

RCSB Protein Data Bank: Efficient Searching and Simultaneous Access to One Million Computed Structure Models Alongside the PDB Structures Enabled by Architectural Advances

Sebastian Bittrich ^{1*}, Charmi Bhikadiya ¹, Chunxiao Bi ¹, Henry Chao ^{2,3}, Jose M. Duarte ¹, Shuchismita Dutta ^{2,3,4}, Maryam Fayazi ^{2,3}, Jeremy Henry ¹, Igor Khokhriakov ¹, Robert Lowe ^{2,3}, Dennis W. Piehl ^{2,3}, Joan Segura ¹, Brinda Vallat ^{2,3,4}, Maria Voigt ^{2,3}, John D. Westbrook ^{2,3,4†}, Stephen K. Burley ^{1,2,3,4,5} and Yana Rose ¹

- 1 Research Collaboratory for Structural Bioinformatics Protein Data Bank, San Diego Supercomputer Center, University of California, La Jolla, CA 92093, USA
- 2 Research Collaboratory for Structural Bioinformatics Protein Data Bank, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- 3 Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- 4 Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
- 5 Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA

Correspondence to Sebastian Bittrich: sebastian.bittrich@rcsb.org (S. Bittrich) https://doi.org/10.1016/j.jmb.2023.167994
Edited by Michael Sternberg

Abstract

The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) provides open access to experimentally-determined three-dimensional (3D) structures of biomolecules. The RCSB PDB RCSB.org research-focused web portal is used annually by many millions of users around the world. They access biostructure information, run complex queries utilizing various search services (e.g., full-text, structural and chemical attribute, chemical, sequence, and structure similarity searches), and visualize macromolecules in 3D, all at no charge and with no limitations on data usage. Notwithstanding more than 24,000-fold growth of the PDB over the past five decades, experimentally-determined structures are only available for a small subset of the millions of proteins of known sequence. Recently developed machine learning software tools can predict 3D structures of proteins at accuracies comparable to lower-resolution experimental methods. The RCSB PDB now provides access to \sim 1,000,000 Computed Structure Models (CSMs) of proteins coming from AlphaFold DB and the ModelArchive alongside ~200,000 experimentallydetermined PDB structures. Both CSMs and PDB structures are available on RCSB.org and via wellestablished RCSB PDB Data, Search, and 1D-Coordinates application programming interfaces (APIs). Simultaneous delivery of PDB data and CSMs provides users with access to complementary structural information across the human proteome and those of model organisms and selected pathogens. API enhancements are backwards-compatible and programmatic users can "opt in" to access CSMs with minimal effort. Herein, we describe modifications to RCSB PDB cyberinfrastructure required to support sixfold scaling of 3D biostructure data delivery and lay the groundwork for scaling to accommodate hundreds of millions of CSMs.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

The Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) RCSB.org research-focused web portal 1-3 provides open access to a rigorously validated, expertly biocurated collection of ~200,000 experimentallydetermined 3D structures of biological macromolecules stored in the PDB archive. 2,4 It is used annually by many millions of researchers, educators, and students for a range of general and investigative applications. Users can directly access deposited structures or make use of a modular, vet fully-integrated software suite that supports interrogation, visualization, and analyses of 3D protein structures. The RCSB.org web portal is powered by a recently redesigned, highly-flexible, extensible search and data delivery architecture.5 Several application programming interfaces (APIs) support comprehensive search (search.rcsb.org), data delivery (data.rcsb.org), and sequencefocused (1d-coordinates.rcsb.org) functionalities. The cyberinfrastructure architecture was designed to accommodate the ever-growing number of deposited PDB structures, while integrating annotations and other information from \sim 50 trusted external data resources.6,7

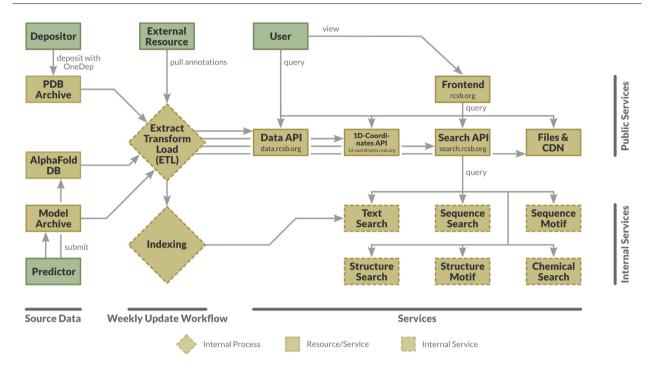
The PDB archive stores ~200,000 experimentally-determined structures from more than 50 years of protein structure determination efforts by researchers working on every inhabited continent. Notwithstanding this impressive metric, there are in fact no experimentally-determined 3D structure data for most of the >200 million protein sequences represented in UniProt.⁸ This chasm between known protein sequences and available 3D biostructures continues to widen despite advances in cryo-electron microscopy, 9,10 etc.

