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Abstract—Real-time identification of outage locations in power
distribution systems is an essential task for utilities to mitigate
the negative impact of power system outages. In this paper, a
learning-based model-assisted method is developed for identifying
outage locations in power distribution systems in real time.
Notably, the method utilizes primarily only a) sparsely located
supervisory control and data acquisition (SCADA) measurements,
and potentially b) last gasp signals from a small number of smart
meters. The method exploits offline training of outage location
predictors based on data simulated with synthetically generated
load profiles and outage scenarios. The trained predictors can
then be used in an online fashion to accurately identify outage
locations in new scenarios in real time. With physical-model-based
network partitioning, the offline learning is decoupled into training
predictors for much smaller sub-regions so that the learning
efficiency is much improved. Importantly, the trained predictors
based only on SCADA measurements and entropy loss functions
can be integrated with smart meter last gasp signals, without
loss of any optimality, regardless of smart meter locations, outage
scenarios, and performance evaluation metrics. Evaluation of the
method based on real-world power distribution feeder and load
data demonstrates high accuracy in outage location identification
even using SCADA measurements only. We then demonstrated how
having just a handful of smart meters with last gasp capabilities
can further improve the outage location accuracy significantly.

I. INTRODUCTION

One of the most fundamental tasks of utilities in maintaining
high power system reliability is identifying outage locations.
Identifying line outages in a fast and accurate manner can
greatly improve utilities’ outage management and restoration.
Indeed, outage location identification is the first key com-
ponent of the so-called FLISR (fault location, isolation, and
service restoration) tasks. However, locating outages in real
time remains a challenging task in utilities’ practice. With the
ongoing transformation of power distribution systems such as
load eletrification and DER integration, real time outage location
is even more important and challenging.

Traditionally, utilities rely heavily on customer calls to locate
outages in their systems. Beyond this, there has been extensive
research on outage location identification based on a variety of
information sources. For power distribution systems with radial
topologies, based on intermittently updated smart meter load
measurements and real-time line sensor measurements, optimal
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algorithms are developed for outage location identification and
line sensor placement [1] [2]. A generative adversarial network
is used to detect outages in partially observable distribution sys-
tems by capturing anomalous changes in smart meter data [3]. A
spectral clustering-based outage detection algorithm is proposed
in [4]. [5] introduces a multiple-hypothesis method that utilizes
data from smart meters and fault indicators to identify outage
locations. A mathematical programming approach is employed
in [6] to jointly estimate the topology of the distribution
system and outages within the system. [7] employed a multi-
label SVM approach to identify line outages in AMI-enabled
distribution networks. Relaxing the real-time requirement of
outage location identification a bit, a Bayesian network-based
method is proposed for outage location in distribution systems
by fusing data from multiple sources [8]. Notably, existing work
exploiting smart meters for real-time outage identification all
rely on the knowledge of actual smart meter measurements of
physical quantities such as loads. In practice, however, real-time
communications with these smart meters are often unavailable,
except for outage-triggered “last gasp” signals that notify system
operators when any metered households go into outages.

In this work, we develop a real-time outage location identi-
fication method that utilizes primarily only a) sparsely located
SCADA sensors, and potentially b) last gasp signals from a
handful of smart meters. As such, the developed method can be
widely employed in practice. The method employs a framework
similar to the spirit of [9]: it exploits offline learning based
on simulated synthetic load, outage, and measurement data to
train effective outage location predictors for online uses in real
time. Several physical-model-based principles are utilized to
reduce the dimension of the learning tasks by partitioning the
power network into much smaller sub-regions without loss of
any performance optimality. We further showed that the learn-
ing procedure can be conducted independently with potential
subsequent incorporation of any smart meter last gasp signals,
again without loss of any optimality. Evaluation based on real-
world feeder and load data demonstrated that the developed
method, even with SCADA measurements only, can identify
outage locations with reasonably high accuracy. Moreover, with
just a small number of smart meters providing last gasp signals,
the identification accuracy can be further improved significantly.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a power distribution system with single, two-phase,
or three-phase distribution lines. During its operations, the
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circuit breaker statuses always satisfy that the network topology
is radial. We assume that the topology and line parameters
are known to the system operator. An illustrative example is
depicted in Figure 1. In this example, buses connected by only
a single phase line are denoted by the phase “A”, “B”, or “C”
next to the bus index. Located on each bus are end users.
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Figure 1: An illustrative diagram of a distribution system.

