Original Research

:' frontiers | Frontiers in Nanotechnology 03 May 2023

’ @ Check for updates

OPEN ACCESS

Gina Adam,
George Washington University,
United States

Maryam Parsa,

George Mason University, United States
Takashi Tsuchiya,

National Institute for Materials Science,
Japan

Md Golam Morshed,
mm8bya@virginia.edu

Samiran Ganguly,
gangulys2@vcu.edu

18 January 2023
17 April 2023
03 May 2023

Morshed MG, Ganguly S and Ghosh AW
(2023), Choose your tools carefully: a
comparative evaluation of deterministic
vs. stochastic and binary vs. analog
neuron models for implementing
emerging computing paradigms.

Front. Nanotechnol. 5:1146852.

doi: 10.3389/fnano.2023.1146852

© 2023 Morshed, Ganguly and Ghosh.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Nanotechnology

10.3389/fnano.2023.1146852

Choose your tools carefully: a
comparative evaluation of
deterministic vs. stochastic and
binary vs. analog neuron models
for implementing emerging
computing paradigms

Md Golam Morshed'*, Samiran Ganguly?* and Avik W. Ghosh*?

!Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA,

United States, 2Department of Electrical and Computer Engineering, Virginia Commonwealth University,
Richmond, VA, United States, *Department of Physics, University of Virginia, Charlottesville, VA,

United States

Neuromorphic computing, commonly understood as a computing approach built
upon neurons, synapses, and their dynamics, as opposed to Boolean gates, is
gaining large mindshare due to its direct application in solving current and future
computing technological problems, such as smart sensing, smart devices, self-
hosted and self-contained devices, artificial intelligence (Al) applications, etc. In a
largely software-defined implementation of neuromorphic computing, it is
possible to throw enormous computational power or optimize models and
networks depending on the specific nature of the computational tasks.
However, a hardware-based approach needs the identification of well-suited
neuronal and synaptic models to obtain high functional and energy efficiency,
which is a prime concern in size, weight, and power (SWaP) constrained
environments. In this work, we perform a study on the characteristics of
hardware neuron models (namely, inference errors, generalizability and
robustness, practical implementability, and memory capacity) that have been
proposed and demonstrated using a plethora of emerging nano-materials
technology-based physical devices, to quantify the performance of such
neurons on certain classes of problems that are of great importance in real-
time signal processing like tasks in the context of reservoir computing. We find that
the answer on which neuron to use for what applications depends on the
particulars of the application requirements and constraints themselves, i.e., we
need not only a hammer but all sorts of tools in our tool chest for high efficiency
and quality heuromorphic computing.

KEYWORDS

neuromorphic computing, analog neuron, binary neuron, analog stochastic neuron,
binary stochastic neuron, reservoir computing

01 frontiersin.org

https://www.frontiersin.org/articles/10.3389/fnano.2023.1146852/full
https://www.frontiersin.org/articles/10.3389/fnano.2023.1146852/full
https://www.frontiersin.org/articles/10.3389/fnano.2023.1146852/full
https://www.frontiersin.org/articles/10.3389/fnano.2023.1146852/full
https://www.frontiersin.org/articles/10.3389/fnano.2023.1146852/full
https://www.frontiersin.org/articles/10.3389/fnano.2023.1146852/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fnano.2023.1146852&domain=pdf&date_stamp=2023-05-03
mailto:mm8by@virginia.edu
mailto:mm8by@virginia.edu
mailto:gangulys2@vcu.edu
mailto:gangulys2@vcu.edu
https://doi.org/10.3389/fnano.2023.1146852
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org/journals/nanotechnology#editorial-board
https://www.frontiersin.org/journals/nanotechnology#editorial-board
https://doi.org/10.3389/fnano.2023.1146852

Morshed et al.

1 Introduction

High-performance computing has historically developed
around the Boolean computing paradigm, executed on silicon
(CMOS)
hardware. In fact, software has for decades been developed
around the CMOS fabric that has singularly dictated our choice
of materials, devices, circuits, and architecture-leading to the

(Si) complementary metal oxide semiconductor

dominant processor design paradigm: von Neumann architecture
that separates memory and processing units. Over the last decade,
however, Moore’s law for hardware scaling has significantly slowed
down, primarily due to the prohibitive energy cost of computing and
an increasingly steep memory wall. At the same time, software
development has significantly evolved around “Big Data” paradigm,
with machine learning and artificial intelligence (AI) dominating the
roost. Additionally, the push towards the internet of things (IoT)
edge devices has prompted an intensive search for energy-efficient
and compact hardware systems for on-chip data processing (Big
data, 2018).

One such direction is neuromorphic computing, which uses the
concept of mimicking a human brain architecture to design circuits
and systems that can perform highly energy-efficient computations
(Mead, 1990; Schuman et al, 2017; Markovi¢ et al, 2020;
Christensen et al., 2022; Kireev et al., 2022). A human brain is
primarily composed of two functional elemental units - synapses
and neurons. Neurons are interconnected through synapses with
different connection strengths (commonly known as synaptic
weights), which provide the learning and memory capabilities of
the brain. A neuron receives synaptic inputs from other neurons,
generates output in the form of action potentials, and distributes the
output to the subsequent neurons. A human brain has ~ 10'!
neurons and ~ 10" synapses and consumes ~1-10 f]J per
synaptic event (Kandel et al., 2000; Squire et al., 2012; Upadhyay
et al.,, 2016).

To emulate the organization and functionality of a human brain,
there are many proposals for physical neuromorphic computing
systems using memristors (Yao et al., 2020; Duan et al., 2020; Moon
etal., 2019), spintronics (Grollier et al., 2020; Locatelli et al., 2014; Lv
et al,, 2022), charge-density-wave (CDW) devices (Liu et al., 2021),
photonics (Shastri et al., 2021; Shainline et al., 2017), etc. In recent
years, there has been significant progress in the development of
physical neuromorphic hardware, both in academia and industry.
The hierarchy of neuromorphic hardware implementation spans
from the system level to the device level and all the way down to the
level of the material. At the system level, various large-scale
neuromorphic computers utilize different approaches - for
instance, IBM’s TrueNorth (Merolla et al., 2014), Intel’s Loihi
(Davies et al., 2018), SpiNNaker (Furber et al., 2014), BrainScaleS
(Schemmel et al., 2010), Tianjic chip (Pei et al., 2019), Neurogrid
(Benjamin et al., 2014), etc. They support a broad class of problems
ranging from complex to more general computations. At the device
level, the most commonly used component is the memristor which
can be utilized in synapse and neuron implementations (Jo et al.,
2010; Serb et al., 2020; Innocenti et al., 2021; Mehonic and Kenyon,
2016). Memristor crossbars are frequently used to represent
synapses in neuromorphic systems (Adam et al., 2016; Hu et al,
2014). Memristor can also provide stochasticity in the neuron model
(Suri et al, 2015). Another emerging class of devices for

Frontiers in Nanotechnology

10.3389/fnano.2023.1146852

neuromorphic computing is spintronics devices (Grollier et al.,
2020). Spintronics devices can be implemented with low energy
and high density and are compatible with existing CMOS
technology (Sengupta et al, 2016a). The spintronics devices
utilized in neuromorphic computing include spin-torque devices
(Torrejon et al, 2017; Roy et al., 2014; Sengupta et al., 2016b),
magnetic domain walls (Siddiqui et al., 2020; Leonard et al., 2022;
Brigner et al., 2022), and skyrmions (Jadaun et al., 2022; Song et al.,
2020). Optical or photonics devices are also implemented for
neurons and synapses in recent years (Shastri et al, 2021;
Romeira et al,, 2016; Guo et al., 2021). The field is very new and
many novel forms of neuron and synaptic devices can be designed to
match the mathematical model of neural networks (NNs). Physical
neuromorphic computing can implement these functionalities
directly in their physical characteristics (I-I, V-V, I-V), which
results in highly compact devices that are well-suited for scalable
and energy-efficient neuromorphic systems (Camsari et al., 2017a;
Camsari et al., 2017b; Ganguly et al., 2021; Yang et al., 2013). This is
critical as current NN-based computing is highly centralized
(resident-on and accessed-via cloud) and is energy inefficient
because the underlying volatile, often von Neumann, digital
Boolean-based system design unit has to emulate inherently
analog, mostly non-volatile distributed computing model of
neural systems, even if at a simple abstraction level (Merolla
et al., 2014). Recent advances in custom design such as FPGAs
(Wang et al,, 2018) and more experimental Si FPNAs (Farquhar
et al.,, 2006) have demonstrated that a new form of device design
rather than emulation is the way to go, and physical neuromorphic
computing based on emerging technology can go a long way to
achieve this (Rajendran and Alibart, 2016).