For more than 50 years, scientists have tried to elucidate the relationship between protein sequence and structure to predict protein structures directly from their amino acid sequence. Several key discoveries 11-15 culminated in the development of AlphaFold2¹⁶ by John Jumper and co-workers, which utilizes sequence and 3D structure information, coevolution data, and machine learning (ML) methods. The success of AlphaFold2 in predicting individual protein structures was announced at CASP14 (Critical Assessment of protein Structure Prediction). 17 RoseTTAFold, 18 developed subsequently by David Baker and co-workers, supports prediction of both individual protein structures and those of binary complexes, exemplified with 1,106 heterodimers of Saccharomyces cerevisiae proteins.

Recognizing the benefits of whole proteome coverage, RCSB PDB decided to integrate the first three AlphaFold DB (alphafold.ebi.ac.uk)¹⁰ releases (July 2021, December 2021, and January 2022) and selected RoseTTAFold predictions stored in the ModelArchive (modelarchive.org)²⁰

into RCSB.org. Doing so, allowed users to explore and analyze ~1 million Computed Structure Models (CSMs) alongside experimentally-determined structures.3 Enhancement of RCSB.org with CSMs is particularly useful for proteins of interest not present in the PDB. Several powerful search services allow users to detect similarities between CSMs and experimentally-determined PDB structures, facilitating transfer of annotations and knowledge available for the set of rigorously-validated and expertly-biocurated PDB structures to (currently) annotation-sparse CSMs. Since the advent of AlphaFold2 we have seen advances in multimeric structure prediction²¹ and those without recourse to co-evolutionary information.^{22,23} For currently available CSMs, confidently predicted polypeptide chain segments are comparable in accuracy to lower-resolution experimental structures (i.e., worse than 3.5 Å resolution). 17,24

Herein, we present recent upgrades to RCSB.org architecture (compared to our previous report in 5 and demonstrate how APIs can be leveraged to search for and programmatically retrieve data on $\sim\!1$ million CSMs from AlphaFold DB and ModelArchive. A related publication describes changes to the RCSB.org user interface (UI) and showcases how users can interrogate CSMs with a plethora of browser-based tools.


The following design objectives were established for integration of CSMs into the RCSB.org web portal:

- Integrate CSM data as "first class objects" and treat them just like experimentally-determined PDB structures within RCSB PDB APIs. Doing so enables seamless integration of CSMs into existing cyber infrastructure. This requirement also means that CSM data are propagated throughout the entire data architecture and that all RCSB.org tools will work with CSMs.
- Maintain provenance, allowing clear differentiation between experimentally-determined PDB structures and CSMs. Notwithstanding tight integration (prime objective), it must be clear when atomic coordinates shown within the UI or returned by an API describe experimentally-determined PDB structures or CSMs.
- Extend RCSB PDB adherence to the FAIR principles (Findability Accessibility Interoperability Reusability) to CSMs, and cross-reference CSM resources in the same way as for PDB data.

Methods

Overview of existing architecture

The research-focused RCSB.org web portal is built on a modular microservice architecture (depicted on the right-hand side of Figure 1). Most users will only interact with the frontend service, accessible from RCSB.org. The frontend requests static files, such as 3D structure information, from dedicated endpoints or a content delivery network

Figure 1. Architectural overview of the RCSB.org web portal. Support for CSMs coming from AlphaFold DB and the ModelArchive was added in September 2022.

(CDN, cdn.rcsb.org). More complex data (e.g., perstructure meta-information or mappings between different flavors of identifiers) can be requested via the Data API (data.rcsb.org). Search requests are processed by the Search API (search.rcsb. org), which delegates subqueries to dedicated internal search services and aggregates individual query responses into a single query response. Doing so effectively separates responsibilities of the RCSB PDB search aggregator and actual search implementations. allowing RCSB.org architecture to follow the single responsibility principle. Expert users can directly interact with Data API, 1D-Coordinates API, Search API, and/ or static data. The entire frontend was built upon public RCSB.org services.

Individual services can be accessed using REST (representational state transfer) and/or GraphQL (graphql.org). All services are run on georedundant cyber infrastructure located in bicoastal data centers at Rutgers, The State University of New Jersey and the University of California San Diego. A global DNS (domain name system) directs users to the nearest available data center.

Data delivered by RCSB.org are updated weekly. Every Wednesday, at 00:00 Universal Time Coordinated (UTC), several hundred new experimentally-determined PDB structures are publicly released. These new PDB structures originate from depositions made *via* the Worldwide Protein Data Bank (wwPDB)²⁵ OneDep software system.²⁶ They are rigorously validated and expertly biocurated by one of the wwPDB data cen-

ters (depositions coming from the Americas & Oceania \rightarrow RCSB PDB; Europe and Africa \rightarrow Protein Data Bank in Europe; Asia and the Middle East \rightarrow Protein Data Bank Japan). Every Friday, an ETL (extract transform load) pipeline processes all new 3D biostructure data and enriches it with annotations from \sim 50 external resources. Several search indices are created to facilitate different query styles behind the Search API (e.g., queries by free text, attributes, or identifiers).

