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Abstract—Lithium-ion battery cells remain susceptible to var-
ious forms of failures which originate from several sources
including thermal abuse conditions. Many of these failures often
result in thermal anomalies leading to runaway conditions. In
order to address such critical issue, extensive research has been
conducted on safer battery materials and mechanical designs.
However, battery control systems can also play a crucial role
in such endeavor. In this work, we focus on this issue and
propose a thermal fault-tolerant control algorithm based on the
notion of Input-to-State Safety which has garnered attention
in various other safety-critical applications including robotics
and automotive systems. The control design process utilizes a
lumped parameter thermal model and Ordinary Differential
Equation (ODE)-based practical input-to-state safety technique
to formulate the thermal control problem. The design problem
solves for control parameters using Barrier function and linear
stability analysis. We present simulation studies to validate the
proposed framework.

Index Terms—Battery, Fault-tolerance, Input-to-State Safety,
Thermal Fault.

I. INTRODUCTION

IN recent years, the presence of Lithium-ion (Li-ion) bat-
teries has been significantly increased in electric vehicles

and related transportation technologies, grid energy storage
systems, and smart medical devices, among others. In spite
of the appreciable growth in terms of energy density of Li-
ion batteries, the safety of Li-ion batteries is still in need of
urgent solutions. For example, a large number of cases of Li-
ion battery failures have been reported which have resulted
in hazardous occurrences such as smoke, explosions, fires [1].
Some of the the failures can be correlated to the chemical
nature of Lithium. Since, lithium is a highly reactive element,
it often results in the formation of conductive dendrites caus-
ing internal short circuits exacerbating the safety of Li-ion
batteries [2]. In essence, owing to a booming Li-ion battery
industry, considerable scope of improvement lies in the area of
safety of Li-ion batteries. In this context, we propose a control
algorithm for handling thermal faults in Li-ion battery cells,
which can potentially boost safety under real-time operation.
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A. Literature Review and Research Gaps

During the recent few years, the problem of fault detection
and estimation in batteries has been studied extensively. For
example in [3], detection of signature faults like over-charging
and over-discharging is considered. Fault diagnosis and control
of voltage and current sensors’ is performed in [4] but thermal
faults like thermal runaway are not considered which are the
most common cause of Li-ion battery failures. Sensor data
based approach is presented in [5] to detect thermal faults
and predict temperature values. In [6], nonlinear observers are
designed to construct residual signals which are then compared
with adaptive thresholds for the detection of thermal faults.

Aforementioned works mostly focus on fault diagnostic
issues in batteries. In terms of battery control, existing works
typically fall into one of the following categories: charging
control with a focus on optimal or fast charging [7], constraint
management for performance improvement [8], [9], charge and
thermal balancing [10]. Other than these categories, some ther-
mal management approaches have also been presented [11]–
[14]. However, these thermal control approaches do not con-
sider control in the presence of battery faults. To ensure safety
of batteries, control methods mitigating the effects of the faults
are essential. There are some works in literature concerned
with fault control techniques. A model predictive fault control
framework is introduced at battery production level in [15] but
do not consider control of batteries that are in-use. Review of
some of the available literature on sensor fault tolerant control
techniques for Li-ion batteries of electric vehicles has been
presented in [16].

However, fault-tolerance under internal thermal faults (that
is, faults that are not related to sensors but originated within the
battery cells) has been significantly under-explored. In [17],
a fault tolerant control scheme for internal thermal faults has
been proposed. However, such approach falls into the category
of active fault-tolerant control in the sense that it requires a
real-time fault detector and estimator. Potential drawbacks of
such active fault-tolerant control include [18]: (i) A real-time
fault detector and estimator is needed. (ii) The effectiveness
of the approach depends on accuracy of the fault detector
and estimator. Any inaccuracy in the detector/estimator may
induce delay in fault accommodation [18]. To avoid these
drawbacks, we propose a passive fault-tolerant control al-
gorithm leveraging ODE-based practical input-to-state safety
technique. Such approach does not require a real-time fault
detector and estimator.
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B. Input-to-State Safety

The notion of input-to-state safety for ODE systems was
introduced in [19]. Since then, Barrier function based tech-
nique has been explored in the literature [20]–[22] to analyze
input-to-state safety. In [23] and [24], the notion of practical
input-to-state safety was presented augmenting on the original
notion. In this work, we adopt the approach presented in [23].
Specifically, the idea of input-to-state safety is enabled by a
metric that computes the distance of the system states from
a pre-defined unsafe region. The goal is to ensure that the
distance metric is lower bounded by a combination of several
terms related to initial condition and inputs [23]. This lower
bound further ensures that the system states never enter the
unsafe region. In our work, we adopt this technique to design
the control algorithm such that the temperature states never
enter the unsafe region even under the presence of faults.

C. Main Contributions

Keeping in mind the research gaps mentioned earlier, the
main contribution of this paper is a passive fault-tolerant
control algorithm to enable battery safety under thermal faults.
In this algorithm, we formulate a control law which guarantees
both the thermal safety and stability by combining lumped
parameter battery cell thermal model and ODE-based practical
input-to-state safety technique. Particularly, we design a con-
trol gain matrix such that battery temperatures get stabilized
while remaining under the safe operating limits. In order to
arrive at such design, a Barrier function based approach is
used to devise the conditions to be satisfied by the control
gain matrix such that temperatures never reach values beyond
the safe range. Then the closed loop linear stability constraint
is applied to the gains obtained from earlier conditions to keep
the temperatures stable in the safe region.

A related work is presented in [25] where a Partial Dif-
ferential Equation (PDE)-based input-to-state safety technique
is applied to a battery module under thermal anomalies.
The differences between the current work and [25] are as
follows. (i) In [25], battery modules are considered which
have large spatial temperature variation. Whereas the current
work considers battery cells which do not have significant
spatial temperature variation, so we utilize a lumped thermal
model eliminating the need for complicated PDE analyses.
(ii) Three sensors are considered in [25] for measurements,
whereas only two sensors are considered in current work, thus
achieving safety with limited sensing, and further reducing the
implementation cost. (iii) We consider the coolant dynamics
in our analysis which is not accounted for in [25].

