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ABSTRACT
Ensuring that technological advancements benefit all

groups of people equally is crucial. The first step towards
fairness is identifying existing inequalities. The naive com-
parison of group error rates may lead to wrong conclusions.
We introduce a new method to determine whether a speaker
verification system is fair toward several population sub-
groups. We propose to model miss and false alarm probabili-
ties as a function of multiple factors, including the population
group effects, e.g., male and female, and a series of confound-
ing variables, e.g., speaker effects, language, nationality, etc.
This model can estimate error rates related to a group effect
without the influence of confounding effects. We experi-
ment with a synthetic dataset where we control group and
confounding effects. Our metric achieves significantly lower
false positive and false negative rates w.r.t. baseline. We
also experiment with VoxCeleb and NIST SRE21 datasets on
different ASV systems and present our conclusions.

Index Terms— Fairness, Speaker verification

1. INTRODUCTION

The increasing demand for smart devices has highlighted
the importance of advancing speech-processing technologies,
such as automatic speech recognition (ASR) and speaker ver-
ification (ASV). As these technologies evolve, it is crucial
to ensure no disparity in the performance among differ-
ent speaker subgroups. Speaker subgroups refer to distinct
groups of speakers based on factors such as gender, age,
nationality, etc. Recent studies [1] [2] [3] have identified
negative biases towards certain population subgroups in the
performance of ASV systems trained on established datasets.

Hutiri et al. [1] present an in-depth analysis of bias present
in the VoxCeleb Speaker Recognition Challenge benchmark.
They proposed a new metric called sub-group bias to evaluate
the bias using detection cost CDet [4]. sub-group bias is the
ratio between the detection cost of a subgroup and the over-
all detection cost. The authors uncovered that female speak-
ers and speakers of non-US nationalities experience notable
performance degradation. Another recent work by Estevez et
al. [5] shows similar performance issues. They used Cllr [6], a
calibration-sensitive metric, to measure the ASV system per-
formance and Fairness Discrepancy Rate (FDR) [7] to mea-
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sure fairness. Their results show performance gaps between
different nationality and gender groups for systems trained
with unbalanced backends.

However, the previous works [1] [5] on fairness in ASV
systems fail to consider the potential influence of confounding
factors, such as imbalances in the speakers’ age or nationality
distribution when gender fairness is being analyzed. Also, an
oversight of speaker variability within the respective groups
may result in a wrong conclusion regarding fairness.

We propose a new method to detect unfair bias in ASV
systems while taking into account various confounding fac-
tors and speaker variabilities. Our work is primarily moti-
vated by a study conducted by Liu et al. [8]. Their research in-
troduced a model-based method for assessing fairness in ASR
systems. They proposed mixed-effects Poisson regression [9]
using speaker labels as random effects and any group label or
confounding variables as fixed effects. The authors validated
the efficacy of the proposed model through a series of compre-
hensive experiments using synthetic data. The contributions
of our work are: (1) introducing a new model-based method
to detect unfair biases in ASV systems; (2) generating a syn-
thetic dataset to validate our method; (3) performing fairness
analysis on two real datasets and presenting our findings.

2. MODEL-BASED METRICS

2.1. Bernoulli Regression to Measure ASV Fairness
Drawing inspiration from Liu et al.’s [8] fairness metric for
ASR, we propose a model that can disentangle the effects of
different factors on the error rates of ASV systems. Errors
in speaker verification trials depend on several factors, such
as the speaker’s gender, language, accent, utterance duration,
transmission channel, etc. Meanwhile, groups define the spe-
cific category of a factor the speaker belongs to. For instance,
male and female could be the groups under the gender factor.

Suppose we want to assess the fairness of ASV regarding
some factor of interest, e.g., the speakers’ gender. Given a
speaker verification trial sth, we define the groups of a fac-
tor with a deterministic function f(s), which could take three
values for the gender factor, as explained later. We intend
to test this factor’s statistical significance across its different
groups on the measured ASV metrics. In this case, the other
factors affecting the error rate, like language or channel, are
confounding factors whose effects we need to remove. Sup-
pose all utterances had low SNRs for the male speakers and
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high SNRs for the female speakers. If we do not remove the
SNR effect, we will conclude that the system performs better
for females than males. Likewise, if we want to assess fair-
ness w.r.t. language, gender becomes a confounding factor.