As typically present in supervisory control and data acqui-
sition (SCADA) systems in power distribution systems, we
assume that the following sensors exist in the system:

e A sensor located at the feeder head that measures the
complex voltage and currents of all the existing phases at
the feeder head. For short, we term sensors that measure
both complex voltages and currents “flow sensors”.

» Flow sensors located at connected circuit breakers that
measure the complex voltages and currents of all the
existing phases on the connected circuit breakers.

» Voltage sensors located at disconnected circuit breakers and
capacitor banks that measure the complex voltages of all
the existing phases at the buses connected to them.

These SCADA sensors provide real-time measurements updated
every few seconds. Notably, the presence of SCADA sensors is
often very sparse, thus providing real-time but only sparsely
located measurements in the system.

In addition, there are potentially also smart meters present
in the system. Notably, we do not make any assumption about
their presence; in the extreme case, there could be no smart
meter at all. In practice, a smart meter measures the nodal
loads but does not communicate its measurements in real time to
the system operator, (a typical communication schedule would
be daily). Thus, unlike SCADA, we do not assume any real-
time measurements from smart meters present in the system.
Nonetheless, a smart meter often provides a “last gasp” signal
in real time when the household it measures goes into outage.
As such, such outage-event-triggered last gasp signal is the only
assumed real-time information available from smart meters.

When a line outage occurs in the system, the objective of this
work is to identify, in real time, the location of the line outage
based on all the real-time information available, i.e., real-time
measurements from SCADA sensors, and any last gasp signals
from smart meters if they exist. It is important to note that the
real-time nodal load information is not available for use.

III. METHODOLOGY

As we do not make any assumption about the existence and
locations of smart meters, we consider the case without any
smart meter as a “baseline” case, and then address the general
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Figure 2: Offline training for online prediction.

case with arbitrary smart meter deployment. To be clear, such
a baseline case is in fact the most challenging one in terms of
achieving high performance, because any available smart meter
last gasp signals would always help improve the performance
as they reduce the set of possible line outage hypotheses.

For the baseline case, due to the typically very sparse pres-
ence of SCADA sensors, it is intuitively very challenging to
identify the location of an outage based only on the SCADA
measurements. The difficulty is especially compounded by the
fact that the nodal load information is not available. It is thus
perfectly possible that one outage under some geographical
load profile can lead to SCADA measurements very similar
to those observed with a different outage under some other
geographical load profile. On the flip side, load profiles in
practice are not arbitrary, and the statistical rarity of such
“adversarial” scenarios could imply that a desirable accuracy of
outage location identification may still be achievable. To fully
capture and exploit the intricate relations between outages and
the corresponding SCADA measurements, we employ a data-
driven approach that trains predictors that take only SCADA
measurements as inputs and output outage locations. The general
steps are as follows:

o Offline: Generate synthetic load-outage-measurements data
via extensive simulations.

o Offline: Train predictors based on the simulated data.

o Online: Utilize the trained predictors to produce real-time
decisions of outage locations facing new load and outage
scenarios.

An overall diagram of this offline-learning-from-simulation and
online-prediction framework is depicted in Figure 2. We note
that this framework resembles the “learning-to-infer” approach
as developed in [9]. Under this framework, we exploit the
characteristics of the physical models of the grid and sensors
to simplify the learning process. In short, rather than training
an overall predictor for an entire feeder that encompasses all
the lines as potential outage locations, network partitioning can
be performed so that outages across different partitions can be
perfectly distinguished based on physical laws. As such, the
learning needs only be performed with much smaller sets of
hypotheses, and thereby the learning efficiency can be much
improved. More details follow.

