RESEARCH ARTICLE

Check for updates

Solid state synthesis of BiFeO₃ occurs through the intermediate Bi₂₅FeO₃₉ compound

Correspondence

Corrado Wesley and Jacob L. Jones, Department of Materials Science, North Carolina State University, Raleigh, NC 27695, USA.

Email: corradojh@gmail.com and jljone21@ncsu.edu

Funding information

Center for Dielectrics and Piezoelectrics, North Carolina State University, Grant/Award Numbers: ECCS-2025064, IIP-1841453, IIP-1841466

Abstract

The solid-state synthesis of perovskite BiFeO₃ has been a topic of interest for decades. Many studies have reported challenges in the synthesis of BiFeO₃ from starting oxides of Bi₂O₃ and Fe₂O₃, mainly associated with the development of persistent secondary phases such as Bi₂₅FeO₃₉ (sillenite) and Bi₂Fe₄O₉ (mullite). These secondary phases are thought to be a consequence of unreacted Fe-rich and Bi-rich regions, that is, incomplete interdiffusion. In the present work, in situ high-temperature X-ray diffraction is used to demonstrate that Bi₂O₃ first reacts with Fe₂O₃ to form sillenite Bi₂₅FeO₃₉, which then reacts with the remaining Fe₂O₃ to form BiFeO₃. Therefore, the synthesis of perovskite BiFeO₃ is shown to occur via a two-step reaction sequence with Bi₂₅FeO₃₉ as an intermediate compound. Because $Bi_{25}FeO_{39}$ and the γ - Bi_2O_3 phase are isostructural, it is difficult to discriminate them solely from X-ray diffraction. Evidence is presented for the existence of the intermediate sillenite Bi₂₅FeO₃₉ using quenching experiments, comparisons between Bi₂O₃ behavior by itself and in the presence of Fe₂O₃, and crystal structure examination. With this new information, a proposed reaction pathway from the starting oxides to the product is presented.

KEYWORDS

ferrites, ferroelectricity/ferroelectric materials, perovskites, synthesis, X-ray methods

1 | INTRODUCTION

BiFeO₃ is a scientifically and industrially interesting ferroic oxide because it can exhibit both antiferromagnetic and ferroelectric properties. The synthesis of BiFeO₃ is typically undertaken by solid-state reaction of the starting oxides of Bi_2O_3 and Fe_2O_3 in the region of 750°C, although techniques such as wet chemical and sol–gel methods have been explored with some success.^{2,3} Although the

solid-state reaction of $BiFeO_3$ from Bi_2O_3 and Fe_2O_3 is simple in chemical formula, significant complications and challenges have been reported.

A description of solid-state synthesis was outlined by Bernardo et al. 4 in which it was proposed that the Bi $_2$ O $_3$ diffuses into the Fe $_2$ O $_3$ particle, which then forms BiFeO $_3$. This schematic diagram is reproduced in Figure 1. In Figure 1, the idealized final stage of the reaction is shown with the arrow toward the top-right of the figure, a process

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2024 The Authors. Journal of the American Ceramic Society published by Wiley Periodicals LLC on behalf of American Ceramic Society.

¹Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina, USA

²Analytical Instrumentation Facility, North Carolina State University, Raleigh, North Carolina, USA

³Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

⁴Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK

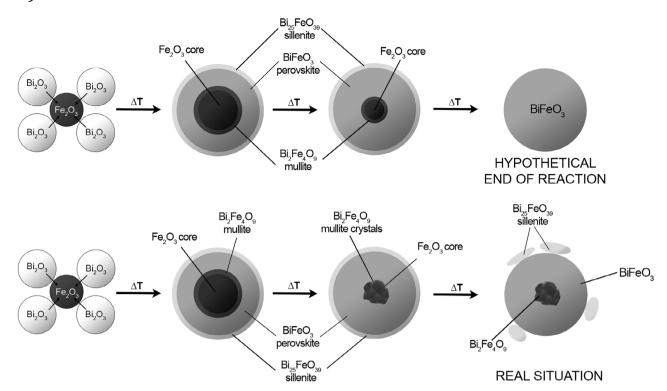


FIGURE 1 The reaction pathway for Bi₂O₃-Fe₂O₃ to BiFeO₃ redrawn after and adapted from Bernardo et al.⁴

resulting in homogeneous $BiFeO_3$. However, interdiffusion is required between Bi_2O_3 and Fe_2O_3 , which allows other, undesirable compounds to form, and the chemical gradient can result in a core-shell structure. With diffusion of Bi_2O_3 into the Fe_2O_3 particle, the initial core of Fe_2O_3 evolves to an iron-rich $Bi_2Fe_4O_9$ (mullite) phase, which is a line compound, leaving the shell Fe-deficient. Some $BiFeO_3$ develops, with remaining Bi-rich material forming $Bi_{25}FeO_{39}$ (sillenite) phase, another line compound. Bi^{3+} and Fe^{3+} from the precursor are trapped within these secondary phases, inhibiting further reaction to form the perovskite phase.

It is also important to note that BiFeO₃ is a line compound itself. A phase diagram is given in Palai et al.⁵ showing that if the composition deviates from this line, then secondary phases such as sillenite and mullite become favorable. Valant et al.⁶ further emphasized that these secondary phases are thermodynamically favorable and are further stabilized by the presence of impurities.

