that this is a
Euclidean space),

the line given in
polar coordinates
θ = θ0 must

correspond to a

geodesic on the
manifold.

The singular values of H1:n can be used to evaluate the global distortion for an embed-

ding as a criterion for comparing various embeddings. By iteratively minimizing this, one

1This is first-order approximation.
2To obtain Hi, Perraul-Joncas & Meila (2013) apply L to a suitably chosen set of test functions

fkl,i, with 1 ≤ k ≤ l ≤ m, where fkl,i = (Fk − Fk(xi))(Fl − Fl(xi)) are pairwise products of

coordinate functions, centered at point xi. They show that 1
2
∆Mfkl,i(xi) = (Hi)k,l, the k, l entry

in Hi (algorithmically, this operation can be easily vectorized).
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can get a more isometric embedding, such as in the RiemannianRelaxation of McQueen

et al. (2016), which can be seen as an alternative to UMAP or t-SNE.

6. Applications of manifold learning

6.1. Manifold learning in statistics

Manifold learning with DM is closely related to spectral clustering (Shi & Malik 2000, Meilă

& Shi 2001, Ng et al. 2001, von Luxburg 2007, Meilă 2016) as both methods map data to

lower dimensions using the eigenvectors of a Laplacian. For clustering, it is preferable

to employ Lrw, the random walks Laplacian, which considers data density and enhances

cluster separation. By mapping data to lower dimensions with Lrw, a continuum between

separated clusters (in clustered data) and smooth embedding (in regions where data lie

on a manifold) can be observed. It even enables simultaneous embedding and clustering.

Sufficient eigenvectors need to be calculated in such cases: K−1 eigenvectors indicate clus-

tering for K clusters, and additional eigenvectors are required for low-dimensional mapping

within each cluster. Using fewer eigenvectors may recover the clusters but not the intrinsic

geometry within each cluster.

For a function f : M → R, with f = [f(xi)]i=1:n, the functional 1
2
fTLf approximates

‖∇f‖22 on the manifold, a measure of the smoothness of f (a function being smoother

when its rate of change is lower). This smoothness measure can serve as a regularizer in

supervised or semi-supervised learning on manifolds (Belkin et al. 2006, Slepčev & Thorpe

2019), Bayesian priors (Kirichenko & van Zanten 2017), and modeling Gaussian Processes

on manifolds (Borovitskiy et al. 2020). If Lnor is used instead of L then the smoothness

is calculated with respect to the sampling distribution on M (i.e. the rate of change is

weighted more in regions with denser data).

6.2. Manifold learning for visualization

Embedding algorithms are often used in the sciences for data visualization. The scientists,

as well as the statisticians, need to distinguish between an embedding as defined in Section

2, which preserves the geometric and topological data properties, and other mappings (oc-

casionally also called “embeddings”) into low dimensions using embedding algorithms. The

latter kind of dimension reduction is hugely popular, and its value for the sciences cannot

be underestimated. However, the users of dimension reduction for visualization should be

cautioned that the scientific conclusions drawn from these visualizations must be subject

to additional careful scrutiny or a more rigorous statistical and geometric analysis. One

pitfall is that when data are mapped into m = 2 or 3 dimensions, for visualization, without

estimating the intrinsic dimension d, the mapping may collapse together data regions that

are not close in the original manifold. When clusters are present, because separating the

clusters usually requires at least 2 dimensions, most of the clusters’ geometric structure is

collapsed. Hence, once the data is separated into clusters, the cluster structure needs to

be studied by additional dimension reduction. A second pitfall is the presence of artifacts

– interesting geometric features caused by the embedding algorithm but not supported by

the data. These can be clusters (Figure 4), arms, holes or circles, and so on.

Before assigning scientific meaning to these features, a researcher should examine

whether they are stable by repeating the embedding with different initial points, algo-

rithms, and algorithm parameters, as well as by perturbing or resampling the original data.
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To assess if the interesting features are not large distortions, visualizing the distortion (Fig-

ure 7) can provide valuable diagnostics. For example, when a “filament” is produced by

stretching a low-density region, a very common effect (see Section 5.1), the estimated dis-

tortion will show the stretching (Figure 7), while for a true filament, the distortion will be

moderate .

6.3. Manifold learning in the sciences

Astronomy and astrophysics Manifold learning has been used to study data from exten-

sive astronomical surveys, like the Sloan Digital Sky Survey (SDSS)3. The mass distribution

in the universe reveals filaments, i.e., one-dimensional manifolds, and dimension reduction

methods, most often Principal Curves, have been used to estimate them (Chen et al. 2015).