A particularity of speaker verification is that metrics, such
as equal error rate (EER) and detection cost function (DCF)
[4], depend on two error probabilities, namely miss and false
alarm rates. Misses are errors for target trials, while false
alarms are errors for non-target trials. The trial character-
istic factors impact differently to target and non-target tri-
als. For example, channel mismatch between enrollment and
test utterances may increase misses but decrease false alarms.
Therefore, we need separate models with different parameters
to estimate the factors’ effects on misses and false alarms.

We define a binary variable ts, which indicates whether
the s trial is wrongly classified (ts = 1) or not (ts = 0). We
assume that ts is distributed as,

ts ∼ Bernoulli(q(s)) where (1)

q(s) =

{
h(λT (s)) where s is a target trial
h(λN (s)) where s is a non-target trial

. (2)

where h is a non-linear function that maps λ into the [0, 1]
interval. We can use h(λ) = sigmoid(λ) or h(λ) =
exp(− exp(−λ)), similar to [8]. Thus, the error probabil-
ity is trial-dependent and is given by a regression function.
The λ’s are linear functions of the effects of the different
factors,

λZ(s) = µZ +
K∑

k=1

µZ,k(fk(s)) for Z ∈ T ,N (3)

where µT and µN are universal trial-independent biases com-
mon to all target and non-target trials, respectively; µT ,k and
µN ,k are the group effect, i.e., the error contribution, of the
kth factor; and fk(s) indicates the group that the sth trial be-
longs to for factor k.

Groups are determined by the characteristics of both the
enrollment and test utterances or speakers. When a factor has
two possible categories, three groups are formed. Groups 0
and 1 are assigned to trials with utterances from the same cat-
egory. Group 2 is assigned to ‘cross-group’ trials where each
side belongs to different categories. For the gender example,
the three groups, 0, 1, and 2, could be Male-Male, Female-
Female, and Male-Female or Female-Male, respectively.

This model is trained by maximizing the log-likelihood
w.r.t. its parameters. We enforced that the average effect over
G groups for each factor is zero by adding to the loss function
a penalty term, i.e., mZ,k =

∑G
g=1 µZ,k(g) = 0, for each fac-

tor k = 1, . . . ,K , and trial type Z = T ,N . By doing this, the
average group effects are observed by the factor-independent
terms µT and µN . In this manner, if we want to estimate the
error probability when we remove the group effect of factor
k, we just need to set µZ,k = 0 and evaluate eq. (2).

2.2. Bernoulli Regression with Confunding Covariates

We can extend the Bernoulli regression model above to in-
clude additional explanatory covariates, which can capture
the effects of confounding variables on miss and false alarm
rates. We add an additional term to the λ coefficients

λZ(s) = µZ +
K∑

k=1

µZ,k(fk(s)) + θT
Zx(s), (4)

for Z ∈ T ,N , where x(s) is a vector of confounding vari-
ables not considered in the group effects of eq. (3) and θZ is a
vector of coefficients. x(s) can contain any relevant attributes
such as utterance durations or signal-to-noise ratios (SNR).

2.3. Bernoulli Regression with Speaker Effect

Typically, each speaker appears in multiple enrollment and
test utterances in ASV datasets. Trials from the same speak-
ers will share some correlated properties–e.g., due to the ac-
cent or nationality of the speaker. In [10], Doddington classi-
fies speakers into sheep, goats, lambs, and wolves depending
on whether they are easy or difficult to recognize or whether
they are easy to imitate or good speaker imitators. To model
the correlation between trials involving the same speakers,
we introduce new speaker-dependent latent variables into the
model. For target trial si of speaker i, we have

λT (si) = µT +
K∑

k=1

µT ,k(fk(si)) + θT
T x(s) + rT ,i

with rT ,i ∼ N (0, σ2
T ) ; (5)

and for non-target trials sij of speaker i versus speaker j,

λN (sij) = µN +

K∑
k=1

µN ,k(fk(sij)) + θT
Nx(s) + rN ,i + rN ,j

with rN ,i, rN ,j ∼ N (0, σ2
N ) . (6)

Note that for targets, we have a single speaker random vari-
able since both trials contain the same speaker, while for non-
targets, we need one variable for each speaker in the trial. The
speaker variables have a Gaussian prior with learnable vari-
ances σ2

T and σ2
N . All trials involving speaker i and j share

the same values of rT ,i, rN ,i, rN ,j . In this manner, errors in
trials of a given speaker are no longer independent.

