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Abstract
Dynamic shearing banding and fracturing in unsaturated porous media are
significant problems in engineering and science. This article proposes a multi-
phase micro-periporomechanics (!PPM) paradigm for modeling dynamic shear
banding and fracturing in unsaturated porous media. Periporomechanics (PPM)
is a nonlocal reformulation of classical poromechanics to model continuous and
discontinuous deformation/fracture and fluid flow in porous media through a
single framework. In PPM, a multiphase porous material is postulated as a col-
lection of a finite number of mixed material points. The length scale in PPM
that dictates the nonlocal interaction between material points is a mathematical
object that lacks a direct physical meaning. As a novelty, in the coupled !PPM,
a microstructure-based material length scale is incorporated by considering
micro-rotations of the solid skeleton following the Cosserat continuum theory
for solids. As a new contribution, we reformulate the second-order work for
detecting material instability and the energy-based crack criterion and J-integral
for modeling fracturing in the !PPM paradigm. The stabilized Cosserat PPM
correspondence principle that mitigates the multiphase zero-energy mode insta-
bility is augmented to include unsaturated fluid flow. We have numerically
implemented the novel !PPM paradigm through a dual-way fractional-step
algorithm in time and a hybrid Lagrangian–Eulerian meshfree method in space.
Numerical examples are presented to demonstrate the robustness and efficacy
of the proposed !PPM paradigm for modeling shear banding and fracturing in
unsaturated porous media.
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1 INTRODUCTION

Dynamic shearing banding and fracturing in unsaturated deformable porous media (e.g., geomaterials and human tis-
sues) are significant problems in engineering and science.1–7 The coupled shear banding/cracking and fluid flow processes
can significantly deteriorate the integrity of civil infrastructure and damage soft/hard human tissues under certain
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circumstances.4–6,8–12 For instance, fault propagation triggered by earthquakes involves coupled shear banding/cracking
and fluid flow in geomaterials.13–16 Landslides and embankment failure could be triggered by shear banding or cracking
in geomaterials.17–21 Computational coupled poromechanics is an essential tool in studying the coupled localization or
fracturing and fluid flow processes in porous materials.1,2,7,12,22 Coupled periporomechanics (PPM)23–32 is a strong non-
local reformulation of classical poromechanics.33,34 In PPM, the coupled motion equation and mass balance equation
are formulated in terms of integral-differential equations (integration in space and differentiation in time) instead of
partial differential equations29 through the peridynamic state and effective force state concepts.27,35,36 For comparison
between PPM and other continuum-based numerical methods, we refer to the literature.29 Through the stabilized multi-
phase correspondence principle, classical constitutive models and physics laws can be incorporated in PPM for modeling
the coupled deformation, shear banding/fracturing, and fluid flow processes in porous media.30,37 In PPM, a multiphase
porous medium is postulated as a collection of a finite number of mixed material points. The length scale in PPM that
dictates the nonlocal interaction between material points is a mathematical object that lacks a clear physical meaning. In
the present study, as a new contribution, we formulate a robust multiphase micro-periporomechanics (!PPM) for mod-
eling localized failure and fracturing in unsaturated porous media in which the length scale is related to micro-rotations
of material points. In this new coupled !PPM, different from the previously formulated PPM, the length scale is associ-
ated with the micro-structure of porous media in line with the classical micro-polar continuum theory38,39 and thus the
non-locality has a rational physical meaning.

It is noted that the micro-polar/Cosserat continuum mechanics38,39 was applied to model shear banding in solids
and porous media by the computational geomechanics community several decades ago. The pioneering work on the
subject can be found in the distinguished literature.40–45 For instance, the micro-polar continuum theory was adopted to
regularize the finite element solution of strain localization in granular materials.41,42,46 The micro-polar poromechanics
has been developed to model strain localization in saturated porous media.43,44 Meanwhile, the micro-polar continuum
theory has been used to model fracture in solids.45 For instance, in,45 the authors formulated a micro-polar J-integral47,48

for modeling cracking. Recently, the micro-polar continuum theory38,39 has been used in peridynamics to model fracturing
in solids.49,50 For stance, a state-based elastic PD model was proposed in50 to model cracks in brittle materials. For a
review of the micro-polar PD for solids, we refer to.51 In,51 the authors formulated a viscous-plastic Cosserat PPM for
modeling dynamic shear bands and crack branching in single-phase porous media in which the micro-polar length scale
was incorporated following the Cosserat continuum theory for solids.38,39 This study extends the single-phase Cosserat
PPM in51 to formulate a coupled !PPM paradigm for dynamic shear banding and fracturing in multiphase porous media.
In this new formulation, it is assumed that the solid skeleton is a micro-polar material while the fluid phases are non-polar
following the classical micro-polar poromechanics.43,44

An attractive and salient feature of PPM is that the multiphase discontinuities (i.e., discontinuities in displacement
and fluid pressure) can develop naturally based on field equations and material models. For instance, fracture forms nat-
urally when sufficient bonds break at a material point. Here in PPM, the bond means the poromechanics interactions in
porous media, which is different from its original definition in PD for solids. An energy-based bond-breakage criterion
based on the effective force concept has been formulated to detect bond breakage in PPM.29,32 Meanwhile, the J-integral
can be used in PD for modeling crack propagation in solids.52–54 In the present study, as the new contributions, we refor-
mulate the J-integral and the energy-based bond breakage criteria incorporating the micro-rotation of material points.
As an instability problem, the formation of shear bands in porous media can be detected by the second-order work for
multiphase porous media.28 The classical second-work criterion55,56 has been used in PPM through the multiphase corre-
spondence principle to detect shear bands in porous media.29 In the present study, a nonlocal second-order work for the
!PPM paradigm is formulated for the first time directly using the effective force state and moment state.27 Furthermore,
the stabilized Cosserat PPM correspondence principle51 is used to incorporate the classical micro-polar constitutive mod-
els for the solid skeleton, and the stabilized multiphase PPM correspondence principle30 is used to modeling fluid flow
through the classical non-polar fluid flow model.

We have numerically implemented the novel !PPM paradigm through an explicit two-way fractional-step algorithm
in time29 and a hybrid Lagrangian–Eulerian meshfree method in space with Open MPI57 for high-performance comput-
ing. It is noted that the two-way fractional-step algorithm splits the coupled problem into a deformation/fracture problem
and an unsaturated fluid flow problem in parallel. We refer to the celebrated literature on fractional-step/staggered and
monolithic algorithms for numerically implementing the coupled poromechanics in time,58–62 among others. Represen-
tative numerical examples are presented to validate the implemented !PPM paradigm and demonstrate its efficacy and
robustness in modeling dynamic failure and fracturing in unsaturated porous media. We note that the new Cosserat length
scale acting on the solid phase in the !PPM paradigm contributes to alleviating the dispersion problem linked in general
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to PD models63,64 as implied by the results of the numerical examples. It is worth mentioning that for low permeability
and situations close to the fully saturated one in the FEM fluid models the dispersion problem should be taken care of
for the coupled model through Darcy’s law and the mass balance equation of the fluid phase.64 As a brief summary, the
original contribution of the present study consists of (i) the formulation of a multiphase micro-polar periporomechanics
assuming a micro-polar solid skeleton and a non-polar fluid, (ii) the formulation of a nonlocal micro-polar second-work
for detecting shear bands and nonlocal micro-polar energy-based bond breakage criteria and J-integral for fracture prop-
agation in porous media, and (iii) the computational implementation through an explicit parallel staggered meshfree
algorithm and the validation of the implemented !PPM paradigm.

The outline of this article is as follows. Section 2 deals with the mathematical formulation of the !PPM paradigm
that includes the governing equations, the micro-polar J-integral, the energy-based bond breakage criterion, the
micro-polar second-work, and the stabilized coupled micropolar PPM constitutive correspondence principle. Section 3
presents the numerical implementation of the proposed !PPM paradigm through an explicit double-way staggered
algorithm. Section 4 presents numerical examples to validate the implemented !PPM paradigm and demonstrate its
efficacy and robustness in modeling dynamic shear banding and fracturing in unsaturated porous media, followed by
a closure in Section 5. For sign convention, the assumption in continuum mechanics is adopted, that is, the tensile
force and deformation under tension are positive, and for pore fluid pressure, compression is positive, and tension
is negative.

2 MATHEMATICAL FORMULATION

This section presents the mathematical formulation of the proposed !PPM. It consists of four parts. Part I deals with the
balance equations for the fully coupled fracturing unsaturated !PPM by assuming passive pore air pressure (i.e., zero pore
air pressure1,2). Part II presents the fracture and failure criteria, including the micro-polar J-integral, energy-based bond
breakage criteria, and the second-order work considering the micro-rotational degree of freedom. Part III deals with the
!PPM constitutive correspondence principle with stabilization through which classical micro-polar material models can
be incorporated into the !PPM paradigm. Part IV introduces the classical micro-polar elastic and plastic models for the
solid skeleton.

2.1 Balance equations for the fully coupled fracturing unsaturated !PPM paradigm

This part concerns the balance equations of the proposed unsaturated micro-periporomechanics paradigm. In line with
non-polar periporomechanics, the multiphase porous media is assumed to be represented by a finite number of mixed
material points (i.e., solid and fluid material points superimposed). The kinematics of the mixed material points are
described in the relative-Eulerian Lagrangian framework, that is, the solid material points in Lagrangian and the fluid
material points in the Eulerian relative to the Lagrangian for solid material points. The!PPM paradigm postulates that the
solid skeleton is micro-polar and the fluid phase is non-polar. Thus, each mixed material point has three types of degrees
of freedom, that is, displacement, micro-rotation, and pore fluid pressures. Following the classical poromechanics, the
density of the unsaturated porous media assuming weightless pore air can be written as follows:

" = (1 − #)"s + Sr#"w, (1)

where "s is the intrinsic density of solid phase, "w is the intrinsic density of fluid phase,# is the porosity, and Sr is the degree
of saturation. In what follows, we first present the kinematics of an unsaturated material through the !PPM paradigm.
Secondly, we present the balance equations for material points in the bulk (i.e., non-fracturing zone). Thirdly, we present
the balance equations for material points in the fracture zone.

2.1.1 Kinematics of unsaturated !PPM materials

In !PPM, it is postulated that a material point interacts with material points within its family. In this study, the family
is assumed as a sphere centered at the material point under consideration. The sphere’s radius is called the horizon,
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$, a positive number. In other words, it is assumed that two material points at a finite distance have poromechanical
interactions, and the horizon is the maximum distance of such two material points.

Let x and x′ be the position vectors of two solid material points x and x′, respectively, in the reference configuration
(Figure 1). Let y and y′ be the position vectors of the two solid material points in the deformed configuration, respectively.
For notation simplicity, in the remaining presentation, a variable with no prime is associated with material point x while
a variable with a prime is associated with material point x′. The reference position state of the bond " between x and x′
in the reference configuration is written as follows:

" = x′ − x. (2)

The deformation state and the relative displacement state in the current configuration read

Y = y′ − y, (3)

! = u′ − u. (4)

Let #̂ and #̂′ be the micro-rotations of the two solid material points in the current configuration. Assuming null initial
micro-rotations, the relative micro-ration state reads

$ = #̂′ − #̂. (5)

Let $ be the average rotation state that is defined as follows

$ = 1
2
(
#̂′ + #̂

)
. (6)

The composite deformation and relative displacement states can be defined as:

"̃ = Y −$ × ", (7)

!̂ =! −$ × ". (8)

Let pw and p′w be the water pressures of the two solid material points in the current configuration. The fluid pressure state
can be defined as

Φ = p′w − pw. (9)

Next, we present the field equations for the coupled !PPM.

