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Abstract—Low energy barrier magnet (LBM) technology has recently been proposed as a candidate for accelerating

algorithms based on energy minimization and probabilistic graphs because their physical characteristics have a one-to-one

mapping onto the primitives of these algorithms.Many of these algorithms have a much higher tolerance for error compared

to high-accuracy numerical computation. LBM, however, is a nascent technology, and devices show high sample-to-sample

variability. In this letter, we take a deep dive into the overall fidelity afforded by this technology in providing computational

primitives for these algorithms.We show,that while the computed results show finite deviations from zero-variability devices,

the margin of error is almost always certifiable to a certain percentage.This suggests that LBM technology could be a viable

candidate as an accelerator for popular emerging paradigms of computing.

Index Terms—Nanomagnetics, binary stochastic neurons, probabilistic computing, energy minimization-based optimization algorithms,

probabilistic graphical algorithms.

I. INTRODUCTION

Low energy barrier magnet (LBM) technology, which utilizes nano-

magnets with barrier height in the order of thermal energy, has recently

been proposed as a potential candidate for hardware accelerators for

probabilistic computing and stochastic sampling [Camsari 2019, Parks

2018]. These accelerators may be broadly considered as hardware

Markov chain Monte Carlo implementation that utilizes the built-in

stochasticity provided by the dynamics of the LBM, which results

in highly compact devices with true stochasticity, as compared to

linear feedback-shift register (LFSR) based pseudorandom number

generators (pRNGs) [Vodenicarevic 2017]. The magnetization com-

ponent mz of the LBM randomly fluctuates between two stable states

(↑, ↓) under the influence of the thermal noise, and the probability

of getting any one of the two stable states can be driven via an

external current [Camsari 2017a]. There are a handful of applications

ranging from probabilistic computing to machine learning and artificial

intelligence that leverage the intrinsic stochastic nature of LBMs [Cam-

sari 2017a, Faria 2017, Sutton 2017, Hassan 2019, Ganguly 2021].

The prototype hardware building blocks are the binary stochastic

neurons (BSNs), popularly known as “p-bits” with programmable

weights in a recurrent configuration. An illustrative example of a

dual-stacked feedback cross-bar structure is shown in Fig. 1(a). The

synaptic weights or the “program” are loaded in memristors located

at the cross-points of the core cross-bar structure, whereas the neu-

rons are at the peripheries. Using a dual cross-bar structure, it is

possible to build recurrent networks, including a restricted Boltz-

mann machine (RBM) [Fig. 1(b)], an example application area of
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this accelerator. The RBM is embedded in the computing fabric by

enabling certain neurons and synaptic connections while disabling the

rest.

Although BSN-based non-Boolean probabilistic applications are

inherently more error resilient than conventional nanomagnet switches

used for deterministic Boolean memory and logic applications, the

computational reliability of these accelerators that employ LBMs as

their hardware RNG needs to be carefully assessed. Recently, several

studies have discussed the impact of geometric, structural, and process

variation from device-to-device that can create ignorable to high

variability in the characteristics of LBMs, depending on the degree of

variation [Abeed 2019a, 2019b, Drobitch 2019]; however, the resulting

impact of these “nonidealities” on the computational networks is still

largely not understood.

In this letter, we discuss the issues of variability in the context

of circuits and networks built from LBM-based BSN devices. We

categorize the variability into a few broad classes, namely shifting and

scaling of the device characteristics from the ideal as expected from

the mathematical model, and the variability of the barrier heights for

two broad classes of algorithms that can be solved using p-bits, such as

an energy minimization-based optimization algorithm (EMOA) and

probabilistic graphical algorithm (PGA). EMOA includes problems

such as the Ising model and RBMs, which seek to define a problem in

terms of a thermodynamically definable “energy-landscape” with the

embedding of the desired optimal result in the ground/vacuum energy,

while PGA includes Bayesian decision diagrams, which do not have an

inherent notion of energy and thermodynamics. In terms of network

connectivity (using the spectral theorem of linear systems) [Strang

2016], this implies that the EMOA networks have symmetric or

undirected connections, resulting in eigenstates that are real-valued

and reachable via real-space computation, whereas PGA networks are
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Fig. 1. (a) Illustrative schematic of an embedded RBM, an energy-based optimization and learning algorithm, in a dual-stacked feedback cross-bar
structure with neurons (the compute units) at the edges (large circles), while the synaptic weights (the program) are loaded in memristors located
at the cross-points of the core cross-bar structure (small circles). The active neurons and synapses are colored bold (red and yellow), while inactive
units are grayed out. (b) RBM network that gets embedded in (a). Bidirectional blue lines represent the synaptic connections between the neurons
(red circles). The yellow circles used in (a) are not shown here for simplicity. (c) Design of an LBM MTJ-based p-bit unit. (d) Ideal characteristics of
a p-bit device. (e) Schematics of different characteristics distortions. (f) Illustration of energy barrier variation in a nanomagnet. Symbols (diamond,
square, etc.) in (e) and (f) represent different variabilities henceforth.

asymmetric or directed, resulting in nonreal or complex eigenstates

not reachable via real-space computation.