A. Synthetic Data Generation

Ideally, synthetic nodal load data should be generated fol-
lowing the same statistical distribution as the real-world load
data. However, knowledge of the latter at a granular time scale
(e.g., hourly or shorter) can only be available if smart meters
are present. As smart meters are not necessarily available in
practice, we cannot assume synthetic data can be generated
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Figure 3: Synthetic load data generation. Left: hourly load
profile in the entire region measured by flow sensors. Middle:
baseline load profile at each bus scaled by monthly load. Right:
random synthetic load profile generated by gamma distribution,
with mean equals to the baseline load profile at each time.

as such. Indeed, we again make no assumption about the
presence of smart meters when generating the synthetic load
data. As such, our data generation process is widely applicable
in practice.

Specifically, our synthetic load data generation only relies
on information that all utilities have access to: a) time series
of aggregate load measurements by SCADA sensors at feeder
heads and circuit breakers, and b) individual customers’ monthly
total loads measured for billing purposes. Notably, the former
is granular in time but aggregate in customers, while the latter
is granular in customers but aggregate in time. In essence, we
would like to utilize these two types of information to generate
synthetic loads that are granular in both time and customers.
The process is as follows (cf. Figure 3):

1) From the time series of aggregate loads and the individual
monthly loads, we generate “baseline” loads at all the
buses that a) share the same temporal profile as the
aggregate time series, and b) have different magnitudes
proportional to their monthly totals.

2) The synthetic load at each time and each bus is then ran-
domly generated by passing the above baseline loads into
the Gamma distribution as means. The reason of choosing
Gamma distribution is that it faithfully characterizes load
distribution based on the real-world data set we use.

3) The real power P and reactive power () at each bus at
each time are then generated as follows:

a) P takes the value of the randomly generated load.
b) @ is determined by P and the power factor (PF) of
the load at the corresponding bus:

Q = P x (tan(arccos (PF))).

Without assuming smart meter data, the precise
values of these PFs are unknown. We pick the PF
values randomly between 0.9 and 0.99 for each bus
at each time [10].

With the synthetic load data, we can then simulate line outages
at all potential outage locations, and compute the resulting
SCADA measurements from such outages and load profiles.

B. Network Partitioning

We now exploit the physical characteristics of the distribution
system and the sensor locations to decouple an entire feeder
into regions where outages from each region can be perfectly
distinguished by physical-model-based logic rules. In short, we
first partition the feeder into regions according to the locations
of the circuit breakers and capacitor banks where flow and
voltage sensors are deployed. Next, within each region, the

network is further partitioned according to line phases. While
the partitioning principles are theoretically proven as follows,
we indeed observe that such partitioning is numerically 100%
validated by our trained predictors. In other words, we observe
that predictors trained in a completely data-driven fashion that
are agnostic to the physics-based network partitioning principles
can automatically distinguish outages among different partitions
with 100% accuracy.

1) Network Partitioning by SCADA Sensor Locations: Con-
sider there are M flow sensors, including the one located at
the feeder head, in a distribution system with a radial topology.
The distribution system is then partitioned into M regions, each
again having a radial topology with a flow sensor located at its
root and potentially other flow sensors at some of its leaves. An
illustrative example is depicted in Figure 1 where the feeder is
partitioned into two regions, A\; U Ay and \3. Outage detection
in these two regions can then be independently performed (see
[1] [2] for more details). Furthermore, with the voltage sensor,
outages from \; and Ay can be perfectly distinguished by simply
examining whether each sensor measures anything non-zero.

2) Network Partitioning by Line Phases: Regions can be
further partitioned into sub-regions based on line phases. For
example, a three-phase line outage will create an impact on
all the three-phase voltages and currents measured by SCADA
sensors. In contrast, a single-phase line outage will only affect
the currents and voltages of that specific phase. Another piece
of information is again whether each SCADA sensor at one of
the leaves of a region measures anything non-zero: if a SCADA
sensor at a leaf measures a zero voltage, there must be an outage
on the path from this leaf to the feeder head. Otherwise, there
must be no such outage on this path. An illustrative example of
such further partitioning into sub-regions is depicted in region
A1 in Figure 1: each section of \; in a different color represents
a partitioned sub-region, and outages in different sub-regions can
be distinguished from each other perfectly.