Spectra of galaxies are measured in thousands of frequency bands; they contain rich

data about galaxies’ chemical and physical composition. By embedding these spectra in

low dimensions, as in Figure 4, one can analyze the main constraints and pathways in the

evolution of galaxies (Vanderplas & Connolly 2009).

Dynamical systems Dynamical systems described by Ordinary or Partial Differential

Equations are intimately related to manifolds and exhibit multiscale behavior. Extensions

of manifold learning can be used to understand PDE with geometric structure (Nadler et al.

2006), study the long-term behavior of the system or the ensemble of its solutions (Dsilva

et al. 2016, 2018).

Chemistry The accurate simulation of atomical and molecular systems plays a significant

role in modern chemistry. Molecular Dynamics (MD) simulations from carefully designed,

complex quantic models can take millions of computer hours; however, simulations can still

be less expensive than conducting experiments, and they return data at a level of detail not

achievable in most experiments. Manifold learning is used to discover collective coordinates,

i.e., low dimensional descriptors that approximate well the larger scale behavior of atomic,

molecular, and other large particle systems (Boninsegna et al. 2015, A. et al. 2012, Noé &

Clementi 2017). In these examples, the systems can be in equilibrium or evolving in time,

and in the latter case, the collective coordinates describe the saddle points in the trajectory

or the folding mechanism of a large molecule (Rohrdanz et al. 2011, Das et al. 2006).

Manifold embedding is also used to create low dimensional maps of families of molecules

and materials by the similarity of their properties (Ceriotti et al. 2013, Isayev et al. 2015).

Biological sciences In neuroscience and the biological sciences, manifold embeddings are

widely used to summarize neural recordings (Connor & Rozell 2016, Cunningham & Yu

2014), or to describe cell evolution (Herring et al. 2018)

7. Conclusion

In practice, ML is overwhelmingly used for visualization (Section 6) and with small data

sets. But ML can do much more. Efficient software now exists (McQueen et al. 2016, Poličar

et al. 2019) which can embed huge, high-dimensional data (for example, SDSS). In these

3www.sdss.org
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cases, ML helps practitioners understand the data, by e.g., its intrinsic dimension, or by

interpreting the manifold coordinates (Koelle et al. 2022, Boninsegna et al. 2015, Vanderplas

& Connolly 2009). For real data, a manifold learning algorithm has the effect of smoothing

the data and suppressing variation orthogonal to the manifold, which can be regarded as

noise, just like in PCA. Finally, again similarly to PCA, ML can effectively reduce the data

to m ≪ D dimensions while preserving features predictive for future statistical inferences.

Some inferences, such as regression, can be performed on manifold data without manifold

estimation by, for example, local linear regression (Aswani et al. 2011), or via Gaussian

Processes (Borovitskiy et al. 2020). Even when only visualization is desired, care must be

taken that the results are reproducible and free of artifacts, as discussed in Section 6.2.

What we omitted Among the topics we had to leave out, manifold learning in noise is

perhaps the most important one. Noise makes ML significantly more difficult by introducing

biases and slowing the convergence of estimators. This is an active area of research, but

the estimation of geometric quantities like tangent space and reach in the presence of noise

have been studied by Aamari & Levrard (2018, 2019); the theoretical results of manifold

recovery in noise were mentioned in Section 3.

The reach, or injectivity radius τ(M) of manifold measures how close to itself M can

be. In other words, τ(M) is the largest radius a ball can have, so that, for any p ∈ M, if it

is tangent to the manifold in p, it does not intersect M in any other point. Large τ implies

larger curvature (a plane has infinite τ) and easier estimation of M (Genovese et al. 2012,

Fefferman et al. 2016, Aamari & Levrard 2018, 2019). A manifold can have borders; ML

with borders is studied. For example, in Singer & Wu (2012), different convergence rates

appear when data are sampled close to the border.

A helpful task is to map a new data point x ∈ R
D onto an existing embedding F (M);

this is often called Nystrom embedding (Chatalic et al. 2022). Conversely, if y ∈ R
m is a new

point on the embedding F (M), obtained, e.g., by following a curve in the low dimensional

representation of M, how do we map it back to R
D? This is usually done by interpolation.

Finally, a few words about neural network representations, such as auto-encoders (?),

which could be seen as the fourth paradigm for manifold learning. We have left them out,

partly for mathematical reasons. Although these mappings are generally smooth, there are

no guarantees that they have constant rank d, even if the original data lie on a d-manifold.

