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Manifold learning (ML), also known as non-linear dimension reduction,
is a set of methods to find the low-dimensional structure of data. Di-
mension reduction for large, high-dimensional data is not merely a way
to reduce the data; the new representations and descriptors obtained
by ML reveal the geometric shape of high-dimensional point clouds and
allow one to visualize, denoise and interpret them. This review presents
the underlying principles of ML, its representative methods, and their
statistical foundations, all from a practicing statistician’s perspective.
It describes the trade-offs and what theory tells us about the parameter
and algorithmic choices we make in order to obtain reliable conclusions.



A function f is
smooth when it is
differentiable and its
derivatives are
continuous.

1. Introduction

Modern data analysis tasks often face challenges in high dimensions. Thus nonlinear dimen-
sion reduction techniques emerge as a way to construct maps from high-dimensional data to
corresponding low-dimensional representations. Finding such representations is beneficial
in several aspects. Reducing dimension, while preserving the relevant geometric features of
the data saves space and processing time. More importantly, the low dimensional represen-
tation frequently provides a better understanding of the intrinsic structure of data, which
often leads to better features that can be fed into further data analysis algorithms; Figure 1
illustrates such a case. This survey paper reviews the mathematical background, methodol-
ogy, and recent nonlinear dimension reduction techniques developments. These techniques
have been developed for two decades since two seminal works: Tenenbaum et al. (2000)
and Roweis & Saul (2000), and are widely used in various data analysis tasks, especially in
scientific research.

Before nonlinear dimension reduction emerged, Principal Component Analysis (PCA)
was already widely accepted (I.T.Jolliffe 2002). Intuitively, PCA assumes that high dimen-
sional data living in RP lie around a lower-dimensional linear subspace of RP. It aims to
identify an optimal linear subspace such that data points projected onto this subspace have
minimal reconstruction error. Nonlinear dimension reduction algorithms extend this idea by
assuming data are supported on smooth nonlinear low-dimensional geometric objects (i.e.,
manifolds embedded in R”) and find maps that send the samples into lower dimensional
coordinates while preserving some intrinsic geometric information.

In this survey, we start with a brief introduction to the central differential geometric
concepts underlying ML, elaborating on the geometric information that manifolds carry
(Section 2). Then, in Section 3, we describe the paradigm of manifold learning, with three
possible sub-paradigms, each producing a different representation of the data manifold. The
rest of the paper focuses on one of these, namely on the so-called embedding algorithms.
In Section 4, we survey representative embedding algorithms and their variants. We also
discuss the parameter choices and some pitfalls, which leads to the discussion in Section
5, where we present the statistical aspects and statistical results supporting these choices.
This section also includes the estimation of crucial manifold descriptors from data: the
Laplace-Beltrami operator, Riemannian metrics, intrinsic dimension. Section 6 discusses
applications, connecting with related statistics problems, and Section 7 concludes the survey.

2. Mathematical background: manifolds, coordinate charts, embeddings

Manifolds and Coordinate Charts Readers are referred to Lee (2003), do Carmo (1992)
for a rigorous introduction to manifolds and differential geometry. Intuitively, a manifold is
a generalization of curves and surfaces with coordinate systems (called charts). On objects
like a sphere or torus, one cannot maintain a globally continuous single coordinate system,
hence, a manifold is described by multiple charts, as in Figure 3. Below, we explain what
they are and why they can be ignored in everyday work with manifold data.

Mathematically, M is a (smooth) manifold of dimension d when it can be covered by
“patches” (open sets) U so that: (1) For each U there is an invertible mapping ¢ : U —
©(U) C RY, so that both ¢, p~! are smooth. Such pair (U, ¢) is called a chart; p(p) € R?
is the local coordinate of p € M. (2) Whenever two charts (U, ¢) and (V, ¢) overlap, the
change of coordinates ¢ o ¢! is smooth on ¢(UNV) and has a smooth inverse.

Hence, a manifold has a Euclidean coordinate system (the chart) locally around every
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Figure 1: Left: The ethanol molecule has 9 atoms; a spatial configuration of ethanol has
D = 3 x 9 dimensions. The CHs group (comprising atoms 2, 6, 7, 8) and the OH group
(atoms 3 and 9) can rotate with respect to the middle group (atoms 1, 4, 5), and the blue
and orange lines represent these angles of rotation. Right: A 2-manifold estimated from
50,000 configurations of the ethanol molecule. The manifold has the topology of a torus,
and the color represents the rotation of the OH group, pointing out that the two above
rotation angles are sufficient to approximate any molecular configuration in these data.
The sharp “corners” are distortions introduced by the embedding algorithm (explained in
Section 5.1). Figure 6 shows the original data; the dataset is from Chmiela et al. (2017).

Figure 2: Examples of manifolds. Left: A swiss roll; Middle: A torus; Right: Data
sampled from a torus that is chopped by a plane.

point, but the coordinate system may not extend to the whole manifold. In this case,
transitions between charts are seamless.

The simplest example of a manifold is R? itself, which has a single, global coordinate
chart. The “swiss roll” in Figure 2 is a 2-manifold (i.e., a manifold of dimension 2) that
also admits a global coordinate chart (into R2, by simply unrolling it). A sphere, or a torus
(Figure 2), is also a 2-manifold, but they cannot be covered by a single chart (they each
require at least two), as cartographers well know.

Coordinate charts are not unique; there are infinitely many coverings with patches
U, and changes of variables for each ¢. While this multiplicity of charts and coordinate
functions can be daunting at first sight, the framework of differential geometry is set up so
that most geometric quantities related to a manifold M are independent of the coordinates
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Figure 3: Manifold and charts. The torus is a manifold with an intrinsic dimension d = 2
situated within the ambient space R3. The entire torus cannot be unfolded on the R? plane
without cutting or collapsing it, but patches of it, such as U and U’ can. The price paid is
that each patch now has a different coordinate system, and to travel on the torus one must
apply coordinates changes.

chosen. For example, the compatibility of charts shows that the dimension d must be the
same for all charts. Hence, d is called the intrinsic dimension of the manifold M.

For a data scientist, this implies that (1), they can work in the coordinate system of
their choice, and intrinsic quantities like d will remain invariant. But, (2), care must be
taken when the outputs of two different algorithms or from different samples are being
compared because these may not be in the same coordinate system.

Embeddings In differential geometry, an embedding is a smooth map F : M — N between
two manifolds whose inverse F~! : F(M) C N' — M exists and is also smooth. Commonly
in statistics, the high dimensional data lie originally in RP. Then D is called the ambient
dimension (of the data). The ML algorithms under consideration aim to find an embedding
F: M — R™, where m > d and m <« D. Notably, if m = d, the embedding F represents a
(global) coordinate chart.

An advantage of embeddings is that one can avoid using multiple charts to describe
a manifold. Instead, one can find a global mapping F : M C RP — N C R™, where
N is easier to understand. Whitney’s embedding Theorem (Lee 2003) states that every
d—dimensional manifold can be embedded into R??. Therefore, if one can find a valid
embedding, a significant dimension reduction can be achieved (from D to O(d)). This is
one of the major targets of manifold learning algorithms.

Tangent spaces The tangent space TpM at a point p € M is a d-dimensional vector
space of tangent vectors to M. The canonical basis of 7Tp,M is given by the tangents to
the coordinate functions seen as curves on M, while the tangent vectors can be seen as
tangents (or velocity vectors) at p to smooth curves on M passing through p.

3. Premises and paradigms in manifold learning

The Manifold Assumption Suppose we are given data {x;}ij—; where each data point
x; € RP. It is assumed that data are sampled from a distribution P that is supported on,
or close to a d dimensional manifold M embedded in R”. This is the Manifold Assumption.
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Throughout this survey, with a few exceptions, we will discuss the no noise case when the
data lie on M.