There is an increased use of noise-as-a-feature rather than a
nuisance in NN models (Faisal et al., 2008; Baldassi et al., 2018;
Goldberger and Ben-Reuven, 2017), and physical neuromorphic
computing can provide natural stochasticity, with various noise
colors depending on the device physics (Vincent et al., 2015; Brown
et al,, 2019). Some prominent areas where stochasticity and noise
have been used include training generalizability (Jim et al., 1996),
stochastic sampling (Cook, 1986), and recently proposed and
coming into prominence, diffusion-based generative models
(Huang et al, 2021). In all these models, noise plays a
fundamental role, ie., these algorithms do not work without
inherent noise.

It is therefore critical to study and analyze the kinds of devices
that will be useful to implement physical neuromorphic computing.
We understand from neurobiology that there is a large degree of
neuron design customization that has developed through evolution
to obtain high task-based performance. Similarly, a variety of
mathematical models of neurons have been designed in NN
literature as well (Schuman et al., 2017; Burkitt, 2006; Ganguly
etal,, 2021). It is quite likely that the area of physical neuromorphics
will use a variety of device designs rather than the uniformity of
NAND gate-based design commonly seen in Boolean-based design,
to achieve the true benefits of energy efficiency and scalability
brought forth by this paradigm of system design.

In this work, we study a subset of this wide variety of neuron
designs that are well-represented and easily available from many
proposed physical neuromorphic platforms to understand and
analyze their task specialization. In particular, we analyze analog

frontiersin.org

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1146852

Morshed et al.

10.3389/fnano.2023.1146852

Stochastic
M ‘ il

BSN ‘ ‘

-/

Discrete/Binary

SpN ‘

Deterministic

FIGURE 1

SReLUN

AN: analog neuron

ASN: analog stochastic neuron
BN: binary neuron

BSN: binary stochastic neuron
SpN: spiking neuron

SSpN: stochastic spiking neuron
ReLUN: ReLU neuron

SReLUN: stochastic ReLU neuron

ULl LR LEELCL AL CE 7o

go[euy/snonunuo)

.
.
.
.
»
0

x(!). l’V‘

-
Yassssnnansnnnnnans®

Reservoir

(A) Schematic of different types of widely used neuron models with their output characteristics. In the bottom panel, all the red curves represent the
deterministic neurons’ output characteristics. In the top panel, the blue curves represent the actual stochastic output characteristics while the red is the
corresponding deterministic/expected value of the output (< stochastic output >) characteristics. Spiking neurons (SpN and SSpN) can be considered in
between the two limits of purely binary vs. purely analog neurons. Please note that we only analyze the analog and binary neurons (including their
stochastic counterparts) in this work, as indicated by the purple-colored bold font labels. (B) Schematic of a reservoir setup using neurons connected with

each other bidirectionally with random weights.

and binary neuron models, including stochasticity in the model, for
analog temporal inferencing tasks, and evaluate and compare their
performances. We numerically estimate the performance metric
normalized means squared error (NMSE), discuss the effect of
stochasticity on prediction accuracy vs. robustness, and show the
hardware implementability of the models. Furthermore, we
estimate the memory capacity for different neuron models.
Our results suggest that analog stochastic neurons perform
better for analog temporal inferencing tasks both in terms of
prediction accuracy and hardware implementability.
Additionally, analog neurons show larger memory capacity.
Our findings may provide a potential path forward toward

efficient neuromorphic computing.

2 Brief overview on neuron models

An essential function of a neuron in a NN is processing the
weighted synaptic inputs and generating an output response. A
single biological neuron itself is a complex dynamical system (Bick
etal., 2020). Proposed artificial neurons in most implementations of
NN (either software or hardware) are significantly simpler unless
they specifically attempt to mimic the biological neuron (Harmon,
1959; Schuman et al,, 2017; 2022). As such their mathematical
and a significant amount of
itself.
However, a NN is an interplay of the neurons, the synapses, and
the network structure itself, and therefore the neuron model itself
may provide certain capabilities that can help make a more efficient
NN, in the context of the application specialization (Abiodun et al.,
2018).

The set of behavior over which such neurons can be classified

are cheaper
derive from the network

representations

computational capabilities

and analyzed is vast and may include spiking vs. non-spiking

Frontiers in Nanotechnology

03

behavior with associated data representation, deterministic vs.
stochastic output response function, discrete (or binary) vs.
continuous (or analog) output response function, the particular
mathematical model of the output response function itself (e.g.,
sigmoid, tanh, ReLU), presence or absence of memory states with a
neuron, etc (Goodfellow et al., 2016; Davidson and Furber, 2021;
Barna and Kaski, 1990). In the software NN world, specialization of
certain neural models and connectivity are well appreciated, as an
example sparse vs. dense vs. convolutional layers, or the use of ReLU
neurons in the hidden layers vs. sigmoidal, softmax layers at outputs
employed in many computer vision tasks (Szandata, 2020; Zhang
and Woodland, 2015; Oostwal et al., 2021). Figure 1A schematically
shows the output characteristics of different types of widely used
neuron models.

In this work, we have focused on two particular behaviors of
neural models that we believe can capture a significant application
space, particularly in the domain of lightweight real-time signal
processing tasks, and are readily built from emerging materials
technology. We specifically look at binary vs. analog and
deterministic vs. stochastic neuron output response functions
(purple-colored bold font labels in Figure 1A). We also use them
in a reservoir computing (RC)-like context for signal processing
tasks for our analysis. Reservoir computing uses the dynamics of a
recurrently connected network of neurons to project an input
(spatio-)temporal signal onto a high dimensional phase space,
which forms the basis of inference, typically via a shallow 1-layer
linear transform or a multi-layer feedforward network (Tanaka et al.,
2019; Triefenbach et al., 2010; Jalalvand et al., 2015; Ganguly et al.,
2018; Moon et al,, 2019). A schematic of a reservoir is shown in
Figure 1B where the neurons are connected with each other
bidirectionally with random weights. Multiple reservoirs may be
connected hierarchically for more complex deep RC architecture.
RC may be considered as a machine learning analog of an extended

frontiersin.org

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1146852

Morshed et al.

Kalman filter where the state space and the observation models are
learned and not designed a priori (Tanaka et al., 2019).

Our choice of evaluating these specific behavior differences
on an RC-based NN reflects the prominent use-case that is made
out for many emerging nano-materials technology-based neuron
and synaptic devices, viz. energy-efficient learning, and inference
at the edge. These tasks often end up involving temporal or
spatio-temporal data processing to extract relevant and
actionable information, some examples being anomaly
detection (Kato et al., 2022), feature tracking (Abreu Araujo
et al., 2020), optimal control (Engedy and Horvath, 2012), and
event prediction (Pyragas and Pyragas, 2020), all of which are
well-suited for an RC-based NN. Therefore this testbench forms a
great intersection for our analysis.

It should be noted that we do not include spiking neurons in this
particular analysis. Spiking neurons have significantly different data
encoding (level vs. rate or inter-spike interval encoding) and
learning mechanisms (back-propagation or regression vs. spike-
time dependent plasticity) that it is hard to disentangle the neuron
model itself from demonstrated tasks, therefore we leave such a
contrasting analysis of spiking neuron devices with non-spiking
variants for a future study.

The neurons are modeled in the following way:

ysz(Zwa)+rN 1)

Here the symbols have the usual meaning, i.e., y is the output
activation of the neuron, fy is the activation function, which is a
sigmoidal or hyperbolic tangent for most non-spiking hardware
neurons, and ry is a random sample drawn from a random
uniform distribution to represent stochasticity. It is possible to
use a ReLU-like activation function or some other distribution
for sampling stochasticity, particularly if the hardware neuron
shows colored noise behavior, we do not particularize for such
details and keep the analysis confined to the most common
hardware neuron variants. Therefore, in our analysis, the ry
term is weighed down by an arbitrary factor to mimic the
degree of stochasticity displayed by the neuron, and the fy is
either a continuous tanh() for analog neuron or a sgn(tanh()) for
a binary neuron (sgn() being the signum function).

3 Methods

As discussed previously, the neuron models are analyzed in the
context of a reservoir computer, specifically an echo-state network
(ESN). An ESN is composed of a collection of recurrently connected
neurons, with randomly distributed weights of the interconnects
within this collection (Lukosevicius, 2012; Li et al., 2012). This forms
the “reservoir”, which is activated by an incoming signal, and whose
output is read by an output layer trained via linear regression.