A preliminary version of this work is published in [26].
This journal version extends the conference paper [26] by
performing the following enhancements: (i) In terms of the
models used, we have updated the battery thermal model to
include the dynamics between control command and actuated
cooling power. We have also included the cooling constraint
as the upper limit of maximum cooling power. The conference
version did not consider the aforementioned dynamics and the
constraint on cooling power. (ii) In terms of control design,
we have considered the dynamics between control command

and actuated cooling power in the control design framework.
We have also included the constraint on cooling power in
the control design framework. Furthermore, we have added
an additional safety consideration: we incorporated a safety
upper bound on the thermal gradient between the core and the
surface temperature of the battery. The conference version did
not consider the aforementioned dynamics, the cooling power
constraint, and the safety constraint on thermal gradient. These
new additions make the final control design conditions slightly
different, however, the overall structure of the design process
remains the same. (iii) In terms of the simulation studies,
we have used a high-fidelity distributed parameter thermal
model as the plant dynamics to validate the proposed control
approach in the journal version. In the conference version, we
used the lumped parameter thermal model with zero mean
Gaussian white noise as the plant dynamics. Furthermore,
we have performed additional simulation case studies in the
journal version: (a) independent faults in the core and surface
of the battery cell, (b) coupled faults affecting both core and
surface of the battery cell, (c) effect of measurement noise on
the control performance, (d) effect of parametric uncertainties
on the control performance. The conference version only had
a case study with an independent core temperature fault, and
no effect of uncertainties was studied.

D. Paper Organization

The organization of the rest of the paper is as follows: Sec-
tion II describes the thermal model of the battery considered
and discusses the problem statement. Section III explains the
practical input-to-state safety based thermal control algorithm.
Section IV shows the results from the simulation case studies.
Section V concludes the paper.

TABLE I
MODEL VARIABLES AND PARAMETERS

Parameters/Varibales Description Unit
T1 Core Temperature K
T2 Surface Temperature K
T∞ Ambient Temperature K

Q̇ Nominal Heat Generation W
R1 Conduction Resistance KW−1

R2 Convection Resistance KW−1

C1 Core Heat Capacity JK−1

C2 Surface Heat Capacity JK−1

I Current through Battery A
Qb Battery capacity As
Vocv Battery Open Circuit Voltage V
Vt Battery Terminal Voltage V
C∞ Cooling System Heat Capacity JK−1

Qp Actual Cooling System Power W
Qc Commanded Cooling System Power W
τc Cooling System Time Constant s

II. MATHEMATICAL MODELS

First, we describe the mathematical models utilized in this
work. The variables and parameters of the model are described
in Table I.
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1) Battery thermal dynamics: We consider a cylindrical
battery cell in this work, which can be described by a lumped
parameter thermal model for cylindrical battery cells from
[27], [28]:

Ṫ1(t) = −T1(t)− T2(t)

R1C1
+

Q̇(t)

C1
, (1)

Ṫ2(t) = −T2(t)− T1(t)

R1C2
− T2(t)− T∞(t)

R2C2
, (2)

where the parameters are given below.
2) Battery electrical dynamics: Since the heat generation

term in battery thermal model depends on battery electrical
behavior, we adopt an electrical model described by two
parts [29]: (i) State-of-Charge (SOC) dynamics captured by
Coulomb counting, and (ii) terminal voltage captured by an
open circuit voltage and electrical resistor (R) in series. This
model is based on widely used equivalent circuit modeling
approach - a review of such equivalent circuit models can be
found in [30]. The modeling equations are given by:

˙SOC(t) = −I(t)

Qb
, (3)

Vt(t) = Vocv(SOC)− I(t)Rs. (4)

Then we adopt the following heat generation model proposed
in [31]:

Q̇(t) = I(t)

(
Vocv(SOC)− Vt(t)− T1(t)

d(OCV )

dT

)
, (5)

where dOCV
dT is the entropic heat coefficient. Rearranging the

terms of (5), we write:

Q̇(t) = Rsu
2
1(t)− αu1(t)T1(t), (6)

where Rsu
2
1(t) is the approximation of the term

I(t)(Vocv(SOC)−Vt(t)) with u1(t) = I(t); and α = d(OCV )
dT .

3) Battery cooling dynamics: Next, the cooling system
dynamics is considered as [17]:

Ṫ∞(t) = −T∞(t)− T2(t)

R2C∞
− Qp(t)

C∞
, (7)

τcQ̇p(t) = −Qp(t) +Qc(t), (8)

where the parameters are given below. This model is based
on liquid cooling where we control Qc by changing the
flow rate of the coolant. Note that the first order dynamics
(8) capture the delay between control command and cooling
system actuation through the time constant τc.

4) Battery thermal fault dynamics: We model the faults
as unknown additive terms acting on the core and surface of
the battery cell [6]. Under this modeling assumption, battery
thermal model (1)-(2) becomes:

Ṫ1(t) = −T1(t)− T2(t)

R1C1
+

Q̇(t)

C1
+

f1(t)

C1
, (9)

Ṫ2(t) = −T2(t)− T1(t)

R1C2
− T2(t)− T∞(t)

R2C2
+

f2(t)

C2
, (10)

where f1(t) and f2(t) are the thermal faults which may occur
due to unwanted chemical reactions, abnormal heat generation
inside the battery or mechanical disruptions [32]–[34].

Fig. 1. Conceptual schematic of the thermal control system.