Manifold learning A manifold learning algorithm can be thought of as a mapping F' of
x; € RP to y; € R™. The embedding dimension m is usually much smaller than D but
could be higher than the intrinsic dimension d. In the regime that P is supported exactly
on M, and sample size n — oo, a valid manifold learning algorithm F' should converge to
a smooth embedding function F. This implies that the algorithm should be guaranteed to
recover the manifold M, regardless of the shape of M.

Can a manifold be estimated? The Manifold Assumption itself is testable. For example
Fefferman et al. (2016) tests whether, given an i.i.d. sample, there exists a manifold M that
can approximate this sample with tolerance €. These results are currently not practically
useful, as knowledge of usually unknown manifold parameters (d, volume, etc) must be
known or estimated. However, they, as well as Genovese et al. (2012), give us the confidence
to develop and use ML algorithms in practice.

3.1. Neighborhood graphs

Practically all manifold learning algorithms start with finding the neighbors of each data
point @x;. This leads to the construction of a neighborhood graph; this graph, with suitable
weights, summarizing the local geometric and topological information in the data, is the
typical input to a non-linear dimension reduction algorithm. Every data point «; represents
a node in this graph, and an edge connects two nodes if their corresponding data points are
neighbors. Throughout the survey, we use N; to denote the neighbors of x; and k; = |Nj]
the number of neighbors of @; (including x; itself).

There are two usual ways to define neighbors. In a radius-neighbor graph, x; is a
neighbor of @; iff ||x; — x;||< r. Here r is a parameter that controls the neighborhood scale,
similar to a bandwidth parameter in kernel density estimation. Consistency of manifold
learning algorithms is usually established assuming an appropriately selected neighborhood
size that decreases slowly with n (see Section 5.2). In the k-nearest neighbor (k-NN) graph,
x; is the neighbor of x; iff x; is among the closest k points to @;. Since this relation is not
symmetric, usually, the neighborhoods are symmetrized.

The k—NN graph has many computational advantages w.r.t. the radius neighbor graph;
it is more regular, and often connected when the latter is not. More software is available
to construct (approximate) k-NN graphs fast for large samples. Nevertheless, theoretically,
it is much more challenging to analyze, and fewer consistency results are known for k—NN
graphs (Sections 5.1, 5.4). Intuitively, k; the number of neighbors in the radius graph is
proportional to the local data density, and manifold estimation can be analyzed through
the prism of kernel regression;. In contrast, the k-NN graph is either asymmetric or if
symmetrized, becomes more complicated to analyze.

The distances between neighbors are stored in the distance matrix A, with A;; being
the distance ||z; — ;|| if ; € NV;, and infinity if «; is not a neighbor of x;.

Some algorithms weight the neighborhood graph by weights that are non-increasing
with distances; the resulting n x n matrix is called the similarity matriz (or sometimes
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kernel matriz). The weights are given by a kernel function,
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0, otherwise.

The kernel function here is almost universally the Gaussian kernel, defined as K(u) =
exp(—u?) (Belkin et al. (2006), Ting et al. (2010), Coifman & Lafon (2006), Singer & Wu
(2012)). In the above, h, the kernel width, is another hyperparameter that must be tuned.
Note that, even if A; would trivially contain all the data, the similarity K;; vanishes for
far-away data points. Therefore, equation 1. effectively defines a radius-neighbor graph
with 7 o< h. Hence, a rule of thumb is to select r to be a small multiple of h (e.g., 3-10h).

It is sometimes also useful to have kernel function K(u) = 1. Then the similarity
matrix K is the same as the unweighted adjacency matrix of the neighborhood graph. By
construction, K is usually a sparse matrix, which is useful to accelerate the computation.

When the data dimension D and sample size n are large—the latter being essential
for manifold recovery—constructing the neighborhood graph often becomes the algorithm’s
most computationally demanding step. Fortunately, much work has been devoted to speed-
ing up this task, and approximate algorithms are now available, which can run in almost
linear time in n and have very good accuracy (Ram et al. 2009).

3.2. Linear local approximation and Principal Curves and Surfaces

Here we quickly review two methods for manifold estimation: local linear approximation
reduces the dimension locally but offers no global representation, while principal curves
produce a global representation but do not reduce dimension. Then, from Section 4, we
focus on the third class, consisting of algorithms that produce embeddings, representations
of global and low dimensions.

Linear local approximation This idea is derived from classical Principal Component
Analysis, which identifies a global optimal linear subspace to approximate the data. In
linear local approximation, PCA is performed on a weighted covariance matrix, with weights
decaying away from any point «; this approximates data locally around x on a curved
manifold and can produce a chart around specific fixed reference point. To cover the entire
manifold, one needs to obtain multiple such charts.

Principal curves and principal d-manifolds In this paradigm, noise is assumed. Con-
sider data of the form x; = @] +¢;, where ¢; represents O-mean noise, and the x; are sampled
from a curve, for instance. This data density has a ridge M, called principal curve, and the
Subspace Constrained Mean Shift (SCMS) algorithm of Ozertem & Erdogmus (2011) maps
each x; iteratively to a point y; € R lying on the principal curve. This concept can be
extended to principal surfaces and principal d-manifolds.

Usually, the ridge does not coincide with the mean of the data; the bias depends on
the manifold’s curvature: the density is higher on the “inside” of the curve. However, for
their smoothing property, principal d-manifolds are remarkably useful in analyzing manifold
estimation in noise (Genovese et al. 2012, Mohammed & Narayanan 2017).
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Table 1: Three main paradigms for non-linear dimension reduction

Paradigm Representation

D — d, local coordinates only
D — D, global coordinates, noise removal
D — m, with D > m > d, global coordinates (or charts)

Linear local approximation
Principal Curves and Surfaces
Embedding

4. Embedding algorithms

The term ”manifold learning” was proposed in the works of Roweis & Saul (2000) and
Tenenbaum et al. (2000) which introduced the Local Linear Embedding (LLE) and Isomap
algorithms, inaugurating the modern era of non-linear dimension reduction. In this section,
we introduce classical manifold learning algorithms that aim to find a global embedding
Y1, .. Yn, also denoted Y € R"*™ (with y; representing row i of Y) of data set D.

Algorithms can be broadly categorized into ”one-shot”, which derive embedding coor-
dinates from principal eigenvectors of a matrix associated with the neighborhood graph
or by solving some other global (usually convex) optimization problem, and ”attraction-
repulsion” algorithms, which proceed from an initial embedding Y (often produced by a
one-shot algorithm) and improve it iteratively. While this taxonomy can rightly be called
superficial, at present, it represents a succinct and relatively accurate summary of the state
of the art.

No matter what the approach, given the neighborhood information summarized in the
weighted neighborhood graph, an embedding algorithm’s task is to produce a smooth map-
ping F of x1,...x, which distorts the neighborhood information as little as possible. The
algorithms that follow differ in their choice of information to preserve and in the sometimes
implicit constraints on smoothness.

4.1. “One shot” embedding algorithms

In this section, we focus on the best-studied one-shot embedding algorithm, Diffusion Maps
(DM, Coifman & Lafon (2006)), and its variant Laplacian Eigenmaps (LE, Belkin & Niyogi
(2003)). Other one-shot embedding algorithms include ISOMAP (Tenenbaum et al. 2000)
and Local Tangent Space Alignment (LTSA), Zhang & Zha (2004)), described in Section A
of the SI, along with PCA and Multidimensional Scaling (MDS).