We employ different neuron models in this work, such as analog
and binary neurons (with and without stochasticity in the model),
which makes a total of four models at our disposal, namely, analog
neuron (AN), analog stochastic neuron (ASN), binary neuron (BN),
and binary stochastic neuron (BSN). The dynamical equations of the
reservoirs built using different neuron models are described as
follows (Ganguly et al., 2021):

Frontiers in Nanotechnology

10.3389/fnano.2023.1146852

AN: x[t + 1] = (1 — a)*x[t] + a*tanh (z[t + 1])

ASN: x[t + 1] = (1 — a)*x[t] + a*tanh(z[t + 1]) + b*ry[t]
x[Vx[t] + sgn(a*tanh (z[t + 1]))
X[)x(t]

t] + sgn(a*tanh (z[t + 1]) + b*ry [t])
)

wherez[t + 1] = W"ua[t + 1] + Wx[1]. Here, u is the input vector, x[{]
represents the reservoir state vector at the time ¢, a is the reservoir

BN: x[t+1] = (1 -a)*
BSN: x[t + 1] = (1 —a)*

leaking rate (assumed to be the constant for all the neurons), b is the
neuron noise scaling parameter to include stochasticity in the
neuron model, ry is a uniform random distribution, and W" and
W are the random weight matrices of input-reservoir and reservoir-
reservoir connections, respectively. We use the same leaking rate
across all models to ensure a fair comparison among the neuron
models on an equal footing. It can be challenging to compare models
that have different parameters as it can introduce biases. One of the
unique features of reservoir computing is having random weight
matrices (Tanaka et al., 2019) and we consider five different network
topologies by creating five sets of W* using random “seed” for
various reservoir sizes, which makes our analysis unbiased to any
particular network topology. The W* elements are normalized using
the spectral radius. We perform 1,000 simulations within each
network topology making the total sample size 5,000 for every
reservoir size within each neuron model. The output vector y is
obtained as:

y =Wx (3)

where W represents the reservoir-output weight matrix. We
consider two different types of training methods, i.e., “offline”
and “online” training. In the case of “offline” training, we extract
the output weight matrix, W** once at the end of the training cycle
and use that static W°* for the testing cycle. In contrast, for “online”
training, W is periodically updated throughout the testing cycle.
The entire testing cycle is divided into 40 segments. The first
segment uses the W’ extracted from the initial training cycle.
We calculate a new W** after the first segment of the testing cycle.
Then, we update the W** such that the elements are composed of
90% from the older version and 10% from the new one. The updated
W is used for the second segment and the procedure keeps going
on throughout the testing cycle. This stabilizes the learning at the
cost of higher error rates as the learning evolution slowly evolves to a
new configuration. This is akin to the successive over-relaxation
methods used in many self-consistent numerical algorithms for
improved convergence.

4 Results and discussions
4.1 Binary vs. analog: inference errors

We implement the temporal inferencing task, specifically, the
time-series prediction task to test and compare the performance of
different neuron models. We consider an input signal of the form
u(t) = Acos(2nfit) + Bsin(2nfot), which we referred to as a clean
input. Weuse A = 1, B=2, f; = 0.10 Hz, and f, = 0.02 Hz. Although
we choose the magnitude and frequency of the input arbitrarily, we
further investigate other combinations of these variables (Table 1) to
ensure that our analysis remains independent of them. We train the

frontiersin.org

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1146852

Morshed et al. 10.3389/fnano.2023.1146852

TABLE 1 Average NMSE data extracted from the ASN and BSN models (b = 5%) for various reservoir sizes. The form of the input signal is, u(t) = A cos(2nf;t) +
Bsin(2naf,t) + Clrand(1, t) — 0.5].

Model Reservoir Avg. NMSE for different input signals
size

{A,B, G} ={05,1.0 00} {f;, L} = {A B G =1{1.0,20 05 {f1, L} = {A B G={1.0 20, 1.5} {f, f;} =

{0.20, 0.04} Hz {0.10, 0.02} Hz {0.10, 0.02} Hz
ASN N=10 0.1729 0.1453 0.1501
N =20 0.1585 0.1199 0.1161
N =30 0.1183 0.0960 0.0984
N =40 0.1080 0.0775 0.1001
N =50 0.0791 0.0605 0.0816
BSN N=10 0.2510 0.2396 0.2546
N =20 0.2233 0.2102 0.2184
N=30 0.2103 0.1895 0.2028
N =40 0.2331 0.2156 0.2040
N =50 0.2329 0.2142 0.2173

500 B 500
1.0 — 1
400 = _—— 1 400
200 0.6 = ——— [§300
200 E 04 200
100 02 [S=C-oofi o —-C) === 100
10 20 30 40 50, 10 20 30 40 50,
\\ Reservoir Size, N ," \\ Reservoir Size, N ,"
\\4 >I, \\‘ ’I,
500 0.4 500
400 03 400
300 o 300
€02
200 = 200
100 0.1 100
- 0 0.0
10 20 30 40 50 10 20 30 40 50
Reservoir Size, N Reservoir Size, N

FIGURE 2

Comparison of NMSE for an analog time-series prediction task between (A) ASN and (B) BSN models as a function of reservoir size with 5%
stochasticity incorporated in both the neuron models for a clean input signal. The form of the clean input signal is u(t) = A cos(2nfit) + Bsin(2af,t), where
A=1B=2,f=0.10Hz andf, = 0.02 Hz. ASN performs better than BSN for the entire range of reservoir size as indicated by the average (1) NMSE (cyan
dashed-dotted line). ASN shows a decreasing trend in NMSE as a function of reservoir size while BSN results remain almost unchanged. The NMSE

data for every reservoir size is obtained from five different reservoir topologies and 1,000 simulation runs (different random “seed") within each topology
(total sample size is 5,000). The color bar represents the frequency of the NMSE data. Note that in some cases, our model fails to generate a meaningful
NMSE as the reservoir output blows up. We get meaningful output from ~ 90% — 100% cases depending on the reservoir sizes, and those data are plotted
here and used to estimate the average NMSE. The bottom panel is the zoomed version of the top panel and the magenta dashed-dotted lines are the
guide to the eye that shows the data distribution in the range of 1 + o. The color codes to represent the p and o are the same for the subsequent figures
henceforth.

Frontiers in Nanotechnology 05 frontiersin.org

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1146852

Morshed et al.

10.3389/fnano.2023.1146852

// i =0 500 16 =3 500 ASN
! 08 400 08l = 400 \
%4 0.6 30 o6l = 300
Z 0.4 SN 200 % 0.4 200
0.2 N kY
0l “':N\'.\ \) 100 02 100
—— 0 0.0 = - 0
10 20 30 40 50 10 20 30 40 50
Reservoir Size, N Reservoir Size, N
10 5=3% 00 b=T10% 500
400 0.8 — 400
300 F o6 300
200 50.4 200
100 02 100
\ .0 0.0 0 J
N\ 10 20 30 40 50 10 20 30 40 50 /
Ml Reservoir Size, N A Reservoir Size, N P
- 500 - 500
710 b=0% ‘ 1.0} =——0Db=3% BSN
/! 08 400 0.8 E = 400 \
20.6 300 %—‘ 0.6 — 300
Z0.4 Py 200 7.0 4 200
P i N, :
02| =E=EmE N 100 02 100
0.0 0 0.0 0
10 20 30 40 50 10 20 30 40 50
Reservoir Size, N Reservoir Size, N
10 b= 3% W o b= 0% g®
— 4 f— = |
0.8 = —— 40 0.8 —— [0
206 —_ = 300 & mw— (300 0 2 4 6 8 10
A ==__)
B ————— %
\ 0.0 0 0 !
\ 10 20 30 40 50 10 20 30 40 50 7
RN Reservoir Size, N B Reservoir Size, N A

FIGURE 3

Evolution of NMSE for different degrees of stochasticity (noise percentages) associated with the (A) ASN and (B) BSN models. ASN performs better
than the BSN model for analog time-series prediction tasks throughout the ranges of the degree of stochasticity as indicated by the average NMSE shown
in (C) and (D) for ASN and BSN, respectively. The characteristics of the average NMSE as a function of reservoir size, i.e., the decreasing trend for ASN while

almost no change for BSN holds throughout the range of b.

neuron models using the clean input signal and test the models on a
test signal from the same generator. The neuron models learn to
reproduce the test signal from its previously self-generated output.
The performance of the neuron models for time-series prediction
tasks is usually measured by the NMSE, which is the metric that
indicates how accurately the models can predict the test signal. If y,,,
is the target output and y,. is the actual predicted output, for N
time steps, we define NMSE as:

1 i=Np 5
NMSE=————— % (g (i) = ypre (i) @)
N (ygex — yyin) Z % e)

Figures 2A,B show the NMSE for ASN and BSN, respectively for
the time-series prediction task for various reservoir sizes. We
generate the results using the ‘offline’ training as discussed in the

Frontiers in Nanotechnology 06

method section, for a clean input signal. We incorporate the
stochasticity by adding 5% white noise in both neuron models
(b = 0.05). The total sample size is 5,000 for a specific reservoir
size, however, it is worth mentioning that we do not get valid NMSE
for all the 5,000 cases because the network fails to predict the input
signal and blows up for some cases. We get ~ 90% — 100% successful
cases depending on the reservoir sizes. Only valid data points are
included in Figure 2 and all the subsequent figures. We find ASN
performs better than BSN for all the reservoir sizes indicated by the
average NMSE (cyan dashed-dotted line). Overall the NMSE is less
scattered for ASN than BSN, so is their standard deviation, (magenta
dashed-dotted line) as shown in the bottom panel of Figure 2. For
ASN, we find that the average NMSE has a decreasing trend as the
reservoir size increases, which indicates larger size networks can

frontiersin.org

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1146852

Morshed et al.

