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Abstract

Pleiotropy—when a single gene controls two or more seemingly unrelated traits—has been
shown to impact genes with effects on flowering time, leaf architecture, and inflorescence
morphology in maize. However, the genome-wide impact of biological pleiotropy across all
maize phenotypes is largely unknown. Here, we investigate the extent to which biological
pleiotropy impacts phenotypes within maize using GWAS summary statistics reanalyzed
from previously published metabolite, field, and expression phenotypes across the Nested
Association Mapping population and Goodman Association Panel. Through phenotypic sat-
uration of 120,597 traits, we obtain over 480 million significant quantitative trait nucleotides.
We estimate that only 1.56—32.3% of intervals show some degree of pleiotropy. We then
assess the relationship between pleiotropy and various biological features such as gene
expression, chromatin accessibility, sequence conservation, and enrichment for gene ontol-
ogy terms. We find very little relationship between pleiotropy and these variables when com-
pared to permuted pleiotropy. We hypothesize that biological pleiotropy of common alleles
is not widespread in maize and is highly impacted by nuisance terms such as population
structure and linkage disequilibrium. Natural selection on large standing natural variation in
maize populations may target wide and large effect variants, leaving the prevalence of
detectable pleiotropy relatively low.

Author summary

The genetic basis of complex traits has been thought to exhibit pleiotropy, which is the
notion that a single locus can control two or more unrelated traits. Widespread reports in
the human disease literature show genomic signatures of pleiotropic loci across many
traits. However, little is known about the prevalence and behavior of pleiotropy in maize
across a large number of phenotypes. Using association mapping of common alleles in
over one hundred thousand traits, we determine how pleiotropic each region is and use
these quantitative scores to functionally characterize each region of the genome. Our
results show little evidence that pleiotropy is a common phenomenon in maize. We
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observe that maize does not exhibit the same pleiotropic characteristics as human diseases
in terms of prevalence, gene expression, chromatin accessibility, or sequence conserva-
tion. Rather than pervasive pleiotropy, we hypothesize that strong selection on large and
wide effect loci and the need for trait independence at the gene level keep the prevalence
of pleiotropy low, thus, allowing for the adaptation of maize varieties to novel environ-
ments and conditions.

Introduction

Pleiotropy, a term defined by German geneticist Ludwig Plate in 1910, refers to the phenome-
non where a single locus can affect two or more seemingly unrelated traits [1]. Biological plei-
otropy (also known as horizontal pleiotropy) describes situations in which a single causal
variant affects two or more traits, different causal variants colocalize in the same gene and are
tagged by the same genetic variant, or different causal variants colocalize in the same gene and
are tagged by different genetic variants [2]. In contrast, mediated pleiotropy (also known as
vertical pleiotropy) occurs when one variant impacts a phenotype that is then causal for
another phenotype. Instances of mediated pleiotropy are difficult to ascertain and require a
deeper understanding of how different biological pathways interact. Both horizontal and verti-
cal pleiotropy can be biased by spurious pleiotropy arising from misclassifying relationships
between traits or high linkage disequilibrium tagging nearby non-causal variants [2].

Some examples of single-locus pleiotropy have been observed in maize. The Vegetative to
generative transition 1 (Vgtl) regulatory sequence controls leaf number and flowering time by
regulating an APETALA2-like gene, ZmRap2.7, through what may be mediated pleiotropy [3-
6]. Polymorphisms within Vgt1 cause an additive genetic effect of roughly 2-4.5 days to pollen
shed and an increase in the number of internodes. True pleiotropy of this locus was confirmed
through introgression of the VgtI locus into transgenic plants [7,8]. The teosinte branched 1
(tb1) locus is an example of biological pleiotropy, which impacts the number and length of
internodes in lateral branches and inflorescences due to the upregulation of gene expression in
maize compared to teosinte. This upregulation results from the insertion of a Hopscotch trans-
posable element 64 kb upstream of tb1 [9-12]. Fine-mapping of tb1 confirmed this biological
pleiotropy [10,13,14]. Although other examples of biological pleiotropy at single genes in
maize have been described, many have not been confirmed through fine-mapping to distin-
guish between tight linkage and true pleiotropy [15].

With joint linkage studies and genome-wide association studies (GWA or GWAS) in
plants, the search for pleiotropy became more promising. However, few maize genes have
shown true biological or mediated pleiotropy. Some pleiotropy is present between phenotypes
of the same trait type, like the architecture of tassels, ears, leaves, or flowering time; yet, very
few single nucleotide polymorphisms (SNPs) are shared between different trait types [16,17].
Some evidence of pleiotropy between root, leaf, and flowering traits has been shown but
requires additional testing and validation [17]. A similar study showed evidence of pleiotropy
but within inflorescence traits, such as kernel row number with thousand kernel weight and
tassel standing, tassel length, and tassel spike length [18]. The only robust examples of pleiot-
ropy validated in maize are between flowering traits and leaf number [16,18]. The overlap of
only a few key genes between flowering and leaf number agree with prior literature in that
both traits share a developmental pathway and that the transition from halting leaf growth to
the initiation of tassel development is highly correlated [3,19-21].
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A lack of pervasive pleiotropy was also observed in sorghum, where a large set of 234 plant
architecture and agronomic traits was investigated within the Sorghum Association Panel
[22]. These results may be partially due to the lack of marker saturation within GWAS models
or relying on Bayesian SNP selection models to consistently select the same pleiotropic SNP
across multiple independent traits. However, even with these methods, some large effect pleio-
tropic loci were found along with novel pleiotropic sites between traits [22]. The lack of addi-
tional shared genes between different trait types within prior studies suggests that pleiotropy is
not a common phenomenon in maize or sorghum. Many traits that do show this apparent
pleiotropy may be under similar regulation due to the traits sharing the same developmental
phytomers. These developmentally correlated traits, which share high morphogenic related-
ness, may falsely suggest that pleiotropy is much more widespread than reality.

Some studies have calculated principal components over their traits to create uncorrelated
variables used to determine the degree of pleiotropy [18]. Using uncorrelated traits addresses
the concern that all phenotypes are inherently related and not truly distinct if they share the
same evolutionary or developmental origin [23]. However, many of these studies may miss
large, causal loci impacting their phenotypes of interest in principal component based traits as
opposed to observed trait values, biasing estimates of pleiotropy [18]. Additionally, GWAS-
based pleiotropy studies have been restricted to finding common alleles with modest to large
effects, while rare variants with small effects are difficult to find [24-27]. With a narrow range
of allelic detection, the ability to discern all putatively pleiotropic effects is limited. This may
partially explain the minimal pleiotropy described in crop plants [18,22].

Pleiotropy has been described much more frequently in human disease literature. Some
studies report that nearly half of the disease-associated genes within the human GWAS cata-
logue are pleiotropic [27]. Similar pleiotropy is found among other human traits and disease
studies [28-30]. To characterize pleiotropic loci, a study investigating 321 vertebrate genes
showed that highly pleiotropic genes showed higher gene expression [31]. In human studies,
pleiotropic genes are strongly associated with higher expression [28], are expressed in more tis-
sues [29], and are enriched in active chromatin states compared to genome-wide loci [29].
Additionally, major pleiotropic loci in vertebrate genes evolve at slower rates than less pleiotro-
pic genes, suggesting that the degree of pleiotropy may constrain adaptive evolution [31].