Schema changes to support integration of computed structure models

The RCSB.org web portal follows a schema-first approach. This single source of truth simplifies software development, prevents inconsistencies, and improves code maintainability. Source files in mmCIF format contain a plethora of important annotations and metadata. This information is propagated to each service, leveraging the PDBx/ mmCIF (Protein Data Bank Exchange (PDBx) macromolecular Crystallographic Information Framework (mmCIF)) data dictionary²⁷ and a compatible, private schema used by all RCSB.org services. A wwPDB PDBx/mmCIF Working Group manages the data dictionary in collaboration with wwPDB members. Their deliberations and data dictionary content are published on GitHub (github.com/pdbxmmcifwg) and a data portal site (mmcif. wwpdb.org), respectively. ModelCIF is a flexible CSM-focused dictionary extension of the PDBx/ mmCIF data standard which was developed jointly for use with CSMs by the wwPDB and stakeholders drawn from the structure prediction community. CSMs from AlphaFold DB and RoseTTAFoldgenerated CSMs (freely available via ModelArchive) conform to the ModelCIF standard.²⁸ which both improved data integrity and reduced efforts required to integrate additional properties or attributes (such as CSM-specific quality assessment categories) into the RCSB.org cyberinfrastructure. The Model-CIF data dictionary is available at github.com/ ihmwg/ModelCIF. Frameworks describing the PDBx/mmCIF and ModelCIF dictionaries are regulated by Dictionary Definition Language 2 (DDL2), a generic language that supports construction of dictionaries composed of data items grouped into categories.²⁹ DDL2 supports primary data types (e.g., integers, real numbers and text), boundary conditions, controlled vocabularies, and linking of data items together to express relationships (e.g., parent-child related data items). DDL2 is described by its own dictionary and is, therefore, self-validating.

Some additions were made to the RCSB.org internal schema (which can be explored using the top-right "Docs" button at data.rcsb.org/graphql/ index.html). For example, we introduced the "rcsb_comp_model_provenance" category, which tracks provenance of each CSM, and the "rcsb_m a_qa_metric_global" that captures the overall quality of the CSM prediction. Both AlphaFold2 and RoseTTAFold predictions include pLDDT values (predicted local distance difference test; original IDDT score is defined in 30). In addition. changes were made to labels of certain data properties appearing in APIs and the UI, in order to avoid property names that would be misleading in the context of CSMs. For example, "PDB ID" was rebranded as "Entry ID", "Deposition" changed to "Structure Details", and "Deposition Author" was renamed to "Structure Author".

Integrating computed structure models from repositories

The source of AlphaFold2 predictions is AlphaFold DB (alphafold.ebi.ac.uk).10 Its first release in July 2021 encompassed ~360,000 CSMs covering proteomes of 21 model organisms. In December 2021, a second set of predictions for SwissProt database sequences³¹ was released, and predictions covering 32 additional proteomes relevant to global health were released in January 2022. MANE predictions (Matched Annotation from NCBI and EMBL-EBI) were also integrated. These AlphaFold2 predictions number 999,255 (excluding redundancies), all of which are now integrated into RCSB.org. Additionally, we included 1,106 RoseT-TAFold predictions, 19 stored in the ModelArchive (modelarchive.org). More than 200 million Alpha-Fold2 CSMs were released in July 2022. Their integration into RCSB.org is underway.

Local copies of the ModelCIF files were created for both AlphaFold DB and ModelArchive CSMs, so that underlying structure files could be normalized as needed to ensure full compatibility with existing cyberinfrastructure. Local storage reduces strain on upstream repositories, circumvents possible connectivity issues when pulling data from external resources, and enables better overall performance. Newer versions of existing files and/or additional CSMs can be pulled from upstream repositories whenever it is warranted to do so.

Establishing unique identifiers

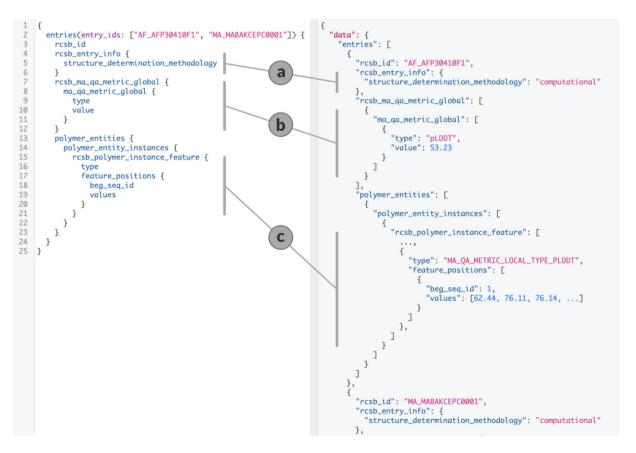
AlphaFold DB and the ModelArchive provide FAIR-compatible identifiers, which are name-spaced and indicate source repository (e.g., "AF-A0A452S449-F1" from AlphaFold DB and "mabak-cepc-0001" from ModelArchive). There is, however, no community-wide standard to enforce this convention of name-spaced identifiers, composed of alphanumeric characters and dashes ("-"). And there is no guarantee that identifiers introduced by other CSM repositories would be unique and/or only composed of alphanumeric characters and dashes.