To train this model, we need to evaluate likelihoods by
marginalizing the latent variables while considering that they
are tied across trials from the same speakers. We approxi-
mated the required integrals by sampling.

2.4. Fairness Metric

To determine the statistical significance of a factor’s effect, we
use the confidence interval (C.I.) for the ratio R between the
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equal error rates (EER) of the two groups that we are compar-
ing. We used the bootstrap method [11] [12] to establish the
95% C.I. If the C.I. does not contain R = 1, we decide that
the group effect is statistically significant. If we compute the
EERs of each group regularly, we get our baseline method,

Rbaseline =
EER1

EER0
. (7)

However, those EERs will be affected by confounding effects.
We intend to use our model to get estimates of the EERs

unaffected by confounding factors. The first step consists of
applying a threshold to the ASV scores to accept or reject
a trial as a target. Then, we compare this decision with the
ground truth to get which trials have errors, i.e., we get the
labels ts. Following this, we train the target and non-target
Bernoulli regression models.

Let us assume that we want to compare the effects of
groups g = 0 and g = 1 of factor k = k′. We use our
model to compute estimates of PMiss and PFA for each group,
which only depend on factor k′ but do not depend on any of
the confounding factors k ̸= k′, x or the speaker effects. As
explained above, we just need to set the contributions of the
confounding factors to zero and evaluate,

PMiss,k′,g = h(µT + µT ,k′(g)) (8)
PFA,k′,g = h(µN + µN ,k′(g)) . (9)

Then, we consider that EER is equivalent to minimum detec-
tion cost function (min. DCF) [13] at a target prior PT =0.5.
Thus, we can write the confounding factor free EER as the
average of miss and false alarm rate, and the EER ratio as

Rk′ =
PMiss,k′,1 + PFA,k′,1

PMiss,k′,0 + PFA,k′,0
. (10)

For example, k′ could be the gender factor, and groups 0 and
1 could be the male-male and female-female trials, respec-
tively. The effects of confounding factors like speaker effect,
channel, language, etc., would be removed by our model.

We could also calculate fairness in terms of min. DCF or
act. (actual) DCF. In this case, we first apply the min. DCF
threshold or the act. DCF threshold (−logitPT ) to the scores
to get decisions and error trials. Then, we would train our
model and estimate misses and false alarms with (8) and (9).
Finally, we calculate the group effect ratio as,

RDCF,k′(PT ) =
PT PMiss,k′,1 + (1− PT )PFA,k′,1

PT PMiss,k′,0 + (1− PT )PFA,k′,0
. (11)

3. DATASETS

3.1. Synthetic Data
In real datasets, we lack a ground truth telling us if a group
effect is statistically significant in ASV performance. This
makes it challenging to evaluate our proposed model against

the baseline using real data. To address this, we adopt the ap-
proach from [8] and generate synthetic scores with controlled
group and confounding effects, providing a reliable ground
truth for evaluating our model.

For each experiment, we generated 1000 sets of scores,
each based on 500 speakers. We assumed a single factor
with two groups, each with 250 speakers. We generated 5000
target and 5000 non-target scores representing the ASV log-
likelihood ratios for each set. We generated scores following
an additive model, where the score S for the nth target (T )
and non-target (N ) trial with speakers i and j are

S(n, T ) = Sbase(n, T ) + Sgrp(n, f(i), T )+

Sspk(i, T ) + Sconf(n, T )x(n, f(i)) (12)
S(n,N ) = Sbase(n,N ) + Sgrp(n, f(i),N )+

Sspk(i,N ) + Sspk(j,N ) + Sconf(n,N )x(n, f(i)) (13)

where f(i) is the group (g) of speaker i. We did not simulate
cross-group trials, so f(i) = f(j). This generation model is
additive at the score level, while the error probability model
is linear at the λ parameters of the distributions.