2.1.2 Governing equations in the bulk space

Through the effective force state concept27 and following,51 the equation of motion and the moment balance equation for
unsaturated micro-polar porous media can be written as follows:

"ü = ∫ℋ
(
# −#

′)
dV ′ − ∫ℋ

(
Sr#w − S′r#′

w
)

dV ′ + "g, (10)

ℐ s ̈̂# = ∫ℋ
(
$ −$′)dV ′ + 1

2 ∫ℋ " ×
[(
# − Sr#w

)
−
(
#

′
− S′r#′

w

)]
dV ′ + l, (11)

where ü is acceleration, # is the effective force state, #w is the fluid force state, g is gravitational acceleration, ℐ s is
micro-inertia of solid phase, ̈̂# is angular acceleration,$ is the moment state, l refers to body couple density, and Sr is the
degree of saturation, which can be determined from the soil-water retention curve. In this study, the soil-water retention
curve of unsaturated porous media assuming passive pore air pressure2,65–69 is written as follows:
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Sr =
[

1 +
(
−pw

sa

)n]−m
, (12)

where sa is the scaling factor, and m and n are fitting parameters. We refer to51 for deriving (10) and (11) from a free energy
function for dry micro-polar porous media.

In geomechanics, ℐ s ̈̂# is the angular momentum of a spinning grain. By considering the mean grain size in porous
media as the Cosserat length scale l,41 the micro inertia can be written as follows:

ℐ s = )
2 (1 − #)"sl2. (13)

Assuming an incompressible solid phase and a non-polar fluid phase, the mass balance equation of the mixture27 is
written as follows:

#dSr
dt + Sr̇ s +

1
"w ∫ℋ

(
Q −Q′)dV ′ + Qs = 0, (14)

where ̇ s is the solid volume change rate, Q and Q′ are the fluid flow states at x and x′, respectively, and Qs is a source
term. It should be noted that the micro-rotation of the solid phase does not affect the volume change rate of the solid
phase.44

Next, we cast the governing equations for material points in the fracturing zone.

2.1.3 Governing equations for material points in the fracturing zone

Following (10) and (11), we can write out the equation of motion and the moment balance equation for a fracturing
material point as

"ü = ∫ℋ (# −#
′
)dV ′ − ∫ℋ (Sl#l − S′l#

′
l)dV ′ + "g, (15)

ℐ s ̈̂# = ∫ℋ
(
$ −$′)dV ′ + 1

2 ∫ℋ " ×
[(
# − Sl#l

)
−
(
#

′
− S′l#

′
l

)]
dV ′ + l, (16)

where

Sl#l =
{

Sr,f#f , if D > Dcr & D′ > Dcr,
Sr#w, otherwise,

(17)

and Sr,f is the degree of saturation of the fracturing mixed material point, which can be determined from the soil-water
retention curve, D is the damage state variable, and Dcr is the critical value of the damage state variable.

Assuming a non-polar fluid phase, the mass balance equation in the fracturing space27 can be written as follows:

+Sr,f

+t + 1
"w ∫ℋ

(
Qf −Q′

f

)
dV ′ −Qs = 0, (18)

where Qf is the fluid flow state at a fracturing mixed material point. It is noted that the third term in (14) and the second
term in (18) could be equivalent to Laplacians in the mass balance equations of classical poromechanics.2 Nonetheless,
both terms are nonlocal due to applying the nonlocal Darcy’s law in (52) and (53) to compute the fluid flow states. Their
potential role in alleviating the dispersion problem linked to PD models deserves a dedicated study.

The fluid flow from the fracturing pore space to the continuous pore space can be determined, assuming that the fluid
flows from the pore space into the fracture space. It is assumed that the direction of unsaturated fluid flow is normal to
the fracture surface. Thus, following the generalized Darcy’s law,29 Qs can be written as

Qs = −
krkw
!w

(pf − pw

lx

)
$∕V, (19)
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where pw is pore water pressure in the bulk and pf is pore water pressure in the fracture space, $ is the cross-sectional
area, V is the volume of the material point, lx = d∕2, and d is the side dimension of a cubic material point.29 In (19), it is
assumed that porosity # = 0 and the volume coupling term vanishes in the fracture pore space.

2.2 !PPM fracturing and instability criteria for unsaturated porous media

In this subsection, in the !PPM framework, we reformulate the micro-polar J integral and energy-based bond breakage
criterion for fracturing and the micro-polar second-order work criterion for instability in porous media.

2.2.1 !PPM J-integral for unsaturated porous media

In this part, we present the micro-polar J integral in the coupled!PPM paradigm following the lines in.35,45,47 The effective
force state concept is used to express the force state on the solid skeleton. Figure 2 shows a subregionℬ1 in the reference
configuration ℬ. As shown in Figure 2, for a bounded subregion ℬ1 with a constant shape that moves with velocity u̇
in the x direction (parallel to the crack line) in the reference configuration ℬ, there is a flux of material through the
boundary +ℬ1. By assuming a steady-state motion,52 the deformation position and micro rotation of each material point
inside the subregion ℬ1 are written as follows:

y = x + u|x−u̇t, (20)
#̂ = #̂||x−u̇t. (21)

We note that in this study the assumption of the steady state condition is for the motion of the solid skeleton. The
fluid flow effect on the solid skeleton’s motion is taken into account through the effective force concept and the fully

F I G U R E 1 Kinematics of the solid skeleton (black) and pore fluid (blue) material points.

F I G U R E 2 Subregion ℬ1 with a constant shape around the crack tip moves with the velocity u̇ in the x direction and a flux of material
Ψu̇ ⋅ n through the boundary +ℬ1.
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coupled governing equations. Nonetheless, the assumption could be relaxed in a further formulation along this line
of research.

For simplicity, we neglect the body force, kinetic energy, heat transport, and heat sources and assume an isothermal
process. Thus, the rate form of the free energy Ψ("̃,!,D) for the solid phase can be written as

Ψ̇ = Ψ"̃ • ̇̃" +Ψ! • !̇ +ΨD • Ḋ, (22)

where • is the dot product of two vector states,35 D is the damage scalar state as mentioned previously
that cannot decrease over time, and Ψ(⋅) is the Fréchet derivative of Ψ to its state variables.35 It follows
from (22) and assuming an elastic deformation that the effective force state and the moment state27,51 can be
defined as

# = Ψ"̃, (23)

$ = Ψ!. (24)

Substituting (23) and (24) into (22), the rate form of the free energy reads

Ψ̇ =# •
(
"̇ − !̇ × "

)
+$ • !̇ +ΨD • Ḋ. (25)

We note that by considering the steady state motion, the total time derivative of each quantity over ℬ1 vanishes. Thus,
applying the nonlocal Reynolds transport theorem52 to the free energy Ψ("̃,!,D) we have

d
dt ∫ℬ1

ΨdV = ∫ℬ1
Ψ̇dV + ∫+ℬ1

Ψu̇ ⋅ nd = 0, (26)

where u̇ is the constant velocity, n is the outward unit normal to the boundary +ℬ1, and  is the area of the boundary
+ℬ1 (see Figure 2). With (25), the first term on the right-hand side of (26) can be written as

∫ℬ1

Ψ̇dV = ∫ℬ1
∫ℬ∕ℬ1

(
# ⋅ ẏ′ −#′

⋅ ẏ
)

dV ′dV

+ 1
2 ∫ℬ1

∫ℬ∕ℬ1

[
" ×

(
# ⋅ ̇̂#′ −#

′
⋅ ̇̂#

)]
dV ′dV

+ ∫ℬ1
∫ℬ∕ℬ1

(
$ ⋅ ̇̂#′ −$′ ⋅ ̇̂#

)
dV ′dV + ∫ℬ1

(
ΨD • Ḋ

)
dV. (27)

Substituting (27) into (26), we obtain the expression for the damage energy dissipation as

∫ℬ1

(
ΨD • Ḋ

)
dV = ∫ℬ1

∫ℬ∕ℬ1

[(
# ⋅ u′x −#

′
⋅ ux

)
⋅ u̇

]
dV′dV

+ 1
2 ∫ℬ1

∫ℬ∕ℬ1

[
" ×

(
# ⋅ #̂′x −#

′
⋅ #̂x

)
⋅ u̇

]
dV ′dV

+ ∫ℬ1
∫ℬ∕ℬ1

[(
$ ⋅ #̂′x −$′ ⋅ #̂x

)
⋅ u̇

]
dV′dV − ∫+ℬ1

(Ψu̇ ⋅ n)d, (28)

where (.)x is the directional derivative in the direction of the steady state motion. Here, it is assumed that the steady
flow is in the x direction for simplicity. The relation between the  integral and the rate of energy dissipation52 can be
written as

 ⋅ u̇ = −∫ℬ1

ΨD • ḊdV. (29)
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It follows from (28) and (29) that the  integral for the !PPM paradigm reads

 = ∫+ℬ1

(Ψn)d − ∫ℬ1
∫ℬ∕ℬ1

(
# ⋅ u′x −#

′
⋅ ux

)
dV ′dV

− 1
2 ∫ℬ1

∫ℬ∕ℬ1

[
" ×

(
# ⋅ #̂′x −#

′
⋅ #̂x

)]
dV ′dV

− ∫ℬ1
∫ℬ∕ℬ1

(
$ ⋅ #̂′x −$′ ⋅ #̂x

)
dV ′dV. (30)

We note that (30) is the !PPM equivalent of the  integral in the standard micro-polar continuum theory. Different
from the  integral for peridynamic solids,52 the !PPM  integral incorporates the micro-rotations of material points.
We note that u and #̂ are differentiable only in the directions of motion and rotation that are used. Thus, it is permissible
to have discontinuities parallel to the direction of crack propagation. Furthermore,  is "path independent" in the sense
thatℬ1 under deformation can include any number of additional material points in which there is no energy dissipation
(i.e., the value of  not changing).

The energy dissipation per unit crack area  can be determined from  .52 For simplicity, let the body be a plate with
a crack through its thickness that propagates along the x direction. The energy dissipated per unit crack area can be
written as

 =  ⋅ n̂∕h, (31)

where n̂ is the unit vector parallel to the crack surface and h is the plate thickness. Substituting (30) into (31)
generates

 = ∫+ℬ1

(Ψn ⋅ n̂)d∕h − ∫ℬ1
∫ℬ∕ℬ1

[(
# ⋅ u′x −#

′
⋅ ux

)
⋅ n̂

]
dV′dV∕h

− 1
2 ∫ℬ1

∫ℬ∕ℬ1

[
" ×

(
# ⋅ #̂′x −#

′
⋅ #̂x

)
⋅ n̂

]
dV′dV∕h

− ∫ℬ1
∫ℬ∕ℬ1

[(
$ ⋅ #̂′x −$′ ⋅ #̂x

)
⋅ n̂

]
dV′dV∕h. (32)

It is noted that from the linear elastic fracture mechanics48 the critical energy release rate per unit crack area cr for mode
I crack reads

cr = 2
I

1−-2

E , (33)

where I is the fracture toughness of mode I crack, E is Young’s modulus, and - is Poisson’s ratio. Next, we present the
energy-based !PPM bond breakage criterion for micro-polar unsaturated porous media.