Custom identifiers were introduced to normalize entry identifiers during loading into the RCSB PDB Data Warehouse. During the loading process, external identifiers are converted into RCSB.orgspecific identifiers, which follow the format "\${database}_\${identifier}" (*e.g.*, identifier "AF-A0A452S449-F1" maps to "AF_AFA0A452S449F1 "). This practice aligns with extended PDB ID (PDB 00001ABC. rcsb.org/news/ 607760112786e73a79c76f9d). which will introduced when all 4-character PDB entry identifiers have been exhausted. In addition, this approach ensures uniqueness, robustness (i.e., protection from non-standard characters), and functionality (i.e., regular expressions distinguish between experimentally-determined PDB structures and CSMs). We also retain original identifiers to maintain provenance, ensure interoperability with external resources, support user searches with original identifiers.

Performance improvements

Weekly updates of the PDB archive typically involve release of information for ~ 300 new experimentally-determined structures. These data are loaded via the Weekly Update Workflow, a process that starts on Fridays and is scheduled to finish no later than 00:00 UTC on Wednesdays, when new PDB data are made public. Sequence clusters are re-computed weekly, including CSM sequences to generate consistent solutions. Every week, indices are recreated for critical information (e.g., entry identifiers, select annotations). Even if source data remained unchanged, external annotations could change from week to week, requiring reindexing. The Weekly Update Workflow runs independently in each of the RCSB PDB bicoastal data centers. More than 100 individual data management tasks are performed within the Workflow, orchestrated by the Luigi framework (github.com/spotify/luigi). Using Luigi worked well for our transition from ~200,000 to >1.2 million structures. Because of the distributed design of Luigi, minimal changes in the RCSB PDB workflow were required to scale it horizontally utilizing additional OpenStack instances (i.e., more CPUs and memory). These process modifications enabled 6-fold speedup of the usual weekly loading process.

Across the entire RCSB PDB Data Warehouse, Elasticsearch (elastic.co) is used for text indexing, while MongoDB (mongodb.com) serves as the database backend of individual services. These enterprise-grade software solutions are readily configurable as distributed systems, facilitating scale up of RCSB PDB operations. A similar strategy can be applied to our scientific search services. For further scaling, data can be divided into shards and distinct instances could process smaller, more manageable data batches. The RCSB PDB microservice-based architecture facilitates scaling of individual services, without affecting others, and allows dynamic deployment of additional instances of resource-strapped services. Scaling would not have been possible


with the legacy monolithic RCSB PDB data and software architecture.

Results

Information for >1 million CSMs is now available *via* the RCSB PDB Data API. Additionally, they can be searched *via* Search API. No "breaking changes" were made and programmatic users can tap into the potential of CSMs with minimal code changes.

Data API: Access metadata of computed structure models

CSMs share endpoints and query definitions with PDB experimentally-determined structures. Information relating to CSMs can be retrieved by providing the corresponding entry, assembly, entity, or instance identifier. Some properties are not relevant for CSMs (e.g., experimental details, PDB archive deposition details, and listings of reports). validation wwPDB Analogously. AlphaFold2 and RoseTTAFold CSMs possess properties distinct from those of PDB structures (e.g., attributes to describe provenance and pLDDT scores). The GraphQL snippet illustrated in Figure 2 summarizes prominent new CSM

Figure 2. Data API query for CSM metadata on the left, response on the right. (a) Indicates whether this entry is a CSM or a PDB structure. (b) Provides the global pLDDT value. (c) Contains per-residue confidence values.

properties: "rcsb_entry_info.structure_determina tion_methodology" delineates experimentally-determined PDB structures and CSMs (Figure 2 (a)), "rcsb_ma_qa_metric_global" provides perstructure quality scores (Figure 2(b)). Per-residue prediction confidence scores are available as polymer instance features (Figure 2(c)).

Search API: Search by properties of computed structure models

The RCSB PDB Search API acts as an aggregator that bundles results from different search services. For example, it is possible to combine a full-text search (Figure 3(a)) with an attribute-based predicate (Figure 3(b)), using the full complement of Boolean operators. Queries do not include CSMs by default (which helps to ensure that programmatic users of RCSB PDB APIs do not face any "breaking changes"). CSMs can be included by specifying "experimental" and "computational" as "results content type" property (Figure 3(c)). This property is optional and defaults to "experimental", excluding CSMs unless explicitly requested. The "rcsb_entry_info.struc ture determination methodology" attribute can be used to build complex gueries encompassing different criteria for experimentally-determined PDB structures and CSMs. Range operators

(Figure 3(b)) enable filtering for CSMs with very high confidence scores, as indicated by average pLDDT scores >90. The "rcsb_comp_model_prove nance.source_db" attribute captures the origin of a CSM and allows filtering for "AlphaFoldDB" or "ModelArchive" entries. By default, experimentally-determined structures are prioritized over CSMs and fine-grained sorting options are available to adjust this behavior.