Each term in eqs. (12) and (13) are random variables
sampled from Gaussian distributions. The factor-independent
Sbase, the group and speaker effect biases were sampled as,

Sbase(n,Z) ∼ N (mbase(Z), σ2
base) (14)

Sgrp(n, g, Z) ∼ N (mgrp(g, Z), σ2
grp) (15)

Sspk(i, Z) ∼ N (0, σspk(Z)2) for Z = T ,N . (16)

Finally, the binary variable x(n, g) decides whether the con-
founding factor is present in the trial. The probability p(g) of
having the confounding factor differs for each group g. If the
confounding factor is present, we add an extra random bias,
which depends on the trial label,

x(n, g) ∼ Bernoulli(p(g)) (17)

Sconf(n,Z) ∼ N (mconf(Z), σ2
conf) . (18)

In our experiments, we set mbase(T ) = −mbase(N ) = 5,
σbase = 2.5; mgrp(0, T ) = mgrp(0,N ) = 0, mgrp(1, T ) =
{0,−0.5,−1,−2}, mgrp(1,N ) = −mgrp(1, T ), σgrp = 0.2
; σspk(T ) = σspk(N ) = {0, 0.5, 1, 2}; p(1) = {0.5, 0.7, 0.9},
p(0) = 1 − p(1); and mconf(T ) = −2, mconf(N ) = 2, and
σconf = 0.2. In summary, when we have a group or con-
founding effect we add a positive bias to non-target scores
and a negative bias to targets. Meanwhile, when we have a
speaker effect we add a bias that may be positive or negative
independently of the sign of the trials, and this bias is the
same for all trials from the same speaker and sign (target and
non-target trials have different biases).

3.2. VoxCeleb1

We opted to use the VoxCeleb1 dataset [14], specifically,
VoxCeleb1-E (Extended) and VoxCeleb1-H (Hard) test sets.
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Table 1. Simulated experiment with equal group effect and
different confounding factor probabilities for case and control
groups. Score S(n) = Sbase(n) + Sconf(n)x(n, f(i))

Con. Pr. (%) Baseline Basic Model Proposed

Case-Ctrl. Mean FPR Mean FPR Mean FPR

0 – 0 0.99 4.2% 0.97 0.6% 1.03 0.6%
50 – 50 1.00 5.4% 0.98 4.8% 1.02 2.6%
70 – 30 1.16 61.1% 1.39 95.3% 1.02 2.4%
90 – 10 1.35 99.8% 2.50 100.0% 1.11 5.3%

Table 2. Simulated experiment with equal group effect, ran-
dom speaker effect, and confounding effect. Score S(n) =
Sbase(n) + Sspk(i) + Sspk(j) + Sconf(n)x(n, f(i))

Spk. Conf. Pr. (%) Baseline Proposed

Std. Case-Ctrl. Mean FPR Mean FPR

0.5 0 – 0 1.01 6.5% 1.03 0.7%
1.0 0 – 0 1.01 13.0% 1.04 3.7%
2.0 0 – 0 1.01 31.5% 1.02 15.2%

1.0 50 – 50 1.00 18.0% 1.03 5.9%
1.0 70 – 30 1.15 60.8% 1.03 9.6%
1.0 90 – 10 1.32 96.3% 1.07 2.3%

VoxCeleb1 provides metadata on the speakers’ genders, na-
tionalities, and languages spoken. This allowed us to evaluate
fairness in terms of gender and language. The VoxCeleb1-E
test set comprises 581,480 trials randomly sampled from the
complete VoxCeleb1 dataset. The VoxCeleb1-H set only con-
tains trials between speakers of the same nationality and gen-
der, making it more challenging. We did not use VoxCeleb-O
because the number of speakers (40) is too small to draw
statistically significant conclusions.