III. PRACTICAL INPUT-TO-STATE SAFETY BASED
CONTROL DESIGN

In this section, we describe the control design to achieve
thermal fault-tolerance. A schematic representation of the con-
trol framework is shown in Fig. 1. We assume that the surface
temperature of the battery cell and the cooling temperature
are measured and used as feedback information to the control
algorithm. Before deriving the control algorithm, we formulate
the state-space model of the battery system considering (7),
(8), (9), and (10). Considering X = [T1, T2, T∞, Qp]

′
as the

state vector, u1 = I as current, u2 = Qc as the control input,
∆ = [f1, f2]

′
as the fault vector, and y = [T2, T∞]

′
as the

output vector, the state-space model takes the following form:

Ẋ = (A0 +A1(u1))X +B1u
2
1 +B2u2 + F∆, (11)

y = CX, (12)

where

A0 =


− 1

C1R1

1
C1R1

0 0
1

C2R1
− 1

C2
( 1
R1

+ 1
R2

) 1
C2R2

0

0 1
C∞R2

− 1
C∞R2

− 1
C∞

0 0 0 − 1
τc

 ,

(13a)

A1(I) =


−αI

C1
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 , B1 =


Rs

C1

0
0
0

 , (13b)

B2 =


0
0
0
1
τc

 , F =


1
C1

0

0 1
C2

0 0
0 0

 , C =

[
0 1 0 0
0 0 1 0

]
.

(13c)

Remark 1: Note that we consider only cooling power (Qp)
as the control input and not the current (I). Although the
battery current is typically measured and hence, a known
variable to the controller, oftentimes the current is determined
to satisfy the power demand from the battery. For example,
in vehicles, current drawn depends on the action of the
driver. Under such scenarios, the current is not manipulated
by the thermal control unit and cooling power remains the
only control variable. Nevertheless, if the current (I) is also
allowed to be manipulated as a control input by the thermal
management system, the temperature control logic can be
modified to reduce the additional heat generation effect by
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restricting the current drawn from or fed to the battery. An
example control logic is stated as follows: If the measured
surface and/or coolant temperature reach close to the unsafe
region, then in addition to changing the value of cooling
power (Qp), the current (I) can also be reduced to a lower
value resulting in lower heat generation. This in turn leads to
controlling the temperature rise. Such a logic based restriction
on charge or discharge can also be implemented if the fault is
too high such that the coolant power has reached its critical
value and is unable to decrease the battery temperature further.
This control logic can be easily augmented to the proposed
input-to-state safety based cooling control as a safety filter
without making any significant changes in our design.

Remark 2: In the problem formulation, the fault appears
to be independent of the battery current input u1, but it
is to be noted that u1 can indeed have an impact on the
thermal fault. For example, it might lead to additional current
component resulting in the net current as u1 + ∆u1. The
effect of such an impact will be manifested in the form of
additional heat generation δQ̇, and the net heat generation
will be Q̇ + δQ̇ where Q̇ is given by (6) and δQ̇ =
Rs∆u

2
1(t) + 2Rsu1(t)∆u1(t) − α∆u1(t)T1(t). This results

in core temperature dynamics given by (9) to get modified as
follows,

Ṫ1(t) = −T1(t)− T2(t)

R1C1
+

Q̇(t)

C1
+

δQ̇(t)

C1
+

f1(t)

C1
. (14)

which can be further written as,

Ṫ1(t) = −T1(t)− T2(t)

R1C1
+

Q̇(t)

C1
+

f̃1(t)

C1
, (15)

where f̃1(t) = f1(t) + δQ̇(t). Thus, for fault in current u1

we can re-write the battery model (11) with the new fault
term written as ∆ = [f̃1, f2]

′
. Consequently, it is evident that

our design methodology can be easily extended to detect such
faults which modify current u1 as well.

Remark 3: In this work, we have modeled the thermal faults
as an additive component to the nominal temperature model.
This standard form of representation of thermal faults has been
an accepted practice in the existing literature [6], [17], [35]–
[37]. It is possible to have different root causes for battery
faults [32], [33], however, a majority of them ultimately
manifest themselves as abnormal heat generation in excess to
nominal heat. Furthermore, such additive representation aids
the analysis and synthesis of the input-to-state safety based
control. Finally, as described in Remark 2, we are not making
any assumption on the origin of the thermal fault. It can be
potentially temperature and/or current dependent. This justifies
our adopted approach.

Next, based on the above state-space model formulation, the
control objectives is to achieve the following:

• Thermal Safety: Ensure the temperatures do not reach
any value in a pre-defined unsafe operating range during
its operation, even in the presence of faults.

• Thermal Stability: Keep the closed-loop temperature
dynamics stable.

• Thermal Performance: Ensure the temperatures are
around some pre-determined reference values under nom-
inal conditions.

However, the control performance is subject to the limits of
cooling power, described by

Qp ≤ Q̄p, (16)

where Q̄p is the maximum feasible cooling power. To attain
the above control objectives, we aim to design a feedback
control law of the following form:

u2 = −KC(X −Xref ), (17)

where K =
[
K2 K3

]
is the control gain matrix. We take

Xref = [T1,ref , T2,ref , T∞,ref , 0]
′

as the reference steady
state vector such that Ti → Ti,ref as t → ∞ for i = 1, 2, 3.
Next, we apply a change of variables given by ξ = X −Xref

in (11), and subsequently use (17) to obtain:

ξ̇ = (P +A1(u1))ξ +B1u
2
1 + (P +A1(u1))Xref + F∆,

(18)

where P = A0 − B2KC. In the next section, we discuss the
details of the control gain design. Next, we will discuss the
notion of Input-to-State Safety which will be used to achieve
the aforementioned control objectives.

A. Basics of Practical Input-to-State Safety

The notion of input-to-state safety essentially formulates in-
equality type conditions to ensure the system states are within
safe operating region [23]. Adopting and slightly modifying
the definition presented in [23], and considering a system with
state ξ and denoting the distance of the state from a pre-defined
unsafe set D as |ξ|D, we can write the practical input-to-state
safety condition as:

|ξ|D ≥ α1(|ξ(0)|D , t)− α2(∥δ∥ , t)− α3, ∀t > 0. (19)

In the above definition, the term δ captures the effects of
uncontrolled inputs, which are u1 and ∆ in the context of
battery thermal control problem; the functions are α1, α2 are
class KK functions [23], and α3 > 0.

