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Abstract—To guide the selection of probabilistic solar power
forecasting methods for day-ahead power grid operations, the
performance of four methods, i.e., Bayesian model averaging
(BMA), Analog ensemble (AnEn), ensemble learning method
(ELM), and persistence ensemble (PerEn) is compared in this
paper. A real-world hourly solar generation dataset from a
rooftop solar plant is used to train and validate the methods
under clear, partially cloudy, and overcast weather conditions.
Comparisons have been made on a one-year testing set using
popular performance metrics for probabilistic forecasts. It is
found that the ELM method outperforms other methods by
offering better reliability, higher resolution, and narrower
prediction interval width under all weather conditions with a
slight compromise in accuracy. The BMA method performs well
under overcast and partially cloudy weather conditions, although
it is outperformed by the ELM method under clear conditions.

Keywords—Analog ensemble, Bayesian model averaging,
Ensemble learning, probabilistic solar power forecasting.

I. INTRODUCTION

The power system has been experiencing a rapid increase
in solar photovoltaic (PV) penetration as the advancement
toward a sustainable power grid continues. Large-scale
integration of PV generation introduces various challenges to
the efficient and reliable operation of the grid because solar PV
generation is often intermittent due to the random variation of
weather conditions [1], [2]. Solar power forecasting (SPF) is a
vital decision-making tool for utility companies participating in
the day-ahead energy market [3]. Thus, SPF has been emerging
as a major research topic in the last couple of decades.

Taking advantage of historical data, data-driven techniques
such as statistical methods, machine learning, and deep
learning algorithms have been utilized in recent years to
forecast solar PV generation. Many studies have been carried
out on deterministic forecasts where a single value is
forecasted for each temporal point on the forecast horizon [4]-
[7]. However, deterministic SPF does not quantify the forecast
uncertainty, which is needed to book generation reserves. In
contrast, probabilistic SPF quantifies forecasting uncertainty in
the form of probability distribution function (PDF), cumulative
distribution function (CDF), or prediction intervals (PI).
Statistical and machine learning methods such as quantile
regression (QR), quantile gradient boosting (QGB), Gaussian
process regression (GPR) are some well-known probabilistic
methods and have been applied in the field of SPF [8]-[10].
These probabilistic SPF methods are different from each other
in terms of loss functions, model hyper-parameters, training
algorithms, etc. As a result, their forecasting accuracies are
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often different from each other and can vary significantly under
different application scenarios.

To reduce the variability of forecasting performance,
ensemble methods combine outputs from multiple SPF
methods to increase forecasting robustness. The persistence
ensemble (PerEn) is a simple probabilistic SPF method that fits
the solar generation to a normal distribution whose parameters
are estimated from the most recent generation data at the same
lead time [11]. The analog ensemble (AnEn) method is the first
ensemble method that produces an ensemble forecast by
ranking the historical power observations according to the
minimum distance between the current and past weather
forecast at the same lead time [12]. The ensemble learning
method (ELM), proposed in [13], takes advantage of the
outputs from multiple deterministic SPF methods to estimate
the distribution of solar power generation. An ensemble
prediction system (EPS) based on perturbations of the initial
conditions of the European Centre for Medium-Range Weather
Forecasts (ECMWF) prediction models and post-processing
via statistical and machine learning techniques is proposed in
[14] to produce probabilistic SPF. In [15], an ensemble
approach called lower upper bound estimate (LUBE) is
proposed to construct accurate and robust Pls via training a
neural network with a two-neuron output layer. In [16],
Bayesian model averaging (BMA) is used to estimate the PDF
of solar generation via weighted averaging of PDFs from
ensemble members. The member-specific PDFs are estimated
using separate machine-learning algorithms such as logistic
regression and expectation-condition maximization. These
ensemble methods are shown to have achieved higher
forecasting accuracy than an individual SPF model in their
ensembles.

Although several probabilistic SPF ensemble methods can
be found in literature, their performance has not been
thoroughly studied under various weather conditions. For
example, in [13], only pin-ball loss is studied, while the
reliability and sharpness of the forecast are not considered. In
[16], the forecast reliability and sharpness are considered,
whereas the coverage probability is not considered. Both
methods’ performance is not studied under different weather
conditions. In [15], the impact of weather conditions on the
forecast is studied in terms of coverage probability and PI
width, while the reliability and sharpness are not analyzed. The
studies carried out so far do not provide sufficient information
for users to select a proper ensemble method. To bridge the
gap, this paper thoroughly evaluates the performance of four
ensemble probabilistic SPF methods, i.e., the BMA, AnEn,
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ELM, and PerEn methods, under various weather conditions
using the real-world data. The major contributions of the paper
can be summarized as follows:

(a) The performances of four widely used ensemble SPF
methods are compared using six well-defined metrics based on
a real-world dataset. The study results can be directly used by
the local utility in choosing a forecasting method.