We estimate the error per p-bit (EPP) to quantify the perfor-

mance deviation from the ideal devices. We find the EPP shows

a sublinear saturation for EMOA, while in the PGA, the error

grows linearly to superlinearly. Moreover, the networks are found

to be more prone to shifting variability than scaling. Additionally,

for EMOA, larger networks are less affected by the variability,

while for PGA, the trend is the opposite. Our findings may pro-

vide a potential path toward designing reliable LBM-based hardware

accelerators.

II. BUILDING “P-BITS” USING LOW BARRIER

MAGNETS

The building blocks of magnetic random-access memory technol-

ogy (MRAM) are magnetic tunnel junctions (MTJs). MTJs consist

of a thin insulator sandwiched between two ferromagnetic layers—a

“pinned layer” whose magnetization is fixed and a “free layer” whose

magnetization can be reoriented by a spin current [see Fig. 1(c)]. The

free layer exhibits a double potential well corresponding to the two

easy points [see Fig. 1(f)]. The height of the barrier determines the

expected state retention time using the Arrhenius relation given by

τ = τ0eU/kBT . (1)

In the above equation, U (= µ0MsHk�/2) is the energy barrier, where

the symbols respectively stand for permeability of free space, satura-

tion magnetization, magnetic anisotropy field strength, and volume.

For a conventional storage class memory, U is set to 40 − 60kBT ,

which yields a decade-long state retention time τ depending on τ0, the

inverse of attempt frequency that ranges from 0.1 − 1 ns [Lopez-Diaz

2002]. However, if the magnet is ultrascaled by reducing the volume �

or its profile is made circular, which reduces Hk by removing the shape

anisotropy, the retention time can be scaled down to near τ0 [Debashis

2016]. In this case, the free layer’s magnetization fluctuates between

the two easy points under the influence of the thermal noise, which

is able to “kick” the magnetization over the barrier with ease, at near

gigahertz frequencies. The LBM-based MTJ typically utilizes CoFeB

as the ferromagnetic material and MgO as the insulator layer [Parks

2018]; however, it is an active field of research. MTJ structure allows

this fluctuation to be translated into an equivalent fluctuation in the

resistance of the device, i.e., low (high) resistance, depending on the

parallel (antiparallel) alignment between the pinned and free layer

magnetization, which can be used for building useful devices that can

harvest true randomness from the environment.

One such device is the “p-bit,” which is a binary stochastic neuron

with a compact model given by

V out
i = sgn[tanh(βV in

i ) + α · rnd(−1,+1)]VDD/2. (2)

In this device, the output swings between −VDD/2 to VDD/2 corre-

sponding to −1 and +1 state labels of mz; however, the ratio of these

states is controllable by an input signal, which imposes a tanh-like

probability distribution. rnd is a uniform random distribution. The pa-

rameters β and α represent the transfer gain of the unit and the relative

contribution of the stochasticity to the characteristics, respectively. For

large-scale correlated networks, V in can be represented as

V in
i = κ[hi +

∑

j

Ji jV
out
j

/

(VDD/2)] (3)

where j stands for the index over all input devices connected to the

particular ith device, h is the bias vector, and J is the synaptic matrix.

Different functionalities correspond to different choices of h and J . κ

is a coupling coefficient representing the inverse of the “temperature”

of the system.
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III. SIMULATION METHOD

We implement the compact model of p-bit networks described by

(2) and (3) in MATLAB according to the methodology discussed by

Camsari [2017a]. The MATLAB model is a parameterized version

of the compact modeling simulation performed in SPICE [Camsari

2017a, 2017b]. In MATLAB implementation, we use α = 1, β = 1

(for ideal case), κ = 0.8, and VDD = 2 V throughout the calculation

unless otherwise specified.

We use computational networks constructed from p-bits of varying

sizes. For EMOA, we use an AND gate and a full-adder having J

matrices sized 3 × 3 and 14 × 14, respectively [Camsari 2017a]. We

construct an arbitrary symmetric J matrix of 50 × 50 for a large

network. For PGA, we use Bayesian networks (BNs) constructed from

8, 20, and 50 p-bits (J matrices are asymmetric in these cases). For

EMOA, EPP is computed by taking the summation of the absolute

difference between the output probability distribution of ideal and

nonideal cases, divided by the number of p-bit units in the network.