10.3389/fnano.2023.1146852

FIGURE 4

ASN
/A C
/ o =% 500 " =37 1500 0.40 \
08 00 ool = 400 €030
300 2 — 300 S
©£0.6 £0.6 m— Z.0.20
Z.0.4 200 Z 0.4 200 ¢
0.2 rs 100 0.2 100 <0.10
00— = 000 s Mo 00
10 20 30 40 50 10 20 30 40 50
Reservoir Size, N Reservoir Size, N
i =359 500 6 5=T0% 500 0.30
= 400 400
0.8 =
0.20
300 & 300 =
200 200 200 “
04 20.10
100 02 100 <
0.0 0 0.00
\ 10 20 30 40 50 10 20 30 40 50 0 2 4 6 8 10 i
AN Reservoir Size, N Reservoir Size, N b (%) /
BSN
Il/ B
/10 5=0% 0o 5=3%
0.8 400 g - =
B 300 506
200 Z =
i o) e—— 2
100 | —— 100 < 0.10{>-N=30 .
02 02 P Clean input
0.0 0 0.0 0 0.00
10 20 30 40 50 10 20 30 40 50 0 2 4 6 8 10
Reservoir Size, N Reservoir Size, N b (%)
0.30
- 500 — 500
1.0 b=5%_ 1.0 __b=10% Ol 5
400 e 400 m g
0.8 J— 0.8 J— Zo20 §:3-8:8-8-0=
go.s = — 300 2’0.6 _ = 3005
200 Z 0.4 == |j2% ?0,10 By
100 02 100 Am i di
- oN-# Distorted input
] 0.0 0.00
\ 10 20 30 40 50 10 20 30 40 50 0 2 4 6 & 10 4

N Reservoir Size, N

Reservoir Size, N

b (%)

Evolution of NMSE for different degrees of stochasticity for (A) ASN and (B) BSN models for a distorted input signal. Random white noise is added to

the clean input signal to introduce distortion and the form of the distorted signalis u(t) = A cos(2nfit) + Bsin(2nfot) + Clrand(l, t) - 0.5], where A= 1, B = 2,
C=1,f=0.10Hz and f, = 0.02 Hz. ASN performs better than BSN for the distorted input, as indicated by the average NMSE shown in (C) and (D) for ASN
and BSN, respectively, which dictates the robustness of the ASN model in terms of performance irrespective of the input signals.

predict better. This happens because of the substantially richer
dynamics and phase-space volume possible in a large network. In
contrast, for BSN, the average NMSE is almost unchanged as the
reservoir size increases.

We vary the stochasticity incorporated in the neuron models.
Figures 3A,B show the distribution of the NMSE for different
percentages of stochasticity, b for ASN and BSN models,
respectively. We find that ASN performs better than its BSN
counterpart throughout the ranges of b as indicated by the
average NMSE. For ASN, the average NMSE shows a sub-linear
trend as a function of b (Figure 3C) for various reservoir sizes, while
for BSN, the average NMSE remains unchanged (Figure 3D). For
pure analog neuron (b = 0%), the NMSE is not much spread out, and
also, for larger reservoir size, the average NMSE is smaller than the
neuron model with stochasticity, however, having a neuron model

Frontiers in Nanotechnology

with zero stochasticity is not practical. Moreover, stochasticity helps
to make the system stable and reliable as discussed in the next
section. Although the average NMSE increases with increasing b, we
conjecture that b = 2-5% would be optimal.

The aforementioned results are based on a clean input signal.
We tested the models for distorted input as well. For the distorted
case, we add a white noise in the clean input and the form of the
distorted input signal is u(t) = A cos(27nf;t) + B sin(27f5t) + Clrand(1,
t) — 0.5]. The white noise is uniformly distributed for all ¢ values,
both in the positive and negative half of the sinusoidal input. The
degree of noise has been chosen arbitrarily. Again, we show various
degrees of noise (Table 1) to make the analysis independent of a
specific value of the noise margin. The NMSE results shown in
Figures 4A,B are calculated using A =1,B=2,C=1, f; = 0.10 Hz,
and f, = 0.02 Hz. We find a better performance for ASN than that of

frontiersin.org

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1146852

Morshed et al.

A 08=
= ASN
® BSN
0.6
2z
sS04
z t
0.2 # %
0.0
Input 1 Input2 Input3 Input4

FIGURE 5

10.3389/fnano.2023.1146852

B 08=
® ASN
® BSN
0.6
4
S04t
- +
02| * i
0.0
Input 1 Input2 Input3 Input4

Comparison of NMSE for time-series prediction task between ASN and BSN models for various input functions for a reservoir size of (A) N = 20 and
(B) N = 30. The degree of stochasticity incorporated in both neuron models is 5%. The label Input 1, Input 2, Input 3, and Input 4 correspond to the
sinusoidal clean input, sinusoidal with higher harmonic terms, sawtooth, and square input functions, respectively. ANS performance is better than BSN in

terms of NMSE for different input functions.

BSN for the distorted input as well. It appears that for ASN, with a
distorted input signal, the spectrum of NMSE is smaller, which
reduces the standard deviation. The characteristics of the average
NMSE are similar for the clean and distorted input for both ASN
(Figure 4C) and BSN (Figure 4D) models. However, the average
NMSE is slightly lower for the distorted input for both types of
neuron models. Furthermore, we use different combinations of
signal magnitude, frequency, and the weight of noise in the input
signal. We list the average NMSE for various reservoir sizes in
Table 1. Additionally, we explore other input functions beyond the
simple sinusoidal input used in the aforementioned results. In
particular, we use a sinusoidal with higher harmonic terms, a
sawtooth input function, and a square input function. The used
form of the functions are u(t) = %Z}i’l% sin27nft (odd n), u(t) = A
sawtooth(2nfit) + B sawtooth(2nfyt), u(t) = A square(2nfit) + B
square(27f,t), respectively. In the case of sinusoidal with higher
harmonic terms, we use the fundamental frequency f; = 0.10 Hz. For
the sawtooth and square inputs, the magnitude and frequency
remain the same as of the original sinusoidal clean input. The
results are summarized in Figure 5, where the label Input 1,
Input 2, Input 3, and Input 4 correspond to the sinusoidal
clean input, sinusoidal with higher harmonic terms, sawtooth,
and square input functions, respectively. Figure 5 shows
that for all the different inputs, ANS performance is better
than BSN in terms of NMSE. Comparing all the cases, we
conjecture that ASN performs better than BSN for the
temporal inferencing task.

4.2 Deterministic vs. stochastic:
generalizability and robustness

One important aspect of any NN implementation is the
generalizability and robustness of the learning. A model trained
to a very specific data distribution will fail when it is running on a
distribution that differs from the trained model. This is particularly
true if a generative model guides its own subsequent learning, which
is the example we have used in our online learning scenario. In this
case, the underlying distribution is varied slowly while the network

Frontiers in Nanotechnology

evolves its internal generative model to match the output of
distribution, ie., it works as a dynamically evolving temporal
auto-encoder.

The stochasticity of the neuron response will add errors to the
generated output as we see in the previous cases, however, we find
that after a few iterations of the online learning cycle, the ability of
this online learning blows up, i.e., the linear regression-based
learning cannot keep up with the test distribution evolution and
the error builds up (we call it blowup) and the whole training needs
to be fully reset or reinitiated and cannot merely evolve from
previous learning. This blowup occurs 100% for deterministic
analog neurons, and the rate reduces as the degree of
stochasticity increases (parameter b).

This is shown in Table 2 for various input functions. It should be
noted that at very high stochasticity while the training is more
robust, the errors will be high, therefore a minimal amount of
stochasticity is useful as a trade-off between these ends. The degree
to which the trade-off can be performed depends on the application
scenario. If full retraining is too expensive or not acceptable, then a
relatively higher degree of stochasticity in the neuron is necessary,
but if it is cheap and acceptable to retrain the whole network
frequently, a near-deterministic neuron will be better suited to
meet the requirements.