In our context, the notion of input-to-state safety should be
interpreted as maintain states within safe set under anomalous
inputs. This is enabled by defining a distance metric which
tracks the distance between system state and unsafe region.
Such distance is affected mainly by two competing terms:
one arising from system initial conditions and another one
arising from the effects of anomalous input. The idea behind
the input-to-state safety definition is as follows: The distance
of the system state from the unsafe set is mainly governed
by the initial distance and the effect of uncontrolled inputs.
The anomalous and uncontrolled inputs can potentially make
the distance to be zero by bringing the states into the unsafe
set. Under this scenario, the system is said to be practically
input-to-state safe if the distance for all time is positive.
The practical aspect is captured by the parameter α3 which
accounts for various forms of uncertainties. In the control
design, our goal will be to find the control gains such that
the safety distance is always positive.
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Based on the above notion, we can characterize such prac-
tical input-to-state safety using Barrier functions [23]. The
idea behind the construction of these Barrier functions is
similar to that of Lyapunov function for control. Specifically,
using the Barrier function we design a control input which
enforces the system to remain within the safe set, if it started
within the safe set. In other words, a system is defined to
be safe, if the safe set remains forward invariant. Therefore,
the continuously differentiable Barrier functions are chosen
such that their superlevel set defines the boundary of the safe
set. Additionally, to ensure the forward invariance of the safe
set, the Barrier function is chosen such that it remains non-
positive for trajectories within safe set and the control input is
designed such that its rate of change along the trajectory also
remains non-positive. Now, in the presence of disturbances
and uncontrollable inputs, the Barrier function can provide
theoretical guarantees on the allowable upper bound for these
disturbances and inputs for which the designed control policy
will ensure system’s safety. We also note here that the above
conditions on the Barrier functionals are generally easier to
formulate if the Barrier function is defined explicitly in terms
of the distance of the state trajectory from unsafe set instead
of the system state itself.

Under this characterization, our objective is to find a Bar-
rier function B : R3\D → R, which satisfies the following
inequalities [23], [25]:

− c1|ξ|2D − κ1 ⩽ B(ξ) ⩽ −c2|ξ|2D, (20)

Ḃ(ξ) ⩽ −c3|ξ|2D + c4 |u1|2 + c5 ∥∆∥2 + κ2, (21)

where ci > 0, i = 1, 2, 3, 4, 5; κi ⩾ 0, i = 1, 2, and ∥.∥
indicates the 2-norm. Notably, condition (20) here establishes
the non-positivity of the Barrier functional within the safe
set DC = R3\D. Similarly, condition (21) ensures that the
designed control policy will guarantee the trajectories to stay
within the safe set, depending on the maximum allowable
norm of the disturbance input δ, current input u1, and some
constant κ2 (included to facilitate some practical design flex-
ibility). Thus, these conditions (20)-(21) implies that the safe
set DC remains forward invariant for the system for some
allowable disturbances and inputs under a designed control
policy. This consequently implies that the system is practically
input-to-state safe with respect to the unsafe set D for some
norm-bounded disturbances δ, input signal u1, and design
constant κ2. As mentioned before, we note that |ξ|D is the
distance of system states from the unsafe set, and not the actual
states of the system.

Remark 4: Note that since the conditions on control gains
are dependent on Barrier function, as is evident in the next
subsection, the form of Barrier function chosen naturally
affects the design. To allow a quadratic form of Barrier
function for design, κ1 ensures that B(ξ) can be lower bounded
on the boundary of unsafe region since |ξ|D = 0 on the
boundary [23]. Moreover, the effect of other system and design
parameters such as the reference state values and the maximum
allowable state values are captured in the parameter κ2.

B. Thermal Fault-tolerant Control Design Process

To this end, our goal is to design the control parame-
ter K in (17). Note that the control goal is to be away
from the unsafe set while not to deviate too far from the
reference state Xref = [T1,ref , T2,ref , T∞,ref , 0]

′ where
T1,ref , T2,ref , T∞,ref are the reference temperatures for the
core, surface and the coolant, respectively. In order to apply
the practical input-to-state safety technique, we first focus on
defining an unsafe set through the following conditions:

• Core temperature should be within certain pre-defined
upper bound, i.e. T1 ≈ T1,ref < T 1.

• Surface temperature should be within certain pre-defined
upper bound, i.e. T2 ≈ T2,ref < T 2.

• Temperature gradient between the core and surface should
be within certain pre-determined limit, i.e. |T1 − T2| < δ.

• Coolant temperature should be within certain pre-defined
upper bound, i.e. T∞ ≈ T∞,ref < T 3.

• Coolant temperature should be within certain pre-defined
upper bound, i.e. Qp ≈ 0 < Qp.

Here, we define upper bounds of the temperature states are T 1,
T 2, and T 3, and δ is the limit beyond which the difference
between core and surface temperatures should not exceed. If
the temperatures violate these bounds, it will be considered
unsafe condition. On the other hand, if the cooling power
required rises beyond the limit, it will be considered as
infeasible control.

Remark 5: Note that the first three conditions are essentially
the true safety conditions. The fourth and fifth conditions
are essentially actuation limitation constraints. In order to
maintain safety within this cooling constraint, and to enable
the application of input-to-state safety technique, we add all
of them together as safety conditions.

Based on these bounds, we define the following unsafe set:

D = {a = [a1, a2, a3, a4]
′
: (a21 + a22 + a23 + a24) > M2,

|a1 − a2| > δ}, (22)

where

M := min

(
w1

(
T 1 − T1,ref

)
, w2

(
T 2 − T2,ref

)
,

w3

(
T 3 − T3,ref

)
, w4Qp, w5

δ

2

)
, (23)

with wi for i = 1, 2, ..., 5 being the weighting factors. We have
chosen the weighting factors as wi = 1 for i = 1, 2, ..., 5.

