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Abstract—To guide the selection of probabilistic solar power 

forecasting methods for day-ahead power grid operations, the 

performance of four methods, i.e., Bayesian model averaging 

(BMA), Analog ensemble (AnEn), ensemble learning method 

(ELM), and persistence ensemble (PerEn) is compared in this 

paper. A real-world hourly solar generation dataset from a 

rooftop solar plant is used to train and validate the methods 

under clear, partially cloudy, and overcast weather conditions. 

Comparisons have been made on a one-year testing set using 

popular performance metrics for probabilistic forecasts. It is 

found that the ELM method outperforms other methods by 

offering better reliability, higher resolution, and narrower 

prediction interval width under all weather conditions with a 

slight compromise in accuracy. The BMA method performs well 

under overcast and partially cloudy weather conditions, although 

it is outperformed by the ELM method under clear conditions.  

Keywords—Analog ensemble, Bayesian model averaging, 

Ensemble learning, probabilistic solar power forecasting. 

I. INTRODUCTION  

The power system has been experiencing a rapid increase 
in solar photovoltaic (PV) penetration as the advancement 
toward a sustainable power grid continues. Large-scale 
integration of PV generation introduces various challenges to 
the efficient and reliable operation of the grid because solar PV 
generation is often intermittent due to the random variation of 
weather conditions [1], [2]. Solar power forecasting (SPF) is a 
vital decision-making tool for utility companies participating in 
the day-ahead energy market [3]. Thus, SPF has been emerging 
as a major research topic in the last couple of decades. 

Taking advantage of historical data, data-driven techniques 
such as statistical methods, machine learning, and deep 
learning algorithms have been utilized in recent years to 
forecast solar PV generation. Many studies have been carried 
out on deterministic forecasts where a single value is 
forecasted for each temporal point on the forecast horizon [4]–
[7]. However, deterministic SPF does not quantify the forecast 
uncertainty, which is needed to book generation reserves. In 
contrast, probabilistic SPF quantifies forecasting uncertainty in 
the form of probability distribution function (PDF), cumulative 
distribution function (CDF), or prediction intervals (PI). 
Statistical and machine learning methods such as quantile 
regression (QR), quantile gradient boosting (QGB), Gaussian 
process regression (GPR) are some well-known probabilistic 
methods and have been applied in the field of SPF [8]–[10]. 
These probabilistic SPF methods are different from each other 
in terms of loss functions, model hyper-parameters, training 
algorithms, etc. As a result, their forecasting accuracies are 

often different from each other and can vary significantly under 
different application scenarios. 

To reduce the variability of forecasting performance, 
ensemble methods combine outputs from multiple SPF 
methods to increase forecasting robustness. The persistence 
ensemble (PerEn) is a simple probabilistic SPF method that fits 
the solar generation to a normal distribution whose parameters 
are estimated from the most recent generation data at the same 
lead time [11]. The analog ensemble (AnEn) method is the first 
ensemble method that produces an ensemble forecast by 
ranking the historical power observations according to the 
minimum distance between the current and past weather 
forecast at the same lead time [12].  The ensemble learning 
method (ELM), proposed in [13], takes advantage of the 
outputs from multiple deterministic SPF methods to estimate 
the distribution of solar power generation. An ensemble 
prediction system (EPS) based on perturbations of the initial 
conditions of the European Centre for Medium-Range Weather 
Forecasts (ECMWF) prediction models and post-processing 
via statistical and machine learning techniques is proposed in 
[14] to produce probabilistic SPF. In [15], an ensemble 
approach called lower upper bound estimate (LUBE) is 
proposed to construct accurate and robust PIs via training a 
neural network with a two-neuron output layer. In [16], 
Bayesian model averaging (BMA) is used to estimate the PDF 
of solar generation via weighted averaging of PDFs from 
ensemble members. The member-specific PDFs are estimated 
using separate machine-learning algorithms such as logistic 
regression and expectation-condition maximization. These 
ensemble methods are shown to have achieved higher 
forecasting accuracy than an individual SPF model in their 
ensembles. 