DM, as well as most one-shot embedding methods, works with a sparse matrix derived
from the similarity K; namely, DM uses the eigenvectors of the Laplacian matrix L to
embed the data.

To construct a Laplacian matrix, define d; = 37\ Ki; as the degree of node i and set
D = diag{d1, - ,dn}. Then multiple choices of graph Laplacian exist:

e Unnormalized Laplacian: L"" =D — K

e Normalized Laplacian: L™" =1 — D~ /?2KD~!/2

e Random-walk Laplacian: L™ =1 —-D 'K

e Renormalized or Diffusion Maps Laplacian L is defined in Algorithm 1 below

Why choose one Laplacian rather than another? The reason is that, even though in simple
examples the difference is hard to spot, as more sample are collected, one needs to ensure
that the limit of these L matrices is well defined, and the embedding algorithm is unbiased.
It is easy to see that L™ and L™ are similar matrices. Moreover, whenever the degrees
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Algorithm 1 Renormalized Laplacian

Input: Similarity matrix K, kernel bandwitdth A
Normalize columns: d; = >.7 | Kij, K =K;j/dj foralli,j=1,...n
Normalize rows: d; = > ", Kij, P;j =K;;/d, foralli,j=1,...n

Output: L = (I-P)/h*

d; are constant, L o« L™ oc L“", hence all Laplacians produce the same embedding. Dif-
ferences arise when data density is non-uniform, making the degrees d; larger in regions of
higher density. The seminal work of Coifman & Lafon (2006), which introduced renormal-
ization, showed that the eigenvectors of L™°"™ L™ are biased by the sampling density and
that renormalization removes this bias. Sections 5.4, and Figure 6 illustrate this.

Using the defined graph Laplacian matrix L, we can summarize the DM procedure
presented in algorithm 2. Similar to PCA, the data are mapped to the principal directions

Algorithm 2 DIFFUSION MAPS/LAPLACIAN EIGENMAPS

Input: Laplacian L (or L™°"), embedding dimension m.
1: Compute {v‘}7,, eigenvectors of smallest m -+ 1 eigenvalues of L, with v* € R™.
2: Discard v° (this is typically a constant vector (Shi & Malik 2000))
3: Represent each x; by y; = (vjl, e ,v;")—r eR™

Output: Y

of a positive definite matrix. While in PCA, these eigenvectors represent directions of
maximum variance, in DM they represent the smoothest (least varying) eigenvectors of L;
therefore, they correspond to the lowest eigenvalues (see also Section 6.1). The Laplacian
Eigenmaps (LE) algorithm resembles DM but uses a different Laplacian, namely L™°™™
above.

The idea of spectral embedding also appeared independently in graph visualization, then
in Shi & Malik (2000) as a method for clustering, and was then generalized as a data
representation method in Belkin & Niyogi (2003) as LE. They connect the graph Laplacian
with the Laplace-Beltrami operator Aaq of manifold M (Rosenberg 1997). Estimating the
Laplace-Beltrami operator itself is an important geometric estimation problem that will be
reviewed in Section 5.4.

4.2. “Horseshoe” effects, neighbor embedding algorithms, and selecting
independent eigenvectors

4.2.1. The Repeated Eigenvectors Problem (REP). Algorithms that use eigenvectors, such
as DM, are among the most promising and well-studied in ML (see Sections 5.1,5.2,5.4).
Unfortunately, such algorithms fail when the data manifold has a large aspect ratio, such as a
long, thin strip or a slender torus. This problem has been called the Repeated Eigendirections
Problem (REP) in 7. The REP has been demonstrated theoretically for DM /LE, LTSA,
LLE (Goldberg et al. 2008), and in real data sets.

From a mathematical standpoint, the REP is due to eigenvectors (or eigenfunctions, in
the limit) that are harmonics of previous ones, as shown in Figure 4. Consider, for example,
the rectangle [0,1] x [0,1] in (z1,22) space, where the length I > 1; [ in this case, is the
aspect ratio. It is easy to show that (in the continuum limit), the first [I] — 1 eigenvectors
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vary in the z; direction, as shown in the top row of Figure 4. Hence, if we use (v',v?)
in the DM algorithm, we obtain a 1-dimensional mapping, even though the rectangle is
2-dimensional.

Moreover, in this simple case, the scatterplot of (v}, v?)i=1,.... from step 3 of the DM fol-
lows a parabola. This is a relevant diagnosis for REP in practice: when an embedding looks
like a “horseshoe”, this may not represent a property of the data but an artifact signalling
that one of the data dimensions is collapsed or poorly reflected in the embedding (Diaconis
et al. 2008).

4.2.2. Relaxation-based neighbor embedding algorithms. The pervasiveness of the REP
stimulated the development of algorithms that balance attraction between neighbors in the
original space, with repulsion between neighbors in the embedding space (van der Maaten
& Hinton 2008, MclInnes et al. 2018, Jacomy et al. 2014, Carreira-Perpinan 2010, Im et al.
2018). Usually, the embedding coordinates Y are optimized iteratively until equilibrium is
reached.

The T-SNE algorithm of van der Maaten & Hinton (2008), one variant of which (B6hm
et al. 2022) we briefly describe here, exemplifies this approach. Hinton & Roweis (2002),
proposed to match the (normalized) data similarities by (normalized) output similarities
around each embedded point y;, which motivates the name Stochastic Neighbor Embedding
(SNE, Hinton & Roweis (2002)). In van der Maaten & Hinton (2008), the authors pro-
posed to use a Student-t distribution to model the output similarities, and, as T-SNE, this
algorithm became widely used. Uniform manifold approximation and projection (UMAP,

Algorithm 3 T-SNE

Input: Similarity matrix K (from k-nearest neighbor graph), initial embedding y1, ... Yn,
step size 7, repulsion parameter p

1: Compute normalized input similarity V = (D™'K + KD™')/(2n)

2: while not converged do

3:  Compute all squared distances in embedding space Af;-“ = |lyi—yj||?, fori,j =1,...n
4:  Compute similarities in embedding space W;; = W, fori,j = 1,...n, Wit =

ij
ZZ;‘:1 Wi
3 n W,
5: Update embeddmg by Yi < Yitn [Z?:l VijWij (yz — y]) —y Z?:l wtojt (yz — y])] .

6: end while
Output: Y

MclInnes et al. (2018)) is another popular heuristic method. On a high level, UMAP min-
imizes the mismatches between topological representations of high-dimensional data set
{x:}i=, and its low-dimensional embeddings y;. Theoretical understanding of UMAP is
still limited.

The T-SNE algorithm has the advantage of being sensitive to local structure and to
clusters in data (Linderman & Steinerberger 2019, Kobak et al. 2020), but does not explicitly
preserve the global structure. We note that the propensity for finding clusters comes partly
from the choice of neighborhood graph (Section 5.1). However, this is not the whole story.
Recently, it has been shown that this property stems from the last term of the update in
step 5 above. The first term in the change of y; is an attraction between graph neighbors,
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Figure 4: Embedding algorithms failing to find a full rank mapping, if they greedily
select the first m = 2 eigenvectors, and correction by a more refined choice of eigenvectors.
Top row: embeddings of a swiss roll with length seven times the width. Left: first
two eigenvectors from DM /LEform a 1-dimensional curve; hence v* does not add a new
dimension, but “repeats” v'; middle the same after UMAP: repulsion expands the curve
to a strip, but is not able to produce a full-rank embedding everywhere; the “knots”,
the horseshoe and the three clusters are all artifacts. Right: UMAP with selection of
eigenvectors by Chen & Meila (2021). Bottom row: Embeddings of galaxy spectra from
the SDSS (Section 6) by DM ; left “horseshoe” when first 2 eigenvectors are used; right
the same data, by eigenvectors (v', v?), selected by Chen & Meila (2021). Plots by Yu-Chia
Chen.

while the second represents repulsive forces between the embedded points y1., (Béhm et al.
2022, Zhang et al. 2022). The parameter p (originally called early exaggeration) controls the
trade-off between attraction and repulsion. In Béhm et al. (2022), it is shown that varying
p from small to large values decreases the cluster separation and makes the embedding
more similar to the LE embedding. Moreover, quite surprisingly, Bohm et al. (2022) show
that by varying p, the T-SNE can emulate a variety of other algorithms, most notably
UMAP (Mclnnes et al. 2018) and FORCEATLAS (Jacomy et al. 2014). Other works that
analyze the attraction-repulsion behavior of T-SNE are Zhang & Steinerberger (2021). One
yet unsolved issue with T-SNE is the choice of the number of neighbors k. Most applications
use the default & = 90 (Policar et al. 2019); this choice, as well as other behaviors of this
class of algorithms, are discussed in Zhang et al. (2022).