1) Unsafe set geometric representation: The unsafe set D
represents a 4-dimensional (4D) hyper-sphere. M represents
the radius of the hyper-sphere. For simpler visualization, we
show a 2-dimensional (2D) conceptualization of the unsafe set
in Fig. 2 to illustrate the approach. The blue coloured regions
in Fig. 2(a), (b) and (c) refer to the safe set whose boundary is
red in colour. Any point lying outside the blue region falls in
the unsafe set. The 2D representation is essentially a projection
of the 4D hyper-sphere on the the plane of ξ1 and ξ2. For
simplicity, we choose T1,ref = T2,ref resulting in |ξ1 − ξ2| =
|T1 − T2| so that in Fig. 2, |T1 − T2| < δ is equivalent to
|ξ1 − ξ2| < δ. Further in Fig. 2 we have shown three different
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Fig. 2. A visual representation of safe and unsafe regions as projected in 2 dimensions for (a) M = δ
2

< ξmax, (b) M = δ
2

= ξmax and (c)
M = ξmax < δ

2
, where M is given by (23) and ξmax = min

(
T1 − T1,ref , T2 − T2,ref

)
.

cases where ξmax = min
(
T1 − T1,ref , T2 − T2,ref

)
. First,

Fig. 2(a) corresponds to the case where the temperature
difference |T1−T2| < δ is the limiting condition for the radius
of the hyper-sphere resulting in M = δ

2 < ξmax. Second, Fig.
2(b) corresponds to the case where the temperature difference
|T1 − T2| < δ and the maximum allowable temperatures
T1 < T 1, T2 < T 2 are equivalent limiting conditions for
the radius of the hyper-sphere resulting in M = δ

2 = ξmax.
Third, Fig. 2(c) corresponds to the case where the maximum
allowable temperatures T1 < T 1, T2 < T 2 are the limiting
conditions for the radius of the hyper-sphere resulting in
M = ξmax < δ

2 .
2) Distance metric definition: Next, we define a metric for

the distance of the states ξ with respect to the unsafe set D as
follows:

|ξ|D = inf
a∈D

∥ξ − a∥ , (24)

where D is given by (22). Qualitatively, |ξ|D, which is the 2-
norm of (ξ − a), ∀a ∈ D, represents the minimum distance of
the state ξ from the unsafe set D. This essentially implies

|ξ|D = M−∥ξ∥ , ∀ξ ∈ S = DC , (25)

where S is the safe set, that is, the complement of the unsafe
set D.

3) Safety using Barrier function: Next, we choose the
following Barrier function candidate:

B(ξ) = ∥ξ∥2 −M2, (26)

where M is defined in (23).
In order to obtain the left-hand side inequality of (20), we

use (25) in the definition of (26) obtaining B(ξ) = −|ξ|2D −
2|ξ|D ∥ξ∥. Further we not from (25) that |ξ|D, ∥ξ∥ ⩽ M which
yields,

−c1|ξ|2D − κ1 ⩽ B(ξ), (27)

where c1 = 1 and κ1 = 2M2. This provides us with the
left-hand side inequality of (20).

Next to obtain the right-hand side inequality of (20), we
rearrange the terms in (26) to obtain, B(ξ) = −(M−∥ξ∥)2−
2 ∥ξ∥ (M−∥ξ∥). Since ∥ξ∥ < M, it can be seen that B(ξ) ⩽

−(M−∥ξ∥)2. From Fig. 2, it is evident that |ξ|D = (M−∥ξ∥).
This implies that,

B(ξ) ⩽ −c2|ξ|2D, (28)

where c2 = 1. This provides us with the right-hand side
inequality of (20).

Next, we find the condition for which (21) is satisfied.
Let ξm = [ξ1m, ξ2m, ξ3m, ξ4m]′ represent any point on the
boundary of the safe set S which implies

∥ξm∥ = M. (29)

Noting ∥ξ∥2 = ξ
′
ξ, we rewrite (26) as B(ξ) = ξ

′
ξ − M2.

Differentiation of which yields Ḃ(ξ) = 2ξ
′
ξ̇ which can be

written as Ḃ(ξ) = 2(ξ − ξm + ξm)
′
ξ̇ and further substituting

ξ̇ from (18), we obtain,

Ḃ = V0 + V1 + V2 + V3 + V4 + V5, (30)

where

V0 = (ξ − ξm)
′
P (ξ − ξm) + (ξ − ξm)

′
(2Pξm + PXref ),

(31)

V1 = −α(ξ1 − ξ1m)2u1

C1
+

Rs(ξ1 − ξ1m)u2
1

C1

−
2α(ξ1m +

T1,ref

2 )(ξ1 − ξ1m)u1

C1
, (32)

V2 = −αξ1m(ξ1m + T1,ref )u1

C1
+

Rsξ1mu2
1

C1
, (33)

V3 =
(ξ1 − ξ1m)f1

C1
+

(ξ2 − ξ2m)f2
C2

, (34)

V4 =
ξ1mf1
C1

+
ξ2mf2
C2

, (35)

V5 = ξ
′

mPξm + ξ
′

mPXref . (36)

Next, we make use of the Holder’s and then Young’s inequality
of the form

xy ⩽ ∥x∥ ∥y∥ ⩽
γ̄

2
∥x∥2 + 1

2γ̄
∥y∥2 , γ̄ > 0, (37)
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on (31) through (36). Furthermore, denoting (ξ − ξm) by ξ̂;
(ξ1 − ξ1m) by ξ̂1; (ξ2 − ξ2m) by ξ̂2, we obtain the following
upper bounds from (31)-(36):

V0 ⩽ ξ̂
′
P ξ̂ + γ1

∥∥∥ξ̂∥∥∥2 + ∥2Pξm + PXref∥2

4γ1
, (38)

V1 ⩽ αξ̂21 + γ2u
2
1 +

1

4γ2C2
1

+ γ3ξ̂
2
1 +

1

4γ3
+

Rs

C1
u2
1

+ γ4ξ̂
2
1 +

α2(2ξ1m + T1,ref )
2

4γ4C2
1

u2
1, (39)

V2 ⩽ γ5u
2
1 +

α2ξ21m(ξ1m + T1,ref )
2

4γ5C2
1

+
Rsξ1m
C1

u2
1, (40)