2.2.2 Energy-based !PPM bond breakage criterion

This part presents an energy-based bond breakage criterion through the effective force state concept for unsaturated
porous media.27 The bond-breakage criterion depends on the deformation energy in a bond. The effective force and
moment states that are the energy conjugates to the composite state and relative rotation state, respectively, are used
to determine the deformation energy of a bond.29 Thus, the energy density in the bond " of porous media can be
obtained as

 = ∫
t

0

[(
# + Sr# w

)
−
(
#

′
+ S′r#

′
w

)] ̇̂!dt

+ ∫
t

0

(
$ −$′)$̇dt, (34)
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F I G U R E 3 Kinematics of a bond across fractured space.

where t is the loading time. The bond breakage is modeled through the influence function at the material point level. The
influence function of the broken bond will be updated by ./, where . is determined by

. =
{

0 if  ⩾cr,
1 otherwise,

(35)

wherecr is the critical bond energy density. The critical energy density for bond breakage can be determined from the
critical energy release rate as

cr = 4cr
)$4 . (36)

In !PPM, the damage of the solid skeleton material point is tracked through a local scalar damage variable 0̂. This damage
variable is defined as the fraction of broken bonds at a material point

0̂ = 1 − ∫ ./dV′

∫ℋ /dV′
. (37)

As in,29 the space between material points x and x′ is assumed fractured when ≥ cr and D ≥ Dcr and D′ ≥ Dcr hold
for both material points. The two material points are defined as fracture mixed points. The fracture mixed material points
have bulk fluid pressure and fracture fluid pressure. These fluid pressures are utilized to model unsaturated fluid flow
in fractured space. Figure 3 plots the kinematics of a bond across fractured space. As shown in Figure 3, the micro-polar
relative displacement vector is decomposed into two components29,70 where the first component represents the opening
displacement and the second one is the dislocation of the crack. The crack aperture c, which is related to the opening
displacement, can be written as

c = "̃ cos 1 − x, (38)

where angle 1 is shown in Figure 3. Therefore, the crack width at fracture point x can be approximated by the average of
bond apertures of all broken bonds as

af =
∫ℋ /cdV′

∫ℋ /dV′
.

(39)

2.2.3 Nonlocal !PPM second-order work

The second-order work criterion can be used to detect material instability, including shear banding in porous media.55,56 It
states that the material loses stability if the second-order work is negative. We have formulated the nonlocal second-order
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work for the micro-polar PPM paradigm through the Cosserat PPM correspondence principle in.51 The second-order work
d2' can be written as

d2' = d% ∶ d& + dm ∶ d'. (40)

In this study, we express the !PPM second-order work from the internal energy rate of the skeleton through the effec-
tive force and relative moment states. The rate of the internal energy density of the solid skeleton ℰ (!̂,!)51 can be
written as

ℰ̇ =# • ̇̂! +$ • !̇. (41)

Thus, following the lines in56 the !PPM second-order work d2ℰ in terms of the effective force state and relative moment
state can be written as

d2ℰ = ∫ℋ
(
Δ# ⋅ Δ!̂ + Δ$ ⋅ Δ$

)
dV ′. (42)

We note that (42) and (40) are equivalent for the !PPM correspondence material model. Next, we present the stabilized
multiphase !PPM correspondence principle.

2.3 Stabilized multiphase !PPM correspondence principle

The constitutive models for both the solid phase and fluid phase are needed to close the governing equations presented
in Sections 2.1.2 and 2.1.3, e.g., the relationships between the effective force state and the composite deformation state,
the moment state and the relative micro-rotation state, and the fluid flow state and the relative fluid pressure state. We
note that the new constitutive models for !PPM can be cast following the lines in.27,35 However, it would require exten-
sive experimental tests to validate the constitutive models for their practical applications, which is beyond the scope of
the present study. In this study, we adopt the micro-polar constitutive correspondence principle in51 and the multiphase
constitutive principle in30 to incorporate the classical micro-polar constitutive model for the solid skeleton and the clas-
sical non-polar fluid flow model for the fluid phase. Next, we introduce the multiphase !PPM correspondence principle,
followed by a multiphase stabilization scheme.

2.3.1 Multiphase !PPM correspondence principle

This part presents the multiphase !PPM constitutive correspondence principle. Firstly, we determine the effective
force and moment states through the Cosserat PPM constitutive principle for the solid phase. We note that the
Cosserat PPM constitutive correspondence principle was proposed in51 by equating the deformation energy of the
Cosserat PPM and the strain energy of the classical micropolar continuum for the solid skeleton. In this study,
for conciseness, we omit the derivation and refer to51 for the detailed derivation for the solid skeleton. Following
the effective force state concept for unsaturated porous media,27 the total force state and the moment state can be
written as

# = /%%−1", (43)
$ = /m%−1", (44)

where % is the total stress of unsaturated porous media, / is the unit weighting function, m is the couple stress tensor,
and ) is the shape function, which is defined as follows:

% = ∫ℋ /" ⊗ "dV ′. (45)
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The total stress state of the classical unsaturated poromechanics2 assuming passive pore air pressure can be written as

% = % − Srpw1, (46)

where 3 is the effective stress and 1 is the second-order identity tensor. Note that in (46) the pore water pressure is negative
in unsaturated porous media. In PPM, the total force state of unsaturated porous media28 can be written as

# =# + Sr#w. (47)

Then, it follows from (43), (46), and (47) that the effective force state and the fluid force state can be written as

# = /%%−1", (48)
#w = −/(pw1)%−1". (49)

From the classical micro-polar poromechanics, the effective stress and the couple stress tensor can be determined from
the classical micro-polar constitutive models given the strain tensor & and the wryness tensor '.42–44,71 The nonlocal
versions of & and ' are written as follows:

& = (̃!̂ =
[
∫ℋ /

(
!̂⊗ "

)
dV ′

]
%−1, (50)

' = (̃5 =
[
∫ℋ /

(
$⊗ "

)
dV ′

]
%−1. (51)

Next, we determine the fluid flow states in the bulk and fracturing porous space through the constitutive correspon-
dence principle for fluid flow in unsaturated porous media.

Following the constitutive correspondence principle for fluid flow,28 the fluid flow states Q and Qf in the bulk space
and the fracture space can be written as

Q = /
(
"wqw

)
%−1", (52)

Qf = /
(
"wqf

)
%−1", (53)

where qw and qf are the fluid flux vectors in the bulk and fracture spaces, respectively.
The fluid flow vectors can be obtained from the generalized Darcy’s law for unsaturated fluid flow as

qw = −
kr

wkw
!w

∇̃Φ, (54)

qf = −
kr

f kf

!w
∇̃Φf , (55)

where kw is the intrinsic permeability of the bulk space, kr
w is the relative permeability of the bulk space, !w is the water

viscosity, ∇̃Φ is the non-local fluid pressure gradient of the bulk space, kr
f is the relative permeability of the fracture space,

and kf is the intrinsic permeability of the fracture space, and ∇̃Φf is the fluid pressure gradient in the fracture space.
The relative permeabilities are determined by

kr
w = S1∕2

r

[
1 −

(
1 − S1∕m

r

)m]2
, (56)

kr
f = S1∕2

rf

[
1 −

(
1 − S1∕m

rf

)m]2
, (57)

where Srf is the degree of saturation of fluid phase in fracturing space and m is the same material parameter as defined
in (12). The intrinsic permeability of the fracture can be determined by the so-called cubic law7,28 as

kf =
a2

f

12 , (58)

where af is the crack aperture.
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The nonlocal fluid pressure gradients are written as follows:

∇̃Φ =
(
∫ℋ /Φ"dV ′

)
%−1, (59)

∇̃Φf =
(
∫ℋ /Φf "dV ′

)
%−1, (60)

where the fluid pressure state in the fracture space is

Φf = p′f − pf . (61)

2.3.2 Multi-phase stabilization scheme

The energy method is used to eliminate the zero-energy mode instability in the correspondence constitutive princi-
ple.30 We first present the residuals (i.e., nonuniform parts) of the composite deformation and relative rotation states
as follows:

&1 =!! − &", (62)

&2 = ! − '". (63)

Then, the stabilized force and moment states30 can be written as

# = /%%−1" + 61&1, (64)

$ = /m%−1" + 62&2, (65)

where 61 and 62 are two scalar states. The two scalar states can be written as

61 = *+1
/0

/, (66)

62 = *+2
/0

/, (67)

where

/0 = ∫ℋ /dV ′, (68)

* is a number between 0 and 1, and +1 and +2 are two material parameters. For the three dimensional case, these two
material parameters are written as follows:

+1 = 12,
|"|3 , (69)

+2 = ,
|"| , (70)

where , is a parameter that depends on the length scale. In three-dimensions it reads

, = E(1 − 4-)
4)$2

(
1 − - − 2-2

) . (71)
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Similarly, for the fluid phase, we define the residuals (i.e., the nonuniform parts) of the fluid pressure states as

&w = " − ∇̃"", (72)

&f = "f − ∇̃"f ". (73)

Then, the fluid flow states with stabilization can be written as

- = /
(

qw%−1" + 63&w

)
, (74)

-f = /
(

qf%−1" + 64&f

)
. (75)

In (74) and (75),

63 = *+3
/0

/, (76)

64 = *+4
/0

/, (77)

where +3 and +4 are the micro-conductivities.30 For the three-dimensional case, they are written as follows:

+3 = 6kw
)$4 , (78)

+4 =
6kf

)$4 . (79)

Next, we present the classical micro-polar elastic and plastic constitutive models adopted in this study.

2.4 Classical micro-polar material models
2.4.1 Micropolar linear elastic model

For the micropolar elastic model for the porous media, the effective stress tensor 3ij and the couple stress tensor mij39 can
be written as

3ij = 89e
kk + (! + !c)9e

ij + (! − !c)9e
ji, (80)

mij =
1
2!l2:e

ij, (81)

where i, j, k = 1, 2, and 3, &e
ij is the elastic strain tensor, :ij is the elastic wryness tensor, 8 is L’ame’s first elastic constant,

! is the shear modulus, !c is the micro-polar shear modulus, and l is the micro-polar length scale. We note that the
micro-polar length scale can depend on the porous media’s micro-structure. How to determine the micro-polar length
scale from the microstructure of granular materials is beyond the scope of the present study. We refer to the distinguished
literature on the subject.40,41

2.4.2 Micropolar plastic model

In this section, the micropolar plastic model with a Drucker-Prager type yield criterion.42,71 The strain tensor 9ij and the
wryness tensor :ij are additively decomposed into elastic and plastic parts as

9ij = 9e
ij + 9

p
ij, (82)

:ij = :e
ij + :

p
ij , (83)

where 9e
ij is the elastic strain tensor, 9p

ij is the plastic strain tensor, :e
ij is the elastic wryness tensor, and :p

ij is the plastic
wryness tensors. The effective stress tensor 3ij and couple stress tensor mij can be calculated from elastic components of
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strain and wryness tensors.

q =

√
1
2

(
3ij3̃ij +

3mijmij

l2

)
, (84)

p = 1
33kk, (85)

where

3̃ij = −3kk +
3
2
(
3ij + 3ji

)
. (86)

The yield function and the plastic potential are written as follows:

f = q +
√

3a1p + a2, (87)

g = q +
√

3a3p + a2, (88)

where

a1 = 2 sin0√
3(3 − sin0)

, (89)

a2 = − 6c cos0√
3(3 − sin0)

, (90)

a3 = 2 sin<√
3(3 − sin<)

, (91)

and 0 is the frictional angle, < is the dilatancy angle, and c is the linear isotopic hardening parameter. The parameter c is
defined as follows:

c = c0 + ĥ9̂p, (92)

where c0 is the initial cohesion, ĥ is the linear hardening modulus, and 9̂p is the internal plastic variable.The
non-associative plastic flow rule can be written as

9̇p
ij = 8̇

+g
+3ij

, (93)

:̇p
ij = 8̇

+g
+mij

, (94)

where 8̇ is the plastic multiplier, which is obtained from consistency condition ḟ = 0. The internal plastic variable72 is
defined as follows:

̇̂9p =
√

1
3 &̇

p
s ∶ &̇

p
s +

1
3 &̇

p
s ∶ &̇

p,T
s + 2

3 '̇
p ∶ '̇p, (95)

where &p
s is the deviatoric part of the plastic strain tensor.