4.3 Synaptic weights dynamic range:
hardware implementability
of hardware

One critical

neuromorphic computing is the ability to modulate the weights

aspect implementability of
and the dynamic range or the order of magnitude to which weights
may be distributed. It can be shown that a 30-bit weight resolution
represents about a 100 dB dynamic range. While such ranges might
be comparatively easily implemented in software, it is significantly
difficult to implement such a high dynamic range in physical
hardware. While some memristive materials may show multi-
steps, it is hard to achieve much more than one order of
magnitude change in the weights. Please note that we do not
mean the change in the physical characteristics (typically the

frontiersin.org

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1146852

Morshed et al.

10.3389/fnano.2023.1146852

TABLE 2 Robustness vs. accuracy trade-off (N = 20). The label Input 1, Input 2, Input 3, and Input 4 correspond to the sinusoidal clean input, sinusoidal with higher
harmonic terms, sawtooth, and square input functions described earlier, respectively.

Model b (%) Blowup (%) Avg. NMSE
Input 1 Input 2 Input 3 Input 4 Input 1 Input 2 Input 3 Input 4

AN 0 100 100 100 100 - - - -

ASN 1 74.7 81.3 98.5 98.6 0.3175 0.2759 0.4947 0.5475
2 66.4 79.3 92.0 92.9 0.2921 0.3225 0.3947 0.5537
3 60.7 78.7 85.9 88.9 0.2854 0.3301 0.3744 0.5591
4 56.2 77.0 81.0 84.3 0.2782 0.3534 0.3572 0.5515
5 53.9 763 76.4 80.7 0.2778 0.3597 0.3636 0.5358
10 49.1 71.6 66.5 714 0.2849 0.3903 0.3398 0.5316
15 48.8 69.3 59.7 67.3 0.3019 0.4266 0.3557 0.5412

(dB)

out

100 f :

Dynamic Range of W
w
S

AN ASN BN

BSN

FIGURE 6

Dynamic range of the learned synaptic weights, Wy, for all the
neuron models (N =20). 5% stochasticity is considered in the ASN and
BSN models. ASN model shows the smallest dynamic range that leads
to better hardware implementability. The label Input 1, Input 2,
Input 3, and Input 4 correspond to the sinusoidal clean input,
sinusoidal with higher harmonic terms, sawtooth, and square input
functions, respectively.

resistance) used to represent the weights themselves, but rather the
number of steps that the weight can be implemented as.

We compare the dynamic range of the learned synaptic weights
that need to be implemented in the reservoir networks (in the
trained output readout layer) for various input functions and find
that the ASN networks show the smallest dynamic range for all the
cases (Figure 6) and suggest the easiest path to hardware
implementability of physical neuromorphic computing. It is
important to note that the hardware implementation of
neuromorphic computing is an open question and the dynamic
range of the synaptic weights is one of the important factors when it
comes to the physical deployment of neuromorphic computing as
discussed above. ASN networks show better performance in terms of
the dynamic range of learned synaptic weights compared to other
models, which suggests that networks that employed ASN models

Frontiers in Nanotechnology

TABLE 3 Linear memory capacity (MC) for different neuron models.

Reservoir size

Analog N =40 39.0 325
N =50 452 36.2
Binary N =40 2.7 2.8
N =50 3.4 32

might have better hardware implementability; however, it requires
analysis of energy cost, scalability, and
reconfigurability, which we leave as a future study.

more in terms

4.4 Memory capacity

The performance of reservoir computing is often described by
memory capacity (MC) (Jaeger, 2002; Verstraeten et al., 2007;
2017). It measures how much
information from previous input is present in the current output

Inubushi and Yoshimura,
state of the reservoir. The task is to reproduce the delayed version of
the input signal. For a certain time delay k, we measure how well the
current state of the reservoir y,(f) can recall the input u at time ¢ — k.
The linear MC is defined as:

cov? (u(t — k), ye (1))
C=
M ; a?u(t —k)o? (yi (1))

(5)

where u(t — k) is the delayed version of the input signal, which is the
target output, and y(¢) is the output of the reservoir unit trained on
the delay k. cov and o> denote covariance and variance, respectively.

Table 3 shows the linear MC for different neuron models for the
distorted input u(t) = A cos(2nfit) + Bsin(2nfyt) + Clrand(1, t) —
0.5], where A=1,B=2,C=1,f; =0.10 Hz, and f, = 0.02 Hz. We
consider the delayed signal over 1 to 50 timesteps, meaning k spans
from 1 to 50. We find that Analog neurons have significantly larger
linear MC than binary neurons. For analog neurons, linear MC

frontiersin.org

https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1146852

Morshed et al.

increases as the reservoir size increases, which is expected because a
larger dynamical system can retain more information from the past
(Jaeger, 2002). Additionally, including stochasticity in the analog
neuron model degrades the linear MC as reported previously
(Jaeger, 2002). In contrast, binary neurons fail to produce
substantial differences in linear MC when reservoir size is varied
and stochasticity is included in the model.

Besides the
neuromorphic

previously mentioned properties, physical

computing exhibits chaos or edge-of-chaos
property, which has been shown to enhance the performance of
complex learning tasks (Kumar et al., 2017; Hochstetter et al., 2021;
Nishioka et al., 2022). The edge-of-chaos property refers to the
transition point between ordered and chaotic behavior in a system.
In the discussed models, it may be possible to achieve the edge-of-
chaos state by introducing increasing amounts of noise to the
models, resulting in chaotic behavior that could potentially
improve network performance. We find that with an increased
degree of stochasticity in the neuron models, the learning process
becomes more robust, which could be a signature of the
performance improvement by including the edge-of-chaos
property. However, the prediction accuracy and the linear MC
tend to decrease with a higher degree of stochasticity, so the
trade-off needs to be considered. It should be noted that a more
comprehensive analysis is required to fully understand the impact of
edge-of-chaos behavior on the discussed neuron models, which is

beyond the scope of this paper and will be explored in future studies.

5 Conclusion

In summary, we studied different neuron models for the analog
signal inferencing (time-series prediction) task in the context of
reservoir computing and evaluate their performances for various
input functions. We show that the performance metrics are better
for ASN than BSN for both clean and distorted input signals. We find
that the increasing degree of stochasticity makes the models more
robust, however, decreases the prediction accuracy. This introduces a
trade-off between accuracy and robustness depending on the
application requirements and specifications. Furthermore, the ASN
model turns out to be the suitable one for hardware implementation,
which attributes to the smallest dynamics range of the learned synaptic
weights, although other aspects, i.e., energy requirement, scalability, and
reconfigurability need to be assessed. Additionally, we estimate the
linear memory capacity for different neuron models, which suggests
that analog neurons have a higher ability to reconstruct the past input
signal from the present reservoir state. These findings may provide
critical insights for choosing suitable neuron models for real-time
signal-processing tasks and pave the way toward building energy-
efficient neuromorphic computing platforms.

References

Abiodun, O. L, Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A., and Arshad,
H. (2018). State-of-the-art in artificial neural network applications: A survey. Heliyon 4
(11), €00938. doi:10.1016/j.heliyon.2018.e00938

Abreu Araujo, F., Riou, M., Torrejon, J., Tsunegi, S., Querlioz, D., Yakushiji, K.,
et al. (2020). Role of non-linear data processing on speech recognition task in the
framework of reservoir computing. Sci. Rep. 10, 1-11. doi:10.1038/s41598-019-
56991-x

Frontiers in Nanotechnology

10.3389/fnano.2023.1146852

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

SG, MM, and AG conceived the idea. SG wrote the base
simulation codes and MM modified and parallelized the base
simulation codes for HPC, performed all the simulations, and
generated the results. All authors analyzed the results,
contributed to the manuscript, and approved the submitted

version.

Funding

This work was supported by DRS Technology and in part by the
NSF I/UCRC on Multi-functional Integrated System Technology
(MIST) Center; IIP-1439644, IIP-1439680, IIP-1738752, IIP-
1939009, IIP-1939050, and IIP-1939012.

Acknowledgments

We thank Kerem Yunus Camsari, Marco Lopez, Tony
Ragucci, and Faiyaz Elahi Mullick for useful discussions. All
the calculations are done using the computational resources from
High-Performance Computing systems at the University of
Virginia (Rivanna) and the Extreme Science and Engineering
Discovery Environment (XSEDE).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Adam, G. C,, Hoskins, B. D., Prezioso, M., Merrikh-Bayat, F., Chakrabarti, B., and
Strukov, D. B. (2016). 3-D memristor crossbars for analog and neuromorphic
computing applications. IEEE Trans. Electron Devices 64 (1), 312-318. doi:10.1109/
TED.2016.2630925

Baldassi, C., Gerace, F., Kappen, H. J., Lucibello, C., Saglietti, L., Tartaglione, E., et al.
(2018). Role of synaptic stochasticity in training low-precision neural networks. Phys.
Rev. Lett. 120 (26), 268103. doi:10.1103/PhysRevLett.120.268103

frontiersin.org

https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/10.1038/s41598-019-56991-x
https://doi.org/10.1038/s41598-019-56991-x
https://doi.org/10.1109/TED.2016.2630925
https://doi.org/10.1109/TED.2016.2630925
https://doi.org/10.1103/PhysRevLett.120.268103
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1146852

Morshed et al.