V3 ⩽ γ6ξ̂
2
1 +

1

4γ6C2
1

f2
1 + γ7ξ̂

2
2 +

1

4γ7C2
2

f2
2 , (41)

V4 ⩽ γ8f
2
1 +

ξ21m
4γ8C2

1

+ γ9f
2
2 +

ξ22m
4γ9C2

2

, (42)

where γi > 0, i = 1, 2, ..., 9. Next, using the fact that ξ̂21 ⩽∥∥∥ξ̂∥∥∥2, f2
1 ⩽ ∥∆∥2 and f2

2 ⩽ ∥∆∥2 in (39), (41), (42), and
then using (36)-(42) in (30), we obtain,

Ḃ ⩽ ξ̂
′
P ξ̂ + γ

∥∥∥ξ̂∥∥∥2 + c4u
2
1 + c5 ∥∆∥2 + κ2, (43)

where γ = γ1 + α+ γ3 + γ4 + γ6 + γ7, and

c4 = γ2 +
Rs

C1
+

α2(2ξ1m + T1,ref )
2

4γ4C2
1

+ γ5 +
Rsξ1m
C1

, (44)

c5 =
1

4γ6C2
1

+
1

4γ7C2
2

+ γ8 + γ9, (45)

κ2 =
∥2Pξm + PXref∥2

4γ1
+

1

4γ2C2
1

+
1

4γ3

+
α2ξ21m(ξ1m + T1,ref )

2

4γ5C2
1

+
ξ21m

4γ8C2
1

+
ξ22m

4γ9C2
2

+ ξ
′

mPξm + ξ
′

mPXref . (46)

Noting
∥∥∥ξ̂∥∥∥2 = ξ̂

′
ξ̂, we rewrite (43) as,

Ḃ ⩽ −ξ̂
′
Rξ̂ + c4u

2
1 + c5 ∥∆∥2 + κ2, (47)

where R = −(P + γI) should be designed to be a positive
definite matrix with I being the 4x4 identity matrix.

Given R > 0, we can write

λmin(R)
∥∥∥ξ̂∥∥∥2 ⩽ ξ̂

′
Rξ̂ ⩽ λmax(R)

∥∥∥ξ̂∥∥∥2 , (48)

where λmin(R) and λmax(R) be the minimum and maximum
eigenvalues of R respectively. Furthermore, since ξ̂ = (ξ−ξm)
is as defined after (37), ξ̂ represents a vector inside the safe
set drawn from the state to the safe set boundary. But the
length of this vector is always greater than or equal to the
minimum distance of the state from the safe set boundary
given by (25). Hence, we can write |ξ|D ⩽ ∥ξ − ξm∥ giving
−∥ξ − ξm∥2 ⩽ −|ξ|2D. This essentially implies we can write
(47) as,

Ḃ ⩽ −c3|ξ|2D + c4u
2
1 + c5 ∥∆∥2 + κ2, (49)

where c3 = λmin(R).

Remark 6: From the design viewpoint, our goal is to ensure
that R = −(P +γI) as defined after (47), should be a positive
definite matrix. As P = A0 − B2KC, we find the control
gain matrix K such that this condition is satisfied. Since γi >
0, i ∈ {1, 2, . . . , 9}, it can be seen that c4 > 0 and c5 > 0
as defined in (44) and (45). To ensure that c3 defined after
(49) is positive, it is sufficient to ensure that R > 0. Further
ensuring κ2 > 0 provides us with the inequality condition
(21). Satisfying these conditions essentially makes the system
practically input-to-state stable in the sense of (20)-(21).

Note that the system (18) should also be closed-loop stable,
according to the second control objective. Hence, the control
gain matrix K should further ensure that the closed loop
temperature dynamics is stable, i.e., all the eigenvalues of
(P + A1(I)) should have negative real part for the range of
possible currents Imin ⩽ I ⩽ Imax where Imin and Imax

are the minimum and maximum values of allowable currents,
respectively. Let λi, i ∈ {1, 2, 3, 4} be the eigenvalues of
(P +A1(I)), then the stability condition is as follows,

real(λi) < 0, i ∈ {1, 2, 3, 4}, ∀ I ∈ [Imin, Imax]. (50)

C. Summary of Control Design

In summary, the control design that ensures the practical
input-to-state safety inequalities and stability condition, should
satisfy the following:

−(P + γI) > 0, (51)
κ2 > 0, (52)

real(λi) < 0, i ∈ {1, 2, 3, 4}, ∀I ∈ [Imin, Imax], (53)

where P , γ and I are defined after (18), (43) and (47),
respectively; κ2 is given by (46); and λi, i = 1, 2, 3, 4 are
the eigenvalues of (P +A1(I)).

IV. RESULTS AND DISCUSSION

In this section, we test the proposed control framework us-
ing simulation case studies. First, we proceed with discussing
the plant model used for testing purposes and then we state
the simulation conditions.

A. Plant Model for Validation

The model (7), (8), (9), and (10), based on which the
control design is performed, is formed on lumped modeling
assumptions. However, in reality, the temperature within the
battery cell is spatially distributed. In our testing, we con-
sider a distributed parameter temperature dynamics to capture
more realistic scenarios. This will also help understand the
effectiveness of the proposed control approach when there are
unmodelled dynamics. To this end, we consider the following
distributed parameter thermal model (captured by a Partial
Differential Equation (PDE)) as the plant dynamics [38]:

∂Tp

∂t
=

k

ρCp

∂2Tp

∂r2
+

k

ρCpr

∂Tp

∂r
+

1

ρCp

Q̇

Vcell
, (54)

∂Tp

∂t

∣∣∣
r=0

= 0,
∂Tp

∂t

∣∣∣
r=R

= −h

k
(Tp(R)− T∞), (55)
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where Tp(r, t) is the radially distributed temperature of the
battery cell. In this plant dynamics, we have augmented
the cooling dynamics (7) and (8) to complete the system
of equations. Definitions of the plant model parameters are
given in Table II. We have used this model to generate the
feedback measurements to be used by the control algorithm.
Subsequently, we performed parameter identification process
to find the design model parameters that provides best fit with
the plant model responses. The model fitting outcome is shown
in Fig. 3 under a specific cooling condition, with resulting
parameters given in Table III.