We calculated scores with three different x-vector models:
ECAPA-TDNN small and large, and ResNet100. ECAPA-
TDNN was introduced in [15]. ECAPA-TDNN small used
three Res2Net layers of 512 dimensions, while the large ver-
sion used four layers of 2048 dimensions. Our ResNet100
follows the structure from [16]. All models used channel-
wise attentive pooling [15] and were trained on VoxCeleb2
dev. set with additive angular margin softmax loss (mar-
gin=0.2), followed by large margin fine-tuning (margin=0.4)
and hard-prototype mining [17]. We used cosine scoring as
the back-end. ECAPA-TDNN small, large, and ResNet100
obtain 1.16, 0.85, and 0.71% EER in VoxCeleb1-E, respec-
tively, and 2.10, 1.66, and 1.30% EER on VoxCeleb1-H.

3.3. NIST SRE2021

We also used the NIST SRE21 dataset [18] as it provides rich
metadata in terms of gender, audio source, and spoken lan-
guage. The audio sources are either conversational telephone
speech (CTS) at an 8 kHz sampling frequency or audio from
video (AFV) at 16 kHz. There are three languages: English

(ENG), Mandarin (CMN), and Cantonese (YUE).
We analyzed the fairness of a Res2Net50-based system

from [19] with a back-bone with a scale of 8, channel-wise
attentive pooling, and additive angular margin softmax clas-
sification layer. The system was trained on 4-second chunks
with margin set to 0.3 and fine-tuned on 10-second chunks
with margin=0.5. It was trained on the NIST SRE CTS Super-
set [20], NIST SRE16 dev+eval [21], and VoxCeleb 1+2 [14].
All data was processed at 16 kHz, with CTS data being lin-
early upsampled. A PLDA back-end [22] was used, which
was trained on VoxCeleb+SRE data and adapted to the subset
of CMN/YUE speakers on those datasets. The PLDA scores
were calibrated into log-likelihood ratios using condition-
dependent logistic regression taking into account source,
language, and number of enrollment segments. This system
obtained 4.9% EER, min. DCF=0.406 and act. DCF=0.415
on the NIST SRE21 audio eval set.

4. EXPERIMENTS AND RESULTS

4.1. Simulated Experiments
We performed a range of experiments by controlling the con-
founding variable, speaker effect, and group effect to evalu-
ate our proposed method. For each experiment, we generated
synthetic data and calculated the EER ratios from eq. (10)
and (11). We used the bootstrap method, with 500 samples, to
compute the 95% confidence interval (C.I.) of the EER ratios.
If the C.I. includes 1.0, we conclude that there is no strong
evidence for the group effect to be statistically significant.

A false positive (FP) and a false negative (FN) error hap-
pens when models predict equal group effects to be unequal–
i.e., 1.0 not inside the C.I.–, and unequal group effects to be
equal, respectively. We generated 1000 sets of scores and
computed the EER ratio’s 95% C.I. for each set. Then, we
computed the FP and FN rates by counting the incorrectly
classified sets. Since we calculated 95% C.I., the error rates
should be around 5% if the method functions correctly [23].
We also calculated the mean EER ratio across sets of scores.

Table 1 displays the outcomes for the scores with equal
group effects, a confounding variable, and no speaker effect.
We have a case and a control (Ctrl.) group, each one with
different probabilities of having the confounding effect (see
eq. (17)). The table compares three models: the baseline,
the basic model, which is a probabilistic model without con-
founding variables, making it close to the baseline, and our
proposed model from eq. (4). For an equal group effect, the
mean EER ratio should be one, and the FP rate close to 5%.
However, we observe that the baseline and the basic model
rapidly deviate from the ideal result as the difference between
the Ctrl. and Case confounding probabilities increases. As
the confounding effect is observed more times in the Ctrl., it
is mistaken as a group effect. On the contrary, the proposed
model behaves correctly with FPR ≤ 5%.