Finally, in Minimum Variance Unfolding (MVU), proposed in Weinberger & Saul (2006),
Arias-Castro & Pelletier (2013), repulsion is implemented via a Semidefinite Program, hence
the embedding Y is obtained by solving a convex optimization. This algorithm can be seen
both as a one-shot and as an attraction-repulsion algorithm; Diaconis et al. (2008) show that
MVU is related to the fastest mixing Markov chain on the neighborhood graph. Note also
that since the REP can be interpreted as extreme distortion, the RIEMANNIANRELAXATIONOf
Perrault-Joncas & Meila (2014) (see also Section 5.5) can also be used to improve the
conditioning of an embedding in an iterative manner.

Meila € Zhang



4.2.3. Avoiding the REP in spectral embeddings. The REP has a theoretically straight-
forward solution for algorithms like DM, and LTSA. From the sequence of eigenfunctions
F.. F™ ...on M (or eigenvectors v', ... v™ in the finite sample case), with m’ > m,
sorted by their corresponding eigenvalues, one needs to select F/t = F* then (recursively)
Fi2_ _ FIm g0 that the rank of the Jacobian [(dF')p, ... (dF7™),] is d at every point
p € M. E.g., for the | x 1 rectangle, eigenvectors v' and v/ should be selected. This
is called Independent Eigendirection Selection (IES). In a finite sample, the rank condition
must be replaced with the well-conditioning of dF' at the data points. Dsilva et al. (2018)
proposed to measure dependence by regressing v;, ., on the previously selected v, ,. j,;
in Chen & Meila (2021), a condition number derived from the embedding metric (Section
5.5) is used to evaluate entire sets of m eigenvectors. The manifold deflation method (Ting
& Jordan 2020) proposes to bypass eigenvector selection by choosing a linear combination
of all optimized eigenvectors w.r.t. rank. Finally, the Low Distortion Local Eigenmaps
(LDLE) (Kohli et al. 2021) solves the REP by essentially covering the data manifold with
contiguous patches (discrete versions of the U neighborhoods) and performing IES on each
patch separately. LDLE avoids REP and is a first step towards the algorithmic use of charts
and atlases to complement global embeddings.

In summary, attraction-repulsion algorithms such as T-SNE, which are heuristic, enjoy
large popularity due in part to their immunity to the REP, while eigenvector-based methods,
although better grounded in theory, are less useful in practice without post-processing by an
TES method. On the other hand, unlike global search in eigenvector space, a local relaxation
algorithm cannot resolve the rank deficiency globally, and it may become trapped in a local
optimum (Figure 4).

4.3. Summary of embedding algorithms

A variety of embedding algorithms have been developed. Here we presented representative
algorithms of two types. One-shot algorithms that (typically) embed the data by eigen-
vectors, of which IsomapP, DM and LTSA are the best understood and computationally
scalable. The main drawback of this class of algorithms is the Repeated Eigendirections
Problem, which requires post-processing of the eigenvectors. Neighbor embedding algo-
rithms are (typically) iterative, starting with the output of a one-shot algorithm (LE for
UMAP) or even PCA. The presence of repulsion makes these algorithms robust to REP,
affecting one-shot algorithms. Quantifying the repulsion, smoothness, large-sample limits,
and other properties of the neighbor embedding algorithms are less developed. Hence, for
the moment, neighbor embedding algorithms remain heuristic for ML, while they remain
useful for visualization, and clustering (for which guarantees exist, e.g., in Linderman &
Steinerberger (2019)).

Neither algorithm guarantees against local singularities, such as the “crossing” in Figure
4. It is not known how these can be reliably detected or avoided. Additionally, all algorithms
distort distances except in special cases (as discussed in Section 5.5).

All algorithms depend on hyperparameters: intrinsic dimension d (Section 5.3) or em-
bedding dimension m, and k or r for the neighborhood scale (Section 5.2). Iterative al-
gorithms often depend on additional parameters controlling the repulsion (such as p in
T-SNE) or the step size 7.

With respect to computation, constructing the neighborhood graph is the most expen-
sive step, typically for n large. To compound this problem, finding k or r in a principled way
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(a) Isomap (b) LE

(d) LTSA (e) t-SNE

Figure 5: Embe g of the choppe(ﬁfﬂ"ﬁ from Figure 2 by Various algorithms;
IsomAP and LTSA are described in the Supplementary Materials. This manifold cannot be
embedded isometrically in d = 2 dimensions; each algorithm stretches/contracts (distorts)
it differently. Figure 7 in the SI visualizes the local distortions.

often requires constructing multiple graphs, one for each scale. One-shot algorithms that
compute eigenvectors are quite efficient for n up to 10° when the neighborhood graph is not
dense (7). Neighbor embedding algorithms work, in theory, with dense matrices (e.g., W);
however, accelerated approximate versions for these algorithms have been developed, such
as the Barnes-Hut trees approximation (van der Maaten 2014), and the negative sampling
heuristic for UMAP (Bohm et al. 2022, McInnes et al. 2018).

5. Statistical basis of manifold learning

The output or result of manifold learning algorithms depends critically on algorithm pa-
rameters such as the type of neighborhood graph (k-nearest neighbor or radius neighbor),
the neighborhood scale (k or r), and embedding dimension m (and intrinsic dimension d,
in some cases).

This section is concerned with making these choices in a way that ensures some sta-
tistical consistency, whenever possible. Neglecting statistical consistency and theoretical
guarantees in general, is risky. In the worst case, it can lead to methods that have no limit
when n — oo (e.g. for LLE without any regularization (Ting et al. 2010)), and in milder
cases to biases (e.g., due to variations in data density), and artifacts, i.e., features of the
embedding, such as clusters, arms, and horseshoes that have no correspondence in the data.

Here we discuss in more general terms what is known about graph construction methods
(Section 5.1), the neighborhood scale (Section 5.2), and the intrinsic dimension (Section
5.3). We revisit the estimation of the manifold Laplacian (the limit of L), as the natural
representation of the manifold geometry, and the basis for the DIFFUSION MAPS embedding,
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Figure 6: Effects of graph construction and renormalization, when the sampling density
is highly non-uniform, exemplified on the configurations of the ethanol molecule. Left:
original data, after preprocessing, is a noisy torus (shown here in the first two principal
components), with three regions of high density, around local minima of the potential energy.
Center: Embeddings by DM (gray), and by the same algorithm with L constructed from
the k-nearest neighbor graph (green). The sparse regions are stretched, while the dense
regions appear like “corners” of the embedding. Note that DM should remove the effects
of the density; in this case, the variations in density are so extreme that the effect persists.
The effect is somewhat stronger for the k-nearest neighbor graph. Right: Embedding by
DM (gray) and by LE (green), which uses the singly normalized L™ .

which can be seen as the archetypal embedding, in Section 5.4. Finally, in Section 5.5, we
turn to mitigating the distortions induced by embedding algorithms.