(b) The proposed performance comparison method can be
used by peer engineers to evaluate SPF methods at different
geographic locations and under different climate conditions.

The rest of the paper is organized as follows: section II
explains the ensemble methods, section III presents results
from a case study, and conclusions are drawn in section IV.

II. ENSEMBLE METHODS FOR PROBABILISTIC FORECASTING

To lay a ground for discussion, four ensemble methods for
probabilistic forecasting are overviewed in this section. These
methods are chosen because they represent state-of-the-art
techniques in probabilistic SPF and can serve as a benchmark
for future studies.

A. Bayesian Model Averaging

BMA is a statistical technique to combine PDFs of
ensemble members using the weighted averaging technique.
The ensemble members are SPF outputs from different
deterministic models [16]. Let K be the number of ensemble
members in a BMA model and let P;, P,, ..., P be the forecast
outputs of each of the K members at a certain lead time. The
PDF of the solar power forecast conditioned on the member
forecasts can be obtained by using BMA as follows:

p(y|plﬁp2""'ﬁl<) = Zﬁ:lwkfk(ylpk)a (1)

where y represents the solar power output, fi(y|P,) is the
member-specific PDF which is obtained using the historical
forecast from member k, and w, is a non-negative weight
assigned to the PDF of member k based on its relative
performance during the training stage. Note that
(Wi, Wy, ...,wg) form a PDF and hence YX_ w,=1.
f |P,) is obtained by fitting the historical forecast data of
member k by selecting an appropriate kernel. Truncated
normal kernel is used in this study amongst other popular
kernels such as Gaussian distribution, beta distribution [17],
[18]. The solar power output is limited to the interval [0, Pgy],
where P4, is the generation capacity of the solar power plant.
When a member forecast, Py, is very close to or over Peaps
clipping is necessary. A clipping threshold, A is introduced to
account for the clipping and it is set at 99.5% of F.q,. The
probability of clipping P(y = AP.q,|P;) given that P is the
best member forecast can be estimated using logistic
regression on Py, as follows:

logit (P(y = APeqp|Py) ) = aor + auicPe 2)
Here, member forecast P, is the predictor and the response is a
binary event with ‘0’ and ‘1’ representing no clipping and
clipping respectively.

A truncated normal kernel can be obtained by truncating a
standard normal distribution to interval [0, P.qp]. The PDF of
this kernel for a specific ensemble member can be defined as:
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where, u;, is the mean, oy, is the standard deviation, and ¢ (-)
and ®(*) are the PDF and CDF of the standard normal
distribution respectively. pu; is estimated from member
forecast k by a scaling factor by,:

fic = biPy “4)
b, is estimated using linear regression on historical data
considering forecast P, as predictor and observed power as the
response. g, is estimated via a variance coefficient ¢, and
kernel mean p, as follows:
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Variance coefficient ¢, and member weights wy, are estimated
using maximum log-likelihood estimation via the Expectation
Condition Maximization (ECM) algorithm [17].

With the estimated a, b, and ¢ coefficients, the PDF of
each ensemble forecast P, given that P, is the best forecast at
that instant can be obtained as:
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where G (y, Uy, 0x)|; is the corresponding CDF evaluated at
A . With these estimates of fk(y|f’k) for each ensemble
member k and their corresponding weights w;, , the BMA

output PDF can be obtained using (1). Finally, the CDF can be
estimated by integrating the estimated PDF.
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B. Analog Ensemble

AnEn develops ensemble forecasts by utilizing historical
solar power observations and historical predictions of solar
power using a deterministic model and associated weather
variables [12]. For a lead time h, the distance between the
current forecast and past forecasts is used to rank the current
forecast’s similarity with the past forecasts. This distance is
calculated as follows:
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Here, N,, and w; are the number of weather variables and their
weights, respectively. o; is the standard deviation of the
historical data of the i®" weather variable. h’ is the half-width
of the time window over which the distance is calculated.

xfment and xP* are the current and past forecasts of the i‘"
weather variable at lead time h, respectively.

The past forecasts of weather variables are ranked
according to their distance from the current weather forecast.

From this set, n forecasts with the smallest distance are




selected. The solar power observations, concurrent with the n
forecasts, form the AnEn ensemble. The statistical properties
of the ensemble can be estimated by fitting the n forecasts to a
standard normal distribution. The underlying assumption here
is that the forecast error of the current forecast will likely be
similar to the errors of the selected past forecasts. The AnEn
method is computationally inexpensive compared to other
ensemble methods as it requires only a single run of the
deterministic model.

C. Ensemble Learning Method

ELM generates probabilistic forecasts by exploiting an
ensemble of various statistics and machine learning models
[13]. Different deterministic models perform differently with
different types of data. Some models perform well only when
a large number of training data are available, whereas others
perform well with smaller sample sizes. ELM takes advantage
of the strengths of different algorithms in different situations
by creating an ensemble of these models.