In the following section, we present the numerical implementation of the coupled !PPM paradigm.

3 NUMERICAL IMPLEMENTATION

This section deals with the numerical implementation of the coupled !PPM paradigm through a hybrid
Lagrangian-Eulerian meshfree method in space and an explicit-explicit dual-direction fractional-step algorithm in time.29
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The dual-direction fractional-step algorithm splits the fully coupled poromechanics problem into a deformation/fracture
problem (i.e., the solid solver) and an unsaturated fluid flow problem (i.e., the fluid solver) in parallel. We refer to
the distinguished literature,58–62 among others) on fractional-step/staggered and monolithic algorithms for numerically
implementing coupled poromechanics problems in time. Here, the dual-direction staggered algorithm means that the
solid solver or the fluid solver can be called first, given the coupled poromechanics problem. For instance, for a fluid-driven
cracking problem, the program will first call the unsaturated fluid flow solver, assuming no deformation. Then, the fluid
pressure will be passed to the deformation solver.

3.1 Spatial discretization

The coupled governing equations are spatially discretized by the hybrid Lagrangian-Eulerian meshfree scheme, that is,
Lagrangian for the solid phase and Eulerian (relative to the solid) for the fluid phase. Consistent with the mathematical
formulations in Section 2, a porous material body is discretized into a finite number of mixed material points (i.e., the
solid skeleton and the pore fluid). Each mixed material point is endowed with three types of degrees of freedom, that is,
displacement, rotation, and fluid pressure. The boundary conditions are imposed through the boundary layer method.
Let . be the number of total mixed material points in the problem domain and /i be the number of material points in
the horizon of material point i. The spatial discretizations of the motion equation and the balance of moment are written
as follows:

0 = $.
i=1

(iüi −# i +#w,i −ig
)
, (96)

0 = $.
i=1

(
ℒi ̈̂#i −ℳi −ℳi − liVi

)
, (97)

where

i =
[
"s(1 − #i) + "wSr,i#i

]
Vi, (98)

# i =
/i∑
j=1

(
#ij −#ji

)
VjVi, (99)

#w,i =
/i∑
j=1

(
1 − Γij

)(
Sr,i#w,ij − Sr,j#w,ji

)
VjVi +

/i∑
j=1
Γij
(

Srf ,i#f ,ij − Srf ,j#f ,ji

)
VjVi, (100)

ℒi = ℐ s
i Vi, (101)

ℳi =
/i∑
j=1

(ℳij −ℳji)VjVi, (102)

ℳi =
1
2

/i∑
j=1

[
"

ij
×
(
#ij −#ji

)]
VjVi −

1
2

/i∑
j=1

{
"

ij
×
[(

1 − Γij
)(

Sr,i#w,ij − Sr,j#w,ji

)]}
VjVi

− 1
2

/i∑
j=1

[
"

ij
× Γij

(
Srf ,i#f ,ij − Srf ,j#f ,ji

)]
VjVi, (103)

$ is a linear global assembly operator,73 Vi and Vj are the volumes of material points i and j, respectively, and Γij is the
indicator of the fracture point.

Γij =
{

1 if i and j are fracture points,
0 otherwise.

(104)

In (99), (100), and (103), the effective force states and the fluid force states are written as follows:
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#ij = /ij

(
%i%−1

i "ij
+ 61,ij&1,ij

)
, (105)

#ji = /ji

(
%j%−1

j "ji
+ 61,ji&1,ji

)
, (106)

#w,ij = /ijpw,i1%−1
i "ij

, (107)

#w,ji = /jipw,j1%−1
j "ji

, (108)

#f ,ij = /ijpf ,i1%−1
i "ij

, (109)

#f ,ji = /jipf ,j1%−1
j "ji

. (110)

In (102), the moment states are written as follows:

$ij = /ij

(
mi%−1

i "ij
+ 62,ij&2,ij

)
, (111)

$ji = /ji

(
mj%−1

j "ji
+ 62,ji&2,ji

)
. (112)

Similarly, the discretized mass balance equations can be written as follows:

0 = $.
i=1

(
2i + Qi + Ṽi + Qs,i

)
, (113)

0 = $.f
i=1

(
2f ,i + -f ,i − -s,i

)
, (114)

where .f is the number of fracture points,

2i = −#i
+Sr,i
+pw,i

ṗw,iVi, (115)

Qi =
1
"w

/i∑
j=1

(Qij −Qji)VjVi, (116)

Ṽi = Sr,i

/i∑
j=1
iVjVi, (117)

Qs,i = i

[
−krkw
!w

(pw,i − pf ,i

lx,i

)]
∕Vi, (118)

2f ,i = −#i
+Sr,fi

+pf ,i
ṗf ,iVi, (119)

Qf ,i =
1
"w

/i∑
j=1
Γij(Qf ,ij −Qf ,ji)VjVi. (120)

In (116) and (120), the fluid flow states are written as follows:

-ij = /ij

(
"wqw,i)

−1
i "

ij

)
+ 63,ij&w,ij, (121)

-ji = /ji

(
"wqw,j)

−1
i "

ji

)
+ 63,ji&w,ji, (122)

-f ,ij = /ij

(
"wqf ,i)

−1
i "

ij

)
+ 64,ij&f ,ij, (123)

-f ,ji = /ji

(
"wqf ,j)

−1
j "

ji

)
+ 64,ij&f ,ij. (124)

3.1.1 J integral

In this part, we compute the J-integral47,48 in the !PPM paradigm for a mode-I crack in two dimensions. Figure 4 presents
a schematic of the discrete processing zone of a mode-I crack along the x direction and the path for the J-integral. It



PASHAZAD and SONG 17 of 46

F I G U R E 4 Schematic of the integration of J-integral of the !PPM paradigm for a mode-I crack.

follows from (30) that the J-integral in the spatially discretized form can be written as

 =
n+ℬ1∑
j=1
=jn1$j −

nℬ1∑
i=1

nℬ2∑
j=1

(
#ij

+uj

+x1
−#ji

+ui
+x1

)
ViVj

− 1
2

nℬ1∑
i=1

nℬ2∑
j=1
"

ij
×
(
#ij

+#̂j

+x1
−#ji

+#̂i
+x1

)
ViVj

−
nℬ1∑
i=1

nℬ2∑
j=1

(
$ij

+#̂j

+x1
−$ji

+#̂i
+x1

)
ViVj, (125)

where n+1 is the number of material points on the boundary +1, n1 is the number of material points in the subregion1 at a distance of $ from the integral path, n2 is the number of material points in the subregion 2 at a distance of $
from the integral path, h is the thickness of crack, and n is the unit normal to the path +1 (see Figure 4).

Similarly, from (32) the energy dissipation from the J-integral for the mode-I crack can be computed as follows:

 =
n+ℬ1∑
j=1
=jn1Δxj −

nℬ1∑
i=1

nℬ2∑
j=1

(
#ij

+uj

+x1
−#ji

+ui
+x1

)
ViVj∕h

− 1
2

nℬ1∑
i=1

nℬ2∑
j=1
"

ij
×
(
#ij

+#̂j

+x1
−#ji

+#̂i
+x1

)
ViVj∕h

−
nℬ1∑
i=1

nℬ2∑
j=1

(
$ij

+#̂j

+x1
−$ji

+#̂i
+x1

)
ViVj∕h. (126)

In the section of numerical examples, (125) is used to compute the J-integral in the !PPM paradigm, which is com-
pared with the closed-form solution for the J-integral in the classical micro-polar continuum model, and (126) is used to
compute the mode-I crack propagation.

3.2 Discretization in time

In this study, the fractional step/staggered explicit Newmark scheme1,73–75 is adopted to discretize the coupled !PPM
paradigm in time. The fractional-step algorithm splits the coupled !PPM problem into a parallel deformation/fracturing
model and an unsaturated/fracturing fluid flow problem (see Figure 5 and Algorithm 1). The energy balance check75 is uti-
lized to ensure the numerical stability of this algorithm for each solver in time. In what follows, we present the double-way
staggered algorithm by introducing the solid deformation/fracturing solver, followed by the unsaturated/fracturing fluid
flow solver. We note that, as stated at the beginning of this section, either the solid deformation/fracturing solver or the
unsaturated/fracturing fluid flow solver can be called first, given the physical problem at hand.
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F I G U R E 5 Flowchart of the fractional-step explicit–explicit algorithm for the unsaturated !PPM paradigm (Note: 61 and 62 are time
reduction factors).

3.2.1 Solid deformation/fracturing solver under undrained conditions

Let un, u̇n and ün be the displacement, velocity, and acceleration vectors at time step n and #̂n, ̇̂#n and ̈̂#n be the mirco
rotation, angular velocity, and angular acceleration vectors at time step n. The predictors of displacement, micro-rotation,
velocity, and angular velocity in a general Newmark scheme read

̇̃un+1 = u̇n + (1 − 11)Δtün, (127)
̇̂̃#n+1 = ̇̂#n + (1 − 11)Δt ̈̂#n, (128)

ũn+1 = un + Δtu̇n + (1 − 212)
Δt2

2 ün, (129)

̃̂#n+1 = #̂n + Δt ̇̂#n + (1 − 212)
Δt2

2
̈̂#n, (130)

where 11 and 12 are numerical integration parameters. Given (127), (129), (128), and (130), #̃ n+1, #̃ w,n+1, ℳ̃n+1, and
ℳ̃n+1 are determined from (129) and (130) using the classical local constitutive models introduced in Section 2.4 through
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Algorithm 1. Fractional-step explicit-explicit algorithm for the !PPM paradigm

1: Given: un, u̇n, ün, #̂n, ̇̂#n, ̈̂#n, pw,n, ṗw,n, pf ,n, ṗf ,n, tn,Δt
2: Compute: un+1, u̇n+1, ün+1, #̂n+1, ̇̂#n+1, ̈̂#n+1, pw,n+1, ṗw,n+1, pf ,n+1, ṗf ,n+1
3: Update time tn+1 = tn + Δt
4: while tn+1 ≤ tfinal do
5: Compute the velocity predictor ̇̃un+1 using (127)
6: Compute the micro rotation rate predictor ̇̂̃#n+1 using (128)
7: Apply boundary conditions
8: Compute displacement predictor ũn+1 using (129)
9: Compute micro rotation predictor ̃̂#n+1 using (130)

10: Compute effective force, fluid force and moment vectors via Algorithm (2)
11: Compute ̃n+1 and ℒ̃n+1
12: Solve the accelerations ün+1 using (131) and ̈̂#n+1 using (132)
13: Update velocity u̇n+1 using (133) and micro rotation rate ̇̂#n+1 using (134)
14: Update displacement un+1 using (135) and micro rotation #̂n+1 using (136)
15: Compute kinematic energy '̂kin,n+1 using (139)
16: Compute internal energy '̂int,n+1 using (137) and external energy '̂ext,n+1 using (138)
17: Check energy balance

18: Compute J integral for J integral criterion
19: Update the list of broken bonds fracture points via Algorithm (3)
20: Compute bond energy for energy based bond breakage criterion
21: Update the list of broken bonds and fracture points via Algorithm (4)

22: Compute water pressure predictor p̃w,n+1 using (141)
23: Compute fracture pressure predictor p̃f ,n+1 using (142)
24: Compute the fluid flow in the bulk and fracture points via Algorithm (5)
25: Solve water pressure rate ṗw,n+1 using (143)
26: Solve fracture pressure rate ṗf ,n+1 using (144)
27: Update water pressure pw,n+1 using (145) and fracture pressure pf ,n+1 using (146)
28: Compute internal energy ̂̂' int,n+1 using (147) and external energy ̂̂' ext,n+1 using (148)
29: Check energy balance
30: end while
31: n ← n + 1