5.1. Biases in ML. Effects of sampling density and graph construction

Biases due to non-uniform density Many embedding algorithms tend to contract re-
gions of M where the data are densely sampled and to stretch the sparsely sampled regions.
In attraction-repulsion algorithms, such as T-SNE, this is explained by the repulsive forces
between every pair of embedding points y;,y;, while the attractive forces act only along
graph edges, between neighbors. If fewer graph edges connect two dense regions, repulsion
will push them apart, exaggerating clusters.

For one-shot algorithms, the effect is similar, albeit less intuitive to explain, as shown in
Figure 6. For DM, LE, and their Laplacian matrices, the effect was calculated in Coifman
& Lafon (2006); they also showed that renormalization removes this bias (asymptotically).
Moreover, the degree values d; obtained in the LAPLACIAN algorithm are estimators of the
density around data point x;. An alternative method, applicable to low d, is to use a simple
estimator of the local density and to use it to renormalize L™ (Luo et al. 2009).

If enough samples are available, one can resample the data to obtain an approximately
uniform distribution. For example, the farthest point heuristic chooses samples sequentially,
with the next point being the farthest away from the already chosen points.

Effect of neighborhood graph (Figure 6) Radius neighbor graph of k-nearest neighbors?
Ting et al. (2010) and later Calder & Trillos (2019) show that the k-nearest neighbor graph,
with the similarity matrix with constant kernel K (u) = 1 exhibits qualitatively similar biases
from non-uniform sampling as the normalized radius-neighbor graphs.
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5.2. Choosing the scale of neighborhood

Whatever the task, a manifold learning method requires the user to provide an external
parameter, be it the number of neighbors k or the kernel bandwidth h, that sets the scale
of the local neighborhood.

Asymptotic results and what they mean The asymptotic results of Giné & Koltchinskii
(2006), Hein et al. (2007), Ting et al. (2010) and Singer (2006) provide the necessary rates
of change for h with respect to n to guarantee convergence of the respective estimate. For
instance, Singer (2006) proves that the optimal bandwidth parameter for Laplacian estima-
tion is given by h ~ n_ﬁ using a random-walk Laplacian. For the k-neareast neighbor
graph, Calder & Trillos (2019) show that the number of neighbors k must grow slowly with
n, and a recommended rate is k ~ nﬁ(log n)ﬁ, again for Laplacian estimation. The
hidden constant factors in these rates are not completely known, but they depend on the
(typically not known) manifold volume, curvature, and injectivity radius 7. Even so, these
statistical results suggest that, in practice, the number of neighbors k should be sufficiently
large and grow with n (Linderman & Steinerberger 2019).

With these rate-wise optimal selections of k or r, the convergence rate for estimating
Laplacian operators, their eigenvectors, and so on, can be established. These rates are non-
parametric, implying that the sample size n must grow exponentially with the dimension d.
For example, using the previously mentioned rate of k, one can calculate that, for a 10-fold
decrease in error, n must increase = 1004+9/3_fo1d.

For neighbor embedding algorithms, such as T-SNE, less is known theoretically; how-
ever, practically, the defaults are for larger values of k, e.g., & = 90 (Policar et al. 2019)
and some research (Linderman & Steinerberger 2019) suggests k ~ n, which would create
very dense graphs.

Practical methods Unfortunately, cross-validation (CV), a widely valuable model selection
method in, e.g., density estimation, is not applicable in manifold learning for the lack of a
criterion to cross-validate. (However, CV is still applicable in semi-supervised learning on
manifolds (Belkin et al. 2006).) The ideas we describe below each mimic CV by choosing
a criterion that measures the “self-consistency” of an embedding method at a particular
scale.

For the k-nearest neighbor graph, Chen & Buja (2009) evaluates a given k with respect
to the preservation of k' neighborhoods in the original graph. A problem to be aware of
with this approach is that (see Section 5.5) most embeddings distort the data geometry.
Hence Euclidean neighborhoods will not be preserved, even at the optimal k. A variable k
method based on Topological Data Analysis (?) was proposed by Berry & Sauer (2019).

For the radius-neighbor graph, Perraul-Joncas & Meila (2013) exploit the connection
between manifold geometry, represented by the Riemannian metric (see Section 5.5), and
the Laplacian L. The radius neighbor graph width h affects the Laplacian’s ability to
recognize the identity mapping. This method is specific to the DM algorithm, but the h
obtained can be used by other embedding algorithms. Finally, we mention a dimension
estimation algorithm proposed in Chen et al. (2013); a by-product of this algorithm is a
range of scales r where the manifold looks locally linear, hence these scales would also be
correct for the neighborhood graph.
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5.3. Estimating the intrinsic dimension

Knowing the intrinsic dimension of data is important in itself. Additionally, some embed-
ding algorithms (T-SNE, IsomaP, LTSA) and all local PCA and Principal d-manifolds
algorithms require the intrinsic dimension d as input.

How hard is dimension estimation? The dimension of a manifold is a non-negative
integer, and therefore, intuitively, it should require fewer samples to estimate than a real-
valued geometric parameter. Indeed, it is known (Kim et al. 2019, Genovese et al. 2012,
Koltchinskii 2000) that the minimaz rate for dimension estimation is exponential (i.e., the
error is proportional to ¢™ for some ¢ < 1) or faster. Unfortunately, the empirical experience
belies the optimistic theoretical results. Due primarily to the presence of noise, which does
not conform to simple assumptions, and secondarily to non-uniform sampling, estimating d
for real data is a hard problem for which no satisfactorily robust solutions have been found
yet (see Altan et al. (2020) for some empirical results).

Principles and methods for estimating d An idea that appears in various forms through
the dimension estimation literature is to find a local statistic that scales with d by a known
law. For example, the volume of a ball of radius r contained in a manifold M is proportional
to r?, Hence, logk;,» & dlogr + constant (where k; , is the number of radius r neighbors
of data point z;), and a regression line of (logr,logavg(k;,)) should have slope d. This is
known as correlation dimension (Grassberger & Procaccia 1983). Other methods consider

,27r

statistics such as ’2 ~ 24, or covering number, which lead respectively to the so-called

doubling dimension;r(Assouad 1983), and Box Counting dimension (Falconer 2003).

Modern estimators consider other statistics, such as distance to k-th nearest neighbor
(Pettis et al. 1979, Costa et al. 2005), the volume of a spherical cap (Kleindessner & von
Luxburg 2015) (both statistics can be computed without knowing actual distances, just
comparisons between them), or Wasserstein distance between two samples of size n on M,
which scales like n~/4(Block et al. 2022); the algorithm of Levina & Bickel (2004), analyzed
in Farahmand et al. (2007), proposes a Maximum Likelihood method based on k-nearest
neighbor graphs.

An algorithm for dimension estimation in noise is proposed by Chen et al. (2013). The
algorithm is based on the maximum eigengap of the local covariance matrix at multiple
scales. This algorithm can be simplified by using a neighborhood radius selection algorithm
such as Joncas et al. (2017) (Section 5.2).

5.4. Estimating the Laplace-Beltrami operator

We have seen that the eigenvectors of Laplacian-Beltrami operator A4 can embed the data
in low dimensions by the DM algorithm. Additionally, graph Laplacian estimators of Ay
are used in many different scenarios, described in Section 6.1. The question is which of the
Laplacian matrices L, L*™ L™, etc., converge to Aar when the sample size n tends to
infinity?