The first block of Table 2 shows experiments with no con-
founding variable, equal group effects, and speaker effects for
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Table 3. Simulated experiment with unequal group effect, random speaker effect, and confounding effect. Score S(n) =
Sglob(n) + Sgrp(f(i, j)) + Sspk(i) + Sspk(j) + Sconf (n)x(n). λ = µ+ µg + ri + rj + θTX

Conf. mgrp = 0.5 mgrp = 1.0 mgrp = 2.0

Prob. (%) Baseline Proposed Baseline Proposed Baseline Proposed

Case-Ctrl. Mean FNR FPR Mean FNR FPR Mean FNR FPR Mean FNR FPR Mean FNR FPR Mean FNR FPR

50 – 50 1.35 2.0% 0.0% 1.61 6.3% 0.0% 1.77 0.0% 0.0% 2.46 0.0% 0.0% 2.84 0.0% 0.0% 5.28 0.0% 0.0%
30 – 70 0.85 27.2% 72.8% 1.64 9.1% 0.0% 1.13 42.0% 0.3% 2.52 0.0% 0.0% 1.89 0.0% 0.0% 5.51 0.0% 0.0%
10 – 90 0.51 0.0% 100% 1.70 38.5% 0.0% 0.70 0.1% 99.9% 2.65 0.6% 0.0% 1.25 4.7% 0.0% 5.98 0.0% 0.0%

different values of σspk (Spk. Std.) in eq. (16). The baseline
and the proposed models exhibit higher FPR as we increase
the std. However, the proposed model had less than half the
FPR of the baseline. The second block of the table uses sim-
ulated scores with σspk = 1 and different confounding factor
probabilities. Again, the proposed model is clearly superior
to the baseline, which is fooled by the confounding effect.

In Table 3, we present the results of our experiments intro-
ducing group effects Sgrp(f(i)) in addition to Sspk and Sconf .
The group effect was added to the Case group, making it per-
forms worse than Ctrl, resulting in EER ratios > 1. However,
we added the confounding effects to make the Ctrl appear
worse than the Case. We did this by setting the probability
(Conf. Prob.) for the confounding effect larger for Ctrl than
for Case, contrary to Table 1. This experiment has three out-
comes for a given C.I.=[a, b]. a > 1 indicates a true positive
as the model correctly claims statistical significance where
Case is worse than Ctrl. When 1.0 ∈ [a, b], the model incor-
rectly infers that the group effect is not significant, giving us
a false negative. If b < 1, the model claims statistical signif-
icance but incorrectly indicates Ctrl to be worse than Case,
making it a false positive. The table presents results for sev-
eral group effect score biases mgrp and several Conf. Prob.
pairs. The baseline and the proposed models performed well
for equal Conf. Prob.s in both groups. However, when we in-
crease the Conf.-Prob. of Ctrl compared to Case, the baseline
rapidly fails with large FARs and FPRs, while the proposed
model is still very robust. The baseline only performed cor-
rectly for a large group bias as mgrp = 2.

4.2. VoxCeleb1

In the previous section, we demonstrated the baseline’s sus-
ceptibility and our model’s robustness to confounding factors.
In this section, we apply our fairness model to our ASV sys-
tems’ scores on real data. However, due to the absence of
ground truth regarding the fairness of the ASV model in real
data, our analysis is limited to comparing the outcomes from
the baseline and proposed models.

Table 4 presents results on VoxCeleb1-E and VoxCeleb1-
H, focusing on gender and language as the factors of interest.
We only compared same-gender trials, i.e., female-female
(f-f ) vs. male-male (m-m), and same-language trials, i.e.,
Non-English-Non-English (non-non) vs. English-English
(eng-eng). We disregarded cross-gender and cross-language

trials. We compared the three ASV systems, described in
Section 3.2, sorted in descending order w.r.t. EER value.

The table shows that both the baseline and the proposed
model include 1.0 in the C.I. for gender in all three ASV sys-
tems. Thus, we claim no statistical significance on the factor
gender. The baseline’s mean ratios deviate widely from 1.0,
giving the impression of a large performance gap between
the groups. Meanwhile, the proposed model’s mean ratios
are consistently close to 1.0, barely changing across the three
systems. Also, the C.I.s are much narrower for the proposed
model than for the baseline, demonstrating greater precision.