The Search API depends on several internal scientific search services. An Elasticsearch cluster implements text- and attribute-based searches, allowing users to guery by full text (comparable to a Google search) and by predicates on single attributes (e.g., length of a polymer chain between 100 and 120 residues). "Off-the-shelf" implementations are used for chemical similarity (OpenEye Chemical Toolkit. evesopen.com/ oechem-tk) sequence and searching (MMseqs2).32 Structure similarity searching is implemented using BioZernike descriptors. 33 which capture the 3D shape of proteins using 3D Zernike moments and enable efficient comparisons. Specific 3D arrangements of small groups of residues (such as the Serine-Histidine-Aspartate catalytic triad) can be detected using the structure motif search service.³⁴ An in-house library based on regular expressions allows searching for sequence motifs. These internal services were adapted to

```
"query": {
  "type": "group",
  "nodes": [
                                                                                                                                       "query_id": "52edff31-1a3d-42f7-a7be-ed42e03729e2",
                                                                                                                                        result_type": "entry",
'total_count": 3,
                "type": "terminal", "service": "text",
                                                                                                                                         {
    "identifier": "AF_AF016395F1",
                 "parameters": {
    "attribute": "rcsb_polymer_entity.pdbx_description",
    "value": "Insulin/EGF-Receptor L Domain protein", "operator": "contains_phrase
                                                                                                                                            "score": 1
10
11
12
13
14
15
16
17
18
19
                                                                                                                                            "identifier": "AF_AFQ9N570F1",
                                                                                                                                            "score": 1
                 "type": "group",
"nodes": [
                                                                                                                                            "identifier": "AF_AFQ9U8C9F1",
                     "type": "group",
"nodes": [
                           "type": "terminal", "service": "text",
20 21 22
                           "parameters": {
    "attribute": "rcsb_ma_qa_metric_global.ma_qa_metric_global.value",
                              "value": 90, "operator": "greater_or_equal"
b
                            "type": "terminal", "service": "text",
                           "parameters": {
   "attribute": "rcsb_ma_qa_metric_global.ma_qa_metric_global.type",
27
28
29
30
31
32
33
34
35
36
37
38
                              "value": "pLDDT", "operator": "exact_match'
                        }
                      "logical_operator": "and"
                ],
"logical_operator": "and"
             }
          ],
"logical_operator": "and"
39
40
        },
"return_type": "entry",
          request_options": {
            "results_content_type": ["computational", "experimental"]
```

Figure 3. Search API query with predicate based on CSM metadata on the left, response on the right. (a) Text query. (b) Filters for very high pLDDT confidence values >90. (c) Requests CSMs.

honor the "results_content_types" property, which reduces computational load on internal services if a query is restricted to PDB structures.

Assessment for computed structure models

Easy access to 3D biostructure quality assessment measures is a critical feature of the RCSB.org web portal. Structure validation is crucial when gauging the potential utility of PDB structures. Experimentally-determined structures are rigorously validated and expertly biocurated by the global wwPDB Biocuration Team at the time of deposition. CSMs lack this "gatekeeping" step and low confidence predictions are inevitable. Alpha-Fold2 and RosettaFold generate per-residue pLDDT values (see above), which serve as prediction confidence measures.

The Data API provides access to global and perresidue pLDDT values for each integrated CSM and each of its polymer instances, respectively (the first in the dedicated "rcsb_ma_qa_metric_global" category, the second as a new instance feature of type "MA_QA_METRIC_LOCAL_TYPE_PLDDT"). Low confidence regions of CSMs with pLDDT values <70 are ignored by the structure similarity and structure motif search services, which reduces false-positives in the search result set. Users can also sort and filter by average ("global") pLDDT values of CSMs and further narrow their result set to high confidence predictions, as desired.

Documentation and help pages

A comprehensive collection of help topics (rcsb. org/docs) describes services and views available on the RCSB.org web portal. Extant documentation was updated to include information for CSMs. In parallel, dedicated help pages pertaining to CSMs were added. Each of the RCSB PDB public services and APIs offers documentation for programmatic users (e.g., search.rcsb.org for Search API and data.rcsb.org for Data API). These resources are regularly updated based on user feedback and questions coming into the RCSB.org Customer Service Help Desk.

Availability

Referenced backend services are available at search.rcsb.org, data.rcsb.org, and 1d-coordinates.rcsb.org.