Algorithm 2. Compute effective force, fluid force and moment states

1: Given: displacement predictor ũn+1, micro rotation predictor ̃̂#n+1, water pressure predictor at
bulk point p̃w,n+1 and at fracture point p̃f ,n+1, /n, Γn

2: Compute: effective force vector, moment vectorand fluid force vector
3: for all points do
4: Compute composite state for solid phase
5: Compute relative rotation state for solid phase
6: Compute shape tensor K
7: Compute effective stress %̄ and couple stress m
8: Compute force states# using (105),#w using (107) and#f using (109)
9: Compute moment state$ using (111)

10: Compute effective force vector #̃ n+1 using (99)
11: Compute fluid force vector #̃w,n+1 using (100)
12: Compute moment vector ℳ̃n + 1 using (102) and ℳ̃#n+1

using (103)
13: end for
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Algorithm 3. Compute J Integral and update the fracture point

1: Given: #̄n+1, un+1,$n+1 and #̂n+1
2: Compute J integral and update influence function / and update fracture points list
3: Define crack path direction x1
4: Define the integral contour path
5: for all points along the contour do
6: Compute strain energy density
7: Compute the first term of J integral in (125)
8: end for
9: for all points in regions 1 and 2 do

10: Compute the second, third and 4th terms of J integral in (125)
11: end for
12: Compute J integral
13: if J > Jcr then
14: for all points do
15: for each neighbour do
16: if the bond cross the new crack surface then
17: Update influence function /
18: end if
19: end for
20: Update damage variable D
21: if D > Dcr then
22: Set material point as fracture point
23: end if
24: end for
25: end if

Algorithm 4. Compute bond energy and update the fracture points

1: Given: #̄n+1,Δ!,$n+1 and Δ$
2: Compute bond energy and update influence function / and update fracture points list
3: for all points do
4: for each neighbor do
5: Compute bond energy
6: if  >cr then
7: Update influence function /
8: Update damage variable D
9: Sum the energy in the bond to total energy dissipated at the point

10: end if
11: end for
12: if D > Dcr then
13: Set material point as fracture point
14: end if
15: end for
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Algorithm 5. Compute fluid flow in the bulk and fracture

1: Given: u̇n+1 p̃w,n+1, p̃f ,n+1, Γn+1
2: Compute: bulk fluid flow and fracture fluid flow vectors
3: for all points do
4: Compute pressure potential state
5: Compute shape tensor K
6: Compute pressure gradient state @̃Φ
7: Compute relative permeability kr

8: Compute flux vector qw
9: Compute flow state Q

10: Compute bulk fluid flow Q̃n+1 using (116)
11: end for
12: for all points do
13: Compute fracture width af
14: Compute fracture permeability kf
15: for each neighbor do
16: Compute fracture pressure states
17: Compute fracture pressure gradient state @̃Φf
18: Compute fracture flow state Qf
19: end for
20: Compute fracture fluid flow Q̃f ,n+1 using (120)
21: Compute source term Q̃s,n+1 using (118)
22: end for

the !PPM correspondence principle. Then, the acceleration and angular acceleration at n + 1 are determined by

ün+1 =−1
n+1

(
#̃ n+1 − #̃w,n+1 −n+1g

)
, (131)

̈̂#n+1 =ℒ−1
n+1

(
ℳ̃n+1 + ℳ̃n+1 + ln+1V

)
, (132)

From (131) and (132), the velocity, angular velocity, displacement, and micro-rotation at time step n + 1 can be
obtained as

u̇n+1 = ̇̃un+1 + 11Δtün+1, (133)

̇̂#n+1 = ̇̂̃#n+1 + 11Δt ̈̂#n+1, (134)

un+1 = ũn+1 + 12Δt2ün+1, (135)

#̂n+1 = ̃̂#n+1 + 12Δt2 ̈̂#n+1. (136)

In this study, we adopt the explicit central difference solution scheme,73 that is, 11 = 1∕2 and 12 = 0. We note that the
explicit method is efficient and robust to model dynamic problems.73

The energy balance check is used to ensure numerical stability of the solid deformation/fracturing solver in time.75

The internal energy, external energy, and kinetic energy of the solid deformation/fracturing process at time step n + 1 are
defined as follows:

'̂int,n+1 = '̂int,n + Δt
2
(

u̇n + Δt
2 ün

)[(
# n −#wn

)
+
(
# n+1 −#wn+1

)]

+ Δt
2
(
̇̂#n + Δt

2
̈̂#n
)[(

ℳn +ℳn
)
+
(
ℳn+1 +ℳn+1

)]
, (137)
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'̂ext,n+1 = '̂ext,n + Δt
2
(

u̇n + Δt
2 ün

)
(ng +n+1g)

+ Δt
2
(
̇̂#n + Δt

2
̈̂#n
)
(lnV + ln+1V), (138)

'̂kin,n+1 = 1
2 u̇n+1n+1u̇n+1 +

1
2
̇̂#n+1ℒn+1 ̇̂#n+1. (139)

Then, it follows from the energy conservation criterion that

|'̂kin,n+1 − '̂ext,n+1 + '̂int,n+1| ≤ 9̂1 max
(
'̂kin,n+1, '̂int,n+1, '̂ext,n+1

)
, (140)

where 9̂1 is a small tolerance on the order of 10−2.31,75

3.2.2 Unsaturated/fracturing fluid flow solver in the updated deformed configuration

The fluid pressure predictors at time step n + 1 through the general Newmark scheme73 can be written as

p̃w,n+1 = pw,n + (1 − 13)Δtṗw,n, (141)
p̃f ,n+1 = pf ,n + (1 − 13)Δtṗf ,n, (142)

where 13 is a numerical integration parameter. Given (141) and (142), the fluid flow states can be determined. Then, ṗw,n+1
and ṗf ,n+1 can be computed by

ṗw,n+1 = −
(
#
+s̃r,n+1
+p̃w,n+1

)−1(
-̃n+1 + n+1 + -̃s,n+1

)
, (143)

ṗf ,n+1 =
(
#
+s̃rf ,n+1

+p̃f ,n+1

)−1(
2̃ f ,n+1 + -̃f ,n+1 − -̃s,n+1

)
. (144)

It follows from (141), (142), (143), and (144), and the general Newmark scheme73 that pw,n+1 and pf ,n+1 can be written as

pw,n+1 = p̃w,n+1 + 13Δtṗw,n+1, (145)
pf ,n+1 = p̃f ,n+1 + 13Δtṗf ,n+1. (146)

In this study, the explicit Newmark scheme, that is, 13 = 0, is adopted for the fluid flow solver.
Similar to the deformation/fracturing solver, the energy convergence criterion is used to ensure the numerical stability

for the fluid flow solver. The internal energy, external energy, and kinetic energy of the fluid flow process at time step
n + 1 are defined as follows:

̂̂' int,n+1 = ̂̂' int,n + Δt
2 ṗw,n+1

[(
Qn + Vn

)
+
(
Qn+1 + Vn+1

)]

+ Δt
2 ṗf ,n+1

[(
2f ,n + Qf ,n

)
+
(
2f ,n+1 + Qf ,n+1

)]
, (147)

̂̂' ext,n+1 = ̂̂' ext,n + Δt
2 ṗw,n+1(Qs,n + Qs,n+1) −

Δt
2 ṗf ,n+1

(
Qs,n + Qs,n+1

)
. (148)

Then, it follows from the energy conservation criterion that

| ̂̂' int,n+1 −
̂̂' ext,n+1| ≤ 9̂2 max

(
̂̂' int,n+1,

̂̂' ext,n+1

)
, (149)

where 9̂2 is a small tolerance on the order of 10−2.31,75 It is worth noting that following the lines in,29 a fractional-step
implicit-implicit algorithm can be formulated to solve the coupled !PPM paradigm in time, which is beyond the scope
of the present study. For the numerical implementation algorithm for micro-polar plasticity models, we refer to the
celebrated literature on the subject.42,44,71,76,77
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4 NUMERICAL EXAMPLES

In this section, we present four numerical examples to evaluate the implemented !PPM paradigm and to demonstrate its
efficacy and capability of modeling shear banding and cracking in porous media. Example 1 deals with the mode I crack
driven by fluid pressure or solid deformation. Example 2 validates and verifies the proposed !PPM J integral for the mode
I and II cracks. Example 3 deals with the shear banding of unsaturated porous media under the biaxial compression test.
Example 4 deals with the propagation of the mode-I crack in unsaturated porous media under displacement controlled
loading.

4.1 Example 1: Mode I crack

This example simulates the mode I crack driven by either fluid pressure or solid deformation. We first present the case
driven by fluid pressure, followed by the case driven by solid deformation.

4.1.1 Case 1: Fluid-driven crack

This example simulates the fluid pressure-driven crack in a saturated elastic porous material. Figure 6 plots the model
setup for case 1. The initial crack length is 0.05 m. The fluid flow rate q = 5 × 10−5 m 2 /s is imposed on the left end of
the crack. The water pressure is prescribed zero on the top, bottom, and right boundaries of the specimen. The horizon-
tal displacement is fixed on the right boundary. The displacement in the vertical direction is fixed on the top and bottom
boundaries. The elastic micro-polar constitutive model for the solid introduced in Section 2.4.1 is adopted. Following,78

the input material parameters are: bulk modulus K = 270.83 MPa, shear modulus ! = 220.33 MPa, micropolar shear mod-
ulus !c = 100 MPa, micropolar length scale l = 7.5 × 10−3 m, solid density "s = 2000 kg ∕ m 3, initial porosity #0 = 0.2,
water density "w = 1000 kg ∕ m 3, and hydraulic conductivity kw = 2.78 × 10−9 m/s. The pore water is assumed incom-
pressible. The stabilization parameter * = 0.5 is used. For this case, cr = 95 N/m is used for the energy-based bond
breakage criterion.78 The loading time t = 0.5 s, and the time increment Δt = 5 × 10−6 s. In what follows, we present the
numerical results.

Figure 7 plots the snapshots of the damage variable contour on the deformed configuration at three loading times.
Figure 8 compares the contours of water pressure on the deformed configuration at three loading times with the results
in.78 The contours of water pressure and the damage variable are similar to the numerical results in78 (see Figures 7 and
8). Figure 9 presents the snapshots of micro rotation on the deformed configuration at the three loading times. As shown
in Figure 9, the micro-rotation of material points is concentrated on the crack tip, and the magnitude of the micro-rotation
of those material points increases as the crack propagates.

Next, we present the results of the simulations with two spatial discretizations. For the two cases, the specimen is
discretized into 66 × 66 uniform points (Δx1 = 3.75 × 10−3 m) and 100 × 100 uniform points (Δx2 = 2.5 × 10−3 m), respec-
tively. The same micro-length scale and horizon, that is, $ = 7.5 × 10−3 m, is assumed. The other conditions remain the
same. Figure 10 plots the contours of the damage variable on the deformed configuration at loading 3 = 1 MPa for both

F I G U R E 6 Problem setup for the case of fluid pressure-driven crack.
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F I G U R E 7 Contours of the damage variable on the deformed configuration (magnification factor (MF) =100) at (A) t1 = 0.3 s, (B)
t2 = 0.4, and s (C) t3 = 0.5 s.

F I G U R E 8 Contours of water pressure (MPa) on the deformed configuration (MF = 100) from78 at (A) t1 = 0.3 s, (B) t2 = 0.4 s, and (C)
t3 = 0.5 s and from our numerical model at (D) t1 = 0.3 s, (E) t2 = 0.4 s, and (F) t3 = 0.5 s.