Although several probabilistic SPF ensemble methods can 
be found in literature, their performance has not been 
thoroughly studied under various weather conditions. For 
example, in [13], only pin-ball loss is studied, while the 
reliability and sharpness of the forecast are not considered. In 
[16], the forecast reliability and sharpness are considered, 
whereas the coverage probability is not considered. Both 
methods’ performance is not studied under different weather 
conditions. In [15], the impact of weather conditions on the 
forecast is studied in terms of coverage probability and PI 
width, while the reliability and sharpness are not analyzed. The 
studies carried out so far do not provide sufficient information 
for users to select a proper ensemble method. To bridge the 
gap, this paper thoroughly evaluates the performance of four 
ensemble probabilistic SPF methods, i.e., the BMA, AnEn, 



ELM, and PerEn methods, under various weather conditions 
using the real-world data. The major contributions of the paper 
can be summarized as follows:  

(a) The performances of four widely used ensemble SPF 
methods are compared using six well-defined metrics based on 
a real-world dataset. The study results can be directly used by 
the local utility in choosing a forecasting method. 

(b) The proposed performance comparison method can be 
used by peer engineers to evaluate SPF methods at different 
geographic locations and under different climate conditions. 

The rest of the paper is organized as follows: section II 
explains the ensemble methods, section III presents results 
from a case study, and conclusions are drawn in section IV.  

II. ENSEMBLE METHODS FOR PROBABILISTIC FORECASTING 

To lay a ground for discussion, four ensemble methods for 
probabilistic forecasting are overviewed in this section. These 
methods are chosen because they represent state-of-the-art 
techniques in probabilistic SPF and can serve as a benchmark 
for future studies.  

A. Bayesian Model Averaging 

BMA is a statistical technique to combine PDFs of 

ensemble members using the weighted averaging technique. 

The ensemble members are SPF outputs from different 

deterministic models [16]. Let 𝐾 be the number of ensemble 

members in a BMA model and let 𝑃̂1, 𝑃̂2, … , 𝑃̂𝐾 be the forecast 

outputs of each of the 𝐾 members at a certain lead time. The 

PDF of the solar power forecast conditioned on the member 

forecasts can be obtained by using BMA as follows: 

𝑝(𝑦|𝑃̂1, 𝑃̂2, … , 𝑃̂𝐾) = ∑ 𝑤𝑘𝑓𝑘(𝑦|𝑃̂𝑘)𝐾
𝑘=1 , (1) 

where 𝑦  represents the solar power output,  𝑓𝑘(𝑦|𝑃̂𝑘)  is the 

member-specific PDF which is obtained using the historical 

forecast from member 𝑘 , and 𝑤𝑘  is a non-negative weight 

assigned to the PDF of member 𝑘  based on its relative 

performance during the training stage. Note that 

(𝑤1, 𝑤2, … , 𝑤𝐾)  form a PDF and hence ∑ 𝑤𝑘
𝐾
𝑘=1 = 1 .  

𝑓𝑘(𝑦|𝑃̂𝑘) is obtained by fitting the historical forecast data of 

member 𝑘  by selecting an appropriate kernel. Truncated 

normal kernel is used in this study amongst other popular 

kernels such as Gaussian distribution, beta distribution [17], 

[18]. The solar power output is limited to the interval [0, 𝑃𝑐𝑎𝑝], 

where 𝑃𝑐𝑎𝑝 is the generation capacity of the solar power plant. 

When a member forecast, 𝑃̂𝑘 , is very close to or over 𝑃𝑐𝑎𝑝 , 

clipping is necessary. A clipping threshold, 𝜆 is introduced to 

account for the clipping and it is set at 99.5% of 𝑃𝑐𝑎𝑝 . The 

probability of clipping 𝑃(𝑦 ≥ 𝜆𝑃𝑐𝑎𝑝|𝑃̂𝑘) given that 𝑃̂𝑘  is the 

best member forecast can be estimated using logistic 

regression on 𝑃̂𝑘 as follows: 

𝑙𝑜𝑔𝑖𝑡 (𝑃(𝑦 ≥ 𝜆𝑃𝑐𝑎𝑝|𝑃̂𝑘)) = 𝑎0𝑘 + 𝑎1𝑘𝑃̂𝑘 (2) 

Here, member forecast 𝑃̂𝑘 is the predictor and the response is a 

binary event with ‘0’ and ‘1’ representing no clipping and 

clipping respectively. 