First, the training data are grouped based on hours of the
day. Then, for each hour of the day, the following nine models
are trained to produce hourly deterministic forecasts: multiple
linear regression (MLR), decision tree regressor, gradient
boosting regressor, k-nearest neighbors (kNN) with uniform
weights, kNN with distance-based weights, lasso regression,
random forest regression, ridge regression, and persistence
model. The training strategy of these models, such as model
hyperparameters, loss functions and optimizers, are developed
as suggested in [13].

The deterministic forecasts from the nine models are then
combined to generate a probabilistic forecast using the
following three methods: linear method, normal distribution
method, and normal distribution with additional features.
Detailed discussion about these methods can be found in [13].
In this paper, only the normal distribution method is
considered for generating a probabilistic forecast.

D. Persistence Ensemble

PerEn is commonly used as the benchmark forecast to
evaluate new forecasting algorithms. A deterministic
persistence model simply forecasts today’s hourly power
generation remains the same tomorrow which can be
mathematically written as:

P =L, ®
where, P! is the persistence forecast for hour h of day d, and
P}_, is the observation at the same hour of day d — 1.

In contrast, the PerEn method uses the most recent 20 solar
power observations at the same hour to generate probabilistic
forecasts by ranking them to obtain quantiles. The methods
described in the previous section can be used, with the normal
distribution method being the most popular choice. An
example of the implementation of the PerEn method for solar
power forecasting can be found in [12].

E. Evaluation of Probabilistic SPF

Performance metrics are widely used to evaluate how well
a probabilistic forecasting model fits the observation data [19].

Evaluation metrics used in this paper are- continuous rank
probability score (CRPS) and its decompositions- reliability
(REL), resolution (RES), and uncertainty (UNC) [20], Brier
score (BS), prediction interval coverage probability (PICP),
prediction interval normalized width (PINAW). The CRPS
and BS compare the CDF of the forecast, whereas the PICP
and PINAW evaluate the PIs. When a probabilistic forecast
method produces smaller CRPS, REL, BS, PINAW, and larger
RES, and PICP than other methods, the method is often
preferred by users because all the metrics unanimously agree
on its higher performance. When these metrics do not agree
with each other, users may choose a method based on
performance metrics that are applicable to their applications.

III. CASE STUDY

The ensemble SPF methods discussed in section II are
implemented to produce day-ahead hourly probabilistic SPF.
The term ‘day-ahead’ refers to 1 hour — 24 hours ahead
forecast. A 450-kW rooftop solar PV plant located at Vestal,
NY, USA (lat. 42°05°37.0"N, long. 76°00°06.0"W) is selected
to perform this study. Hourly solar power observations from
the year 2016 to 2021 are downloaded from New York State
Energy Research and Development Authority (NYSERDA)’s
website [21]. The hourly weather forecast data for this site are
collected from the Visual Crossing weather data services [22].
Weather variables such as femperature, relative humidity,
visibility, and cloud cover are selected as predictors as they
proved to have significant correlation with solar radiation [23].
Moreover, solar power observation from the previous day is
also considered as a predictor based on autocorrelation.
Standard data pre-processing techniques are utilized to identify
and remove bad data [24].

Because the BMA and ELM require deterministic forecasts
from multiple models, the nine models discussed in section 11
are selected. The AnEn requires a single model to determine
the predictor weights. The MLR model is selected in this case.
The PerEn doesn’t require additional deterministic models. The
data from the year 2016 to 2020 is used for training the models,
and the data for the year 2021 is used for testing. All models
are cross-validated using the 10-fold cross-validation technique
[25]. The CDFs of the hourly solar generation are estimated
using the cross-validated models as well as the ensemble
methods. Hourly observations of weather conditions in the year
2021 are collected from the weather data services to assess the
performance of the models under different weather conditions.

Three weather conditions are considered, namely- ‘Clear’,
‘Partially cloudy’, and ‘Overcast’. Out of 365 days in the test
set, 124 clear days, 112 partially cloudy days, and 129
overcast days are identified. Performance metrics are
computed for each day of the test set, and then averaged over
all the days under a particular weather condition. The average
performance metrics of the ensemble methods are shown in
Tables I, II, and III. Three days under three different weather
conditions (i.e., clear day on 05/19/2021, partially cloudy day
on 07/09/2021, and overcast day on 12/28/2021) are selected to
visualize the 95% Pls estimated by each of the ensemble
methods in Fig. 1.