Denote the limit of the discrete operator L™ by L°°, a continuous differential operator
acting on smooth functions. Two types of convergence, have been investigated. Pointwise
convergence indicates the proximity of (L™ f); to L f(x;), while spectral convergence
involves the similarity between fL*" f/fDf and the eigenvalues of L.

When a radius neighbor graph is used, L™ = A is established for pointwise conver-
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gence in the case of uniform sampling density, while L> will be Arq+some density-related
bias term in non-uniform case. Ting et al. (2010) demonstrated the pointwise convergence

2/4 for k—nearest neighbor graphs,

of the random-walk graph Laplacian to Aaq scaled by p
where p denotes the sampling density. Spectral convergence is similarly discussed in Belkin
& Niyogi (2007), Berry & Sauer (2019), Garcfa Trillos & Slepcev (2018), Garcia Trillos et al.
(2020).

More broadly, an entire class of manifold learning algorithms can be studied by similar
theoretical methods. Many embedding algorithms , including LE(Belkin & Niyogi 2003),
DM(Coifman & Lafon 2006), LTSA(Zhang & Zha 2004), etc, that use matrices derived from
the similarity K (called linear smoothing algorithms) are related to Laplacian-like second-
order differential operator on M. On the other hand, unregularized LLE fails to converge
to any differential operator. Details can be found in Ting & Jordan (2018).

5.5. Embedding distortions. Is isometric embedding possible?

Figure 5 shows the outputs of various embedding algorithms on a simple 2-manifold M C
R3. Tt is easily seen that the results depend on the algorithm (and parameter choices) and
the input (manifold and sampling density on M). While most embedding algorithms work
well, in the sense of producing smooth embeddings, the algorithm-dependent distortions,
i.e., the local stretching or contraction — which amount to different coordinate systems —
make these embeddings irreproducible and incomparable.

Empirical observations commonly reveal the presence of distortion. The distortions do
not disappear when the sample size n increases, when the sampling density is uniform, or
even when the consistent graph and Laplacian are used. This section is concerned with
recovering reproducibility, by preserving the intrinsic geometry of the data.

Geodesic distances, intrinsic geometry and isometry For the data in Figure 1, a sci-
entist may be interested in the distance between two molecular configurations x1, €2, seen
as points of M C RP. Their Euclidean distance ||x1 — @2]| is readily available. However,
this value may not be of physical interest since most of the putative configurations along
the segment @1 to @2 in R are not physically possible. To deform from state @; to @z,
the ethanol molecule must follow a path contained in (or near) the manifold M of possible
configurations, and the distance da (@1, @2) shall naturally be defined as the shortest pos-
sible length of such a path; this is the geodesic distance. Geodesic distances, angles between
curves in a manifold M, and volumes of subsets of M represent intrinsic geometric quan-
tities that can be defined without reference to the ambient space RP, and are independent
of the choices of coordinate charts. Ideally, we would like an embedding (algorithm) to
preserve these, and we call such an embedding an isometric embedding.

Attempts at isometric embedding Isometric (i.e., distortionless) embedding is possible,
as proved by the celebrated Nash embedding theorem (Lee 2003) and more recently for Dir-
FUSION MAPS by Bérard et al. (1994) and Portegies (2016). Unfortunately, these remarkable
mathematical results are not easily amenable to numerically stable implementation.

Many ML methods focus on promoting isometry in local neighborhoods; MINIMUM
VARIANCE UNFOLDING aims to preserve local distances (Weinberger & Saul 2006), CON-
FORMAL EIGENMAP maps triangles in each neighborhood, thus preserving angle (Sha & Saul
2005), LTSA (Zhang & Zha 2004) and LocAL LINAR EMBEDDING (Roweis & Saul 2000)
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preserve linear reconstructions. The works of Yu & Zhang (2010) and Lin et al. (2013) ap-
proach global isometry by means of constructing normal coordinates recursively from a point
p € M, or, respectively, by mutually orthogonal parallel vector fields, and Verma (2011) is
the first attempt to implement Nash’s construction. The ISOMAP algorithm (Tenenbaum
et al. 2000) aims to preserve all shortest paths. We note that, with the exception of Verma
(2011), and of IsomaP for flat manifolds (i.e., manifolds that can be “unrolled” into R?
without stretching), these methods do not guarantee isometric embedding except in limited

special cases.

Preserving isometry by estimating local distortion While finding a practical isometric
embedding algorithm has been unsuccessful so far, estimating the local distortions is pos-
sible. Once the distortions are known, whenever a distance, angle, or volume is calculated,
one applies local corrections that amount to obtaining the same result as if the embedding
was isometric. The distortion at embedding point y; = F(x;) € R™ is a symmetric, positive
m x m matrix H; of rank d. In Figure 7 the same embeddings of Figure 5 are shown, with
H, at selected points visualizing the local distortion induced by each algorithm. When the
embedding F' is isometric, and m = d, H; = I; the unit matrix; otherwise, H;’s eigenvalues
and vectors define the principal axes of stretch or compression around point i. A matrix
function such as H on a manifold is called a Riemannian metric (see e.g. Perraul-Joncas &
Meila (2013), Lee (2003)). The local correction at y; is the pseudoinverse G; of H;; G is
also a Riemannian metric, called the embedding (push-forward) Riemannian metric.

With G, the geodesic distance between y; and a neighbor y; is given! by

dm(yi,yi)? = llys —willcé, = @5 —v) Gi(y; — i) 2.
For any other y;,y;, the geodesic distance is the shortest path length from y; to y; with
the corrected distances above. The resulting distance is an undistorted approximation of
the original. Perraul-Joncas & Meila (2013) proposed a method to estimate H; for every
embedded data point y;, using the renormalized Laplacian L described in Algorithm 12.
Hence, for any Y = F(X) output by an embedding algorithm, it is sufficient to estimate, at
all points y1.,, the matrices Gi.,, which represent the auxiliary information allowing one
to correct distance computations in the non-isometric embedding F. The same Gi., can
be used to preserve not only geodesic distances but also other geometric quantities such as
angles between curves in M or volumes of subsets of M.

Estimating the metrics Hi., and Gi.p, offers even more insights into the embedding.
For instance, the singular values of H; (which has numeric rank m, but theoretical rank d)
may offer a window into estimating d by looking for a singular value gap. The d singular
vectors form an orthonormal basis of the tangent space to F(M) at point y;, providing a
natural framework for constructing a normal coordinate chart around p.

The singular values of Hi., can be used to evaluate the global distortion for an embed-
ding as a criterion for comparing various embeddings. By iteratively minimizing this, one

1This is first-order approximation.

2To obtain H;, Perraul-Joncas & Meila (2013) apply L to a suitably chosen set of test functions
fri,i, with 1 < kB <1 < m, where fi;; = (Fx — Fi(2;))(F; — Fi(2;)) are pairwise products of
coordinate functions, centered at point x;. They show that %AM fri,i(®s) = (Hi)g,1, the k, [ entry
in H; (algorithmically, this operation can be easily vectorized).
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can get a more isometric embedding, such as in the RIEMANNIANRELAXATION of McQueen
et al. (2016), which can be seen as an alternative to UMAP or t-SNE.

6. Applications of manifold learning
6.1. Manifold learning in statistics

Manifold learning with DM is closely related to spectral clustering (Shi & Malik 2000, Meil&
& Shi 2001, Ng et al. 2001, von Luxburg 2007, Meil& 2016) as both methods map data to
lower dimensions using the eigenvectors of a Laplacian. For clustering, it is preferable
to employ L™, the random walks Laplacian, which considers data density and enhances
cluster separation. By mapping data to lower dimensions with L™, a continuum between
separated clusters (in clustered data) and smooth embedding (in regions where data lie
on a manifold) can be observed. It even enables simultaneous embedding and clustering.
Sufficient eigenvectors need to be calculated in such cases: K — 1 eigenvectors indicate clus-
tering for K clusters, and additional eigenvectors are required for low-dimensional mapping
within each cluster. Using fewer eigenvectors may recover the clusters but not the intrinsic
geometry within each cluster.