However, for PGA, we calculate the EPP from the difference in the

correlation matrix (σ (i, j) = 1

T

∫ T

0
V out

i V out
j dt) between the ideal and

nonideal cases. Normalization through the number of p-bit units allows

us to examine how the average error changes with an increase in

the number of p-bit units in the network. Note that throughout this

letter, EPP represents the average absolute output error introduced by

each p-bit unit in the network. For both algorithms, we use T = 106

simulation steps to get to theV out . If the sample generation time is 2 ns,

this is equivalent to 2 ms of compute time. The mean and standard

deviation of the EPP are calculated from N = 100 simulations.

IV. RESULTS

LBM devices are hybrids of silicon complementary metal-oxide

semiconductor (CMOS), which is a highly mature technology, and

spintronics/magnetics, which is a relatively new technology. While

they have been successfully integrated into the context of high en-

ergy barrier storage class MRAM technology by several commercial

vendors, its LBM variant comes with lithographic challenges that may

require a long process of technological developments to perfect. These

lithographic challenges mainly concern the quality of magnetic films

and the precision control over their geometry. Abeed [2019a] studied

the impact of geometrical irregularities such as dimples, holes, shape

variance, etc., on the characteristic correlation times of LBMs and

found that the distribution of correlation times can be large. These

kinds of variations can have implications that are beyond the intrinsic

behavior of the free-layer magnet of the MTJ itself.

In particular, two critical sets of variations are discussed next. Note

that these variations become relevant in the context of circuits and

networks built from these devices.

A. Characteristics Distortion

Fig. 1(c) and (d) shows the developed device and its ideal output

characteristics, respectively. The characteristics of the device depend

on the swing that is generated by the N-channel metal-oxide semi-

conductor (NMOS) transistor turning ON or turning OFF, balanced

around the MTJ’s characteristic resistance, i.e., the resistance of the

transistor in the linear intermediate mode should match the MTJ’s

Fig. 2. EPP from horizontal shifting for (a) EMOA and (b) PGA with
different network sizes (size of the J matrix). Fig. 2 and all the sub-
sequent figures show the mean EPP and the error bar represents the
standard deviation. The mean and standard deviation are calculated
from 100 simulations. The figures use different colors to represent vari-
ous network sizes, and different symbols represent different distortions
introduced in Fig. 1(e). Inset in (a) shows the schematic of a 3 × 3
EMOA network, while inset in (b) shows the schematic of an 8 × 8
PGA Bayesian network representing a family tree (GF: Grandfather,
GM: Grandmother, etc.).

average resistance. In the linear mode of operation, the tanh shape

shows up as an interplay between the MTJ’s average and transistor’s

intermediate resistance as it swings from ON to OFF, while the MTJ’s

magnetization flipping adds the fluctuation on the characteristics. A

mismatch between these two can lead to a deviation from the “ideal”

model presented in (2). Moreover, variations from the ideal can occur

as a result of limitations of the CMOS components within the device,

especially due to the limited transconductance gain. We categorize the

variations into four categories that broadly cover the phase space of

such distortions [shown in Fig. 1(e)]: 1) horizontal shift; 2) vertical

shift; 3) horizontal scale; and 4) vertical scale. Nonuniformity in the

circular magnet often leads to asymmetry in parallel and antiparallel

MTJ states. It tends to bias toward one state over another thermodynam-

ically, which might lead to a horizontal shift in the p-bit characteristics.

Additionally, resistance mismatch between the MTJ and the NMOS

and read disturbance can lead to a vertical shift. Variation in the gain

β can lead to horizontal scale, while vertical scale might arise from

loading effects from follow-on p-bits that the output stage may not

be able to handle adequately because of the weak buffer and large

fan out. Fig. 2 shows the EPP that emerged from horizontal shifting

in the networks for both the EMOA and PGA problem classes. We

vary the maximum voltage shift from 0 V to 1 V. From Fig. 2(a), we

find that for the AND gate, the error increases rapidly up to a ∼20%

horizontal voltage shift and slows down afterward. However, the error

has an overall increasing trend. For larger networks, the error starts

saturating at ∼10% voltage shift. For the AND gate, we find a maximum

of ∼30% EPP corresponding to a horizontal voltage shift of 1 V. We

see, that as the network size increases, the error percentage decreases

for EMOA. On the other hand, for PGA, from Fig. 2(b), we can see that

the error increases almost linearly as a function of horizontal voltage

shift. However, the relation between the error and the network size is

opposite to that of EMOA. Figs. 3–5 show the EPP that emerged from

vertical shifting, horizontal scaling, and vertical scaling, respectively,

for both EMOA and PGA. The increasing trend of the EPP is similar

for different types of distortion; however, the error percentage varies

depending on the problem class, distortion type, and network size. We

list the maximum error arising from different types of distortion in
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(a) (b)

Fig. 3. EPP from vertical shifting for (a) EMOA and (b) PGA with
different network sizes.