TABLE II
PLANT MODEL PARAMETERS

Parameter Description Unit
T∞ Ambient Temperature K
k Battery Thermal Conductivity Wm−1K−1

ρ Battery Mass Density kgm−3

Cp Specific Heat Capacity Jkg−1K−1

h Convection Coefficient Wm−2K−1

R Radius m

Q̇ Heat Generation W

TABLE III
PARAMETER VALUES OF PDE PLANT MODEL AND ODE DESIGN MODEL

Parameter Value

k 1.7999 Wm−1K−1

ρ 2.75x10−3 kgm−3

Cp 1250 Jkg−1K−1

h 50 Wm−2K−1

R 9.15x10−3 m
R1 2.64 KW−1

R2 3.46 KW−1

C1 51.9 JK−1

C2 6.2 JK−1

α 10−4 V K−1

C∞ 10 JK−1

τc 0.1 s

Fig. 3. Comparison between PDE plant model and the ODE design model.

B. Simulation Conditions

We have used the parameters shown in Table III for the
simulation case studies. The value of internal electrical resis-
tance Rs and entropic heat coefficient α are taken to be 0.05Ω
and 10−4V K−1, respectively. The simulation studies are per-
formed in MATLAB R2022a. To take into account more realis-
tic scenarios, we have added Gaussian noise N (µ, σ2) ≡ (0, 1)
in the measurement signals. To demonstrate the performance
of the proposed controller, we show comparison with a battery
cooled through natural convection. This comparison captures
the most common situation of batteries where forced cooling
is not available. A dynamic current profile generated based
on the Urban Dynamometer Driving Schedule (UDDS) [17]
is used in the simulation case studies, as shown in Fig. 4. We
have obtained the control gains as K2 = 1.6887WK−1, K3 =
−3.9391WK−1 by satisfying the design conditions (51), (52)
and (53). The reference temperature is chosen as 25oC for all
the three temperature states and the unsafe region is considered
to be beyond 50oC. We inject a fault at t = 500s which settles
asymptotically to a certain value which varies depending on
the location of the fault which can be the core or surface of
the battery or both of them. These different fault scenarios are
discussed in the subsequent case studies.
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Fig. 4. Current profile based on UDDS.

C. Case Study 1: Performance under Thermal Fault at Core
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Fig. 5. Heat generation under internal fault.

In this case study, we discuss the performance of the
controller when the thermal fault is present at the core of the
battery. The fault is injected at t = 500s magnitude of which
settles asymptotically at 300W . Since this corresponds to an
internal fault, the effect of the fault gets directly reflected in
the dynamics of the core temperature T1 given by f1 in (9).
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Fig. 6. Battery temperature’s variation under internal fault.

This effect is shown in Fig. 5. It can be seen from the Fig. 6
that as soon as the fault is injected, the temperatures T1 and
T2 start increasing and natural cooling is unable to prevent
the temperatures from entering the unsafe region whereas
our proposed controller keeps the temperatures stable in the
safe region. Hence, it can be said that the proposed approach
performs better than the air cooling under internal faults. It is
to be noted that since the fault is internal, the core temperature
T1 enters the unsafe region earlier than the surface temperature
T2 in case of natural cooling as is evident from Fig. 6.

D. Case Study 2: Performance under Thermal Fault at Surface
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Fig. 7. Heat generation under external fault.

In this case study, we discuss the performance of the
controller when the thermal fault is present at the surface of
the battery. The fault is injected at t = 500s magnitude of
which settles asymptotically at 23W . Since this corresponds
to a external factor resulting in the fault, the effect of the
fault gets directly reflected in the dynamics of the surface
temperature T2 given by f2 in (10). This effect is shown in
Fig. 7. It can be seen from the Fig. 8 that from the onset of
fault injection, the temperatures T1 and T2 start increasing and
natural cooling cannot keep the temperatures from going into
the unsafe region whereas our proposed controller stabilizes
the temperatures in the safe region. Hence, it can be said that
the proposed approach performs better than the air cooling
under surface faults also. It is to be noted that since the fault
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Fig. 8. Battery temperature’s variation under external fault.

is external, it takes longer for the core temperature T1 to enter
the unsafe region in case of natural cooling as is evident from
Fig. 8 whereas the surface temperature shows similar behavior
as observed in Case Study 1.

E. Case Study 3: Performance under Thermal Fault at both,
Core and Surface
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Fig. 9. Heat generation under internal and external faults.

In this case study, we discuss the performance of the
controller when the thermal fault is present at both, the core
and the surface of the battery. The faults are injected at
t = 500s magnitude of which settles asymptotically at 30W .
Since this corresponds to both, an internal and an external
fault, the effect of the fault gets directly reflected in the
dynamics of both, the core temperature T1 given by f1 in
(9) and the surface temperature T2 given by f2 in (10). This
effect is shown in Fig. 9. It can be seen from Fig. 10 that
the temperatures T1 and T2 start increasing once the faults are
injected and natural cooling cannot contain the temperatures in
the safe region whereas our proposed controller is indeed able
to stabilize the temperatures in the safe region. Hence, it can
be said that under simultaneous fault scenario, the proposed
approach performs better than the air cooling. It is to be noted
that since both the faults are present, in case of natural cooling,
the temperatures T1 and T2 enter the unsafe region much
earlier as compared to Case Studies 1 and 2 as is evident
from Fig. 6.
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Fig. 10. Battery temperature’s variation under both, internal and external
faults.

F. Case Study 4: Performance under Measurement Noise
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Fig. 11. Variation of the core temperature T1 with respect to the measurement
noise.