However, the main reason is that we could not do them justice in this review. Deep learning

is an entirely different paradigm for non-linear dimension reduction. The intuitions and

formal techniques for understanding neural networks’ internal representations are entirely

different from those surveyed here.

We surveyed the state-of-the-art knowledge on the main problems and methods of man-

ifold learning, focusing on the algorithms proven to recover the manifold structure through

learning a smooth embedding. There are many open problems in this field, though. Sta-

tistically, understanding of t-SNE and UMAP algorithms is still very limited, despite the

fact that they are among the most popular visualization algorithms used today. More fun-

damentally, interpretation and validation of the output of an ML algorithm are also of

importance to practitioners. An essential input to any ML algorithm is the distance used

in finding neighbors and calculating the similarities. Currently, defining this distance (for

example, by selecting which features of data point i should be included in xi, and in what

units) is left entirely to the user.
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Farahmand Am, Szepesvári C, Audibert JY. 2007. Manifold-adaptive dimension estimation, In

Proceedings of the 24th International Conference on Machine Learning, ICML ’07, p. 265–272,

New York, NY, USA: Association for Computing Machinery

Fefferman C, Mitter S, Narayanan H. 2016. Testing the manifold hypothesis. J. Amer. Math. Soc.

29(4):983–1049
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Supplementary Materials

A. Details of ”one-shot” manifold learning algorithms

A.1. Principal Component Analysis (PCA)

Linear dimension reduction methods find a global embedding of the data in a low-

dimensional linear subspace. One way of understanding Principal Component Analysis

is to find a d dimensional linear subspace V such that the data {xi} projected onto it have

the smallest reconstruction error. Let V have an orthogonal basis T ∈ R
D×d such that

T⊤T = Id. Then xi projected onto V has low dimensional representation yi = T⊤xi

under basis T. In R
D, projection of xi onto V is given by TT⊤xi. If we introduce the

data matrix X ∈ Rn×D, with i−th row being x⊤
i , then the low dimensional representation

matrix Y ∈ R
n×d is given by XT and in R

D the projected data matrix is XTT⊤.

Then we can write the PCA problem as

min
T:T∈RD×d,T⊤T=Id

n
∑

i=1

||xi −TT
⊤
xi||2= min

T:T∈RD×d,T⊤T=Id

||X−XTT
⊤||2F 3.

Consider the singular value decomposition preserving only the first d singular values of

X = UΣV⊤ where U ∈ R
n×d,V ∈ R

D×d are orthogonal matrices and Σ is d× d diagonal

matrix, then the solution to problem 3. is T = V. The low dimensional representation of

original data is Y = XT = UΣ; the coordinates of Y are called principal components. In

the terminology of PCA, columns of V are called principal vectors.

When the data x1:n are centered, the (unnormalized) sample covariance matrix of the

data is C = X⊤X. The principal vectors characterize the d directions that explain the

most variance in the data. The solution to PCA can also be found by eigendecomposition

of C. The first d eigenvectors of C are just the matrix V. If the dimension D ≫ n, it

will be easier first to compute the Gram matrix C = X⊤X and then perform a truncated

eigendecomposition C = VΣ2V⊤; the low dimensional representation is still XV.

A.2. Multidimensional Scaling (MDS)

MDS is dealing with a different problem compared with PCA: given an n × n distance

matrix M = [dist(xi,xj)
2]ij , find a low dimensional representations {yi}ni=1 in R

d such

that all distances are preserved. Mathematically, we want to minimize

min
y1,··· ,yn∈Rd

n
∑

i,j=1

Loss(dist(xi,xj)
2 − ||yi − yj ||2) 4.

The MDS problem is hard to solve for generic loss function and metric function. However,

it is always possible to use numerical optimization methods to obtain local solutions to such

problems.

In the case that M contains squared Euclidean distances, one can double center the

squared pairwise distance matrix by constructing matrix B = HnMHn with Hn = In −
1
n
11⊤, then the solution of the MDS problem will be given by finding eigenvectors of − 1

2
B.

The objective of MDS differs from that of ML. In Section 5.5, we explain that when data

xi are high dimensional points in R
D, the Euclidean distances ‖xi − xj‖ do not represent

geodesic distances in the manifold, unless xi,xj are neighbors. (Otherwise, ‖xi − xj‖, as
a “shortcut” through ambient space, will be typically shorter than the geodesic distance.)
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Since by equation 4., MDS aims to preserve all distances, MDS would not be able to “unfold”

a manifold onto a lower dimensional space. The following section will show how the Isomap

algorithm uses MDS to achieve unfolding.