For a function f: M — R, with f = [f(@:i)]i=1:n, the functional %fTLf approximates
IVfII3 on the manifold, a measure of the smoothness of f (a function being smoother
when its rate of change is lower). This smoothness measure can serve as a regularizer in
supervised or semi-supervised learning on manifolds (Belkin et al. 2006, Sleptev & Thorpe
2019), Bayesian priors (Kirichenko & van Zanten 2017), and modeling Gaussian Processes
on manifolds (Borovitskiy et al. 2020). If L™°" is used instead of L then the smoothness
is calculated with respect to the sampling distribution on M (i.e. the rate of change is
weighted more in regions with denser data).

6.2. Manifold learning for visualization

Embedding algorithms are often used in the sciences for data visualization. The scientists,
as well as the statisticians, need to distinguish between an embedding as defined in Section
2, which preserves the geometric and topological data properties, and other mappings (oc-
casionally also called “embeddings”) into low dimensions using embedding algorithms. The
latter kind of dimension reduction is hugely popular, and its value for the sciences cannot
be underestimated. However, the users of dimension reduction for visualization should be
cautioned that the scientific conclusions drawn from these visualizations must be subject
to additional careful scrutiny or a more rigorous statistical and geometric analysis. One
pitfall is that when data are mapped into m = 2 or 3 dimensions, for visualization, without
estimating the intrinsic dimension d, the mapping may collapse together data regions that
are not close in the original manifold. When clusters are present, because separating the
clusters usually requires at least 2 dimensions, most of the clusters’ geometric structure is
collapsed. Hence, once the data is separated into clusters, the cluster structure needs to
be studied by additional dimension reduction. A second pitfall is the presence of artifacts
— interesting geometric features caused by the embedding algorithm but not supported by
the data. These can be clusters (Figure 4), arms, holes or circles, and so on.

Before assigning scientific meaning to these features, a researcher should examine
whether they are stable by repeating the embedding with different initial points, algo-
rithms, and algorithm parameters, as well as by perturbing or resampling the original data.
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To assess if the interesting features are not large distortions, visualizing the distortion (Fig-
ure 7) can provide valuable diagnostics. For example, when a “filament” is produced by
stretching a low-density region, a very common effect (see Section 5.1), the estimated dis-
tortion will show the stretching (Figure 7), while for a true filament, the distortion will be
moderate .

6.3. Manifold learning in the sciences

Astronomy and astrophysics Manifold learning has been used to study data from exten-
sive astronomical surveys, like the Sloan Digital Sky Survey (SDSS)?. The mass distribution
in the universe reveals filaments, i.e., one-dimensional manifolds, and dimension reduction
methods, most often Principal Curves, have been used to estimate them (Chen et al. 2015).

Spectra of galaxies are measured in thousands of frequency bands; they contain rich
data about galaxies’ chemical and physical composition. By embedding these spectra in
low dimensions, as in Figure 4, one can analyze the main constraints and pathways in the
evolution of galaxies (Vanderplas & Connolly 2009).

Dynamical systems Dynamical systems described by Ordinary or Partial Differential
Equations are intimately related to manifolds and exhibit multiscale behavior. Extensions
of manifold learning can be used to understand PDE with geometric structure (Nadler et al.
2006), study the long-term behavior of the system or the ensemble of its solutions (Dsilva
et al. 2016, 2018).

Chemistry The accurate simulation of atomical and molecular systems plays a significant
role in modern chemistry. Molecular Dynamics (MD) simulations from carefully designed,
complex quantic models can take millions of computer hours; however, simulations can still
be less expensive than conducting experiments, and they return data at a level of detail not
achievable in most experiments. Manifold learning is used to discover collective coordinates,
i.e., low dimensional descriptors that approximate well the larger scale behavior of atomic,
molecular, and other large particle systems (Boninsegna et al. 2015, A. et al. 2012, Noé &
Clementi 2017). In these examples, the systems can be in equilibrium or evolving in time,
and in the latter case, the collective coordinates describe the saddle points in the trajectory
or the folding mechanism of a large molecule (Rohrdanz et al. 2011, Das et al. 2006).
Manifold embedding is also used to create low dimensional maps of families of molecules
and materials by the similarity of their properties (Ceriotti et al. 2013, Isayev et al. 2015).

Biological sciences In neuroscience and the biological sciences, manifold embeddings are
widely used to summarize neural recordings (Connor & Rozell 2016, Cunningham & Yu
2014), or to describe cell evolution (Herring et al. 2018)

7. Conclusion

In practice, ML is overwhelmingly used for visualization (Section 6) and with small data
sets. But ML can do much more. Efficient software now exists (McQueen et al. 2016, Poli¢ar
et al. 2019) which can embed huge, high-dimensional data (for example, SDSS). In these

Suww.sdss. org
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cases, ML helps practitioners understand the data, by e.g., its intrinsic dimension, or by
interpreting the manifold coordinates (Koelle et al. 2022, Boninsegna et al. 2015, Vanderplas
& Connolly 2009). For real data, a manifold learning algorithm has the effect of smoothing
the data and suppressing variation orthogonal to the manifold, which can be regarded as
noise, just like in PCA. Finally, again similarly to PCA, ML can effectively reduce the data
to m < D dimensions while preserving features predictive for future statistical inferences.
Some inferences, such as regression, can be performed on manifold data without manifold
estimation by, for example, local linear regression (Aswani et al. 2011), or via Gaussian
Processes (Borovitskiy et al. 2020). Even when only visualization is desired, care must be
taken that the results are reproducible and free of artifacts, as discussed in Section 6.2.

What we omitted Among the topics we had to leave out, manifold learning in noise is
perhaps the most important one. Noise makes ML significantly more difficult by introducing
biases and slowing the convergence of estimators. This is an active area of research, but
the estimation of geometric quantities like tangent space and reach in the presence of noise
have been studied by Aamari & Levrard (2018, 2019); the theoretical results of manifold
recovery in noise were mentioned in Section 3.

The reach, or injectivity radius 7(M) of manifold measures how close to itself M can
be. In other words, 7(M) is the largest radius a ball can have, so that, for any p € M, if it
is tangent to the manifold in p, it does not intersect M in any other point. Large 7 implies
larger curvature (a plane has infinite 7) and easier estimation of M (Genovese et al. 2012,
Fefferman et al. 2016, Aamari & Levrard 2018, 2019). A manifold can have borders; ML
with borders is studied. For example, in Singer & Wu (2012), different convergence rates
appear when data are sampled close to the border.

A helpful task is to map a new data point € RP onto an existing embedding F(M);
this is often called Nystrom embedding (Chatalic et al. 2022). Conversely, if y € R™ is a new
point on the embedding F(M), obtained, e.g., by following a curve in the low dimensional
representation of M, how do we map it back to RP? This is usually done by interpolation.

Finally, a few words about neural network representations, such as auto-encoders (7),
which could be seen as the fourth paradigm for manifold learning. We have left them out,
partly for mathematical reasons. Although these mappings are generally smooth, there are
no guarantees that they have constant rank d, even if the original data lie on a d-manifold.
However, the main reason is that we could not do them justice in this review. Deep learning
is an entirely different paradigm for non-linear dimension reduction. The intuitions and
formal techniques for understanding neural networks’ internal representations are entirely
different from those surveyed here.