C. Offline Training for Online Prediction

Within each sub-region, we perform offline training of a
multi-class predictor, with each class corresponding to a possible
outaged line, based on the generated synthetic dataset. In par-
ticular, we employ the entropy loss as the training loss function.
This implies that the trained multi-class predictor automatically
produces the estimated posterior probability of each line outage
hypothesis. As such, a confusion matrix can be computed that
consists of, for each (¢, j) pair, the probability of hypothesis 4
being declared when hypothesis j is the ground truth.

During testing in practice, the metric by which an outage
location identification decision is evaluated can depend on real-
world causes. One such practical metric is the average error
distance (AED), i.e., the average geographical distance between
the declared line outage and the true line outage. The shorter the
AED, the less traveling overhead a repair crew would experience
for finding and addressing the outaged line. Specifically, the
expression of AED/, i.e., the average error distance when line ¢
is in outage, is as follows:

n
AED; = ) djj x pjj ()
j=1

where D = [d;;] € R"*" is the distance matrix across all the
line locations, and P = [pj;] € R"*" is the confusion matrix.
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Importantly, regardless of what practical metric is desired,
the posterior probabilities are always sufficient statistics for
optimizing any evaluation metric. Therefore, it is sufficient to
train the predictors using the entropy loss so that the posterior
probabilities are estimated, and the trained predictors can then
be used, without loss of optimality, to make outage location
identification decisions based on whatever practical metric (such
as AED). In other words, there is no need to re-train predictors
tailored to different metrics.

D. Incorporating Smart Meter Last Gasps

When a smart meter is deployed at a bus, (or more precisely,
at one of the customers on that bus,) if this bus is in an outage,
a last gasp signal will be sent from the smart meter to the grid
operator. Therefore, whether a last gasp signal is received from a
smart meter further changes the set of possible lines on which an
outage could have occurred. As such, summarizing the snapshot
of whether a last gasp signal is received from each smart meter
present in the system, each partitioned sub-region can be further
reduced to an even smaller set of outage hypotheses.

Notably, the impact of the smart meters on the outage
hypotheses depends on not only a) the locations of the smart
meters, but also b) the instances of last gasps signals. Both can
change over time as a) the locations can evolve with new smart
meter deployment, and moreover b) the actual last gasps signals
can vary across different outage instances. Fortunately, we will
show next that it is again not necessary to re-train predictors
tailored to any specific reduced set of hypotheses based on last
gasp signals. Instead, it is sufficient to train predictors only
for the baseline case without smart meters, and optimal outage
location identification decisions can be made by jointly utilizing
the trained predictors and whatever last gasp signals there are.

Specifically, consider the posterior hypothesis probabilities
provided by the predictor trained for a baseline case, denoted
by P(x = i) for all potential outage locations i in a sub-
region. Consider that the last gasp signals reduce the set of
possible outage hypotheses to a subset S. The updated posterior
probabilities given the last gasp signals can then be computed
as follows: for i ¢ S, P(x =ilx€S) =0; fori e S,

Pz =1)

= —_ (2)

As such, the updated posterior probabilities can be straightfor-
wardly computed based on the “baseline” posterior probabilities
{P(x = 1),Vi} using (2). In other words, these baseline
posterior probabilities are again sufficient statistics. As such,
regardless of the actual smart meter locations and their last
gasp signals, it is sufficient to just train a baseline predictor
assuming no smart meter presence. This decoupling between
the learning and the optimal decision-making based on smart
meter last gasp signals greatly simplifies the outage location
identification method.

IV. DATA-DRIVEN EVALUATION

We evaluate the proposed method based on real-world data
of a distribution system feeder in the Midwest U.S. with time
series load data available at each bus [10]. We note that, since
we make no assumption of smart meter presence, throughout

our evaluation we do not assume that the system operator has
any access to the nodal time-series load data. These load data
are only used in festing for generating realistic testing scenarios.