A.3. Isomap

Isomap is a generalization of Multidimensional Scaling that preserves distances between

data points while finding low dimensional coordinates. Instead of Euclidean distance in

classical MDS, Isomap use shortest path distances in the neighborhood distance graph

to approximate geodesic distance on a manifold. Intuitively, the shortest graph distance

Algorithm 4 Isomap

Input: : Neighborhood distance matrix A, embedding dimension m

1: Compute shortest path distance matrix Ãij :

Ãij =

{

Aij Aij < ∞ ,

shortest path distance between i, j Aij = ∞ .

2: Multidimensional Scaling Y = MDS(M, d) with M = [Ã2
ij ]

Output: : m dimensional coordinates Y for D

approximates the geodesic distance in a neighborhood provided that data are sufficiently

dense in this region and neighborhood size is appropriately chosen (Bernstein et al. 2000).

In the limit of large n, Isomap was shown to produce isometric embeddings for m = d,

whenever the data manifold is flat, i.e. admits an isometric embedding in R
d, and data

space is convex. Empirically, Isomap embeddings are close to isometric also when m > d

and m is sufficient for isometric embedding.

The computation complexity of Isomap is O(n3), with the most computational burden

for computing all pairs of shortest path distance. Space complexity is O(n2). Since Isomap

works with dense matrices, this space complexity cannot be improved.

There are variants of Isomap that improve it in different ways: Hessian Eigenmaps

(Donoho & Grimes 2003) enables non-convex data where they introduce the use of Hes-

sian operator; Continuum Isomap (Zha & Zhang 2007) generalizes Isomap to a continuous

version such that out-of-sample extension of Isomap is possible.

A.4. Local Tangent Space Alignment (LTSA)

This algorithm, proposed in (Zhang & Zha 2004) seeks to find a local representation in the

tangent space bTxi
M at each point xi, then aligns these to obtain global coordinates.

The first stage of LTSA finds the local representation of neighboring points j ∈ Ni via

projections on the tangent space Txi
M; thus yj−yi can locally be approximated by an affine

transformation of orthogonal projections of xj onto tangent space at xi through Taylor

expansion. The optimal affine transformation is obtained by minimizing the reconstruction

error near each xi

min
x̃i,Θ,Q

∑

j∈Ni

‖xj − (x̃i +Qθ
(i)
j )‖2 , 5.

where x,Q are translation and rotation that parametrize this affine transformation; θj is

www.annualreviews.org • Manifold Learning 27



a local coordinate of each neighbor xj projected on this linear subspace.

In the second stage of LTSA, one obtains global embedding coordinates Y while θj that

preserves local geometry information through minimizing a global reconstruction error.

min
{yi}

n
i=1

,{Pi}
n
i=1

n
∑

i=1

∑

j∈Ni

‖yj − ỹi −Piθ
(i)
j ‖2 6.

The optimization in both steps can be transformed into eigenvalue problems. Hence the

algorithmic procedure of LTSA is displayed in Algorithm 5

Algorithm 5 Local tangent space alignment

Input: Dataset D, embedding dimension m.

B = 0

for i = 1, 2, · · · , n do

Find the k nearest neighbors of xi: xj , j ∈ Ni.

Find local dataset Ξi = [xj − x̃i]j∈Ni
, where x̃i is the average of all neighbors of xi.

Compute the m largest eigenvectors ṽ1, · · · , ṽd of Ξ⊤Ξ, set Gi = [1/
√
k, ṽ1, · · · , ṽd]

B = B+ I−GiG
⊤
i .

end for

Compute the 2 to m+ 1 smallest eigenvectors of B, {vj}mj=1, each eigenvector vj ∈ R
n.

Output: m dimensional embeddings yi = (v1i , · · · , vmi ), for i = 1, . . . n.

B. Illustration of the local distortion (Section 5.5)

While the matrices gi, not shown, represent the local correction, their inverses Hi measure

the local distortion. They are show here as ellipses, whose principal axes are along the prin-

cipal directions of stretch/contraction. Hence, the shape and size of the ellipses represents

the directional strectching at the givent point.
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(a) Isomap (b) LE (c) LLE

(d) LTSA (e) t-SNE (f) UMAP

Figure 7: The embeddings from Figure 5, with the distortion H estimated at a random

subset of points. The principal axes of the ellipses are proportional to the singular values

of H at each point.
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