Many underlying projects are open-source GitHub projects and can be used as software dependencies. These projects may be of assistance to users adapting codebases for use with CSMs. Public software projects include the Mol* 3D viewer (github.com/molstar/molstar), 35 its RCSB.org-specific flavor (github.com/molstar/rcsb-molstar), a 2D macromolecular image renderer (github.com/molstar/molrender), the Protein

Feature Viewer stack (github.com/rcsb/rcsb-saguaro, github.com/rcsb/rcsb-saguaro-app, github.com/rcsb/rcsb-saguaro-3d), 36,37 the UI of the Alignment application (github.com/rcsb/rcsb-pecos-app), CIF parsers (github.com/rcsb/ciftools-java, github.com/rcsb/py-mmcif) supporting BinaryCIF³⁸ and ModelCIF, 28 BioJava (github.com/biojava/biojava), 39 for 3D structure management and analysis, volume/shape-based structure similarity search (github.com/biocryst/biozernike), 33 and structure motif search (github.com/rcsb/strucmotif-search). 34

Discussion

Integration of CSMs within the RCSB.org web portal allows users for the first time to navigate >1 million high-value CSMs coming from AlphaFold DB and ModelArchive. RCSB.org offers unique tools to search by sequence similarity, sequence motif, structure similarity, or structure motif, and detect resemblances between and among CSMs and/or experimentally-determined PDB structures. Several other groups have also made substantial progress when it comes to providing some of these search services. 40–42 The unique feature of the newly-released version of RCSB.org, however, lies in the fact that every-one of these scientific search services can be accessed in a one-stopshop. This unified functionality allows users to define complex queries by combining multiple search services (e.g., combining sequence similarity and structure comparison). Updated RCSB PDB APIs provide direct access to the underlying data and require minimal adjustment by programmatic users who want to tap into the enormous potential of >1 million CSMs.

Going forward, our highest priority is to further scale RCSB PDB cyberinfrastructure to integrate the current AlphaFold DB release of ~214 million predictions. In addition, we plan to integrate external annotations specific to CSMs^{43,44} and improve RCSB.org tools available for synchronizing annotations between experimentally-determined PDB structures with CSMs (*e.g.*, by implementing such features in our structure alignment tools). In the longer term, we will solicit input from RCSB PDB data consumers to determine how best to continue making PDB structures available alongside the rapidly-growing corpus of CSMs being made available worldwide.

CRediT authorship contribution statement

Sebastian Bittrich: Writing — original draft, Conceptualization, Methodology, Software, Visualization. Charmi Bhikadiya: Methodology, Software, Visualization. Chunxiao Bi: Conceptualization, Methodology, Software, Visualization. Henry Chao: Methodology,

Software. Jose M. Duarte: Conceptualization, Software. Supervision. Methodology. administration, Writing - review & editing. Shuchismita Dutta: Conceptualization, Methodology, Writing - review & editing. Maryam Fayazi: Methodology, Software. Jeremy Henry: Methodology, Software. Igor Khokhriakov: Conceptualization. Methodology, Software. Robert Lowe: Conceptualization, Methodology, Software. Supervision. **Dennis** W. Piehl: Conceptualization, Methodology, Software, Project administration, Writing - review & editing. Joan Methodology, Segura: Conceptualization, Software, Visualization. Brinda Vallat: Conceptualization, Methodology, Software. Maria **Voigt:** Conceptualization, Methodology, Software, Visualization. John D. Westbrook: Conceptualization. Fundina acquisition. Methodology, Software, Supervision. Stephen K. Burley: Conceptualization, Supervision, Funding acquisition, Writing - review & editing. Yana Rose: Conceptualization. Supervision, Methodology, Project administration, Software. Visualization, Writing - original draft.

Acknowledgements

First and foremost, the authors thank the tens of thousands of structural biologists who deposited structures to the PDB since 1971 and the many millions around the world who consume PDB data. The authors also gratefully acknowledge contributions to the success of the PDB archive made by all members of RCSB PDB, past and present, and our wwPDB partners.

The authors are also grateful to AlphaFold DB, RoseTTAFold, and ModelArchive teams for making their data publicly available. We also acknowledge the wwPDB ModelCIF Working Group for their data standardization efforts. Finally, we thank Mandar Deshpande, Alexander S. Rose, David Sehnal, and all Mol* contributors for implementing pLDDT-based coloring.

RCSB PDB is jointly funded by the National Science Foundation (DBI-1832184, PI: S.K.B.), the US Department of Energy (DE-SC0019749, PI: S.K.B.), and the National Cancer Institute, National Institute of Allergy and Infectious Diseases, and National Institute of General Medical Sciences of the National Institutes of Health under grant R01GM133198 (PI: S.K.B.).

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Received 18 November 2022; Accepted 28 January 2023; Available online 2 February 2023

Keywords:
FAIR principles;
computer architecture;
databases;
structural biology;
protein structure prediction

† Deceased.