In this case study, we discuss the performance of the
controller with respect to the variation in the measurement
noise when the thermal fault is present at both, the core and
the surface of the batter. The nature of the faults used in
this Case Study correspond to those described in Case Study
3. We consider 4 scenarios of measurement noise where we
either increase the bias µ or the variance σ2 of the signals
as compared to the Gaussian noise N (µ, σ2) ≡ (0, 1) used
in the earlier case studies. It can be seen from Fig. 11 and
Fig. 12 that increasing the bias µ from 0oC to 2oC reduces
the temperatures T1 and T2 whereas increasing the variance
σ2 from 1oC to 3oC increases the temperatures T1 and T2.
This effect is due to sensitivity of our approach with respect to
the measurement noise. Essentially, this refers to the fact that
our controlled cooling power responds better to the changing
bias in the noise as opposed to changing variance. But with
the shown variation in the measurement noise, our proposed
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Fig. 12. Variation of the surface temperature T2 with respect to the
measurement noise.

approach is successful in keeping the temperatures stable in
the safe region.

G. Case Study 5: Performance under Plant Parametric Un-
certainties
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Fig. 13. Battery temperature’s variation under uncertainties in battery thermal
conductivity Kt.

In this case study, we discuss the performance of the
controller with respect to the parametric uncertainties. Often-
times, there is a mismatch between the plat parameters and
the model parameters used for control design. We capture
such parametric mismatch by introducing deviations in the
PDE plant model parameters. The goal is to understand how
the proposed control performs when such inaccuracies are
present. We use the same scenario presented in Case Study
3 to illustrate this effect. We have considered uncertainties in
battery thermal conductivity Kt, battery specific heat capacity
Cp and convection heat transfer coefficient h. Four different
magnitudes of uncertainties in each of the three parameters
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Fig. 14. Battery temperature’s variation under uncertainties in battery specific
heat capacity Cp.
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Fig. 15. Battery temperature’s variation under uncertainties in convection heat
transfer coefficient h.

Kt, Cp and h as Kt ± 5%,±10%, Cp ± 5%,±10% and
h± 5%,±10%, respectively. It can be seen from Fig. 13 that
our proposed controller is robust to the uncertainties in Kt

whereas it is little sensitive to the uncertainties in Cp and h, as
is evident from Figures 14 and 15, respectively. Qualitatively,
this can be explained using the fact that the control action
is at the surface. So, changing the convection heat transfer
coefficient h has direct effect on cooling the surface of the
battery and this effect is reflected in the core temperature too
and hence the performance of the our controller is sensitive to
the h uncertainties. In case of Cp and h, the final temperature
values are little different from the ones under no uncertainties.
However, none of these violated the safety limits. Accordingly,
we can argue that the proposed control performs reasonably
well when the parameter uncertainties are less than 10%.

V. CONCLUSIONS

This paper is an extension of our work published in
[26]. Here, we have proposed a thermal fault-tolerant control
algorithm for Lithium-ion batteries. Essentially, the control
objective is to maintain the battery temperatures stable in the
safe operating range under the presence of thermal faults. In
addition the difference between the battery core and surface
temperatures should not exceed a certain threshold. The prob-
lem is formulated as to design a control law in order to achieve
the aforementioned control objectives. Particularly, we have
utilized the input-to-state safety approach and combined it
with the closed loop stability constraint to design the control
gain matrix. The limit on the actual available cooling power
is also taken into account. The applicability of the proposed
framework is validated through the simulation case studies
presented in Section IV. It is found that the control gains
designed through the algorithm are indeed able to stabilize
the temperatures in the safe limits under the presence of faults,
noise in the measurement signals, unmodelled dynamics and
parametric uncertainties of the plant.

REFERENCES

[1] D. Lisbona and T. Snee, “A review of hazards associated with primary
lithium and lithium-ion batteries,” Process Safety and Environmental
Protection, vol. 89, no. 6, pp. 434–442, 2011.

[2] S. Abada, G. Marlair, A. Lecocq, M. Petit, V. Sauvant-Moynot, and
F. Huet, “Safety focused modeling of lithium-ion batteries: A review,”
Journal of Power Sources, vol. 306, pp. 178–192, Feb. 2016.

[3] A. Sidhu, A. Izadian, and S. Anwar, “Adaptive nonlinear model-based
fault diagnosis of li-ion batteries,” IEEE Transactions on Industrial
Electronics, vol. 62, no. 2, pp. 1002–1011, 2014.

[4] Q. Yu, C. Wan, J. Li, R. Xiong, and Z. Chen, “A model-based sensor
fault diagnosis scheme for batteries in electric vehicles,” Energies,
vol. 14, no. 4, p. 829, 2021.

[5] H. Chunhua, H. Ren, W. Runcai, and Y. Jianbo, “Fault prediction and
fault-tolerant of lithium-ion batteries temperature failure for electric ve-
hicle,” in 2012 Third International Conference on Digital Manufacturing
& Automation. IEEE, 2012, pp. 410–413.

[6] S. Dey, Z. A. Biron, S. Tatipamula, N. Das, S. Mohon, B. Ayalew, and
P. Pisu, “Model-based real-time thermal fault diagnosis of lithium-ion
batteries,” Control Engineering Practice, vol. 56, pp. 37–48, 2016.

[7] Q. Lin, J. Wang, R. Xiong, W. Shen, and H. He, “Towards a smarter
battery management system: A critical review on optimal charging
methods of lithium ion batteries,” Energy, vol. 183, pp. 220–234, 2019.

[8] K. A. Smith, C. D. Rahn, and C.-Y. Wang, “Model-based electro-
chemical estimation and constraint management for pulse operation of
lithium ion batteries,” IEEE Transactions on Control Systems Technol-
ogy, vol. 18, no. 3, pp. 654–663, 2009.

[9] H. Perez, N. Shahmohammadhamedani, and S. Moura, “Enhanced
performance of li-ion batteries via modified reference governors and
electrochemical models,” IEEE/ASME Transactions on Mechatronics,
vol. 20, no. 4, pp. 1511–1520, 2015.

[10] F. Altaf, B. Egardt, and L. J. Mårdh, “Load management of modular
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