While human studies are more likely to look for pleiotropy within diseases, the extent of
pleiotropy among common adaptive variants in maize remains elusive. The primary strengths
of using maize for investigating pleiotropy are much higher levels of diversity and phenotypic
measurements on replicated clones. However, a key drawback is that the number of recent
recombination events is much lower than in some powerful human studies (e.g., UK Biobank),
limiting genomic resolution. These strengths and drawbacks have become apparent in the lit-
erature, with many maize pleiotropy studies confined to large effect domestication loci
[7,10,14], in the number of traits they investigate [18,32,33], to low mapping resolution of
quantitative trait loci (QTL) [3,16,34,35], or variable methods of distinguishing and selecting a
true biologically pleiotropic locus [36]. Additionally, a major caveat to pleiotropy studies in
maize is investigator bias in phenotyping, relatively common, easier to measure field-based
traits which may behave differently from molecular phenotypes such as gene expression or
metabolites. These field versus molecular phenotypes may show distinct patterns of pleiotropy
that have been relatively unexplored in the literature. Although developmentally, some of these
bulked traits may share the same generating phytomers, they still offer an alternative view of
pleiotropy.

In this study, we investigated the pervasiveness of pleiotropy in maize using a large set of
120,597 previously published phenotypes in the US Nested Association Mapping population
and the Goodman Association Panel (hereafter NAM and GAP, respectively) that generated
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480 million significant quantitative trait nucleotides. We used these association results to cal-
culate a quantitative estimate of how pleiotropic each genic and intergenic region is within the
genome. Then, we functionally characterized these loci through gene expression, chromatin
openness, and sequence conservation. We aimed to investigate instances of true biological
pleiotropy where variants directly impact multiple traits while trying to limit the amount of
spurious pleiotropy occurring from linkage disequilibrium.

Results
Genome-wide association of traits across NAM and GAP

To determine the extent of pleiotropy within the maize genome, we performed GWAS on
120,597 traits across NAM (n = 5,186) and GAP (n = 271). These traits are outlined in further
detail in Supplemental Tables 1-3. These traits include 121 NAM field traits, 222 GAP field
traits, 3,873 GAP leaf metabolite mass features [37], and 116,381 GAP expression values across
seven diverse tissues [38]. The traits were categorized into four categories based on the popula-
tion and type of trait measured: 1) NAM field, 2) GAP field, 3) GAP mass features, and 4)
GAP expression traits (S1 Table). The NAM and GAP field were further categorized into eight
different trait types to investigate inner trait category pleiotropy. These trait types include tas-
sel, ear, flowering, disease, height, kernel, leaf, and vegetative traits. A schematic of our meth-
ods is shown in Fig 1. Genotype data came from HapMap 3.2.1 SNPs and were imputed using
Beagle 5.1 with the USDA-ARS NCRPIS collection SNPs as the reference. After filtering,
roughly 15 million NAM SNPs and 17 million GAP SNPs remained for association mapping.

The prevalence of pleiotropy is low but shows variation by trait type and
population

Each population-trait category was investigated independently due to the uniqueness of the
genetic architecture of each population, the variable trait sample size, and to investigate the dif-
ferences in the patterns of pleiotropy between trait types. For each population-trait category,
the number of unique traits mapping to each genic and intergenic interval was counted for
both the observed and permuted association results to gain a quantitative metric on how pleio-
tropic each interval was within the genome. These pleiotropy estimates include biological,
mediated, and spurious pleiotropy, as distinguishing between the different forms is difficult
without a deeper understanding of how all individual traits are regulated. A total of 75,490
intervals with a mean length of 27,902 bp were used. Additionally, to gain a SNP-level estimate
of pleiotropy, we randomly subsampled one million Hapmap 3.2.1 SNPs and counted all
unique traits associated with each SNP. Counts for the null distributions of no pleiotropy origi-
nated from ten permutations of the field and mass features, while the expression phenotypes
were permuted five times. We adjusted all our permuted phenotypes before GWA by the same
principal components and PEER factors used within the GWA models to not inflate p-values
due to the underlying population structure held within principal components.

We compared our distribution of observed significant traits per interval to the permuted
trait counts. Across populations and trait types, 67.7-98.4% of intervals have 0-1 significant
traits associated with them (Fig 2). For our SNP level pleiotropy estimates, 57.3-98.6% of SNPs
have 0-1 significant traits associated with them (S1 Fig). Most intervals in the observed data
controlled more traits than the permutations. This does not completely imply pervasive pleiot-
ropy but rather that most traits are polygenic.

For intervals exhibiting five-fold higher evidence in the observed versus the mean permuted
data, NAM field phenotypes display some pleiotropy at intervals putatively associated with
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Fig 1. Schematic of the methods used within this study. (A) A total of 120,597 traits were gathered across four population-trait categories: 1) NAM
field, 2) GAP field, 3) GAP mass features, and 4) GAP expression. Trait values were randomly shuffled (i.e., permuted) five or ten times to create null
distributions of no pleiotropy. (B) The observed and permuted data were then mapped with the Fast Association method in rTASSEL on 15 million
NAM SNPs and 17 million GAP SNPs using a combination of global and window principal components and PEER factors to control population
structure and experimental design. All results with p-value < 0.00001 were kept for both the permuted and observed data. (C) GWAS results were then
split by trait type and permutation and were then aggregated into genic and intergenic intervals based on the significant B73 v4 trait-SNP association
coordinate. (D) A matrix of the number of unique traits mapping to each interval was used to estimate pleiotropy independently for each population-
trait category.

https://doi.org/10.1371/journal.pgen.1010664.g001

2-19 traits (median = 5 traits) in 1.56% of intervals. GAP field traits show pleiotropy associated
with 2-65 traits (median = 9) in 32.3% of intervals genome-wide. GAP mass features showed
much less pleiotropy, with 3.03% of intervals associating with between 2-695 traits

(median = 63). Lastly, GAP expression data display slightly more pleiotropy with 31% of inter-
vals associating with 2-6264 traits (median = 391). In relation to the total number of expres-
sion traits (n = 116,381), a median of 0.33% of all expression traits impacted these highly
pleiotropic intervals. For GAP mass features (n = 3,873), a median of 1.62% of all mass features
contributed to these high pleiotropy estimates.

For SNPs exhibiting five-fold higher evidence in the observed versus the mean permuted
data, NAM field phenotypes show some pleiotropy putatively associated with 2-9 traits
(median = 2 traits) in 1.45% of SNPs. GAP field traits show pleiotropy associated with 2-35
traits (median = 2) in 1.49% of SNPs. GAP mass features show pleiotropy associated with
2-188 traits (median = 11) in 6.85% of SNPs, and the GAP expression data display pleiotropy
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Fig 2. Distribution of QTL by interval. Of the intervals showing a five-fold higher proportion of pleiotropy over their permutations (right of the
vertical dashed line), intergenic ranges tend to exhibit higher pleiotropy than genic ranges. Each value along the x-axis was calculated from the natural
log of the number of observed traits mapping to each interval divided by the mean count of traits in the permuted data with a pseudo-count of plus one
in the numerator and denominator. Values left of the vertical dashed line indicate higher pleiotropy in the permuted data versus the observed data
suggesting the prevalence of high noise or no trait-SNP associations in either the observed or permuted data (peak at zero). Distributions are split into
genic (gray) and intergenic (yellow) intervals for (a) NAM field, (b) GAP field, (c) GAP mass features, and (d) GAP expression traits.

https://doi.org/10.1371/journal.pgen.1010664.9002

associated with 2-879 traits (median = 21) in 42.7% of SNPs. Overall this suggests that there
may be a set of intervals and SNPs with high pleiotropy, but as we will show below, this is
mostly a product of factors impacting mapping.