Barna, G., and Kaski, K. (1990). Stochastic vs. Deterministic neural networks for
pattern recognition. Phys. Scr. T33, 110-115. doi:10.1088/0031-8949/1990/T33/019

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A. R,, Bussat,
J. M, et al. (2014). Neurogrid: A mixed-analog-digital multichip system for large-scale
neural simulations. Proc. IEEE 102 (5), 699-716. doi:10.1109/JPROC.2014.2313565

Bick, C., Goodfellow, M., Laing, C. R., and Martens, E. A. (2020). Understanding the
dynamics of biological and neural oscillator networks through exact mean-field
reductions: A review. J. Math. Neurosci. 10 (1), 9-43. doi:10.1186/s13408-020-
00086-9

Big data (2018). Big data needs a hardware revolution. Nature 554, 145-146. doi:10.
1038/d41586-018-01683-1

Brigner, W. H., Hassan, N., Hu, X, Bennett, C. H., Garcia-Sanchez, F., Cui, C,, et al.
(2022). Domain wall leaky integrate-and-fire neurons with shape-based configurable
activation functions. IEEE Trans. Electron Devices 69 (5), 2353-2359. doi:10.1109/TED.
2022.3159508

Brown, S. D., Chakma, G., Musabbir Adnan, M, Hasan Sakib, M, and Rose, G. S.
(2019). “Stochasticity in neuromorphic computing: Evaluating randomness for
improved performance,” in 2019 26th IEEE International Conference on
Electronics, Circuits and Systems (ICECS), Genoa, Italy, 27-29 November 2019
(IEEE), 454-457. doi:10.1109/ICECS46596.2019.8965057

Burkitt, A. N. (2006). A review of the integrate-and-fire neuron model: I.
Homogeneous synaptic input. Biol. Cybern. 95 (1), 1-19. doi:10.1007/s00422-006-
0068-6

Camsari, K. Y., Faria, R,, Sutton, B. M., and Datta, S. (2017a). Stochastic p-bits for
invertible logic. Phys. Rev. X 7 (3), 031014. doi:10.1103/PhysRevX.7.031014

Camsari, K. Y., Salahuddin, S., and Datta, S. (2017b). Implementing p-bits with
embedded MTJ. IEEE Electron Device Lett. 38 (12), 1767-1770. ISSN 1558-0563. doi:10.
1109/LED.2017.2768321

Christensen, D. V., Dittmann, R., Linares-Barranco, B., Sebastian, A., Gallo, M. L.,
Redaelli, A., et al. (2022). 2022 roadmap on neuromorphic computing and engineering.
Neuromorph. Comput. Eng. 2 (2), 022501. doi:10.1088/2634-4386/ac4a83

Cook, R. L. (1986). Stochastic sampling in computer graphics. ACM Trans. Graph. 5
(1), 51-72. doi:10.1145/7529.8927

Davidson, S., and Furber, S. B. (2021). Comparison of artificial and spiking neural
networks on digital hardware. Front. Neurosci. 15, 651141. doi:10.3389/fnins.2021.
651141

Davies, M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H,, et al. (2018).
Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 38 (1),
82-99. doi:10.1109/MM.2018.112130359

Duan, Q, Jing, Z., Zou, X., Wang, Y., Yang, K., Zhang, T., et al. (2020). Spiking
neurons with spatiotemporal dynamics and gain modulation for monolithically
integrated memristive neural networks. Nat. Commun. 11, 3399. doi:10.1038/
s41467-020-17215-3

Engedy, Istvan, and Horvéath, Gébor (2012). “Optimal control with reinforcement
learning using reservoir computing and Gaussian mixture,” in 2012 IEEE International
Instrumentation and Measurement Technology Conference Proceedings, Graz, Austria,
13-16 May 2012 (IEEE), 1062-1066.

Faisal, A, Selen, L. P.]., and Wolpert, D. M. (2008). Noise in the nervous system. Nat.
Rev. Neurosci. 9 (4), 292-303. doi:10.1038/nrn2258

Farquhar, E., Gordon, C., and Hasler, P. (2006). “A field programmable neural array,”
in 2006 IEEE International Symposium on Circuits and Systems, Kos, Greece, 21-
24 May 2006 (IEEE). doi:10.1109/ISCAS.2006.1693534

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker project.
Proc. IEEE 102 (5), 652-665. doi:10.1109/JPROC.2014.2304638

Ganguly, S., Camsari, K. Y., and Ghosh, A. W. (2021). Analog signal processing using
stochastic magnets. IEEE Access 9, 92640-92650. doi:10.1109/ACCESS.2021.3075839

Ganguly, S., Gu, Y., Stan, M. R,, and Ghosh, A. W. (2018). “Hardware based spatio-
temporal neural processing backend for imaging sensors: Towards a smart camera,” in
Image sensing technologies: Materials, devices, systems, and applications V (Washington
USA: SPIE), 135-145. doi:10.1117/12.2305137

Goldberger, J., and Ben-Reuven, E. (2017). “Training deep neural-networks using a
noise adaptation layer,” in International Conference on Learning Representations,
Toulon, France, April 24 - 26, 2017.

Goodfellow, I, Bengio, Y., and Courville, A. (2016). Deep learning. Massachusetts, US:
MIT press.

Grollier, J., Querlioz, D., Camsari, K. Y., Everschor-Sitte, K., Fukami, S., and Stiles, M.
D. (2020). Neuromorphic spintronics. Nat. Electron. 3 (7), 360-370. doi:10.1038/
$41928-019-0360-9

Guo, X,, Xiang, J., Zhang, Y., and Su, Y. (2021). Integrated neuromorphic photonics:
Synapses, neurons, and neural networks. Adv. Photonics Res. 2 (6), 2000212. doi:10.
1002/adpr.202000212

Harmon, L. D. (1959). Artificial neuron. Science 129 (3354), 962-963. doi:10.1126/
science.129.3354.962

Frontiers in Nanotechnology

11

10.3389/fnano.2023.1146852

Hochstetter, J., Zhu, R., Loeffler, A., Diaz-Alvarez, A., Nakayama, T., and Kuncic, Z.
(2021). Avalanches and edge-of-chaos learning in neuromorphic nanowire networks.
Nat. Commun. 12 (4008), 4008-4013. doi:10.1038/s41467-021-24260-z

Hu, M., Li, H., Chen, Y., Wu, Q., Rose, G. S., and Linderman, R. W. (2014). Memristor
crossbar-based neuromorphic computing system: A case study. IEEE Trans. Neural
Netw. Learn. Syst. 25 (10), 1864-1878. doi:10.1109/TNNLS.2013.2296777

Huang, C. W,, Lim, J. H,, and Courville, A. C. (2021). A variational perspective on
diffusion-based generative models and score matching. Adv. Neural Inf. Process. Syst.
34, 22863-22876.

Innocenti, G., Di Marco, M., Tesi, A., and Forti, M. (2021). Memristor circuits for
simulating neuron spiking and burst phenomena. Front. Neurosci. 15, 681035. doi:10.
3389/fnins.2021.681035

Inubushi, M., and Yoshimura, K. (2017). Reservoir computing beyond memory-
nonlinearity trade-off. Sci. Rep. 7, 1-10. doi:10.1038/s41598-017-10257-6

Jadaun, P., Cui, C, Liu, S., and Incorvia, J. A. C. (2022). Adaptive cognition
implemented with a context-aware and flexible neuron for next-generation artificial
intelligence. PNAS Nexus 1 (5), pgac206. doi:10.1093/pnasnexus/pgac206

Jaeger, H. (2002). Short term memory in echo state networks. gmd-report 152. Sankt
Augustin: GMD-German National Research Institute for Computer Science.

Jalalvand, A., Van Wallendael, G, and Walle, R. V. D (2015). “Real-time reservoir
computing network-based systems for detection tasks on visual contents,” in 2015
7th International Conference on Cnmputational Intelligence, Communication
Systems and Networks, Riga, Latvia, 03-05 June 2015 (IEEE), 146-151. doi:10.
1109/CICSyN.2015.35

Jim, K. C, Giles, C. L., and Horne, B. G. (1996). An analysis of noise in recurrent
neural networks: Convergence and generalization. IEEE Trans. Neural Netw. 7 (6),
1424-1438. doi:10.1109/72.548170

Jo, S. H., Chang, T., Ebong, I, Bhadviya, B. B., Mazumder, P., and Lu, W. (2010).
Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10 (4),
1297-1301. doi:10.1021/n1904092h

Kandel, E. R,, Schwartz, J. H., Jessell, T. M., Siegelbaum, S., Hudspeth, A. J., Mack, S.,
et al. (2000). Principles of neural science. New York: McGraw-Hill.