F I G U R E 9 Contours of the micro-rotation (degree) on the deformed configuration (MF = 100) at (A) t1 = 0.3 s, (B) t2 = 0.4 s, and (C)
t3 = 0.5 s.

F I G U R E 10 Contours of the damage variable on the deformed configuration (MF = 100) at loading 3 = 1 MPa for cases ($ = 7.5 × 10−3

m): (A) Δx1 = 3.75 × 10−3 m and (B) Δx2 = 2.5 × 10−3 m.
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discretizations. Figure 11 shows the contours of the water pressure on the deformed configuration at loading 3 = 1 MPa
for both discretizations. Figure 12 plots the contours of the micro rotation of material points at loading 3 = 1 MPa for the
two discretizations. The results in these figures have demonstrated that with the same horizon, the numerical results are
less influenced by the spatial discretization scheme.

4.1.2 Case 2: Deformation-driven crack

Case 2 deals with the deformation-driven crack in the saturated elastic porous material, as assumed in case 1. Figure 13
plots the dimensions, boundary, and loading conditions for case 2. We note that the dimensions of the specimen and
the initial crack are the same as in case 1, except for the loading condition. All boundaries are impervious. The input

F I G U R E 11 Contours of water pressure (MPa) on the deformed configuration (MF = 100) at loading 3 = 1 MPa for cases
($ = 7.5 × 10−3 m): (A) Δx1 = 3.75 × 10−3 m and (B) Δx2 = 2.5 × 10−3 m.

F I G U R E 12 Contours of micro rotation (degree) on the deformed configuration (MF = 100) at loading 3 = 1 MPa for cases
($ = 7.5 × 10−3 m): (A) Δx1 = 3.75 × 10−3 m and (B) Δx2 = 2.5 × 10−3 m.

F I G U R E 13 Problem setup for the deformation driven crack.
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material parameters are the same as in case 1. The vertical load is applied on the top and bottom boundaries through a
ramp function from 0 to 1 MPa. The specimen is discretized into 100 × 100 uniform material points with Δx = 2.5 × 10−3

m. The horizon size is the same as the micro-polar length scale, that is, $ = 3.05 Δx. The simulation time t = 5 × 10−3 s.
The time increment Δt = 5 × 10−7 s.

Figure 14 plots the snapshots of the damage variable at 3 = 0.6, 0.8, and 1 MPa, respectively. As shown in Figure 14,
at the load 3 = 0.6 MPa, the crack starts to grow, and at the load 3 = 1 MPa, the crack length reaches 0.1975 m. Figure 15
shows the snapshots of water pressure at the same three loading stages. Figure 15 shows that the maximum water pressure
is at the crack tip. It is implied from Figure 15 that the water pressure of the material points around the crack path is zero
due to fluid flow to the fracture points. Figure 16 presents the snapshots of micro rotation at three loading stages of the
simulation. Figure 9 shows that the micro rotation of material points at the crack tip is the maximum. It is implied from
the results that the magnitude of the micro rotation of material points increases as the crack propagates.

Next, we present the results of the simulations with two spatial discretizations assuming the same length scale. For
the two cases, the specimen is discretized into 66× 66 uniform points (Δx1 = 3.75 × 10−3 m) and 100× 100 uniform points
(Δx2 = 2.5 × 10−3 m), respectively. The same micro-length scale and horizon are assumed, that is, $ = 7.5 × 10−3 m. The

F I G U R E 14 Contours of the damage variable on the deformed configuration (MF = 100) at (A) 31 = 0.6 MPa, (B) 32 = 0.8 MPa, and
(C) 33 = 1 MPa.

F I G U R E 15 Contours of water pressure (MPa) on the deformed configuration (MF = 100) at (A) 31 = 0.6 MPa, (B) 32 = 0.8 MPa, and
(C) 33 = 1 MPa.

F I G U R E 16 Contours of the micro rotation (degree) on the deformed configuration (MF = 100) at loading (A) 31 = 0.6 MPa, (B) 32 =
0.8 MPa, and (C) 33 = 1 MPa.
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F I G U R E 17 Contours of the damage variable on the deformed configuration (MF = 100) at loading 3 = 1 MPa for cases ($ = 7.5 × 10−3

m): (A) Δx1 = 3.75 × 10−3 m and (B) Δx2 = 2.5 × 10−3 m.

F I G U R E 18 Contours of water pressure (MPa) on the deformed configuration (MF = 100) at loading 3 = 1 MPa for cases
($ = 7.5 × 10−3 m): (A) Δx1 = 3.75 × 10−3 m and (B) Δx2 = 2.5 × 10−3 m.

F I G U R E 19 Contours of the micro rotation (degree) on the deformed configuration (MF = 100) at loading 3 = 1 MPa for cases
($ = 7.5 × 10−3 m): (A) Δx1 = 3.75 × 10−3 m and (B) Δx2 = 2.5 × 10−3 m.

other conditions are the same. Figure 17 plots the contours of the damage variable on the deformed configuration at
loading 3 = 1 MPa for both discretizations. Figure 18 shows the contours of water pressure on the deformed configuration
at loading 3 = 1 MPa for both discretizations. Figure 19 demonstrates the contours of the micro rotation of material points
on the deformed configuration at loading 3 = 1 MPa for both discretizations. It can be implied from the results that with
the same horizon, the numerical results are less influenced by spatial discretization.

4.2 Example 2: Validation of J-integral

This example deals with the J-integral computation in the !PPM framework for the mode I and II cracks in an elas-
tic porous material. In this example, we compare our numerical results of J-integral with the classical micropolar
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solution.45,79 Furthermore, we study the impact of the micropolar length scale, horizon, and spatial discretization schemes
on the J-integral computation.

4.2.1 J-integral: Mode I crack

In this part, we compute the J-integral of the mode I crack. Figure 20 plots the model setup. The initial crack length is
0.05 m. A tensile stress 3 = 1 MPa is applied on the top and bottom boundaries through a ramp function. The elastic
material properties are: bulk modulus K = 60 GPa, shear modulus ! = 27.7 GPa, micropolar shear modulus !c = 14 GPa,
solid density "s = 3000 kg ∕m 3, and initial porosity #0 = 0.3. The stabilization parameter* = 0.5 is used. The specimen
is discretized into 100× 100 material points with a uniform grid size Δx = 1 × 10−3 m. The simulation time t = 1 × 10−2 s
and the time increment Δt = 2.5 × 10−7 s.

We first show the results of a base simulation. Figure 21 plots the contour of the damage variable, the micro rotation,
and the displacement norm superimposed on the deformed configuration at the final loading step. As shown in Figure 21,
the magnitude of micro rotation at the crack tip is very small for the mode I crack.

The micropolar length scale is hypothesized to affect the J integral for the mode I crack. To test this hypothesis, we
compute the J-integral with three micropolar length scales, l = 3 × 10−3, 4 × 10−3, and 5 × 10−3 m. The horizon size is the
same as the micropolar length scale. Table 1 summarizes the results from !PPM and the classical micropolar solution.45,79

In Table 1, we also present the translational and micro-rotational parts of the J integral of our numerical results for each
micro-polar length scale. The results in Table 1 show that our numerical solution is slightly greater than the closed-form
solution of the classical micro-polar formulation. With the increase of the micro-polar length scale, the J-integral of the
mode I crack decreases for both the !PPM and classical micro-polar solutions. Table 1 shows that the micro rotational
part of the J integral is much smaller than the translational displacement part due to the mode I crack.

Next, we study the impact of the grid size on the J-integral result. For this purpose, we present the results of J integral
with four spatial discretization schemes, that is, Δx = 1.33 × 10−3, 1 × 10−3, 0.8 × 10−3, and 0.67 × 10−3 m. The same

F I G U R E 20 Model setup for the mode I crack of Example 2.

F I G U R E 21 (A) Contour of the damage variable, (B) contour of micro rotation (degree), and (C) contour of the displacement norm
(×10−3 m) on the deformed configuration (MF = 200) at the final load step.
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T A B L E 1 Comparison of the J-integral from the !PPM solution and the classical micro-polar solution for the mode I crack assuming
three micro-polar length scales.

J integral (Pa. m)

l (×10−3 m) !PPM Translational part Micro-rotational part Classical micropolar

3 21.64 21.73 0.21 19.81

4 20.48 20.3 0.18 19.7

5 20.04 19.89 0.15 19.66

T A B L E 2 Summary of the J-integrals from !PPM with 4 grid sizes for the mode I crack.

%x (×10−3 m) l (×10−3 m) Jintegral (Pa. m)

1.33 4 21.24

1 4 20.48

0.8 4 20.01

0.67 4 19.93

F I G U R E 22 Model setup for the mode II crack of Example 2.

horizon $ = 4 × 10−3 m and the same internal length scale l = 4 × 10−3 m are adopted. Table 2 presents the results of the
J-integral obtained from the four grid sizes. Table 2 shows that the grid size slightly impacts the J-integral. This impact
may be decreased using a smaller grid size under the same micro-polar length. In the following part, we present the results
of J-integral for the mode II crack.

4.2.2 J-integral: Mode II crack

We compute the !PPM J-integral of the mode II crack in this part. Figure 22 plots the model setup for the mode II crack.
The initial crack length is 0.05 m. A shear force is applied on the top boundary through a ramp function from zero to 1
kN. The material parameters are the same for the mode I crack in this example. The specimen is discretized into 100×
100 material points with a uniform grid size Δx = 1 × 10−3 m. The simulation time t = 1 × 10−2 s and Δt = 2.5 × 10−7 s.
We first present the base simulation. Figure 23 plots the contour of the damage variable, the micro rotation, and the
displacement magnitude on the deformed configuration at the final load step. Figure 23 shows that the micro-rotation
magnitude at the crack tip is more significant for the mode II crack than that for the mode I crack case. This could be due
to the micro-rotation caused by the shear loading on the top boundary.

Similarly to the mode I crack, it is postulated that the micro-polar length affects the J-integral of the mode II crack.
To test this postulation, we compute the J-integral of the mode II crack with three micro-polar length scales, l = 3 × 10−3,
4 × 10−3 , and 5 × 10−3 m. The horizon equals the micropolar length scale. Table 3 summarizes the results from !PPM and
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F I G U R E 23 (A) Contour of the damage variable, (B) contour of micro rotation (degree), and (C) contour of the displacement norm
(×10−3 m) on the deformed configuration (MF = 100) at the last loading step.

T A B L E 3 Comparison of J-integral from !PPM and the classical micropolar model for the mode II crack.

J integral (Pa. m)

l (×10−3 m) !PPM Translational part Micro-rotational part Classical micro-polar

3 11.76 7.14 4.62 10.26

4 10.51 6.49 4.02 9.94

5 10.21 6.32 3.69 9.71

T A B L E 4 Summary of the J-integrals from !PPM with 4 grid sizes for the mode II crack.

%x (×10−3 m) l (×10−3 m) J-integral (Pa. m)

1.33 4 11.21

1 4 10.51

0.8 4 10.12

0.67 4 10.05

the classical micro-polar solution.45,79 Table 3 also presents the translational and micro-rotational parts of the J-integral
of the mode II crack for different micro-polar length scales. The results show that our numerical solutions are close to the
solution of the classical micropolar formulation. Moreover, the results in Table 3 show that the micro-rotational part of the
J integral could play a more important role in the J-integral of the mode II crack than that of the mode I crack (Table 3).

Next, we present the results of the J-integral computed from four spatial discretization schemes, that is, Δx = 1.33 ×
10−3, 1 × 10−3, 0.8 × 10−3, and 0.67 × 10−3 m with the same internal length scale and horizon, that is, $ = l = 4 × 10−3 m.
Table 4 summarizes the results. The results show that the J-integral value converges with decreasing the grid size.