These pleiotropy estimates for GAP field and expression data may be higher than NAM
field and GAP mass feature estimates. For GAP field data, these pleiotropy estimates might be
slightly inflated due to residual population structure that was not controlled for well during
the association mapping step [39] but were mapped this way for consistency across traits.
Additionally, for all the population and trait types, retaining all trait-SNP associations with p-
value < 0.00001 may have introduced noise depending on the genetic architecture of the trait
being mapped that could, in turn, overrepresent the amount of pleiotropy present.

To understand how different trait types may impact the distribution of pleiotropy, rather
than all traits in aggregate, NAM and GAP field traits were split into eight different types to
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investigate inner-category pleiotropy. These trait types included tassel, ear, flowering, disease,
height, kernel, leaf, and vegetative traits. While the distribution of QTL by interval varies by
the specific trait type, all individual trait types closely resemble the distribution of QTL across
all traits (S2 and S3 Figs, S8 Table).

Mapping features explain most pleiotropy

We analyzed various biological and nuisance (GWA mapping) features to understand their
importance in explaining this apparent pleiotropy. We evaluated two hypotheses: (1) that this
apparent pleiotropy was due to characteristics of genetic mapping; or (2) various aspects of
biological regulation and mutation-selection balance. Modeled biological features consisted of
the maximum gene and protein expression values in B73 across twenty-three diverse tissues
[40], the mean Genomic Evolutionary Rate Profiling (GERP) scores at sites overlapping with
significant GWA hits [41], and the number of ATAC-seq peaks [42]. Nuisance features, which
have to do with genetic mapping and resolution, were similarly modeled and included the
average R” linkage disequilibrium within the NAM and GAP, the total number of SNPs per
interval used for the GWA analysis, and interval size. We also included an adjusted GAP
expression pleiotropy estimate for NAM field, GAP field, and GAP mass feature models to see
if pleiotropy at an intermediate molecular step had any effect on field or metabolite regulation.

All pleiotropy scores are highly correlated with nuisance terms (Fig 3). The number of
input SNPs, the interval size, and average linkage disequilibrium all show strong, positive cor-
relations with pleiotropy values. Additionally, pleiotropy values between populations and trait
types are highly correlated with each other. For the biological features, there is a weak correla-
tion between pleiotropy and GERP, max protein expression, max RNA expression, and the
number of ATACseq peaks. A full correlation matrix including gene ontology (GO) terms is
available in S4 Fig.

With these biological, nuisance, and adjusted pleiotropy terms we ran four models (Models
1-4) that varied in their input features and model architectures. Each model type was run
eight separate times for each population-trait category (NAM field, GAP field, GAP mass fea-
tures, and GAP expression) and permutation type (observed versus permuted data). All mod-
els were trained using an iterative leave-one-chromosome out approach. Model 1 was a
random forest model that included only nuisance, or mapping terms. Model accuracy varied
by the population and trait category (R* = 0.29-0.87, S5 Table). Prediction on held-out chro-
mosome data showed a strong relationship between predicted and observed pleiotropy (R* =
0.85-0.96, Fig 4), suggesting that pleiotropy within these populations can be predominantly
described by mapping terms.

Model 2 was trained on pleiotropy scores using all biological and nuisance terms described
previously using a random forest model. Overall, the models performed well, with R* values
ranging from 0.35 to 0.87 (S5 Table) and showed good performance when predicting on the
left-out chromosome across models (S6 Fig). Across population-trait categories in the
observed and permuted data, the most important terms in predicting pleiotropy were nuisance
variables that included the number of input SNPs, average R” linkage disequilibrium, and
interval size (Fig 5). All biological features had lower importance for predicting pleiotropy
than the nuisance variables. The mean GERP score showed moderate importance across mod-
els, and RNA and protein expression showed the least importance of these biological features.
All other biological features were only slightly important. The ranking of features between the
observed and permuted data models remained largely the same with very little deviation (S5
Fig). For the eight individual NAM and GAP field trait types, there was some variability in the
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Fig 3. Correlation matrix of key biological, nuisance (mapping), and pleiotropy values. Values indicate the Pearson correlation between values
colored by the strength of their correlation.

https://doi.org/10.1371/journal.pgen.1010664.9003

ordering of variables compared to the counts across all traits, however, nuisance terms
remained the most important across variables (S7, S8, S9 and S10 Figs).

Model 3 was also a random forest model trained using the same biological and nuisance
terms as Model 2 but included fourteen gene ontology terms thought to be important in
explaining highly pleiotropic loci. Model 4 was a gradient boosting model with only the terms
described in Model 2 (no gene ontology terms). Models 2, 3, and 4 performed similarly, with
the nuisance variables showing the highest relative importance (Fig 5, S5, S11 and S13 Figs).
All models had comparable model performance, with the gradient boosting method (Model 4)
having slightly higher prediction accuracy (Model 4 R* 0.46-0.92) over most random forest
models (Model 3 R* 0.33-0.98; S6, S12 and S14 Figs, and S5 Table). For Model 3, which
included gene ontology terms, all gene ontology terms showed lower relative importance than
the biological and nuisance variables (S11 Fig).

For the SNP-level pleiotropy estimates, we ran a gradient boosting model similar to Model
4. This model included the following biological and nuisance terms: the maximum gene and
protein expression of the closest gene within 5 Kb of the focal SNP, the GERP scores at that

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010664 March 21, 2023 8/28


https://doi.org/10.1371/journal.pgen.1010664.g003
https://doi.org/10.1371/journal.pgen.1010664

PLOS GENETICS

Maize pleiotropy: Patterns and biological relevance

B
NAM Field Observed GAP Field Observed
7 b
- e 2 5 " il
601 R®=0.917 , - 601 R®=0.853 L

g 2
° °
g 401 2 401
o (0%
° °
D (]
> =
2 204 2 204
£ o)
o) o]

0 1 04

0 20 40 60 0 20 40 60
Predicted Pleiotropy Predicted Pleiotropy
D .
GAP Mass Features Observed GAP Expression Observed
7 b
e e
2 y 2 . -,
R = 0.967 R = 0.867 2
1500 - e

g 2 4000 -
S °
kS] k]
& 1000 4 &
° °
(<5} (]
> b .
s & 2000 4
2 i &
§ 500 g

0 1 04

0 500 1000 1500 0 2000 4000
Predicted Pleiotropy Predicted Pleiotropy
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https://doi.org/10.1371/journal.pgen.1010664.9004

site, if the SNP was in an ATAC-seq peak, the location of the SNP (genic or intergenic), and
the average R” linkage disequilibrium. These models did not perform as well (R* = 0.003-
0.281, S5 Table), potentially due to the sparsity of trait-SNP associations at these subsampled
SNP sites. The SNP-level models showed high importance for the average R* linkage disequi-
librium and very little importance for any biological terms (S15 and S16 Figs).

Due to the overwhelmingly large effect of mapping features in describing pleiotropy, an
adjusted interval-based pleiotropy statistic was created. This adjusted statistic was created
from Model 1 by subtracting the predicted pleiotropy from the observed pleiotropy score and
was used to look at different biological relationships in more depth. This adjusted pleiotropy
statistic was meant to curb, but not completely eliminate, the amount of statistical pleiotropy
within the models while trying to retain some information about biological and mediated
pleiotropy.