Kato, J., Tanaka, G., Nakane, R., and Hirose, A. (2022). “Proposal of reconstructive
reservoir computing to detect anomaly in time-series signals,” in 2022 International
Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18-23 July 2022 (IEEE),
1-6. doi:10.1109/IJCNN55064.2022.9892805

Kireev, D., Liu, S., Jin, H., Patrick Xiao, T., Bennett, C. H., Akinwande, D., et al. (2022).
Metaplastic and energy-efficient biocompatible graphene artificial synaptic transistors
for enhanced accuracy neuromorphic computing. Nat. Commun. 13, 4386. doi:10.1038/
541467-022-32078-6

Kumar, S., Strachan, J. P., and Stanley Williams, R. (2017). Chaotic dynamics in
nanoscale NbO2 Mott memristors for analogue computing. Nature 548 (7667),
318-321. doi:10.1038/nature23307

Leonard, T., Liu, S., Alamdar, M., Jin, H., Cui, C., Akinola, O. G,, et al. (2022). Shape-
dependent multi-weight magnetic artificial synapses for neuromorphic computing. Adv.
Electron. Mat. 8 (12), 2200563. doi:10.1002/aelm.202200563

Li, D, Han, M., and Wang, J. (2012). Chaotic time series prediction based on a novel
robust echo state network. IEEE Trans. Neural Netw. Learn. Syst. 23 (5), 787-799.
doi:10.1109/TNNLS.2012.2188414

Liu, H,, Wu, T., Yan, X., Wy,], Wang, N, Du, Z,, et al. (2021). A tantalum disulfide
charge-density-wave stochastic artificial neuron for emulating neural statistical
properties. Nano Lett. 21 (8), 3465-3472. doi:10.1021/acs.nanolett.1c00108

Locatelli, N., Cros, V., and Grollier, J. (2014). Spin-torque building blocks. Nat. Mat.
13 (1), 11-20. doi:10.1038/nmat3823

Lukosevi¢ius, M. (2012). “A practical guide to applying echo state networks,” in
Neural networks: Tricks of the trade. Second Edition (Berlin, Germany: Springer),
659-686. doi:10.1007/978-3-642-35289-8_36

Lv, W,, Cai, J., Tu, H,, Zhang, L., Li, R., Yuan, Z., et al. (2022). Stochastic artificial
synapses based on nanoscale magnetic tunnel junction for neuromorphic applications.
Appl. Phys. Lett. 121 (23), 232406. doi:10.1063/5.0126392

Markovi¢, D., Mizrahi, A., Querlioz, D., and Grollier, J. (2020). Physics for
neuromorphic computing. Nat. Rev. Phys. 2 (9), 499-510. ISSN 2522-5820. doi:10.
1038/542254-020-0208-2

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78 (10), 1629-1636.
doi:10.1109/5.58356

Mehonic, A., and Kenyon, A. J. (2016). Emulating the electrical activity of the neuron
using a silicon oxide RRAM cell. Front. Neurosci. 10, 57. doi:10.3389/fnins.2016.00057

Merolla, P. A,, Arthur, J. V., Alvarez-Icaza, R,, Cassidy, A. S., Sawada, J., Akopyan, F.,
etal. (2014). A million spiking-neuron integrated circuit with a scalable communication
network and interface. Science 345 (6197), 668-673. doi:10.1126/science.1254642

Moon, John, Wen, Ma, Shin, J. H,, Cai, F., Du, C, Lee, S. H.,, et al. (2019). Temporal
data classification and forecasting using a memristor-based reservoir computing system.
Nat. Electron. 2 (10), 480-487. doi:10.1038/s41928-019-0313-3

frontiersin.org

https://doi.org/10.1088/0031-8949/1990/T33/019
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1186/s13408-020-00086-9
https://doi.org/10.1186/s13408-020-00086-9
https://doi.org/10.1038/d41586-018-01683-1
https://doi.org/10.1038/d41586-018-01683-1
https://doi.org/10.1109/TED.2022.3159508
https://doi.org/10.1109/TED.2022.3159508
https://doi.org/10.1109/ICECS46596.2019.8965057
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.1007/s00422-006-0068-6
https://doi.org/10.1103/PhysRevX.7.031014
https://doi.org/10.1109/LED.2017.2768321
https://doi.org/10.1109/LED.2017.2768321
https://doi.org/10.1088/2634-4386/ac4a83
https://doi.org/10.1145/7529.8927
https://doi.org/10.3389/fnins.2021.651141
https://doi.org/10.3389/fnins.2021.651141
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1038/s41467-020-17215-3
https://doi.org/10.1038/s41467-020-17215-3
https://doi.org/10.1038/nrn2258
https://doi.org/10.1109/ISCAS.2006.1693534
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.1109/ACCESS.2021.3075839
https://doi.org/10.1117/12.2305137
https://doi.org/10.1038/s41928-019-0360-9
https://doi.org/10.1038/s41928-019-0360-9
https://doi.org/10.1002/adpr.202000212
https://doi.org/10.1002/adpr.202000212
https://doi.org/10.1126/science.129.3354.962
https://doi.org/10.1126/science.129.3354.962
https://doi.org/10.1038/s41467-021-24260-z
https://doi.org/10.1109/TNNLS.2013.2296777
https://doi.org/10.3389/fnins.2021.681035
https://doi.org/10.3389/fnins.2021.681035
https://doi.org/10.1038/s41598-017-10257-6
https://doi.org/10.1093/pnasnexus/pgac206
https://doi.org/10.1109/CICSyN.2015.35
https://doi.org/10.1109/CICSyN.2015.35
https://doi.org/10.1109/72.548170
https://doi.org/10.1021/nl904092h
https://doi.org/10.1109/IJCNN55064.2022.9892805
https://doi.org/10.1038/s41467-022-32078-6
https://doi.org/10.1038/s41467-022-32078-6
https://doi.org/10.1038/nature23307
https://doi.org/10.1002/aelm.202200563
https://doi.org/10.1109/TNNLS.2012.2188414
https://doi.org/10.1021/acs.nanolett.1c00108
https://doi.org/10.1038/nmat3823
https://doi.org/10.1007/978-3-642-35289-8_36
https://doi.org/10.1063/5.0126392
https://doi.org/10.1038/s42254-020-0208-2
https://doi.org/10.1038/s42254-020-0208-2
https://doi.org/10.1109/5.58356
https://doi.org/10.3389/fnins.2016.00057
https://doi.org/10.1126/science.1254642
https://doi.org/10.1038/s41928-019-0313-3
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1146852

Morshed et al.

Nishioka, D., Tsuchiya, T., Namiki, W., Takayanagi, M., Imura, M., Koide, Y., et al.
(2022). Edge-of-chaos learning achieved by ion-electron-coupled dynamics in an ion-
gating reservoir. Sci. Adv. 8 (50), eade1156. doi:10.1126/sciadv.ade1156

Oostwal, E., Straat, M., and Biehl, M. (2021). Hidden unit specialization in layered
neural networks: ReLU vs. sigmoidal activation. Phys. A 564, 125517. doi:10.1016/j.
physa.2020.125517

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S,, et al. (2019). Towards artificial
general intelligence with hybrid Tianjic chip architecture. Nature 572 (7767), 106-111.
doi:10.1038/s41586-019-1424-8

Pyragas, V., and Pyragas, K. (2020). Using reservoir computer to predict and prevent
extreme events. Phys. Lett. A 384 (24), 126591. doi:10.1016/j.physleta.2020.126591

Rajendran, B., and Alibart, F. (2016). Neuromorphic computing based on emerging
memory technologies. IEEE J. Emerg. Sel. Top. Circuits Syst. 6 (2), 198-211. doi:10.1109/
JETCAS.2016.2533298

Romeira, B., Avo, R., Figueiredo, J. M. L., Barland, S., and Javaloyes, J. (2016).
Regenerative memory in time-delayed neuromorphic photonic resonators. Sci. Rep. 6,
19510. doi:10.1038/srep19510

Roy, K., Sharad, M., Fan, D., and Yogendra, K. (2014). “Brain-inspired computing with spin
torque devices,” in 2014 Design, Automation & Test in Europe Conference & Exhibition
(DATE), Dresden, Germany, 24-28 March 2014 (IEEE), 1-6. doi:10.7873/DATE.2014.245