A. Data Preparation

1) Synthetic Data Generation: Based on the method de-
scribed in Section III-A, a total of 100,000 samples of smart
meter data are generated. The coefficient of variance (CV, i.e.,
standard deviation to mean ratio) used to generate random
load on each bus is set as 0.7. This is higher than the real-
world average CV of 0.43 so that the generated synthetic load
data have good coverage of the real-world situations. With the
generated load data, outage scenarios are generated for all the
lines and AC-power flow is simulated in OpenDSS with which
SCADA sensor readings are recorded.

Notably, the generated synthetic data are used for training and
validation (with a 5-fold cross-validation). The testing data are
based on real-world nodal load time series collected from this
feeder. As such, none of the testing data is seen during training
as the training is solely based on synthetic load data.

2) Estimating Real-world Bus Locations: To evaluate outage
location identification performance with the AED metric (1),
we would need the locations of all the buses. The real-world
coordinates of the buses are however not available from the
feeder data set. We reconstructed the approximate real-world
system topology by estimating the bus locations based on
line lengths as well as the relative directions between each
bus provided in the system model. For example, after our
reconstruction, the abstract topology of a part of the feeder as
depicted in Figure 4 has the approximate real-world topology
as depicted in Figure 6.

B. Predictor Model

Within each sub-region, we employ fully connected neural
networks (FCNNs) with skip connections to train a predictor
for the multi-class classification problem of outage location
identification. The FCNN with skip connections is a predictor
model architecture that enhances the model’s ability to capture
both local and global dependencies within the data. By incor-
porating skip connections, the model can effectively propagate
information from earlier layers to later layers, allowing for
the preservation of valuable features throughout the network.
Rectified Linear Units (ReLLUs) are employed as the activation
function. As we conduct semi-static power flow simulations, the
input to a predictor consists of SCADA measurements at two
time instances: one is right before an outage and another is right
after the outage. The outputs are the posterior probabilities of
the outages on all the lines in the sub-region.

C. Line Outage Location ldentification

We first evaluated our proposed method on a region consisting
of 48 buses from the original 240-bus system. The two blue
blocks indicate flow sensors on the connected circuit breakers,
and the three orange circles indicate voltage sensors on the
capacitor banks and disconnected circuit breakers. The subsets
of lines of different colors are the partitioned sub-regions of this
region (cf. Section III-B). We present the line outage location
identification accuracy achieved with the trained predictors for
the baseline case without any smart meter. In Figure 4, the
color-coding of the line indices represents the accuracy of outage
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detection. A green index indicates an identification accuracy
above 95%. A yellow index indicates an accuracy above 75%.
A red index indicates an accuracy below 75%. We see that, even
without any smart meter, only based on very sparsely located
SCADA sensors, very accurate outage location identification
can already be achieved. For those line outages with low
identification accuracy (i.e., the red-colored line indices), we
nonetheless observe that the inferred outage location is almost
always within one hop of the true outage location. For example,
for the upper sub-region of the feeder enclosed in the red
dashed box, we further plot its confusion matrix in Figure 5: the
observed banded structure clearly indicates the within-one-hop
localization performance even if the inferred outage location is
not exactly the actual one.

In addition to the identification accuracy plot, we further
plot the average error distances (AEDs) computed based on
the approximate real-world locations of the buses. As depicted
in Figure 6, each line is plotted with a bubble that indicates
the AED when an outage occurs on this line. Smaller bubbles
indicate better outage localization performance. We note that the
line outages with above 95% identification accuracy can have
bubbles that are almost invisibly small. This bubble plot again
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Figure 6: Average error distance map, SCADA only.

Figure 7: A smart meter that breaks the indistinguishability.

demonstrates the great outage localization accuracy achieved
even with SCADA measurements only.