The relationship between adjusted pleiotropy and observed pleiotropy is available in S17
Fig. We regressed these adjusted pleiotropy values against the max RNA expression across 23
diverse B73 tissues and the mean GERP score. We found no difference in the relationship
between adjusted pleiotropy with GERP or the max RNA expression value for NAM field,
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0

GAP field, or GAP mass features compared to the permuted data. However, we did find a
change in the relationship between RNA expression and GERP with GAP expression pleiot-
ropy data in the observed versus the permuted data, where more pleiotropic intervals showed
lower GERP sequence conservation and higher expression values (518 and S19 Figs). These
relationships of observed GAP expression pleiotropy with max RNA expression (adj. R* =
-2.41e-05, p-value = 0.767) and GERP (adj. R* = -6.68¢-06, p-value = 0.4016) were not
significant.

With these adjusted pleiotropy scores, we then investigated the most pleiotropic genes
within each population and trait type. The top twenty most pleiotropic genes by population
and trait type are presented in S7 Table. Genes that were shared across populations and traits
types included Zm00001d035776, which is a paired amphipathic helix protein shown to be
involved in regulating flowering time and internode number in Arabidopsis [43], pleiotropic
in both GAP field and GAP expression data. Zm00001d040920 is a tRNA methyltransferase
pleiotropic within NAM field and GAP expression data. Lastly, we searched for overlap in our
top twenty highly pleiotropic genes within a prior large-scale maize pleiotropy study [17]. We
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found one shared sphingomyelin synthetase family protein (Zm00001d034600), in GAP field
traits that impacted two tassel traits, and a G2-likel gene (Zm00001d044785) in GAP mass fea-
tures that impacted six root traits [22].

Gene ontology suggests differential enrichment for highly and lowly
pleiotropic intervals

To determine if there was any differential enrichment in gene ontology terms among our puta-
tively pleiotropic sites, we categorized our genic intervals into highly and lowly pleiotropic sets
based on their adjusted pleiotropy values. Genic intervals were classified as lowly or highly
pleiotropic if they had the lowest 25™ percentile or highest 75" percentile of adjusted pleiot-
ropy values within each population-trait category. We then queried how enriched the lowly
and highly pleiotropic gene sets were for molecular function (MF), biological process (BP),
and cellular component terms. No cellular component terms were significant.

For molecular function, we found an enrichment of highly pleiotropic terms shared
between populations involved in binding including ribonucleotide, nucleotide, nucleoside
phosphate, protein, ATP, and carbohydrate derivative binding (Fig 6). Additionally, terms
involving potassium ion binding, kinase activity, and ligase activity were shown to be signifi-
cant in highly pleiotropic intervals in some populations. For intervals with low pleiotropy,
terms associated with serine-type peptidase activity, peroxidase activity, heme binding, cop-
per-ion binding, catalytic activity, and antioxidant activity were significant for NAM field or
GAP expression data. No terms for the lowly pleiotropic GAP field and GAP mass features
data were significant.

For biological process terms, we found an enrichment in the response to oxidative stress for
lowly pleiotropic intervals in the NAM field traits. Highly pleiotropic biological processes
included terms involved with signaling, signaling transduction, and cell communication in the
GAP expression data and phosphorylation in the GAP field data.

Additionally, we preformed GO enrichment for the top 90™ and bottom 10" percentile,
and top 99™ and bottom 1% percentile of adjusted pleiotropy values. For the top 90™ and bot-
tom 10" percentile of adjusted pleiotropy values, numerous terms were significant for molecu-
lar function and biological process, including many terms for DNA and RNA binding for
highly pleiotropic sites (520 Fig). For the top 99" and bottom 1 percentile of adjusted pleiot-
ropy values, only three biological process terms and five molecular function terms were signifi-
cant for the highly pleiotropic sites (521 Fig). Significant terms included helicase activity
between the GAP mass features and the GAP expression data, adenyl ribonucleotide and
nucleotide binding for the GAP field data, and protein localization terms for the NAM field
data. No terms were significant for the lowly pleiotropic sites or cellular component terms in
either enrichment analysis.

Discussion

Our results show modest but pervasive pleiotropy in the Nested Association Mapping and
Goodman Association Panel across a wide range of field, metabolite, and expression pheno-
types that could almost always be highly explained by mapping resolution characteristics.
Across 120,597 maize traits, we have shown that some apparent pleiotropy is present across
populations; however, much of this pleiotropy is highly correlated and explained by associa-
tion mapping parameters in multiple models. A total of 67.7-98.4% of intervals are associated
with zero to one traits. These distributions are reminiscent of the L-shaped pleiotropy distribu-
tions derived from GWA- and QTL-based studies in other species like mouse, yeast, nema-
tode, and stickleback fish, where the large majority of loci have little to no effect on traits while
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a minimal subset of sites show pleiotropic effects [44,45]. Within these distributions, intergenic
intervals have higher pleiotropy values confirming prior results in maize where most GWA
hits fall within larger, intergenic regions rather than genic regions [46], which would lead to
higher overall pleiotropy scores. One caveat to this study is that we cannot detect pleiotropy in
fixed mutations because our estimates are based on the prevalence and frequency of associa-
tion results which are values dependent on allele frequencies within populations. We are thus
more likely to find common variants with only modest effects on phenotypes than rare vari-
ants with small effects [24-26].

Given our distribution of pleiotropic loci derived from common alleles, we investigated the
top twenty intervals with the largest adjusted pleiotropy values. A paired amphipathic helix
protein (Zm00001d035776) shown to be involved in regulating flowering time and internode
number in Arabidopsis [43] and a tRNA methyltransferase (Zm00001d040920) was found
across two populations. All other genes, within or next to the most pleiotropic intervals, were
only present in one population. In GAP field traits, xylanase/glycosyl hydrolasel0 (xyn10,
Zm00001d039958) has been shown to impact mesocotyl length after deep-seeding [47], with
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the larger family of glycoside hydrolases being involved in plant cell enlargement and composi-
tion [48]. A highly pleiotropic locus in GAP mass features included empty pericarp2
(Zm00001d005675), which is involved in embryo morphogenesis, shoot development, and the
negative regulation of the heat shock response [49-51]. GAP expression data showed ZIM-
transcription factor 8 (zim8, Zm00001d004277), a candidate gene for Striga damage [52], kernel
composition, and popping expansion [53].

To understand the genetic architecture behind these pleiotropic loci we ran multiple ran-
dom forest and gradient tree boosting models investigating the relationship between biological
and nuisance (mapping) variables to characterize the patterns of pleiotropy. Nuisance vari-
ables, including the interval size, average linkage disequilibrium, and the number of input
SNPs, showed the highest relative importance across models. Of much lower relative impor-
tance were biological features, including maximum gene expression across multiple B73 tissues
[40], the amount of accessible chromatin [42], and the average evolutionary conservation [41].
Even after adjusting pleiotropy scores using the nuisance variables, we found no strong or sig-
nificant relationship with maximum gene expression or the average GERP score in any popu-
lation-trait category.