Schemmel, J., Briiderle, D., Griibl, A., Hock, M., Meier, K., and Millner, S. (2010). “A
wafer-scale neuromorphic hardware system for large-scale neural modeling,” in
2010 IEEE International Symposium on Circuits and Systems (ISCAS), Paris,
France, 30 May - 02 June 2010 (IEEE), 1947-1950. doi:10.1109/ISCAS.2010.5536970

Schuman, C. D., Kulkarni, S. R,, Parsa, M., Parker Mitchell, ., Date, P., and Kay, B.
(2022). Opportunities for neuromorphic computing algorithms and applications. Nat.
Comput. Sci. 2 (1), 10-19. doi:10.1038/s43588-021-00184-y

Schuman, C. D., Potok, T. E., Patton, R. M., Birdwell,]. D., Dean, M. E., Rose, G. S.,
et al. (2017). A survey of neuromorphic computing and neural networks in hardware.
arXiv. doi:10.48550/arXiv.1705.06963

Sengupta, A, Panda, P., Raghunathan, A., and Roy, K. (2016b). “Neuromorphic computing
enabled by spin-transfer torque devices,” in 2016 29th International Conference on VLSI
Design and 2016 15th International Conference on Embedded Systems (VLSID), Kolkata,
India, 04-08 January 2016 (IEEE), 32-37. doi:10.1109/VLSID.2016.117

Sengupta, A., Yogendra, K., and Roy, K. (2016a). “Spintronic devices for ultra-low
power neuromorphic computation (Special session paper),” in 2016 IEEE International
Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22-25 May 2016
(IEEE), 922-925. doi:10.1109/ISCAS.2016.7527392

Serb, A., Corna, A., George, R.,, Khiat, A., Rocchi, F., Reato, M., et al. (2020).
Memristive synapses connect brain and silicon spiking neurons. Sci. Rep. 10 (2590),
2590-2597. doi:10.1038/s41598-020-58831-9

Shainline, J. M., Buckley, S. M., Mirin, R. P, and Nam, S. W. (2017). Superconducting
optoelectronic circuits for neuromorphic computing. Phys. Rev. Appl. 7 (3), 034013.
doi:10.1103/PhysRevApplied.7.034013

Shastri, Bhavin J,, Tait, Alexander N., Ferreira de Lima, T., WolframPernice, H. P.,
Bhaskaran, H., Wright, C. D,, et al. (2021). Photonics for artificial intelligence and
neuromorphic computing. Nat. Photonics 15 (2), 102-114. doi:10.1038/s41566-020-00754-y

Frontiers in Nanotechnology

12

10.3389/fnano.2023.1146852

Siddiqui, S. A., Dutta, S., Tang, A, Liu, L., Ross, C. A., and Baldo, M. A. (2020).
Magnetic domain wall based synaptic and activation function generator for
neuromorphic accelerators. Nano Lett. 20 (2), 1033-1040. doi:10.1021/acs.nanolett.
9b04200

Song, K. M,, Jeong, J. S., Pan, B., Zhang, X., Xia, J., Cha, S,, et al. (2020). Skyrmion-
based artificial synapses for neuromorphic computing. Nat. Electron. 3 (3), 148-155.
doi:10.1038/541928-020-0385-0

Squire, L., Berg, D., Bloom, F. E., Du Lac, S., Ghosh, A., and Spitzer, N. C. (2012).
Fundamental neuroscience. Massachusetts, US: Academic Press.

Suri, M., Parmar, V., Kumar, A., Querlioz, D., and Alibart, F. (2015). “Neuromorphic
hybrid RRAM-CMOS RBM architecture,” in 2015 15th Non-Volatile Memory
Technology Symposium (NVMTS), Beijing, China, 12-14 October 2015 (IEEE), 1-6.
doi:10.1109/NVMTS.2015.7457484

Szandala, T. (2020). “Review and comparison of commonly used activation functions
for deep neural networks,” in Bio-inspired neurocomputing (Singapore: Springer),
203-224. doi:10.1007/978-981-15-5495-7_11

Tanaka, G., Yamane, T., Héroux, J. B., Nakane, R., Kanazawa, N., Takeda, S., et al.
(2019). Recent advances in physical reservoir computing: A review. Neural Netw. 115,
100-123. doi:10.1016/j.neunet.2019.03.005

Torrejon, J., Riou, M., Abreu Araujo, F., Tsunegi, S., Khalsa, G., Querlioz, D., et al.
(2017). Neuromorphic computing with nanoscale spintronic oscillators. Nature 547
(7664), 428-431. doi:10.1038/nature23011

Triefenbach, F., Jalalvand, A., Schrauwen, B., and Martens, J. P. (2010). “Phoneme
recognition with large hierarchical reservoirs,” in Advances in neural information
processing systems. Editors J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and
A. Culotta (Red Hook, NY: Curran Associates, Inc.).

Upadhyay, N. K., Joshi, S., and Yang, J. J. (2016). Synaptic electronics and
neuromorphic computing. Sci. China Inf. Sci. 59 (6), 061404. doi:10.1007/s11432-
016-5565-1

Verstraeten, D., Schrauwen, B., D’Haene, M., and Stroobandt, D. (2007). An
experimental unification of reservoir computing methods. Neural Netw. 20 (3),
391-403. doi:10.1016/j.neunet.2007.04.003

Vincent, A. F,, Larroque, J., Locatelli, N., Ben Romdhane, N., Bichler, O., Gamrat, C.,
et al. (2015). Spin-transfer torque magnetic memory as a stochastic memristive synapse
for neuromorphic systems. IEEE Trans. Biomed. Circuits Syst. 9 (2), 166-174. doi:10.
1109/TBCAS.2015.2414423

Wang, R. M., Thakur, C. S., and van Schaik, A. (2018). An FPGA-based massively
parallel neuromorphic cortex simulator. Front. Neurosci. 12, 213. doi:10.3389/fnins.
2018.00213

Yang, J., Strukov, D. B., and Stewart, D. R. (2013). Memristive devices for computing.
Nat. Nanotechnol. 8 (1), 13-24. do0i:10.1038/nnano.2012.240

Yao, P., Wu, H,, Gao, B,, Tang, J., Zhang, Q., Zhang, W., et al. (2020). Fully hardware-
implemented memristor convolutional neural network. Nature 577 (7792), 641-646.
doi:10.1038/s41586-020-1942-4

Zhang, C., and Woodland, P. C. (2015). “Parameterised sigmoid and relu hidden
activation functions for dnn acoustic modelling,” in Interspeech, Dresden, Germany,
September 6-10, 2015.

frontiersin.org

https://doi.org/10.1126/sciadv.ade1156
https://doi.org/10.1016/j.physa.2020.125517
https://doi.org/10.1016/j.physa.2020.125517
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1016/j.physleta.2020.126591
https://doi.org/10.1109/JETCAS.2016.2533298
https://doi.org/10.1109/JETCAS.2016.2533298
https://doi.org/10.1038/srep19510
https://doi.org/10.7873/DATE.2014.245
https://doi.org/10.1109/ISCAS.2010.5536970
https://doi.org/10.1038/s43588-021-00184-y
https://doi.org/10.48550/arXiv.1705.06963
https://doi.org/10.1109/VLSID.2016.117
https://doi.org/10.1109/ISCAS.2016.7527392
https://doi.org/10.1038/s41598-020-58831-9
https://doi.org/10.1103/PhysRevApplied.7.034013
https://doi.org/10.1038/s41566-020-00754-y
https://doi.org/10.1021/acs.nanolett.9b04200
https://doi.org/10.1021/acs.nanolett.9b04200
https://doi.org/10.1038/s41928-020-0385-0
https://doi.org/10.1109/NVMTS.2015.7457484
https://doi.org/10.1007/978-981-15-5495-7_11
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1038/nature23011
https://doi.org/10.1007/s11432-016-5565-1
https://doi.org/10.1007/s11432-016-5565-1
https://doi.org/10.1016/j.neunet.2007.04.003
https://doi.org/10.1109/TBCAS.2015.2414423
https://doi.org/10.1109/TBCAS.2015.2414423
https://doi.org/10.3389/fnins.2018.00213
https://doi.org/10.3389/fnins.2018.00213
https://doi.org/10.1038/nnano.2012.240
https://doi.org/10.1038/s41586-020-1942-4
https://www.frontiersin.org/journals/nanotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fnano.2023.1146852

	Choose your tools carefully: a comparative evaluation of deterministic vs. stochastic and binary vs. analog neuron models f ...
	1 Introduction
	2 Brief overview on neuron models
	3 Methods
	4 Results and discussions
	4.1 Binary vs. analog: inference errors
	4.2 Deterministic vs. stochastic: generalizability and robustness
	4.3 Synaptic weights dynamic range: hardware implementability
	4.4 Memory capacity

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