Abbreviations:

RCSB PDB, Research Collaboratory for Structural Bioinformatics Protein Data Bank; 3D, three-dimensional; CSM, Computed Structure Model; API, Application Programming Interface; ML, Machine Learning; CASP, Critical Assessment of protein Structure Prediction; UI, User Interface; FAIR principles, Findability Accessibility Interoperability Reusability; CDN, Content Delivery Network; REST, REpresentational State Transfer; DNS, Domain Name System; UTC, Universal Time Coordinated; wwPDB, worldwide Protein Data Bank; ETL, Extract Transform Load; DDL2, Dictionary Definition Language 2; pLDDT, predicted Local Distance Difference Test; PDBx/mmCIF, Protein Data Bank Exchange (PDBx) macromolecular Crystallographic Information Framework (mmCIF)

References

- Burley, S.K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G.V., et al., (2022). RCSB Protein Data Bank: Celebrating 50 years of the PDB with new tools for understanding and visualizing biological macromolecules in 3D. Protein Sci. 31, 187–208.
- Burley, S.K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G., et al., (2021). RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering, and energy sciences. Nucleic Acids Res. 49, D437–D451.
- Burley, S.K., Bhikadiya, C., Bi, C., Bittrich, S., Chao, H., Chen, L., et al., (2023). RCSB Protein Data Bank (RCSB. org): Delivery of Experimentally-Determined PDB Structures Alongside One Million Computed Structure Models of Proteins from Artificial Intelligence/Machine Learning. Nucleic Acids Res. 51, D488–D508.
- 4. Protein Data Bank, (1971). Crystallography: Protein Data Bank. *Nature (London), New Biol.* **233**, 223.
- Rose, Y., Duarte, J.M., Lowe, R., Segura, J., Bi, C., Bhikadiya, C., et al., (2021). RCSB Protein Data Bank: Architectural Advances Towards Integrated Searching and Efficient Access to Macromolecular Structure Data from the PDB Archive. J. Mol. Biol. 433, 166704
- Burley, S.K., Berman, H.M., Duarte, J.M., Feng, Z., Flatt, J. W., Hudson, B.P., et al., (2022). Protein Data Bank: A Comprehensive Review of 3D Structure Holdings and

- Worldwide Utilization by Researchers, Educators, and Students. *Biomolecules* **12**, 1425.
- Bittrich, S., Rose, Y., Segura, J., Lowe, R., Westbrook, J., Duarte, J.M., et al., (2022). RCSB Protein Data Bank: Improved Annotation, Search, and Visualization of Membrane Protein Structures Archived in the PDB. Bioinformatics 38, 1452–1454.
- UniProt Consortium, (2021). UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480– D489.
- de Oliveira, T.M., van Beek, L., Shilliday, F., Debreczeni, J. É., Phillips, C., (2021). Cryo-EM: the resolution revolution and drug discovery. SLAS Discovery 26, 17–31.
- Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., et al., (2022). AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with highaccuracy models. *Nucleic Acids Res.* 50, D439–D444.
- Göbel, U., Sander, C., Schneider, R., Valencia, A., (1994).
 Correlated mutations and residue contacts in proteins. *Proteins: Struct. Funct. Bioinf.* 18, 309–317.
- Rost, B., Sander, C., (1994). Combining evolutionary information and neural networks to predict protein secondary structure. *Proteins: Struct. Funct. Bioinf.* 19, 55–72.
- Marks, D.S., Colwell, L.J., Sheridan, R., Hopf, T.A., Pagnani, A., Zecchina, R., et al., (2011). Protein 3D structure computed from evolutionary sequence variation. *PLoS One* 6, e28766.
- Garnier, J., Osguthorpe, D.J., Robson, B., (1978). Analysis
 of the accuracy and implications of simple methods for
 predicting the secondary structure of globular proteins. *J. Mol. Biol.* 120, 97–120.
- Chothia, C., Lesk, A.M., (1986). The relation between the divergence of sequence and structure in proteins. *EMBO J.* 5, 823–826.
- Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., et al., (2021). Highly accurate protein structure prediction with AlphaFold. *Nature* 596, 583–589.
- Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K., Moult, J., (2021). Critical assessment of methods of protein structure prediction (CASP)-Round XIV. *Proteins: Struct. Funct. Bioinf.* 89, 1607–1617.
- Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J., Ovchinnikov, S., Lee, G.R., et al., (2021). Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876.
- Humphreys, I.R., Pei, J., Baek, M., Krishnakumar, A., Anishchenko, I., Ovchinnikov, S., et al., (2021). Computed structures of core eukaryotic protein complexes. *Science* 374, eabm4805.
- Schwede, T., Sali, A., Honig, B., Levitt, M., Berman, H.M., Jones, D., et al., (2009). Outcome of a workshop on applications of protein models in biomedical research. Structure 17, 151–159.
- Evans, R., O'Neill, M., Pritzel, A., Antropova, N., Senior, A., Green, T., et al., (2022). Protein complex prediction with AlphaFold-Multimer. bioRxiv. https://doi.org/10.1101/ 2021.10.04.463034.
- Wu, R., Ding, F., Wang, R., Shen, R., Zhang, X., Luo, S., et al., (2022). High-resolution de novo structure prediction from primary sequence. *bioRxiv*. https://doi.org/10.1101/2022.07.21.500999.

- Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W., et al., (2022). Evolutionary-scale prediction of atomic level protein structure with a language model. *bioRxiv*. https://doi.org/ 10.1101/2022.07.20.500902.
- 24. Shao, C., Bittrich, S., Wang, S., Burley, S.K., (2022). Assessing PDB Macromolecular Crystal Structure Confidence at the Individual Amino Acid Residue Level. Structure 30, 1385–1394.
- wwPDB consortium, (2019). Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res. 47, D520–D528.
- Young, J.Y., Westbrook, J.D., Feng, Z., Sala, R., Peisach, E., Oldfield, T.J., et al., (2017). OneDep: Unified wwPDB System for Deposition, Biocuration, and Validation of Macromolecular Structures in the PDB Archive. Structure 25, 536–545.
- Westbrook, J.D., Young, J.Y., Shao, C., Feng, Z., Guranovic, V., Lawson, C., et al., (2022). PDBx/mmCIF Ecosystem: Foundational semantic tools for structural biology. J. Mol. Biol. 434, 167599
- Vallat, B., Tauriello, G., Bienert, S., Haas, J., Webb, B.M., Zidek, A., et al., (2022). ModelCIF: An extension of PDBx/mmCIF data representation for computed structure models. bioRxiv. https://doi.org/10.1101/2022.12.06.51855.
- Westbrook, J.D., Berman, H.M., Hall, S.R., (2005). 2.6 Specification of a relational Dictionary Definition Language (DDL2). In: Hall, S.R., McMahon, B. (Eds.), *International Tables for Crystallography*. Springer, Dordrecht, The Netherlands, pp. 61–72.
- Mariani, V., Biasini, M., Barbato, A., Schwede, T., (2013).
 IDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. *Bioinformatics* 29, 2722–2728.
- Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.-C., Estreicher, A., Gasteiger, E., et al., (2003). The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370.
- Steinegger, M., Soding, J., (2017). MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. *Nat. Biotechnol.* 35, 1026–1028.
- Guzenko, D., Burley, S.K., Duarte, J.M., (2020). Real time structural search of the Protein Data Bank. *PLoS Comput. Biol.* 16, e1007970.
- Bittrich, S., Burley, S.K., Rose, A.S., (2020). Real-time structural motif searching in proteins using an inverted index strategy. *PLoS Comput. Biol.* 16, e1008502.
- Sehnal, D., Bittrich, S., Deshpande, M., Svobodova, R., Berka, K., Bazgier, V., et al., (2021). Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. *Nucleic Acids Res.* 49, W431– W437.
- Segura, J., Rose, Y., Bittrich, S., Burley, S.K., Duarte, J.M., (2022). RCSB Protein Data Bank 1D3D module: Displaying positional features on macromolecular assemblies. *Bioinformatics* 38, 3304–3305.
- Segura, J., Rose, Y., Westbrook, J., Burley, S.K., Duarte, J.M., (2020). RCSB Protein Data Bank 1D tools and services. *Bioinformatics* 36, 5526–5527.
- Sehnal, D., Bittrich, S., Velankar, S., Koča, J., Svobodová, R., Burley, S.K., et al., (2020). BinaryCIF and CIFTools— Lightweight, Efficient and Extensible Macromolecular Data Management. PLoS Comput. Biol. 16, e1008247.

- Lafita, A., Bliven, S., Prlic, A., Guzenko, D., Rose, P.W., Bradley, A., et al., (2019). BioJava 5: A community driven open-source bioinformatics library. *PLoS Comput. Biol.* 15, e1006791.
- van Kempen, M., Kim, S.S., Tumescheit, C., Mirdita, M., Söding, J., Steinegger, M., (2022). Foldseek: fast and accurate protein structure search. *bioRxiv*. https://doi.org/ 10.1101/2022.02.07.479398.
- Holm, L., (2022). Dali server: structural unification of protein families. *Nucleic Acids Res.* 50, W210–W215.
- 42. Aderinwale, T., Bharadwaj, V., Christoffer, C., Terashi, G., Zhang, Z., Jahandideh, R., et al., (2022). Real-time

- structure search and structure classification for AlphaFold protein models. *Commun. Biol.* **5**, 1–12.
- Bordin, N., Sillitoe, I., Nallapareddy, M.V., Rauer, C., Lam, S.D., Waman, V.P., et al., (2022). AlphaFold2 reveals commonalities and novelties in protein structure space for 21 model organisms. *bioRxiv*. https://doi.org/10.1101/ 2022.06.02.494367.
- Dobson, L., Szekeres, L.I., Gerdán, C., Langó, T., Zeke, A., Tusnády, G.E., (2022). TmAlphaFold database: membrane localization and evaluation of AlphaFold2 predicted alphahelical transmembrane protein structures. *Nucleic Acids Res.* 51, D517–D522.