In contrast to our results in maize, pleiotropy is pervasive in human and mouse literature
[28-30,44,54]. It has been shown that highly pleiotropic loci are associated with changes in
gene expression in mice [31] and humans [28], broad expression across many tissues [26,29],
and an enrichment in accessible chromatin [26]. These enrichment patterns may not be pres-
ent in maize due to constant selective pressures on novel pleiotropic loci originating after its
domestication from teosinte roughly 9,000 years ago [55,56] and constant selection in modern
breeding programs, making pervasive wide- and large-effect pleiotropic loci big targets for
selection. In a population with large standing natural variation, mutations within wide- and
large-effect loci would not be advantageous. This agrees with Fisher and Orr models where
mutations causing larger phenotypic effects are less likely to be beneficial over small effect
mutations and thus more likely to affect complex organisms [57,58]. Additionally, genetic
independence among traits is essential so that favorable combinations of alleles can aid in the
adaptation of novel varieties suited to new environments and conditions [59]. Thus, our results
of modest pleiotropy agree with the notion that many independent loci control a single trait,
and these loci originate from sites with varying chromatin accessibilities, RNA expression val-
ues, and conservation levels.

Trait selection heavily influences pleiotropy results. Small subsets of measured traits origi-
nating from the same phytomer or highly correlated traits such as amino acid content [60] or
grain quality [61] may already share similar regulatory pathways leading to enrichment in
pleiotropic loci [23]. This may lead to unrealistic expectations of the pervasiveness of pleiot-
ropy genome-wide. Because pleiotropy estimates rely heavily on allele frequencies, allele effect
sizes, the traits under investigation, mapping resolution, and the selection of candidate mark-
ers, we argue that many claims of pleiotropy in the plant literature are misleading. Addition-
ally, pleiotropic calls on QTL intervals in prior studies in wheat [62], rice [61,63], maize
[34,35], and soybean [64] lack the genomic resolution to distinguish between tight linkage and
true pleiotropy due to limited markers and large linkage groups.

Although many pleiotropy claims are misleading, this does not mean that pleiotropy does
not exist in plants. These pleiotropic relationships may be more confined to fixed, large-effect
loci such as teosinte branched 1 (tb1), Vegetative to generative transition 1 (Vgt1), or closely
related traits that share similar developmental pathways. These closely related traits shown to
exhibit some pleiotropy include key regulators of flowering time between days to silking, days
to anthesis, and the anthesis-silking interval [3], some inflorescence architecture traits [16],
and co-regulation between flowering time and leaf number [16,19,20].
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In this study, we achieved phenotypic and marker saturation to assess the prevalence of
pleiotropy within the maize genome. There is minimal pleiotropy present that, in aggregate,
shows little to no relationship with gene expression, sequence conservation, or DNA accessibil-
ity and is highly impacted by mapping resolution terms including linkage disequilibrium and
genomic interval size. Pleiotropy can still exist within the maize genome but is highly con-
strained by selection and tight linkage of multiple causal loci. We suggest that in future work
of the plant genetics community, caution should be taken before claiming pleiotropy is the
causal agent controlling multiple phenotypes. We recommend that: 1) mapping and marker
resolution is sufficient to distinguish between tight linkage and pleiotropy, 2) there be robust
testing of a null hypothesis of no pleiotropy through statistical methods or null distributions
[36,65], 3) there be enough unrelated traits to create pleiotropy estimates, and 4) there be func-
tional characterization or validation of pleiotropic claims through the identification of shared
biological pathways or fine-mapping. Additionally, there should be more specificity in the
types of pleiotropy under investigation by adhering to previously described nomenclature
[2,66].

Materials and methods
Collection of a wide range of phenotypes in NAM and GAP

To determine the degree of pleiotropy in the maize genome, we curated traits measured across
two maize mapping populations: the US Nested Association Mapping population (US-NAM,
or NAM) [67] and the Goodman Association Panel (GAP) [68]. NAM is a biparental popula-
tion of 26 diverse inbred lines crossed to a common parent, B73, with 5,186 progeny, while the
Goodman Association Panel consists of 271 diverse inbred lines. Data were collected from
3,873 leaf mass features [37], 116,381 RNA expression values from seven tissues [38], and 343
field traits. Field traits included flowering time [3,69], plant architecture [21,46,70-75], disease
and insect resistance [76-83], and kernel composition [84-90]. Many of these traits are repli-
cated across environments, so a single representative version of that trait was kept. These traits,
their publication of origin, and trait values are available in S1-S3 Tables. Due to their size,
GAP mass features and expression data are available in their original publications [37,38].

As shown in the visual methods, we split all phenotypes into four categories based on popu-
lation and trait type (Fig 1). These population-trait categories were: 1) NAM field, 2) GAP
field, 3) GAP mass features, and 4) GAP expression traits. Some traits within GAP field traits
included kernel carotenoids and metabolites [84,86,88-90], which could be classified into the
GAP mass features category because they are also molecular phenotypes. However, only the
mass features measured within Zhou et al. 2019 were classified as GAP mass features [37]. The
field traits were further classified into eight trait types to determine if there was any pleiotropic
pattern within and between different trait types. These trait types included flowering, disease,
tassel, ear, leaf, height, vegetative, and kernel traits (S1 Table).

To create an estimate of statistical pleiotropy to compare to our estimates of biological plei-
otropy, we permuted each phenotype ten times for NAM field, GAP field, and GAP mass fea-
tures. Due to the large number of trait observations, we permuted GAP expression values five
times. Phenotypes were permuted by fitting a linear model with their respective principal com-
ponents or PEER (Probabilistic Estimation of Expression Residuals) factors [91] as described
in the association mapping section, and we gathered their fitted and residual values. Residual
values were independently permuted five or ten times before adding back in the effects of the
fitted values. This permutation step ensured that covariances between traits were broken and
that the effect of the principal components and PEER factors did not inflate GWA p-values
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due to their underlying population structure. The genotype matrix was not permuted to main-
tain the LD structure between SNPs and QTL.

Association mapping of a wide range of phenotypes

We used the previously generated NAM and GAP Hapmap 3.2.1 SNPs imputed using Beagle
5.1 [92] with the USDA-ARS NCRPIS collection SNPs as the reference [93]. After filtering
based on a minimum allele frequency of 0.01, roughly 17 million and 15 million SNPs
remained in the GAP and NAM populations, respectively.

GAP field and mass feature traits were mapped with the following model to account for
population structure: y = XB; + 3 global PCs + e. The three global principal components (PCs)
were calculated on a subset of 66,527 SNPs from 3,545 diverse inbred lines in the USDA-ARS
NCRPIS collection, and then GAP SNPs were rotated to such PCs. The 66,527 SNPs were cho-
sen because they represented sites with no missing data shared between the three maize popu-
lations. This method offered similar control for population structure and kinship over PCs
calculated solely within GAP and was consistent when mapping traits across multiple popula-
tions [94]. This also saves on computational time compared to using mixed linear models. For
GAP expression traits, twenty-five tissue-specific PEER factors were added to the model to
control for experimental design and sampling variability as described previously [38].