A truncated normal kernel can be obtained by truncating a 

standard normal distribution to interval [0, 𝑃𝑐𝑎𝑝]. The PDF of 

this kernel for a specific ensemble member can be defined as: 

𝑔𝑘(𝑦, 𝜇𝑘, 𝜎𝑘) =
𝜙(

𝑦 − 𝜇𝑘

𝜎𝑘
)

𝜎𝑘(Φ (
𝑃𝑐𝑎𝑝 − 𝜇𝑘

𝜎𝑘
) − Φ (

0 − 𝜇𝑘

𝜎𝑘
))

 (3) 

where, 𝜇𝑘 is the mean, 𝜎𝑘 is the standard deviation, and 𝜙(∙) 

and Φ(∙)  are the PDF and CDF of the standard normal 

distribution respectively. 𝜇𝑘  is estimated from member 

forecast 𝑘 by a scaling factor 𝑏𝑘: 

𝜇𝑘 = 𝑏𝑘𝑃̂𝑘 (4) 

𝑏𝑘  is estimated using linear regression on historical data 

considering forecast 𝑃̂𝑘 as predictor and observed power as the 

response. 𝜎𝑘  is estimated via a variance coefficient 𝑐𝑘  and 

kernel mean 𝜇𝑘 as follows: 

𝜎𝑘
2 = [−

𝑐𝑘

0.25
(

𝜇𝑘

𝑃𝑐𝑎𝑝

− 0.5)

2

+ 𝑐𝑘] . 𝑃𝑐𝑎𝑝 (5) 

Variance coefficient 𝑐𝑘 and member weights 𝑤𝑘 are estimated 

using maximum log-likelihood estimation via the Expectation 

Condition Maximization (ECM) algorithm [17]. 

With the estimated 𝑎, 𝑏, and 𝑐  coefficients, the PDF of 

each ensemble forecast 𝑃̂𝑘 given that 𝑃̂𝑘 is the best forecast at 

that instant can be obtained as: 

𝑓𝑘(𝑦|𝑃̂𝑘) =
𝑃(𝑦 ≥ 𝜆𝑃𝑐𝑎𝑝|𝑃̂𝑘)

(1 − 𝜆)𝑃𝑐𝑎𝑝

𝟙[𝑦 ≥ 𝜆𝑃𝑐𝑎𝑝] 

       +
𝑃(𝑦 < 𝜆𝑃𝑐𝑎𝑝|𝑃̂𝑘)

𝐺𝑘(𝑦, 𝜇𝑘, 𝜎𝑘)|𝜆

𝑔𝑘(𝑦, 𝜇𝑘 , 𝜎𝑘) 𝟙[𝑦 < 𝜆𝑃𝑐𝑎𝑝] 

(6) 

where 𝐺𝑘(𝑦, 𝜇𝑘, 𝜎𝑘)|𝜆 is the corresponding CDF evaluated at 

𝜆 . With these estimates of 𝑓𝑘(𝑦|𝑃̂𝑘)  for each ensemble 

member 𝑘  and their corresponding weights 𝑤𝑘 , the BMA 

output PDF can be obtained using (1). Finally, the CDF can be 

estimated by integrating the estimated PDF. 

B. Analog Ensemble 

AnEn develops ensemble forecasts by utilizing historical 

solar power observations and historical predictions of solar 

power using a deterministic model and associated weather 

variables [12]. For a lead time ℎ , the distance between the 

current forecast and past forecasts is used to rank the current 

forecast’s similarity with the past forecasts. This distance is 

calculated as follows: 

𝑑 = ∑
𝑤𝑖

𝜎𝑖

√∑ (𝑥𝑖,ℎ−𝑗
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑥𝑖,ℎ+𝑗

𝑝𝑎𝑠𝑡
)2

ℎ′

𝑗=−ℎ′

𝑁𝑣

𝑖=1

 (7) 

Here, 𝑁𝑣 and 𝑤𝑖  are the number of weather variables and their 

weights, respectively. 𝜎𝑖  is the standard deviation of the 

historical data of the 𝑖𝑡ℎ weather variable. ℎ′ is the half-width 

of the time window over which the distance is calculated. 