4.3 Example 3: Conjugate shear banding under bi-axial loading

This example deals with the conjugate shear banding in unsaturated plastic porous media under dynamic loading con-
ditions. Figure 24 plots the model setup for this example. A vertical displacement uy = 10 × 10−3 m is applied on the
top boundary with the rate u̇y = 0.1 m/s. The constant lateral confining pressure of 0.1 MPa is applied on the left and
right boundaries. All boundaries are impervious to fluids. The micro-plastic model in Section 2.4.2 is adopted for this
example. For the base simulation, the input material parameters are as follows: solid phase density "s = 2000 kg/m3, bulk
modulus K = 27.8 MPa, shear modulus ! = 20.8 MPa, micropolar shear modulus !c = 40.6 MPa, micropolar length scale
l = 5 × 10−3 m, initial porosity #0 = 0.35, water viscosity !w = 1 × 10−3 Pa s, hydraulic conductivity kw = 1 × 10−9 m/s,
n = 1.8, sa = 50 kPa, initial cohesion c0 = 0.8 MPa, residual cohesion cr = 0.25 MPa, linear softening modulus h = −10
MPa, dilatation angle < = 35◦, and frictional angle 0 = 35◦. The stabilization parameter * = 0.1. The initial water pres-
sure p0 = −25 kPa. The specimen is discretized into 60 × 120 material points through a uniform grid withΔx = 1.67 × 10−3
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F I G U R E 24 Model setup for Example 3.

F I G U R E 25 Loading curve on the top boundary.

m. The micro-polar length scale and the horizon size are the same, that is, $ = 3.05Δx. The simulation time t = 0.1 s and
the time increment Δt = 2.5 × 10−6 s.

We first present the results of the base simulation in Figures 25–30. Figure 25 plots the loading curve on the top
boundary of the sample. Figure 26 plots the contours of the equivalent plastic shear strain on the deformed configuration
at three displacements, that is, uy = 3 × 10−3, 4.5 × 10−3, and 6 × 10−3 m. Figure 27 presents the contours of the plastic
volumetric strain at the same loading stages. The positive sign of plastic volumetric strain denotes dilatation. Figure 28
plots the contours of the micro-rotation at the three loading stages. The results in Figures 26–28 have demonstrated the
formation of two conjugate shear bands in the sample and that the shear band instability nucleates from the sample’s
geometrical center. It is noted that no weak element, in contrary to the classical finite element method, is needed to trigger
the shear banding due to the strong nonlocal formulation in this study.40 As shown in Figure 28, the micro rotation of
material points is localized within the shear band. Figure 29 shows the snapshots of water pressure on the deformed
configuration at the three loading stages.

In this study, the second-order work formulated in the framework of !PPM (see Section 2.2.3) is used to validate the
shear band zones. Based on the second-order work criterion, material instability (e.g., shear banding) occurs when the
second-order work becomes non-positive. We note that the non-positive second-order work is a necessary but not suf-
ficient condition for shear banding formation in that other types of instability could happen under this condition (e.g.,
diffusive instability). Figure 30 shows the contours of the second-order work on the deformed configuration. Figure 30
shows that the second-order work within the shear band is negative. It is implied from this that the nonlocal second-order
work criterion is useful for detecting the formation of shear bands. We note that in this study, the nonlocal length
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F I G U R E 26 Contours of the equivalent plastic shear strain on the deformed configuration at (A) uy,1 = 3 × 10−3 m, (B)
uy,2 = 4.5 × 10−3 m, and (C) uy,3 = 6 × 10−3 m.

F I G U R E 27 Contours of the plastic volumetric strain on the deformed configuration at (A) uy,1 = 3 × 10−3 m, (B) uy,2 = 4.5 × 10−3 m,
and (C) uy,3 = 6 × 10−3 m.

F I G U R E 28 Contours of the micro rotation (degree) on the deformed configuration at (A) uy,1 = 3 × 10−3 m, (B) uy,2 = 4.5 × 10−3 m,
and (C) uy,3 = 6 × 10−3 m.

F I G U R E 29 Contours of water pressure (kPa) on the deformed configuration at (A) uy,1 = 3 × 10−3 m, (B) uy,2 = 4.5 × 10−3 m, and (C)
uy,3 = 6 × 10−3 m.
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F I G U R E 30 Contours of the second-order work (N/m2) on the deformed configuration at (A) uy,1 = 3 × 10−3 m, (B) uy,2 = 4.5 × 10−3

m, and (C) uy,3 = 6 × 10−3 m.

F I G U R E 31 Comparison of the loading curves from the simulations with two spatial discretizations.

scale—the horizon is assumed to be equal to the micro-polar length scale. Therefore, the nonlocal length scale in !PPM
is a physically meaningful length scale. This could explain the consistency of the results between Figures 26 and 28. In
what follows, we study the influence of the spatial discretization schemes, the dilation angle, and the micro-polar length
scale on the shear banding instability in this example.

4.3.1 Influence of spatial discretizations

In this part, we investigate the influence of spatial discretizations on the results under the same conditions. For this pur-
pose, we consider two spatial discretization schemes, that is, 60× 120 points withΔx = 1.67 × 10−3 m and 80 × 160 points
with Δx = 1.25 × 10−3 m. The same horizon $ = 5 × 10−3 m is chosen for both cases. All other conditions assumed in the
base simulation remain the same. Figure 31 compares the loading curves of the simulations with the two spatial discretiza-
tion schemes. The results show that the two loading curves are almost identical due to the same length scale adopted.
Figure 32 compares the contours of the equivalent plastic shear strain at the displacement uy = 6 × 10−3 m from the two
simulations. Figure 33 compares the contours of the plastic volumetric strain at the same displacement. Figure 34 com-
pares the contours of micro rotations at the displacement uy = 6 × 10−3 m from the two simulations. Figure 35 compares
the contour of water pressure at uy = 6 × 10−3 m. Figure 36 compares the contours of the second-order work at the dis-
placement uy = 6 × 10−3 m from both simulations. The results in Figures 32–36 have demonstrated that the numerical
results are not dependent on the spatial discretization scheme due to the same nonlocal length scale adopted. Next, we
present the results of the influence of the micro-polar length on shear banding.
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F I G U R E 32 Contours of the equivalent plastic shear strain on the deformed configuration at uy = 6 × 10−3 m: (A) Δx1 = 1.67 × 10−3

m, and (B) Δx2 = 1.25 × 10−3 m.

F I G U R E 33 Contours of the plastic volumetric strain on the deformed configuration at uy = 6 × 10−3 m: (A) Δx1 = 1.67 × 10−3 m, and
(B) Δx2 = 1.25 × 10−3 m.

F I G U R E 34 Contours of micro rotation (degree) on the deformed configuration at uy = 6 × 10−3 m for the cases: (A) Δx1 = 1.67 × 10−3

m, and (B) Δx2 = 1.25 × 10−3 m.

4.3.2 Influence of the micro-polar length scale

In this part, we evaluate the influence of the micropolar length scale on the shear band formation. For this purpose, we
adopt three micropolar length scales, that is, l = 3.3 × 10−3, 5 × 10−3, and 6.6 × 10−3 m. The horizon $ is the same as the
micropolar length scale for each case. The dilatation and frictional angles are the same, that is, 35◦. All other conditions
in the base simulation remain the same. The results are shown in Figures 37–42. Figure 37 plots the loading curves on the
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F I G U R E 35 Contours of water pressure (kPa) on the deformed configuration at uy = 6 × 10−3 m: (A) Δx1 = 1.67 × 10−3 m, and (B)
Δx2 = 1.25 × 10−3 m.

F I G U R E 36 Contours of the second order work (N/m2) on the deformed configuration at uy = 6 × 10−3 m: (A) Δx1 = 1.67 × 10−3 m,
and (B) Δx2 = 1.25 × 10−3 m.

F I G U R E 37 Loading curves on the top boundary from the simulations with the three micropolar length scales, l = 3.3 × 10−3 m,
5 × 10−3 m, and 6.6 × 10−3 m.

top boundary from the three simulations. The results show that the micro-polar length scale affects the peak load and the
post-localization stage. Specifically, the simulations with a large micro-polar length scale generate a relatively large peak
load and a higher post-localization loading curve. We note that in the present study, the horizon equals the micro-polar
length scale, which is different from the previous study assuming a horizon without a clear physical meaning.28 Figure 38
plots the contours of the equivalent plastic shear strain on the deformed configuration at uy = 6 × 10−3 m from the three
simulations. Figure 39 presents contours of the plastic volumetric strain from the three simulations at uy = 6 × 10−3 m.
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F I G U R E 38 Contours of the equivalent shear plastic strain on the deformed configuration at uy = 6 × 10−3 m from the simulations:
(A) l1 = 3.3 × 10−3 m, (B) l2 = 5 × 10−3 m, and (C) l3 = 6.6 × 10−3 m.

F I G U R E 39 Contours of the plastic volume strain on the deformed configuration at uy = 6 × 10−3 m from the simulations: (A)
l1 = 3.3 × 10−3 m, (B) l2 = 5 × 10−3 m, and (C) l3 = 6.6 × 10−3 m.

Figure 40 plots the contours of micro rotation from the three simulations. Figure 41 compares the contours of water
pressure from the three simulations at the same loading stage.

The results in Figures 38–41 demonstrate that the micro-polar length scale affects the shear band width but not the
shear band inclination. Specifically, the shear band width may decrease in the numerical simulations by decreasing the
micro-polar length scale. It is implied from this finding that the experimental data on shear band width can be used to
calibrate the micro-length scale and the nonlocality of the !PPM. Comparison of the results in Figures 38 and 40 demon-
strates that the shear band width manifested in both the equivalent plastic shear strain and the micro-rotation of material
points are consistent. What is implied from this finding is that the micro-rotation of material points is concentrated into
the banded zoned, as found in the laboratory testing of shear bands.41 Figure 42 shows that the second-order work on the
deformed configuration from the three simulations at uy = 6 × 10−3 m. The negative second-order work within the shear
band for all three cases corroborates the shear band instability in the sample.

4.3.3 Influence of the dilation angle

It is known that the dilation angle could impact the shear band angle. Thus, in this part, we investigate the influence of
the dilatation angle on the inclination angle of the shear band through the coupled !PPM. For this purpose, we run sim-
ulations with three dilatation angles, that is, < = 15◦, 25◦, and 35◦. The same frictional angle 0 = 35◦ is assumed for the
three simulations. All the other conditions in the base simulation are the same. The results are reported in Figures 43–48.
Figure 43 plots the loading curves on the top boundary from the three simulations with different dilation angles. The
results in Figure 43 imply that the dilation angle does not affect the pre-localization load curve and the peak load, while
it may slightly affect the post-localization load curve. Figure 44 plots the contours of the equivalent plastic shear strain
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F I G U R E 40 Contours of the micro rotation (degree) on the deformed configuration at uy = 6 × 10−3 m from the simulations: (A)
l1 = 3.3 × 10−3 m, (B) l2 = 5 × 10−3 m, and (C) l3 = 6.6 × 10−3 m.

F I G U R E 41 Contours of water pressure (kPa) on the deformed configuration at uy = 6 × 10−3 m from the simulations: (A)
l1 = 3.3 × 10−3 m, (B) l2 = 5 × 10−3 m, and (C) l3 = 6.6 × 10−3 m.