Due to the population and family structure arising from NAM’s half-sib design, more strin-
gent control of population structure was needed to reduce the false-positive rate. The following
two models were used in NAM: y = Xf3; + 3 global PCs + main window PCs + eand y = Xj3; + 3
global PCs + mid window PCs + e, where the global PCs were calculated similarly to GAP but
using NAM SNPs. Main window PCs were calculated only for NAM by breaking the genome
into 360 gene windows based on B73 AGPv4 gene coordinates, and PCs were calculated within
each window. A total of 360 genes were chosen per window because they offered a reasonable
number of degrees of freedom when mapping within NAM. For each window, enough PCs
were taken to explain 15% of the total variance. To combat potential edge effects arising from
these ‘main’ windows, we slid the windows over by 180 genes, recalculated window PCs
(named ‘mid’ window PCs), and then used both collections of PCs in the association analysis.
This resulted in 469 ‘main’ window PCs and 512 ‘mid’ window PCs. The union of significant
sites between these two models was used for further analyses. In cases where both models had
a significant association for a single SNP, the most significant association (with the smallest p-
value) was taken. All PCs used to map traits in NAM and GAP are available in S4 Table. All
observed data and permuted phenotypes were then mapped using the rTASSEL package in R
[95] with the Fast Association method [96], keeping all trait-SNP associations with p-
value < 0.00001.

Calculating a quantitative pleiotropy score

Due to high linkage disequilibrium and the difficulty in ascertaining the true causal SNP(s)
from a list of significant associations, we chose to investigate pleiotropy within genic and inter-
genic intervals. We did this by breaking the genome into an equal number of genic and inter-
genic intervals based on gene annotations in B73 AGPv4 with the GenomicRanges package in
R [97]. Any overlapping genic ranges were merged into one large interval. This resulted in

n = 75,490 intervals with a mean length of 27,902 bp. For SNP-level pleiotropy, one million
Hapmap 3.2.1 SNPs were randomly subsampled using the subsetSites TASSEL plugin. Using a
custom TASSEL plugin (version 5.2.79, CountAssociationsPlugin) [98], we counted the num-
ber of trait-associated SNPs for each interval or each SNP for each population-trait category
separately for both the observed and permuted results. The matrices of intervals by trait counts
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were then used to calculate the number of unique (non-redundant) traits mapping to each
interval or each SNP. For the NAM and GAP field data this resulted in 80 and 167 non-redun-
dant (unique) traits, respectively. We chose to calculate the number of traits mapping to each
interval or SNP over using other previously established pleiotropy methods because it pro-
vided a quantitative score on the variability of trait-SNP associations, made no assumptions on
which single SNP was the ‘most’ pleiotropic, and did not require effect sizes of SNPs. Addition-
ally, we did not perform fine-mapping or colocalization analyses due to the nature of recombi-
nation between maize versus humans, where many of these classification techniques are
optimized. Human GWAS studies have larger populations with more recent recombination
events than maize with smaller populations with ancestral recombination blocks. As most
recombination in maize occurs near the 5’ end of genes, with very little recombination in the
intergenic blocks, interval-based approaches are likely to deliver results at the best possible res-
olution from our association analyses. Investigation of pleiotropy enrichment compared to the
permuted data was performed by taking the log of the observed divided by the mean permuted
pleiotropy count for each interval plus a pseudo-count of one. The pseudo-count of one in the
numerator and denominator ensured that all intervals were retained in the plot.

Functionally characterizing pleiotropy using linear, random forest, and
gradient boosting models

To determine what factors may impact pleiotropy in maize, we investigated which annotations
were the most important in determining the degree of pleiotropy within our traits and popula-
tions. We trained three random forest models using the R ranger package [99] and one gradi-
ent boosting model using the R XGBoost package [100], using features that are known to
statistically interfere with GWA analyses and features that may biologically impact pleiotropy.

Model 1 was a random forest model that only included nuisance (mapping) features. All
terms were calculated for each interval and included average R? linkage disequilibrium within
NAM and GAP calculated with the TASSEL MeanR2FromLDPlugin function, the total num-
ber of SNPs per interval used for the GWA analysis before p-value filtering, and the interval
size. All features were calculated for each population separately.

Models 2 (random forest) and 4 (gradient boosting) included both nuisance and biological
features. Biological features included the mean Genomic Evolutionary Rate Profiling (GERP)
scores of SNPs that overlapped exactly (based on their physical position) with significant
GWA SNPs averaged across an interval, the number of ATAC-seq sites previously analyzed
[42], RNA and protein expression values in B73 across 23 diverse tissues [40], the interval type
(i.e., genic or intergenic), and adjusted GAP expression pleiotropy values. The GAP expression
pleiotropy values were included because we hypothesized that any pleiotropy in the expression
data, being an intermediate trait in the central dogma occurring before metabolites and field
phenotypes, would potentially explain how these other classes of traits were being regulated.
Model 2 was used for the interval-based pleiotropy data across all trait categories and for the
eight separate trait types.

For the SNP-level pleiotropy counts, a gradient boosting model was trained using the
XGBoost package, similar to Model 4 using a subset of features. These features were linkage
disequilibrium, GERP, the max RNA and protein expression of the nearest gene within 5 Kb,
if the SNP was in an ATAC-seq site, and the location of the SNP (genic or intergenic).

For Model 3, we included all nuisance and biological variables as Models 2 and 4; however,
we also added fourteen biological process or molecular function gene ontology terms to the
model. These terms describe the presence or absence of that ontology term to that interval.
These gene ontology terms were scored for each interval where 1 denoted that genic interval
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contained a gene belonging to that gene ontology term, while 0 meant that genic and all inter-
genic intervals did not harbor a gene belonging to that ontology term. These terms included
transcription DNA-templated (BP, GO:0006351), translation (BP, GO:0006412), regulation of
transcription DNA-templated (BP, GO:0006355), regulation of translation (BP, GO:0006417),
leaf development (BP, GO:0048366), regulation of leaf development (BP, GO:2000024), flower
development (BP, GO:0009908), regulation of flower development (BP, GO:0009909), regula-
tion of catalytic activity (BP, GO:0050790), signal transduction (BP, GO:0007165), nucleotide
binding (MF, GO:0000166), DNA binding (MF, GO:0003677), RNA binding (MF,
GO0:0003723), and DNA-binding transcription factor activity (MF, GO:0003700).

All models were trained and tested using a leave-one-chromosome-out approach, to avoid
overfitting. This was done by cycling though all ten maize chromosomes, training the model
using data from nine chromosomes, and testing on the left-out chromosome. The random for-
est models (Models 1-3) trained using R/ranger were built with default parameters, using the
impurity variable importance mode and 500 trees. For the gradient tree boosting model
(Model 4), we performed a grid search over the hyperparameter space of eta and max.depth
and chose the values eta = 0.5, max.depth = 6 for each population, as these values attained
approximately the lowest test error in each population. All other XGBoost parameters were set
to their default values. Each model’s relative importance scores were calculated by dividing all
importance scores by the maximum importance score. A correlation matrix of all model terms
is available in S4 Fig.

Due to the high importance of linkage disequilibrium, the number of input SNPs, and inter-
val size in the random forest models, an adjusted interval-based pleiotropy metric was created.
Adjusted pleiotropy was calculated by subtracting the predicted values of the following ran-
dom forest model: pleiotropy ~ averageLinkageDisequilibrium + numberInputSNPs + interval-
Size (Model 1) from the observed pleiotropy values for each population-trait category. The
relationship between adjusted pleiotropy and observed pleiotropy at the interval level is avail-
able in S8 Fig. Associations with adjusted pleiotropy were then assessed for the max B73
expression across numerous tissues and the average GERP scores using linear models in R.
These adjusted pleiotropy values aimed to control for spurious pleiotropy, however, we still
cannot distinguish between instances of true biological, mediated, or spurious pleiotropy. All
raw and adjusted pleiotropy values and biological annotations used for analyses are available
in S6 and S9 Tables.