𝑥𝑖,ℎ
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑥𝑖,ℎ

𝑝𝑎𝑠𝑡
 are the current and past forecasts of the 𝑖𝑡ℎ 

weather variable at lead time ℎ, respectively. 

The past forecasts of weather variables are ranked 

according to their distance from the current weather forecast. 

From this set, 𝑛  forecasts with the smallest distance are 



selected. The solar power observations, concurrent with the 𝑛 

forecasts, form the AnEn ensemble. The statistical properties 

of the ensemble can be estimated by fitting the 𝑛 forecasts to a 

standard normal distribution.  The underlying assumption here 

is that the forecast error of the current forecast will likely be 

similar to the errors of the selected past forecasts. The AnEn 

method is computationally inexpensive compared to other 

ensemble methods as it requires only a single run of the 

deterministic model.  

C. Ensemble Learning Method 

ELM generates probabilistic forecasts by exploiting an 

ensemble of various statistics and machine learning models 

[13]. Different deterministic models perform differently with 

different types of data. Some models perform well only when 

a large number of training data are available, whereas others 

perform well with smaller sample sizes. ELM takes advantage 

of the strengths of different algorithms in different situations 

by creating an ensemble of these models. 

      First, the training data are grouped based on hours of the 

day. Then, for each hour of the day, the following nine models 

are trained to produce hourly deterministic forecasts: multiple 

linear regression (MLR), decision tree regressor, gradient 

boosting regressor, k-nearest neighbors (kNN) with uniform 

weights, kNN with distance-based weights, lasso regression, 

random forest regression, ridge regression, and persistence 

model. The training strategy of these models, such as model 

hyperparameters, loss functions and optimizers, are developed 

as suggested in [13].  

The deterministic forecasts from the nine models are then 

combined to generate a probabilistic forecast using the 

following three methods: linear method, normal distribution 

method, and normal distribution with additional features. 

Detailed discussion about these methods can be found in [13]. 

In this paper, only the normal distribution method is 

considered for generating a probabilistic forecast.  

D. Persistence Ensemble 

PerEn is commonly used as the benchmark forecast to 

evaluate new forecasting algorithms. A deterministic 

persistence model simply forecasts today’s hourly power 

generation remains the same tomorrow which can be 

mathematically written as: 

𝑃̂𝑑
ℎ = 𝑃𝑑−1

ℎ  (8) 

where, 𝑃̂𝑑
ℎ is the persistence forecast for hour ℎ of day 𝑑, and 

𝑃𝑑−1
ℎ  is the observation at the same hour of day 𝑑 − 1. 

In contrast, the PerEn method uses the most recent 20 solar 

power observations at the same hour to generate probabilistic 

forecasts by ranking them to obtain quantiles. The methods 

described in the previous section can be used, with the normal 

distribution method being the most popular choice. An 

example of the implementation of the PerEn method for solar 

power forecasting can be found in [12]. 

E. Evaluation of Probabilistic SPF 

Performance metrics are widely used to evaluate how well 

a probabilistic forecasting model fits the observation data [19]. 

Evaluation metrics used in this paper are- continuous rank 

probability score (CRPS) and its decompositions- reliability 

(REL), resolution (RES), and uncertainty (UNC) [20], Brier 

score (BS), prediction interval coverage probability (PICP), 

prediction interval normalized width (PINAW). The CRPS 

and BS compare the CDF of the forecast, whereas the PICP 

and PINAW evaluate the PIs. When a probabilistic forecast 

method produces smaller CRPS, REL, BS, PINAW, and larger 

RES, and PICP than other methods, the method is often 

preferred by users because all the metrics unanimously agree 

on its higher performance.  When these metrics do not agree 

with each other, users may choose a method based on 

performance metrics that are applicable to their applications. 