Regarding language, the baseline only claimed statis-
tical significance for ECAPA-Small in VoxCeleb-E and
ResNet100 in VoxCeleb-H. Also, the baseline ratios and
C.I.s were inconsistent across the ASV models. Meanwhile,
the means and C.I.s of our model hardly changed across
the different ASV models for gender and language. For
VoxCeleb-E, our model’s mean ratio seems to indicate a
higher error for non-English trials than for English. However,
the C.I. indicates that the difference is not strong enough to
claim statistical significance. For VoxCeleb-H, the ratios are
close to one, and the C.I. is tighter than for VoxCeleb-E.

The next experiment exhibits how the confounding effects
impact the C.I. We only used VoxCeleb-H with the ECAPA-
Small model for this experiment. Instead of grouping as m-m
versus f-f, we randomly split each gender into two groups.
For example, we take the m-m trials and split them into m-
m0 and m-m1; and the same for females. We denote this as
pseudo-gender groups. For each bootstrap sample, we sam-
pled a different speaker grouping. Since both groups are from
the same gender, there should be no statistical significance.
Table 6 compares m-m0 vs. m-m1, and f-f0 vs. f-f1 for differ-
ent fairness models: baseline, proposed model without con-
founding factors, proposed model with speaker effect, and
proposed model with speaker and language confounding fac-
tors. Though all models correctly infer no statistical signifi-
cance, the mean ratios converge to 1.0, and C.I.s get narrower
as the confounding effects are added, thus, making the latter
models more precise.

4.3. NIST SRE2021
The SRE21 experiments concentrated on three factors: gen-
der, source, and language. The gender groups were male (m-
m) and female (f-f ) since there are no cross-gender trials in
NIST evaluations. From the three languages in SRE21, we
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Table 4. Fairness assessment in terms of gender and language on VoxCeleb 1 for different x-vector models.

Gender Fairness (EERf−f/EERm−m) Language Fairness (EERnon−non/EEReng−eng)

VoxCeleb-E VoxCeleb-H VoxCeleb-E VoxCeleb-H
x-Vector Baseline Model Baseline Model Baseline Model Baseline Model

Mean, C.I. Mean, C.I. Mean, C.I. Mean, C.I. Mean, C.I. Mean, C.I. Mean, C.I. Mean, C.I.

ECAPA-Small 0.98, [0.77, 1.31] 1.06, [0.97, 1.18] 1.21, [0.83, 1.70] 1.06, [0.98, 1.16] 1.54, [1.06, 2.06] 1.25, [0.96, 1.52] 0.91, [0.51, 1.24] 1.10, [0.92, 1.30]
ECAPA-Large 1.41, [0.90, 2.07] 1.08, [0.95, 1.22] 0.83, [0.63, 1.14] 1.00, [0.91, 1.08] 0.91, [0.50, 1.24] 1.22, [0.95, 1.58] 1.37, [0.82, 1.96] 1.09, [0.92, 1.26]
ResNet-100 1.34, [0.82, 1.97] 1.01, [0.91, 1.10] 0.81, [0.62, 1.16] 1.05, [0.96, 1.16] 1.25, [0.76, 1.68] 1.35, [0.88, 1.78] 1.98, [1.06, 3.14] 1.05, [0.82, 1.30]

Table 5. Fairness assessment in terms of gender, language, and source on SRE21
Equal Error Rate C-Primary

Experiment Baseline Proposed Model Baseline Proposed Model

Mean C.I. Mean C.I. Mean C.I. Mean C.I.

Female vs. Male 0.72 [0.66, 0.77] 1.17 [1.10, 1.23] 0.38 [0.34, 0.42] 1.36 [1.24, 1.5]

AFV-AFV vs. CTS-CTS 0.65 [0.56, 0.73] 0.94 [0.92, 0.95] 0.85 [0.73, 0.98] 0.82 [0.75, 0.89]
AFV-AFV vs. AFV-CTS 0.40 [0.35, 0.43] 0.64 [0.63, 0.65] 0.82 [0.70, 0.93] 0.47 [0.46, 0.48]