(a) (b)

Fig. 4. EPP from horizontal scaling for (a) EMOA and (b) PGA with
different network sizes.

(a) (b)

Fig. 5. EPP from vertical scaling for (a) EMOA and (b) PGA with
different network sizes.

Fig. 6, where different colors represent the overall trend of EPP. It is

important to note that we vary only one type of distortion at a time.

B. Energy Barrier Variability

It is clear from (1) that a small variation in the energy barrier U can

lead to a large variation in the expected state retention time τ . This

translates to a circuit encountering widely different time scales or a

large dynamic range of operation within its individual components.

This can lead to significant issues with the operational viability of a

circuit built from p-bits. We, therefore, analyze the effect of energy

barrier variation on the performance of the networks. As a result of the

energy barrier variation, the magnetic states of different nanomagnets

update at different times than the ideal case (assuming 0 kBT energy

barrier), leading to an overall error in the output quantity. Fig. 7 shows

the EPP for EMOA and PGA arising from energy barrier variability.

Fig. 6. EPP arising from different characteristics distortions (N = 100).
The green, light green, light red, and red colors represent the satura-
tion, sublinear, linear, and superlinear trends of EPP, respectively, as a
function of characteristics distortion.

Fig. 7. EPP from energy barrier variability for (a) EMOA and (b) PGA
with different network sizes.

We find, that for both classes of problems, the error percentage is

small (within ∼ 10%) up to an energy barrier variation of ∼ 10 kBT .

For EMOA, the impact of a high energy barrier variation in a small

network is severe (∼ 40% error), while the large network seems more

forgiving in terms of error (∼ 4% error). On the contrary, the trend is

the opposite in the case of PGA. We find a maximum of ∼ 50% error for

a large-sized BN. Note that the sample generation time is determined

by the fastest magnet. Relying on the slowest magnet would result

in reduced computational throughput and extended computation time.

Therefore, we continue the computation by updating the magnetic

state of the fastest magnet while the slower magnets update their

states intermittently on average. This results in temporary freezing

out of certain magnets during computation, leading to an increase in

the EPP. This suggests a tradeoff between computational speed and

accuracy, which requires further investigation in future studies. Also,

note that the characteristics distortions are not included while taking

into account the energy barrier variability.

C. Sampling Versus Simulated Annealing

The results discussed above for EMOA are calculated using the

sampling technique, based on a fixed interaction strength κ (pseudoin-

verse temperature) throughout the simulation, and run the simulation

for a long enough time (106 steps) so that the p-bits visit primarily the

low-energy state. Fig. 8 shows the EPP using simulated annealing in

comparison with the sampling technique. We vary κ from 0.5 to 5 after
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(c) (d)

(a) (b)

Fig. 8. EPP calculated using sampling technique (dashed line) versus
simulated annealing technique (solid line) for EMOA for (a) horizontal
shifting,(b) vertical shifting,(c) horizontal scaling,and (d) vertical scaling.

every 2 × 105 steps while calculating the output using the simulated

annealing technique. We find that the error percentage is slightly higher

for all types of characteristics distortions for the simulated annealing

technique. We conjecture that this is because the sampling method,

when run long enough, can cover the system’s phase space better

ergodically than a linear simulated annealing schedule, which is in

essence a guided importance sampling for a shorter time, and may not

be able to sample the phase space as comprehensively to discover the

true ground state. This may be improved by more complex annealing

schedules, which we do not discuss further.

V. CONCLUSION

In summary, we quantify the impact of nonidealities in compu-

tational networks built from LBM-based BSNs using two different

techniques. In all the possible variances studied in this work, the error

shows a sublinear saturation at the extremal device variability points

for EMOA, while in the PGA, the error grows linearly to superlinearly.

We conjecture that this is because, in EMOA, the system tries to seek a

single thermodynamically favorable fixed point in a finite phase space,

which limits the growth of error, whereas, in PGA, there is no similar

principle that can check the growth of the error. Additionally, running

multiple samples of the same problem with different random seeds

(thereby simulating the “real world”) helps in reducing the variance

of the error, but not its mean value. This suggests that for a certain

amount of device variability, the average error is fixed, which may

be estimated or characterized beforehand, and the results are certified

accordingly. These findings may provide critical design insights for

building suitable LBM-based hardware accelerators.
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