We surveyed the state-of-the-art knowledge on the main problems and methods of man-
ifold learning, focusing on the algorithms proven to recover the manifold structure through
learning a smooth embedding. There are many open problems in this field, though. Sta-
tistically, understanding of t-SNE and UMAP algorithms is still very limited, despite the
fact that they are among the most popular visualization algorithms used today. More fun-
damentally, interpretation and validation of the output of an ML algorithm are also of
importance to practitioners. An essential input to any ML algorithm is the distance used
in finding neighbors and calculating the similarities. Currently, defining this distance (for
example, by selecting which features of data point ¢ should be included in «;, and in what
units) is left entirely to the user.
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Supplementary Materials
A. Details of ”"one-shot” manifold learning algorithms
A.1. Principal Component Analysis (PCA)

Linear dimension reduction methods find a global embedding of the data in a low-
dimensional linear subspace. One way of understanding Principal Component Analysis
is to find a d dimensional linear subspace V such that the data {@;} projected onto it have
the smallest reconstruction error. Let V have an orthogonal basis T € RP*? such that
T'T = I;. Then x; projected onto V has low dimensional representation y; = TTmi
under basis T. In R, projection of a; onto V is given by TT "a;. If we introduce the
data matrix X € R"*?, with i—th row being @, , then the low dimensional representation
matrix Y € R"*? is given by XT and in R” the projected data matrix is XTT'.
Then we can write the PCA problem as

min >l — TT "= min X - XTT"||% 3.
=1

T:TeRDPXd TTT=I, : T:TeRDP*xd TTT=1,

Consider the singular value decomposition preserving only the first d singular values of
X = UXV' where U € R"*?4 V € RP*? are orthogonal matrices and 3 is d x d diagonal
matrix, then the solution to problem 3. is T = V. The low dimensional representation of
original data is Y = XT = U3X; the coordinates of Y are called principal components. In
the terminology of PCA, columns of V are called principal vectors.

When the data @1., are centered, the (unnormalized) sample covariance matrix of the
data is C = X"X. The principal vectors characterize the d directions that explain the
most variance in the data. The solution to PCA can also be found by eigendecomposition
of C. The first d eigenvectors of C are just the matrix V. If the dimension D > n, it
will be easier first to compute the Gram matrix C = XX and then perform a truncated
eigendecomposition C = VX2V T; the low dimensional representation is still XV.

A.2. Multidimensional Scaling (MDS)

MDS is dealing with a different problem compared with PCA: given an n x n distance
matrix M = [dist(x;, x;)?]:;, find a low dimensional representations {y;}7—; in R? such
that all distances are preserved. Mathematically, we want to minimize

n
min Z Loss(dist(x:, ;) — ||y — y;|*) 4.

viyn€RY S
The MDS problem is hard to solve for generic loss function and metric function. However,
it is always possible to use numerical optimization methods to obtain local solutions to such
problems.

In the case that M contains squared Euclidean distances, one can double center the
squared pairwise distance matrix by constructing matrix B = H,MH,, with H,, = I,, —
%111 then the solution of the MDS problem will be given by finding eigenvectors of —%B.

The objective of MDS differs from that of ML. In Section 5.5, we explain that when data
x; are high dimensional points in R”, the Euclidean distances ||; — ;|| do not represent
geodesic distances in the manifold, unless @;, x; are neighbors. (Otherwise, ||z; — x|, as
a “shortcut” through ambient space, will be typically shorter than the geodesic distance.)
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Since by equation 4., MDS aims to preserve all distances, MDS would not be able to “unfold”
a manifold onto a lower dimensional space. The following section will show how the Isomap
algorithm uses MDS to achieve unfolding.

A.3. Isomap

IsoMAP is a generalization of Multidimensional Scaling that preserves distances between
data points while finding low dimensional coordinates. Instead of Euclidean distance in
classical MDS, IsoMAP use shortest path distances in the neighborhood distance graph
to approximate geodesic distance on a manifold. Intuitively, the shortest graph distance

Algorithm 4 IsomapP

Input: : Neighborhood distance matrix A, embedding dimension m
1: Compute shortest path distance matrix A;;:

A . Aij Aij < 00,
! shortest path distance between i, j Ajj =00.

2: Multidimensional Scaling Y = MDS(M, d) with M = [Afj
Output: : m dimensional coordinates Y for D

approximates the geodesic distance in a neighborhood provided that data are sufficiently
dense in this region and neighborhood size is appropriately chosen (Bernstein et al. 2000).
In the limit of large n, ISOMAP was shown to produce isometric embeddings for m = d,
whenever the data manifold is flat, i.e. admits an isometric embedding in R?, and data
space is convex. Empirically, IsoMAP embeddings are close to isometric also when m > d
and m is sufficient for isometric embedding.

The computation complexity of ISOMAP is O(n?), with the most computational burden
for computing all pairs of shortest path distance. Space complexity is O(n?). Since ISOMAP
works with dense matrices, this space complexity cannot be improved.

There are variants of Isomap that improve it in different ways: Hessian Eigenmaps
(Donoho & Grimes 2003) enables non-convex data where they introduce the use of Hes-
sian operator; Continuum Isomap (Zha & Zhang 2007) generalizes Isomap to a continuous
version such that out-of-sample extension of Isomap is possible.

A.4. Local Tangent Space Alignment (LTSA)

This algorithm, proposed in (Zhang & Zha 2004) seeks to find a local representation in the
tangent space b7, M at each point x;, then aligns these to obtain global coordinates.
The first stage of LTSA finds the local representation of neighboring points j € N; via
projections on the tangent space T, M; thus y; —vy; can locally be approximated by an affine
transformation of orthogonal projections of x; onto tangent space at a; through Taylor
expansion. The optimal affine transformation is obtained by minimizing the reconstruction
error near each x;
min laz; — (& + QOS)|1? 5.

z;,0,Q
! JEN;

where &, Q are translation and rotation that parametrize this affine transformation; 6; is
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a local coordinate of each neighbor x; projected on this linear subspace.
In the second stage of LTSA, one obtains global embedding coordinates Y while 6; that
preserves local geometry information through minimizing a global reconstruction error.

n
min P — Yi — P-G(.i) 2 6.
{yi}gzl,{Pi}g:1;j§[i||y1 Yy iU I

The optimization in both steps can be transformed into eigenvalue problems. Hence the
algorithmic procedure of LTSA is displayed in Algorithm 5

Algorithm 5 LOCAL TANGENT SPACE ALIGNMENT

Input: Dataset D, embedding dimension m.
B=0
fori=1,2,--- ;,ndo
Find the k nearest neighbors of x;: x;,j € N;.
Find local dataset E; = [x; — &:]jen;, where &; is the average of all neighbors of @;.

Compute the m largest eigenvectors o', --- 9% of 2T, set G; = [1/Vk, d',--- , 99
B=B+I-G;G/.
end for
Compute the 2 to m + 1 smallest eigenvectors of B, {v’ }7L1, each eigenvector v) € R".
Output: m dimensional embeddings y; = (v},--- ,v™), fori=1,...n.

B. lllustration of the local distortion (Section 5.5)

While the matrices g;, not shown, represent the local correction, their inverses H; measure
the local distortion. They are show here as ellipses, whose principal axes are along the prin-
cipal directions of stretch/contraction. Hence, the shape and size of the ellipses represents
the directional strectching at the givent point.
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(a) Isomap (b) LE (c) LLE

Figure 7: The embeddings from Figure 5, with the distortion H estimated at a random
subset of points. The principal axes of the ellipses are proportional to the singular values
of H at each point.
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