Enrichment of adjusted pleiotropy scores with gene ontology terms

To investigate which gene ontology terms were enriched in highly and lowly pleiotropic
regions, we subsetted our adjusted pleiotropy scores to genic regions, uplifted our B73 gene
models from AGPv4 to RefGen_v5, and connected the RefGen_v5 genes with GO terms using
Zm-B73-REFERENCE-NAM-5.0_ZmO00001eb.1.interproscan.tsv obtained from MaizeGDB
[101]. We then gathered the highest 75™ percentile, 90™ percentile, and 99" percentile of
adjusted pleiotropy values in each population-trait category and labeled these loci as highly
pleiotropic. Lowly pleiotropic values were the lowest 25™, 10, and 1% percentile of adjusted
pleiotropy values in each population-trait category. We then used the intervals in these percen-
tiles as inputs into topGO [102]. We investigated the genes associated with molecular function,
biological processes, and cellular components, retaining all significant false discovery FDR cor-
rected terms from a Fisher’s Exact test (p-value < 0.05). For population-trait categories with
many significant GO results, only the top thirteen terms with the lowest FDR corrected p-val-
ues within each GO category were plotted. Significant GO terms and all other plots in this
manuscript were visualized using ggplot2 [103].
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Supporting information

S1 Table. Publications and traits used in this study.
(CSV)

$2 Table. NAM phenotypic data used in the analysis.
(CSV)

S3 Table. GAP phenotypic data used in the analysis.
(CSV)

$4 Table. Global, main window, and midway window principal components used to map
NAM traits and global principal components used to map phenotypes in GAP.
(XLSX)

S5 Table. Random forest and gradient boosting performance and prediction accuracy for
all observed and permuted data models. R* prediction accuracy is calculated using an itera-
tive leave-one-chromosome out approach. Prediction accuracy for Model 1 (random forest,
only nuisance terms), 2 (random forest), 3 (random forest with gene ontology terms), and 4
(gradient boosting) are provided for the SNP- and interval-based models.

(CSV)

S6 Table. Interval-level aggregated raw pleiotropy counts, adjusted pleiotropy counts, and
values for all features used for analyses.
(CSV)

S7 Table. Top twenty intervals and their associated genes by population and trait type.
(CSV)

$8 Table. Interval-level pleiotropy counts for the NAM and GAP field traits split into eight
trait types.
(CSV)

S9 Table. SNP-level pleiotropy counts and values for all biological and nuisance features
used for analyses.
(CSV)

S1 Fig. Distribution of QTL by SNP. Of the SNPs showing a five-fold higher proportion of
pleiotropy over their permutations (right of the vertical dashed line). Each value along the x-
axis was calculated from the natural log of the number of observed traits mapping to each SNP
divided by the mean count of traits in the permuted data with a pseudo-count of plus one in
the numerator and denominator. Values left of the vertical dashed line indicate higher pleiot-
ropy in the permuted data versus the observed data suggesting the prevalence of high noise or
no trait-SNP associations in either the observed or permuted data (peak at zero). Distributions
are split into genic (gray) and intergenic (yellow) SNPs for (a) NAM field, (b) GAP field, (c)
GAP mass features, and (d) GAP expression traits.

(TIF)

S2 Fig. Distribution of QTL by interval for the eight different NAM field trait types. Very
few intervals show a five-fold higher proportion of pleiotropy over their permutations (right of
the vertical dashed line) in the NAM field traits. Each value along the x-axis was calculated
within a trait category from the natural log of the number of observed traits mapping to each
interval divided by the mean count of traits in the permuted data with a pseudo-count of plus
one in the numerator and denominator. Values left of the vertical dashed line indicate higher
pleiotropy in the permuted data versus the observed data suggesting the prevalence of high
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noise or no trait-SNP associations in either the observed or permuted data (peak at zero).
(TIF)

$3 Fig. Distribution of QTL by interval for the eight different GAP field trait types. Very
few intervals show a five-fold higher proportion of pleiotropy over their permutations (right of
the vertical dashed line) in the GAP field traits. Each value along the x-axis was calculated
within a trait category from the natural log of the number of observed traits mapping to each
interval divided by the mean count of traits in the permuted data with a pseudo-count of plus
one in the numerator and denominator. Values left of the vertical dashed line indicate higher
pleiotropy in the permuted data versus the observed data suggesting the prevalence of high
noise or no trait-SNP associations in either the observed or permuted data (peak at zero).

(TIF)

S4 Fig. Full correlation matrix between terms used within the interval-based random forest
and gradient boosting models. Only the first permuted value from each of the four popula-
tion-trait categories was included in the correlation matrix for simplicity.

(TIF)

S5 Fig. Relative importance scores from random forest models of biological and nuisance
features in explaining interval-based permuted pleiotropy values for Model 2 (random for-
est without gene ontology terms). Across all four population-trait categories, nuisance vari-
ables showed higher relative importance over biological features. The plots show the observed
data for the (a) NAM field, (b) GAP field, (c) GAP mass features, and (d) GAP expression
data. The bar charts depict the mean relative importance and standard error of each variable
from a leave-one-chromosome-out model.

(TIF)

S6 Fig. Predicted versus observed pleiotropy values for Model 2 (random forest without
gene ontology terms) from eight individual random forest models trained on interval-
based pleiotropy values. The dashed line represents the 1-1 identity line, while the solid line
represents fitted values. Panels (a), (¢c), (e), and (g) show the observed results while panels (b),
(d), (f), and (h) show the permuted results. Panels (a) and (b) show NAM field, (c) and (d)
GAP field, (e) and (f) GAP mass features, and (g) and (h) GAP expression. The plots show the
observed and predicted values across all held-out chromosomes from the leave-one-chromo-
some-out model.

(TIF)

S7 Fig. NAM field relative importance scores from random forest models of biological and
nuisance features in explaining interval-based observed pleiotropy values for Model 2
(random forest without gene ontology terms) for the eight individual trait types. Across
the eight trait types, nuisance variables showed higher relative importance over biological fea-
tures. The plots show the observed data for the NAM field results (a) across all traits, (b) flow-
ering, (c) tassel, (d) ear, (e) height, (f) disease, (g) vegetative, (h) leaf, and (i) kernel traits. The
bar charts depict the mean relative importance and standard error of each variable from a
leave-one-chromosome-out model.

(TIF)

S8 Fig. NAM field relative importance scores from random forest models of biological and
nuisance features in explaining interval-based permuted pleiotropy values for Model 2
(random forest without gene ontology terms) for the eight individual trait types. Across
the eight trait types, nuisance variables showed higher relative importance over biological fea-
tures. The plots show the permuted data for the NAM field results (a) across all traits, (b)
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flowering, (c) tassel, (d) ear, (e) height, (f) disease, (g) vegetative, (h) leaf, and (i) kernel traits.
The bar charts depict the mean relative importance and standard error of each variable from a
leave-one-chromosome-out model.

(TIF)

S9 Fig. GAP field relative importance scores from random forest models of biological and
nuisance features in explaining interval-based observed pleiotropy values for Model 2
(random forest without gene ontology terms) for the eight individual trait types. Across
the eight trait types, nuisance variables showed higher relative importance over biological fea-
tures. The plots show the observed data for the GAP field results (a) across all traits, (b) flower-
ing, (c) tassel, (d) ear, (e) height, (f) disease, (g) vegetative, (h) leaf, and (i) kernel traits. The
bar charts depict the mean relative importance and standard error of each variable from a
leave-one-chromosome-out model.