D. Incorporating Smart Meter Last Gasps

Next, we note that there are cases where it is fundamentally
difficult to distinguish between different line outages using only
SCADA measurements. A conceptual example is depicted in
Figure 7: if two exactly the same loads (buses 1 and 5 in
this case) are symmetrically connected to lines that join at a
bus (bus 3 in this case), even with a flow sensor as depicted
above bus 3, there is still fundamentally no way to distinguish
between the shedding of either of the two loads (i.e., outages
of line A vs. D). Indeed, we have numerically verified that
the voltages and currents measured at the flow sensor under
the two outage scenarios always read exactly the same values.
Such fundamentally indistinguishable cases can indeed occur in
practice. In Figure 8, we plot the topology of another region of
the 240-bus system, consisting of 75 buses in total. In the sub-
region encircled by the red box, an outage in the upper section
can be mistakenly detected as one in the lower section (and vice
versa) if the load sheds due to the two outages are similar. In
Figure 9 (left panel), the bubble plot of AEDs achieved using
only SCADA measurements is depicted. We observe that line
outages that are far away but fundamentally indistinguishable
can lead to large AEDs.

As discussed in Section III-D, smart meters can provide last
gasp signals which can effectively address the aforementioned
fundamental indistinguishability. To illustrate this, consider that
a single smart meter is placed at bus 1 in the above example
(cf. Figure 7). If an outage occurs in line A or B, a last gasp
signal from bus 1 will be received, whereas an outage in line
C or D will not result in a last gasp signal. As such, the
two previously indistinguishable outages (A and D) are now
perfectly distinguishable. Based on this insight, by deploying

Authorized licensed use limited to: SUNY AT STONY BROOK. Downloaded on February 06,2024 at 11:47:32 UTC from IEEE Xplore. Restrictions apply.



el giliegile-le- e

® 3056+ 3057+ 3058s 3059+ 3060 3061
3055

v
L@ @ @~

3062¢ 3063+ 3064s 30650 3066+ 30670

oa 3053

@303

n @3021c
+ @nc
v @i

+ @3018¢

P03 3054

@0y

@03
@03

@007

3046

&
3008
. 3013+
@010

P
13015
@060
@:017¢

P 3031
3048 3049 3050 3051 3052
02

D033

P 034
% o 30750

3074 3073 3068

Figure 8: A region with a sub-region having fundamentally
indistinguishable outages.

0.4 0.4
0.2 1 0.2 1
0.0 1 0.0 1
£ £
> >
-0.2 A —0.21
0.4 ~0.4 A
-0.6 T T -0.6 T T
1.4 1.6 1.8 1.4 1.6
X/km X/km

Figure 9: Average error distances before (left) and after (right)
installing just one smart meter at the top bus.

just a single smart meter at the leaf of the upper section of the
encircled sub-region in Figure 8, much reduced AEDs can be
achieved as depicted in Figure 9 (right panel). In general, the
AEDs of this entire region based on SCADA measurements only
is plotted in Figure 10, and that with just four smart meters’ last
gasp signals is plottied in Figure 11. Significant performance
improvement can be observed.

V. CONCLUSION

We developed a highly effective data-driven model-assisted
method for identifying outage locations in power distribution
systems in real time. The method utilizes primarily only a)
sparsely located SCADA measurements and potentially b) last
gasp signals from a small number of smart meters, and is
hence broadly applicable in practice. The method exploits offline
learning from simulated data based on synthetically generated
loads and outage scenarios. Importantly, by exploiting physical
model characteristics, the dimensions of the learning tasks are
much reduced with network partitioning without any potential
loss of performance. Moreover, predictor training needs only be
performed with SCADA measurements, and any potential last
gasp signals from smart meters can be incorporated with the
trained predictors regardless of smart meter locations, outage
scenarios, and evaluation metrics, without loss of optimality
of detection decision making. Based on evaluation with real-
world feeder and load data, high performance of the developed
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Figure 11: Average error distance map, with 4 smart meters.

method is demonstrated even with SCADA measurements only.
Significant performance improvement can be achieved with just
a small number of smart meters providing last gasp signals.
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