During the clear days shown in Table I, the ELM method
achieves the lowest CRPS value. Moreover, the ELM method
has the lowest REL and highest RES values. The ELM method
also exhibits the lowest PINAW, which indicates that the width
of the 95% PI is narrower than the other methods. These results
indicate that the ELM estimates are the most reliable, sharpest,
and closest to the measurement distribution. These results can
be further verified from Fig. 1. It can be observed that the PI
width of the ELM is narrower than the other methods.
However, some observations fall outside the estimated PI of
the ELM. This explains the lower values of BS and PICP for
the ELM method. The BMA and AnEn methods also exhibit
lower BS and PICP because of their narrower width of
estimated PIs. The PerEn method achieves better BS and PICP
with a cost of the lower resolution of the estimated distribution.

During the partially cloudy days shown in Table II, the
BMA and ELM methods’ performance on the are similar, as
evident from their CRPS, REL, and RES values. However, the
BMA achieves higher accuracy than the ELM, as evident from
the BMA’s lower BS value and higher PICP value. The ELM
method, on the other hand, offers better resolution, which is
indicated by the lower PINAW value. The PerEn method
shows low BS and high PICP, indicating better coverage.
However, the resolution of its forecasted CDF is significantly
poorer than the other methods. These results can be further
validated from the 95% PI estimates on a partially cloudy day
in Fig. 1.

TABLE L PERFORMANCE METRICS OF THE ENSEMBLE METHODS ON
THE 124 CLEAR DAYS
CR CRPS Decomposition
Method PS §s PE,CP PINAW
(%) REL RES UNC () (%)
BMA 90 089 494 575 7.1 78.6 11.92
AnEn 154 150 437 575 74 617 14.67

ELM 72 0.63 509 575 75 641 7.26
PerEn 105 090 479 575 40 957 41.5

TABLE 11 PERFORMANCE METRICS OF THE ENSEMBLE METHODS ON
THE /12 PARTIALLY CLOUDY DAYS
CR CRPS Decomposition
Method  PS BS  PICP pivaw
(%) REL RES UNC (%) (%)
BMA 56 040 340 392 45 869 20.95
AnEn 99 0.64 299 392 68 735 28.60
ELM 56 038 339 392 6.7 73.6 15.49
PerEn 82 0.62 31.7 392 41 962 63.56

TABLE III. PERFORMANCE METRICS OF THE ENSEMBLE METHODS ON

THE 129 OVERCAST DAYS

CR CRPS Decomposition BS PICP

Method  PS PINAW
(%) REL RES UNC (%) (%)
BMA 32 0.08 7.8 109 25 972 817.8
AnEn 6.2 0.54 5.2 109 5.6 895 13539
ELM 29 023 82 109 56 90.1 6288
PerEn 49 057 65 109 54 931 4408

During the overcast days shown in Table III, the BMA
method shows better reliability and sharpness than the other
methods. Although the ELM shows poorer reliability (higher
REL) than the BMA, it offers slightly better resolution, which
results in an improved overall CRPS. The BMA method shows
better accuracy than the AnEn and ELM methods. However,
the 95% PI width (shown in Fig. 1.) of the ELM estimates is
significantly narrower, indicating better resolution.

The CDFs of the hourly solar generation estimated by the
methods at 10:00 AM on the three selected days (under three
different weather conditions) are presented in Fig. 2. On the
clear day, the CDF estimated from the ELM shows the lowest
deviation from the CDF of the measurement, which indicates it
provides the most reliable and sharpest forecast. This is also
the case on the partially cloudy days. However, on the overcast
days, its deviation is higher. The BMA estimates are the next
closest CDF under all the weather conditions. The CDF
estimates from the AnEn and PerEn methods show the most
deviations from the measurement CDF under all the weather
conditions.

Finally, the computation time for these methods is counted
using MATLAB® 2022a environment running on an Intel®
Core™ i5-8400 CPU @ 2.80 GHz with 12 GB RAM and 64-
bit Windows operating system. The computation time of all the
methods is less than one minute, which indicates that they can
be implemented in real time for day-ahead applications.

IV. CONCLUSIONS

In this paper, the performance of four ensemble SPF
methods, namely BMA, AnEn, ELM, and PerEn, are
evaluated using real-world data from a rooftop solar PV plant.
It is found that the ELM performs consistently well under
different weather conditions. The BMA method performs
similarly to the ELM during partially cloudy and overcast
days. However, it is outperformed by the ELM during clear
days. Although these two methods show lower accuracy and
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coverage probability than the PerEn, they produce more
reliable and sharper distributions. The AnEn method performs
poorly compared to the other three methods under all weather
conditions. The BMA and ELM methods require deterministic
forecasts, whereas the AnEn method only needs historical
observations. Thus, the AnEn method will be helpful when
probabilistic SPF needs to be produced only from past

observations.

Considering forecast reliability, sharpness,

resolution as well as computation time, the ELM is the best-

performing method under all

weather conditions. As

continuous work, the authors are applying the proposed
performance-comparison method on some datasets from
different geographic locations and climate conditions to
identify the conditions under which the study results can be
generalized.
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