YUE-YUE vs. CMN-CMN 0.91 [0.78, 1.04] 0.92 [0.83, 0.98] 0.78 [0.62, 0.97] 0.89 [0.75, 1.04]
YUE-YUE vs. ENG-ENG 1.04 [0.87, 1.21] 0.96 [0.90, 1.01] 0.95 [0.76, 1.16] 0.88 [0.73, 1.05]
YUE-YUE vs. CMN-YUE 0.66 [0.57, 0.74] 0.93 [0.86, 0.99] 0.48 [0.39, 0.58] 0.84 [0.70, 0.97]
YUE-YUE vs. CMN-ENG 0.85 [0.75, 0.99] 0.76 [0.70, 0.86] 1.07 [0.86, 1.30] 0.69 [0.58, 0.82]
YUE-YUE vs. YUE-ENG 0.64 [0.56, 0.72] 0.95 [0.90, 1.00] 0.47 [0.39, 0.58] 0.84 [0.72, 0.99]

Table 6. Fairness of pseudo-gender groups from VoxCeleb-H
across fairness model versions.
Fairness Model Only Male Only Female

Mean C.I. Mean C.I.

Baseline 1.03 [0.60, 1.73] 1.09 [0.78, 1.55]

λ = µ+ µg 1.03 [0.64, 1.59] 1.02 [0.75, 1.40]
λ = µ+ µg + ri + rj 1.03 [0.68, 1.45] 1.02 [0.75, 1.37]
λ = µ+ µg + µlang + ri + rj 0.98 [0.70, 1.37] 1.00 [0.83, 1.23]

created six language groups: YUE-YUE, CMN-CMN, ENG-
ENG, YUE-CMN, CMN-ENG, and YUE-ENG. Similarly, we
formed three source groups (AFV-AFV, CTS-CTS, AFV-CTS).

Table 5 shows the means and C.I.s of the EER ratios as
well as the actual C-Primary [18] for all group pairs. Based
on our model, trials with female speakers are more prone to
errors than male speakers. However, the baseline shows that
male speakers’ trials have higher errors. We believe some
confounding factors made the male trials prone to more er-
rors than the female ones. But when our model removed
those factors, male trials showed better performance. Re-
garding source, both baseline and proposed models claim that
CTS-CTS trials have higher errors than AFV-AFV trials, and
the difference is even larger for CTS-AFV trials. However,
our model shows that the difference between sources is lower
than that indicated by the baseline. Regarding languages, our
model claims statistical significance in 3 out of 5 EER and
C-primary ratios. In general, mean ratios are more consistent
across groups for the proposed model than the baseline.

For the experiment in Table 7, we used only CMN-CMN
trials and compared the EERs w.r.t. source (AFV-AFV vs.
CTS-CTS) while varying the gender groups. The Both Gen-
ders column is for the experiment where each source group
has equal male and female trials. The Only Male and Only

Table 7. Effect of source (AFV-AFV vs CTS-CTS) with re-
spect to gender in SRE21

Model Both Genders Only Male Only Female

Mean C.I. Mean C.I. Mean C.I.

Baseline 0.48 [0.36, 0.62] 0.58 [0.22, 1.14] 0.57 [0.41, 0.75]
Basic 0.47 [0.31, 0.77] 0.82 [0.70, 0.97] 0.86 [0.64, 0.95]
Proposed 0.91 [0.83, 0.97] 0.84 [0.73, 0.92] 0.96 [0.92, 0.98]

Female columns indicate taking pseudo gender groups sim-
ilar to table 6. If the model works properly, it should reach
the same conclusion on the statistical significance of source
regardless of how the gender groups were formed. The table
shows that our model consistently claims statistical signifi-
cance with a mean ratio ∼ 0.9, while the baseline gives incon-
sistent conclusions. The baseline and basic models have large
differences between Both Gender and single-gender columns.
Our model’s CIs are notably narrower than the other two.

5. CONCLUSION

In this work, we proposed a model-based method to detect
any unfair bias in ASV systems. Our method takes into ac-
count any confounding factors other than the factor of inter-
est that may affect the trial errors. To validate our method,
we generate a synthetic dataset and perform several simu-
lated experiments. We compare our model’s performance to
the baseline, where we take the ratio of the regular EERs of
each group. The experiment outcomes show that the proposed
method yields significantly lower false positive and false neg-
ative rates compared to the baseline. We also experiment on
VoxCeleb1 and NIST SRE21 datasets and demonstrate that
our method produces consistent results.
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