III. CASE STUDY 

The ensemble SPF methods discussed in section II are 
implemented to produce day-ahead hourly probabilistic SPF. 
The term ‘day-ahead’ refers to 1 hour – 24 hours ahead 
forecast. A 450-kW rooftop solar PV plant located at Vestal, 
NY, USA (lat. 42˚05ˊ37.0˝N, long. 76˚00ˊ06.0˝W) is selected 
to perform this study. Hourly solar power observations from 
the year 2016 to 2021 are downloaded from New York State 
Energy Research and Development Authority (NYSERDA)’s 
website [21]. The hourly weather forecast data for this site are 
collected from the Visual Crossing weather data services [22]. 
Weather variables such as temperature, relative humidity, 
visibility, and cloud cover are selected as predictors as they 
proved to have significant correlation with solar radiation [23]. 
Moreover, solar power observation from the previous day is 
also considered as a predictor based on autocorrelation. 
Standard data pre-processing techniques are utilized to identify 
and remove bad data [24]. 

Because the BMA and ELM require deterministic forecasts 
from multiple models, the nine models discussed in section II 
are selected. The AnEn requires a single model to determine 
the predictor weights. The MLR model is selected in this case. 
The PerEn doesn’t require additional deterministic models. The 
data from the year 2016 to 2020 is used for training the models, 
and the data for the year 2021 is used for testing. All models 
are cross-validated using the 10-fold cross-validation technique 
[25]. The CDFs of the hourly solar generation are estimated 
using the cross-validated models as well as the ensemble 
methods. Hourly observations of weather conditions in the year 
2021 are collected from the weather data services to assess the 
performance of the models under different weather conditions.  

Three weather conditions are considered, namely- ‘Clear’, 
‘Partially cloudy’, and ‘Overcast’. Out of 365 days in the test 
set, 124 clear days, 112 partially cloudy days, and 129 
overcast days are identified. Performance metrics are 
computed for each day of the test set, and then averaged over 
all the days under a particular weather condition. The average 
performance metrics of the ensemble methods are shown in 
Tables I, II, and III. Three days under three different weather 
conditions (i.e., clear day on 05/19/2021, partially cloudy day 
on 07/09/2021, and overcast day on 12/28/2021) are selected to 
visualize the 95% PIs estimated by each of the ensemble 
methods in Fig. 1. 



During the clear days shown in Table I, the ELM method 
achieves the lowest CRPS value. Moreover, the ELM method 
has the lowest REL and highest RES values. The ELM method 
also exhibits the lowest PINAW, which indicates that the width 
of the 95% PI is narrower than the other methods. These results 
indicate that the ELM estimates are the most reliable, sharpest, 
and closest to the measurement distribution. These results can 
be further verified from Fig. 1. It can be observed that the PI 
width of the ELM is narrower than the other methods. 
However, some observations fall outside the estimated PI of 
the ELM. This explains the lower values of BS and PICP for 
the ELM method. The BMA and AnEn methods also exhibit 
lower BS and PICP because of their narrower width of 
estimated PIs. The PerEn method achieves better BS and PICP 
with a cost of the lower resolution of the estimated distribution. 

During the partially cloudy days shown in Table II, the 
BMA and ELM methods’ performance on the are similar, as 
evident from their CRPS, REL, and RES values. However, the 
BMA achieves higher accuracy than the ELM, as evident from 
the BMA’s lower BS value and higher PICP value. The ELM 
method, on the other hand, offers better resolution, which is 
indicated by the lower PINAW value. The PerEn method 
shows low BS and high PICP, indicating better coverage. 
However, the resolution of its forecasted CDF is significantly 
poorer than the other methods. These results can be further 
validated from the 95% PI estimates on a partially cloudy day 
in Fig. 1.  

TABLE I.  PERFORMANCE METRICS OF THE  ENSEMBLE METHODS ON 

THE 124 CLEAR DAYS 

Method 

CR

PS 

(%) 

CRPS Decomposition BS 

(%) 

PICP 

(%) 
PINAW 

REL RES UNC 

BMA 9.0 0.89 49.4 57.5 7.1 78.6 11.92 

AnEn 15.4 1.50 43.7 57.5 7.4 61.7 14.67 

ELM 7.2 0.63 50.9 57.5 7.5 64.1 7.26 

PerEn 10.5 0.90 47.9 57.5 4.0 95.7 41.5 

TABLE II.  PERFORMANCE METRICS OF THE ENSEMBLE METHODS ON 

THE 112 PARTIALLY CLOUDY  DAYS 

Method 

CR

PS 

(%) 