(TIF)

$10 Fig. GAP field relative importance scores from random forest models of biological
and nuisance features in explaining interval-based permuted pleiotropy values for Model 2
(random forest without gene ontology terms) for the eight individual trait types. Across
the eight trait types, nuisance variables showed higher relative importance over biological fea-
tures. The plots show the data for the GAP field results (a) across all traits, (b) flowering, (c)
tassel, (d) ear, (e) height, (f) disease, (g) vegetative, (h) leaf, and (i) kernel traits. The bar charts
depict the mean relative importance and standard error of each variable from a leave-one-
chromosome-out model.

(TIF)

S11 Fig. Relative importance scores from random forest models of biological, nuisance,
and gene ontology features in explaining interval-based observed and permuted pleiotropy
values for Model 3 (random forest with gene ontology terms). Across all four population-
trait categories, nuisance variables showed higher relative importance over biological features.
The plots show data for the observed data in panels (a), (c), (e), and (g) and the permuted data
in panels (b), (d), (f), and (h). Panels (a) and (b) show NAM field results, (c) and (d) GAP
field, (e) and (f) GAP mass features, and (g) and (h) GAP expression data. The bar charts
depict the mean relative importance and standard error of each variable from a leave-one-
chromosome-out model.

(TIF)

S12 Fig. Predicted versus observed pleiotropy values for Model 3 (random forest with gene
ontology terms) from eight individual random forest models trained on interval-based
pleiotropy values. The dashed line represents the 1-1 identity line, while the solid line repre-
sents fitted values. Panels (a), (c), (e), and (g) show the observed results while panels (b), (d),
(), and (h) show the permuted results. Panels (a) and (b) show NAM field, (c) and (d) GAP
field, (e) and (f) GAP mass features, and (g) and (h) GAP expression. The plots show the
observed and predicted values across all held-out chromosomes from the leave-one-chromo-
some-out model.

(TIF)

$13 Fig. Relative importance scores from random forest models of biological, nuisance,
and gene ontology features in explaining interval-based observed and permuted pleiotropy
values for Model 4 (gradient boosting). Across all four population-trait categories, nuisance
variables results showed higher relative importance over biological features. The plots show
data for the observed data in panels (a), (c), (e), and (g) and the permuted data in panels (b),
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(d), (f), and (h). Panels (a) and (b) show NAM field results, (c) and (d) GAP field, (e) and (f)
GAP mass features, and (g) and (h) GAP expression data. The bar charts depict the mean rela-
tive importance and standard error of each variable from a leave-one-chromosome-out model.
(TIF)

S14 Fig. Predicted versus observed pleiotropy values for Model 4 (gradient boosting) from
eight individual random forest models trained on interval-based pleiotropy. The dashed
line represents the 1-1 identity line, while the solid line represents fitted values. Panels (a), (c),
(e), and (g) show the observed results while panels (b), (d), (f), and (h) show the permuted
results. Panels (a) and (b) show NAM field, (c) and (d) GAP field, (e) and (f) GAP mass fea-
tures, and (g) and (h) GAP expression. The plots show the observed and predicted values
across all held-out chromosomes from the leave-one-chromosome-out model.

(TIF)

S15 Fig. Relative importance scores from random forest models of biological, nuisance,
and gene ontology features in explaining SNP-based observed and permuted pleiotropy
values for a reduced version of Model 4 (gradient boosting). Across all four population-trait
categories, nuisance variables showed higher relative importance over biological features. The
plots show data for the observed data in panels (a), (c), (e), and (g) and the permuted data in pan-
els (b), (d), (), and (h). Panels (a) and (b) show NAM field results, (c) and (d) GAP field, (e) and
(f) GAP mass features, and (g) and (h) GAP expression data. The bar charts depict the mean rela-
tive importance and standard error of each variable from a leave-one-chromosome-out model.
(TTF)

S16 Fig. Predicted versus observed pleiotropy values for a reduced version of Model 4 (gra-
dient boosting) from eight individual random forest models trained on SNP-based pleiot-
ropy. The dashed line represents the 1-1 identity line, while the solid line represents fitted
values. Panels (a), (c), (e), and (g) show the observed results while panels (b), (d), (f), and (h)
show the permuted results. Panels (a) and (b) show NAM field, (c) and (d) GAP field, (e) and
(f) GAP mass features, and (g) and (h) GAP expression. The plots show the observed and pre-
dicted values across all held-out chromosomes from the leave-one-chromosome-out model.
(TIF)

S$17 Fig. There is a small, negative relationship between interval-based adjusted pleiotropy
and observed pleiotropy in the four population-trait categories. The scatter plots show the
relationship between the adjusted and observed pleiotropy values for (a) NAM field, (b) GAP
field, (c) GAP mass features, and (d) GAP expression traits. Values in the top right of each plot
show the R” values from correlating the adjusted versus unadjusted pleiotropy data.

(TIF)

S18 Fig. Interval-based adjusted pleiotropy is not strongly correlated with the max B73
RNA expression across 23 diverse tissues. The line plots of adjusted pleiotropy for only genic
ranges against the max RNA expression show the observed (gray lines) and permuted data
(yellow lines). Panels show adjusted pleiotropy scores for (a) NAM field, (b) GAP field, (c)
GAP mass features, and (d) GAP expression traits. Values in the top right of each plot show
the R* values from correlating the observed genic and permuted genic adjusted pleiotropy data
separately against the max RNA expression value across 23 B73 tissues. Shading around lines
shows the 95% confidence interval.

(TIF)

S19 Fig. Interval-based adjusted pleiotropy is not correlated with the mean GERP score.
Line plots show adjusted pleiotropy against the mean GERP score for all genic and intergenic
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intervals. Mean GERP was calculated by averaging overlapping observed GWA SNPs with
GERP SNPs for each population-trait category. Results for the observed data are in gray,
while permuted results are in yellow. Panels show adjusted pleiotropy scores for (a) NAM
field, (b) GAP field, (c¢) GAP mass features, and (d) GAP expression traits. Values in the top
right of each plot show the R* values from correlating the observed and permuted adjusted
pleiotropy data against the mean GERP score. Shading around lines shows the 95% confi-
dence interval.

(TIF)

$20 Fig. Gene ontology enrichment for highly and lowly pleiotropic intervals for the four
population-trait categories falling within the top 90™ percentile and bottom 10th percen-
tile of adjusted pleiotropy values for each population-trait category. All molecular function,
biological process, and cellular component terms were tested. Terms with FDR corrected p-
values below p-value < 0.05 were retained. The x-axis represents highly or lowly pleiotropic
intervals split by the population and trait type, and the y-axis shows the top significant gene
ontology terms. The value of the FDR significance level is colored in blue and the size of the
dots represents the proportion of genes found in that GO category.

(TIF)

$21 Fig. Gene ontology enrichment for highly and lowly pleiotropic intervals for the four
population-trait categories falling within the top 99'" percentile and bottom 1°' percentile
of adjusted pleiotropy values for each population-trait category. All molecular function,
biological process, and cellular component terms were tested. Terms with FDR corrected p-
values below p-value < 0.05 were retained. The x-axis represents highly or lowly pleiotropic
intervals split by the population and trait type, and the y-axis shows the top significant gene
ontology terms. The value of the FDR significance level is colored in blue and the size of the
dots represents the proportion of genes found in that GO category.

(TIF)
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