F I G U R E 42 Contours of the second order work (N/m2) on the deformed configuration at uy = 6 × 10−3 m from the simulations: (A)
l1 = 3.3 × 10−3 m, (B) l2 = 5 × 10−3 m, and (C) l3 = 6.6 × 10−3 m.

on the deformed configuration at uy = 6 × 10−3 m from the simulations with three different dilation angles. Similarly,
Figure 45 presents the contours of the plastic volumetric strain on the deformed configuration at uy = 6 × 10−3 m from
the three simulations. Figure 46 plots the contours of micro rotation on the deformed configuration at uy = 6 × 10−3 m.
Figure 47 shows the water pressure contours on the deformed configuration at uy = 6 × 10−3 m from the three simula-
tions. Figure 48 plots the second-order work contour on the deformed configuration at uy = 6 × 10−3 m. Next, we briefly
discuss the impact of dilation angles on the shear banding formation, as implied by the results in the aforementioned
figures. Firstly, the results in Figures 44–48 show that the shear band inclination angle can be affected by the dilation angle.
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F I G U R E 43 Loading curves on the top boundary from the simulations with < = 15◦, 25◦, and 35◦.

F I G U R E 44 Contours of the equivalent plastic shear strain on the deformed configuration at uy = 6 × 10−3 m: (A) <1 = 15◦, (B)
<2 = 25◦, and (C) <3 = 35◦.

Specifically, the shear band inclination angle with respect to the horizontal direction increases with the dilation angle
increase. This observation agrees with Roscoe’s solution for the shear banding at a material point, that is, a homogeneous
specimen.41,51

Secondly, as shown in Figure 45, the dilatation angle affects the plastic volumetric strain and variation of fluid pressure
in the development of shear bands. For example, for the simulation with the dilatation angle < = 35◦, the plastic volu-
metric strain is positive (i.e., dilative), while the plastic volumetric strain from the simulations with < = 15◦ and < = 25◦
are negative (i.e., compaction). Accordingly, the results in Figure 47 show that the matric suction (i.e., negative fluid pres-
sure) in the banded zone increases for the simulation with < = 35◦ due to the solid skeleton dilation while the matric
suction in shear bands from the simulations with < = 15◦ and < = 25◦ decreases due to the solid skeleton compaction.
In summary, these findings show that the dilation angle of the porous media affects the shear band angle and impacts
the fluid pressure in shear bands under certain loading conditions. In the following section, we present the numerical
simulation of a forward-running crack in unsaturated porous media.

4.4 Example 4: Forward running crack propagation

This example deals with forward-running crack propagation in an unsaturated elastic porous material. The proposed
micro-polar J-integral bond-breakage criterion is adopted to model crack propagation. In this example, we will study the
impact of micro-polar length scales on crack growth. Figure 49 plots the geometry, the initial crack location, and the
loading condition for this example. The initial horizontal crack along the center line of the sample is 0.05 m in length, as
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F I G U R E 45 Contours of the plastic volumetric strain on the deformed configuration at uy = 6 × 10−3 m: (A) <1 = 15◦, (B) <2 = 25◦,
and (C) <3 = 35◦.

F I G U R E 46 Contours of micro rotation (degree) on the deformed configuration at uy = 6 × 10−3 m: (A) <1 = 15◦, (B) <2 = 25◦, and
(C) <3 = 35◦.

F I G U R E 47 Contours of water pressure (kPa) on the deformed configuration at uy = 6 × 10−3 m: (A) <1 = 15◦, (B) <2 = 25◦, and (C)
<3 = 35◦.

shown in Figure 49. The vertical displacement load of uy = 1.5 × 10−5 m is imposed on the top and bottom boundaries.
The left and right boundaries are free to deform. All fluid boundaries are impervious. The initial water pressure p0 = 1
MPa. The material parameters are: solid density "s = 2650 kg/m3, initial porosity#0 = 0.35, bulk modulus K = 16.67 GPa,
shear modulus ! = 10 GPa, micropolar shear modulus !c = 5 GPa, micropolar length scale l = 2 × 10−3 m, water viscosity
!w = 1 × 10−9 MPa, water density "w = 1000 kg∕ m 3, hydraulic conductivity kw = 1 × 10−8 m/s, n = 1.8, and sa = 10
MPa. For this example, cr = 100 N/m is adopted for the J-integral bond breakage criterion. The stabilization parameter
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F I G U R E 48 Contours of the second order work (N/m2) on the deformed configuration at uy = 6 × 10−3 m: (A) <1 = 15◦, (B) <2 = 25◦,
and (C) <3 = 35◦.

F I G U R E 49 Model setup for example 4.

F I G U R E 50 Contours of the damage variable on the deformed configuration (MF = 100) at three loading stages: (A) uy,1 = 0.9 × 10−5

m, (B) uy,2 = 1.2 × 10−5 m, and (C) uy,3 = 1.5 × 10−5 m.

* = 0.5. The problem domain is discretized into 200 × 150 uniform material points with Δx = 5 × 10−4 m. The horizon
$ = 4.05Δx. The simulation time t = 6.25 × 10−5 s, and the time increment Δt = 2.5 × 10−8 s.

Firstly, we present the results of the base simulation. Figure 50 plots the snapshots of the damage variable on the
deformed configuration at three loading steps, that is, uy = 0.9 × 10−5, 1.2 × 10−5, and 1.5 × 10−5 m. As shown in Figure 50,
the crack growth starts at uy = 0.9 × 10−5 m and the crack length reaches 0.078 m at uy = 1.5 × 10−3 m. Figure 51 presents
the contour of water pressure at these three loading stages. It is implied from Figure 51 that the crack propagation increases
the water pressure at the crack tip and decreases the water pressure at the crack path. This result is due to the water
flow from bulk to fracture space during crack propagation. Nonetheless, it is worth noting that fluid lag may happen if
the fracture advancement speed is such that the water cannot flow fast enough and the water pressure decreases at the
fracture tip. Figure 52 presents the contours of the micro rotation of material points at these three loading stages. Figure 52
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F I G U R E 51 Contours of water pressure (MPa) on the deformed configuration (MF = 100) at three loading stages: (A) uy,1 = 0.9 × 10−5

m, (B) uy,2 = 1.2 × 10−5 m, and (C) uy,3 = 1.5 × 10−5 m.

F I G U R E 52 Contours of micro rotation (degree) on the deformed configuration (MF = 100) at three loading stages: (A)
uy,1 = 0.9 × 10−5 m, (B) uy,2 = 1.2 × 10−5 m, and (C) uy,3 = 1.5 × 10−5 m.

F I G U R E 53 Contours of the damage variable on the deformed configuration (MF = 100) at the same loading stage (i.e., uy = 1.5 × 10−5

m): (A) Δx1 = 6.7 × 10−4 m and (B) Δx2 = 5 × 10−4 m.

shows that the micro rotation of material points is concentrated on the crack tip as the crack propagates forward. The
magnitude of micro rotations increases with the crack growth.

Secondly, we study the sensitivity of the numerical results to the spatial discretization schemes in this example. For this
purpose, we present the results of the simulations with two uniform grids. The same micro-polar and horizon are adopted,
that is, $ = l = 2 × 10−3 m. For the two cases, the specimen is discretized into 150 × 120 uniform material points (Δx1 =
6.7 × 10−4 m) and 200 × 150 uniform material points (Δx2 = 5 × 10−4 m), respectively. The other material parameters
remain the same. The results are presented in Figures 53–55. Figure 53 plots the contours of the damage variable on the
deformed configuration at the same loading stage, that is, uy = 1.5 × 10−5 m, from both simulations. Figure 54 shows
the contours of water pressure at uy = 1.5 × 10−5 m from the two simulations. Figure 55 plots the contours of the micro
rotation at uy = 1.5 × 10−5 m from the two simulations. The results have demonstrated that with the same micro-polar
length scale, the numerical results are insensitive to the spatial discretization scheme.

Thirdly, we investigate the impact of the micropolar length scale on the J-integral. For this purpose, we compare the
numerical results assuming three micro-polar length scales, that is, l = 1 × 10−3, 2 × 10−3, and 4 × 10−3 m. The other
parameters and conditions are the same as the base simulation. The horizon equals the micropolar length scale. Figure 56
plots the contours of the damage variable on the deformed configuration at uy = 1.5 × 10−5 m from the simulations with
three micro-polar length scales. As shown in Figure 56 at the same displacement load uy = 1.5 × 10−3 m the crack length
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F I G U R E 54 Contours of water pressure (MPa) on the deformed configuration (MF = 100) at uy = 1.5 × 10−5 m: (A) Δx1 = 6.7 × 10−4 m
and (B) Δx2 = 5 × 10−4 m.

F I G U R E 55 Contours of micro rotation (degree) on the deformed configuration (MF = 100) at uy = 1.5 × 10−5 m: (A) Δx1 = 6.7 × 10−4

m and (B) Δx2 = 5 × 10−4 m.

F I G U R E 56 Contours of the damage variable on the deformed configuration (MF = 100) at uy = 1.5 × 10−5 m: (A) l1 = 1 × 10−3 m, (B)
l2 = 2 × 10−3 m, and (C) l3 = 4 × 10−3 m.

F I G U R E 57 Contours of water pressure (MPa) on the deformed configuration (MF = 100) at uy = 1.5 × 10−5 m: (A) l1 = 1 × 10−3 m,
(B) l2 = 2 × 10−3 m, and (C) l3 = 4 × 10−3 m.
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F I G U R E 58 Contours of micro rotation (degree) on the deformed configuration (MF = 100) at uy = 1.5 × 10−5 m: (A) l1 = 1 × 10−3 m,
(B) l2 = 2 × 10−3 m, and (C) l3 = 4 × 10−3 m.

F I G U R E 59 Comparison of the J-integral-a∕w curves from the three simulations with l = 1 × 10−3, 2 × 10−3, and 4 × 10−3 m.

reaches 0.08, 0.078, and 0.075 m from the three simulations with l1 = 1 × 10−3, l2 = 1 × 10−3, and l3 = 4 × 10−3 m, respec-
tively. Figure 57 shows the contours of water pressure at uy = 1.5 × 10−5 m from the three simulations. Figure 58 plots
the contours of the micro rotation on the deformed configuration at uy = 1.5 × 10−5 m. Figures 57 and 58 show that the
water pressure and micro-rotation at the crack tip increase by decreasing the micropolar length scale. Figure 59 plots
the variation of the J-integral with a∕w from the three simulations. Here a is the crack length, and w is the width of the
specimen. Figure 59 shows that the micro-polar length scale affects the J-integral in this example. The simulation with a
larger micro-polar length scale has a larger value of the J-integral at the same loading stage. This finding may imply that
the micro-polar length scale can be determined from the crack energy release rate as an inverse problem given the latter
from the physical testing.

5 CONCLUSION

In this article, we have developed a multiphase !PPM paradigm for modeling dynamic shear banding and fracturing in
unsaturated porous media. As a novelty, in the coupled !PPM, a microstructure-based material length scale is incorpo-
rated by considering micro-rotations of the solid skeleton in line with the Cosserat continuum theory for solids. As a new
contribution, we reformulate the second-order work for detecting material instability and the energy-based crack crite-
rion and J-integral for modeling fracturing in the !PPM paradigm. The stabilized Cosserat PPM correspondence principle
augmented to include unsaturated fluid flow is adopted to circumvent the multiphase zero-energy mode instability in the
proposed !PPM. We have numerically implemented the novel !PPM paradigm through a fractional-step explicit-explicit
algorithm in time that splits the coupled problem into a deformation/fracture problem and an unsaturated fluid flow
problem. A hybrid Lagrangian-Eulerian meshfree method is utilized to discretize the problem domain in space. Numeri-
cal examples are presented to evaluate the numerical implementation and demonstrate the efficacy of the proposed !PPM
paradigm for modeling shear banding and fracturing in unsaturated porous media. The numerical results have shown that
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this fully coupled !PPM paradigm is robust to model shear band instability and fracturing in variably saturated porous
media.
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