CRPS Decomposition BS 

(%) 

PICP 

(%) 
PINAW 

REL RES UNC 

BMA 5.6 0.40 34.0 39.2  4.5 86.9 20.95 

AnEn 9.9 0.64 29.9 39.2 6.8 73.5 28.60 

ELM 5.6 0.38 33.9 39.2 6.7 73.6 15.49 

PerEn 8.2 0.62 31.7 39.2 4.1 96.2 63.56 

TABLE III.  PERFORMANCE METRICS OF THE ENSEMBLE METHODS ON 

THE 129 OVERCAST DAYS 

Method 

CR

PS 

(%) 

CRPS Decomposition BS 

(%) 

PICP 

(%) 
PINAW 

REL RES UNC 

BMA 3.2 0.08 7.8 10.9 2.5 97.2 817.8 

AnEn 6.2 0.54 5.2 10.9 5.6 89.5 1353.9 

ELM 2.9 0.23 8.2 10.9 5.6 90.1 628.8 

PerEn 4.9 0.57 6.5 10.9 5.4 93.1 440.8 

During the overcast days shown in Table III, the BMA 
method shows better reliability and sharpness than the other 
methods. Although the ELM shows poorer reliability (higher 
REL) than the BMA, it offers slightly better resolution, which 
results in an improved overall CRPS. The BMA method shows 
better accuracy than the AnEn and ELM methods. However, 
the 95% PI width (shown in Fig. 1.) of the ELM estimates is 
significantly narrower, indicating better resolution. 

 The CDFs of the hourly solar generation estimated by the 
methods at 10:00 AM on the three selected days (under three 
different weather conditions) are presented in Fig. 2. On the 
clear day, the CDF estimated from the ELM shows the lowest 
deviation from the CDF of the measurement, which indicates it 
provides the most reliable and sharpest forecast. This is also 
the case on the partially cloudy days. However, on the overcast 
days, its deviation is higher. The BMA estimates are the next 
closest CDF under all the weather conditions. The CDF 
estimates from the AnEn and PerEn methods show the most 
deviations from the measurement CDF under all the weather 
conditions.   

 Finally, the computation time for these methods is counted 
using MATLAB® 2022a environment running on an Intel® 
CoreTM i5-8400 CPU @ 2.80 GHz with 12 GB RAM and 64-
bit Windows operating system. The computation time of all the 
methods is less than one minute, which indicates that they can 
be implemented in real time for day-ahead applications.   

IV. CONCLUSIONS 

 In this paper, the performance of four ensemble SPF 
methods,  namely BMA, AnEn, ELM, and PerEn, are 
evaluated using real-world data from a rooftop solar PV plant. 
It is found that the ELM performs consistently well under 
different weather conditions. The BMA method performs 
similarly to the ELM during partially cloudy and overcast 
days. However, it is outperformed by the ELM during clear 
days. Although these two methods show lower accuracy and 

 
Fig. 1. Estimated 95% PIs from the BMA, AnEn, ELM and PerEn ensemble 

methods on the clear day (05/19/2021), partially cloudy day (07/09/2021), and 

overcast day (12/28/2021). 



coverage probability than the PerEn, they produce more 
reliable and sharper distributions. The AnEn method performs 
poorly compared to the other three methods under all weather 
conditions. The BMA and ELM methods require deterministic 
forecasts, whereas the AnEn method only needs historical 
observations. Thus, the AnEn method will be helpful when 
probabilistic SPF needs to be produced only from past 
observations. Considering forecast reliability, sharpness, 
resolution as well as computation time, the ELM is the best-
performing method under all weather conditions. As 
continuous work, the authors are applying the proposed 
performance-comparison method on some datasets from 
different geographic locations and climate conditions to 
identify the conditions under which the study results can be 
generalized. 
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Fig. 2. Estimated CDFs from the BMA, AnEn, ELM, PerEn methods compared with the measured power at 10:00 AM on the clear day (05/19/2021), 

partially cloudy day (07/09/2021), and overcast day (12/28/2021).  
 