While Fe_2O_3 is not expected to exhibit polymorphic phase transitions within the formation temperature of $BiFeO_3$, Bi_2O_3 is monoclinic (designated α - Bi_2O_3) at room temperature and undergoes polymorphic phase transitions on heating,⁵ which possibly influences the reaction. Reported phases in Bi_2O_3 include monoclinic α - Bi_2O_3 , face-centered cubic (fcc) δ - Bi_2O_3 (the high temperature cubic phase), and body-centered cubic (bcc) γ - Bi_2O_3 (a metastable cubic phase).⁵ However, there is no consensus

on the phase transitions occurring during the reaction to form BiFeO₃ and their role in the synthesis itself. Morozov et al. Paper that the α -Bi₂O₃ phase converts to the γ -Bi₂O₃ at approximately 730°C. Thrall et al. using in situ high-temperature X-ray diffraction (HTXRD), reported that α -Bi₂O₃ converts to γ -Bi₂O₃ at approximately 650–700°C under vacuum and inert environments. However, previous reports suggest that α -Bi₂O₃ converts to δ -Bi₂O₃ at 730°C, and that γ -Bi₂O₃ is only observed during cooling from the higher temperature δ -Bi₂O₃ phase. Pall

There is evidence in the literature that between 447 and 767°C, BiFeO₃ is metastable, and decomposes into thermodynamically stable secondary phases, often with remaining starting oxides present.¹ A study by Selbach et al.¹² showed that BiFeO₃ decomposed to secondary phases between 600 and 900°C, and then re-formed BiFeO₃ at higher temperatures. Morozov et al.⁷ claimed that BiFeO₃ always yields other compounds as impurities. These results evidence the challenges of synthesizing pure-phase BiFeO₃ using solid-state reactions.

Understanding the reaction fully requires the in situ identification of phases, which is most appropriate for X-ray diffraction (XRD). However, a central challenge in following the phase evolution during the synthesis of BiFeO₃ using XRD is that metastable γ -Bi₂O₃ is isostructural to Bi₂₅FeO₃₉^{13,14}; consequently, the XRD patterns of the two phases are difficult to distinguish from one another. However, there exist various approaches for

journal_{⊥³}

discerning the phases. One approach is to closely examine the cell metrics. For example, Levin and Roth ¹⁵ reported that the lattice parameters of an undoped, metastable bcc phase of Bi $_2$ O $_3$ are much larger than a distinct, stable bcc phase of Bi $_2$ O $_3$ with Fe $_2$ O $_3$ incorporation. Figure S1 ¹⁵ in Supporting Information shows the expected lattice parameters. Of relevance to the current work is the undoped, metastable bcc phase of Bi $_2$ O $_3$ lattice parameter of 10.27 Å, and the distinct, stable bcc phase of approximately 4 mol% Fe $_2$ O $_3$ -modified Bi $_2$ O $_3$, which is approximately 10.19 Å. These lattice parameters are referenced further in the following sections.

To provide insight into the solid-state reaction of Bi_2O_3 and Fe_2O_3 to form $BiFeO_3$, several in situ HTXRD experiments are presented. In situ HTXRD experiments include heating and cooling the starting oxides individually at multiple heating rates in air, heating and cooling mixed starting oxides to form $BiFeO_3$, and partially heating mixed starting oxides that were quenched. These experiments demonstrate that all the Bi_2O_3 reacts with a small amount of Fe_2O_3 to form sillenite $Bi_{25}FeO_{39}$ prior to the formation of $BiFeO_3$. In other words, the reaction of Bi_2O_3 with Fe_2O_3 to form $BiFeO_3$ occurs via a two-step reaction sequence with sillenite $Bi_{25}FeO_{39}$ as the intermediate compound.

2 | EXPERIMENTAL PROCEDURES

Starting powders of Bi₂O₃ (99.99%, Alfa Aesar) and Fe₂O₃ (99.99%, Alfa Aesar) were weighed in equimolar proportions to target the formation of BiFeO₃. All experiments involved ball milling of the powders prior to HTXRD in ethanol for 24 h using 10 mm yttria stabilized zirconia milling media (20:1). No milling media contamination was observed in the products after the milling process. A scanning electron microscope (SEM) image of the milled powder is provided in Figure S2 and shows that the Bi₂O₃ and Fe₂O₃ particles are on the scale of approximately 1 μ m and 100 nm, respectively. All powders were heated in an Anton Paar XRK 900 reaction chamber with z-stage automated alignment while mounted in a PANalytical Empyrean powder diffractometer with Cu K α radiation under an ambient gas with a heating rate of 1°C/min. In situ HTXRD patterns were measured continuously in a 2θ range of 20° – 80° using a step size of 0.026°. In situ patterns were also measured during cooling at a rate of 10°C/min.

3 | RESULTS AND DISCUSSION

An important aspect of this work is to identify the role of the phase transitions in Bi₂O₃ in the synthesis of BiFeO₃.

It is therefore critical to differentiate between the isostructural phases of γ -Bi₂O₃ and Bi₂₅FeO₃₉. With that in mind, the phase transitions in Bi₂O₃ when heated by itself to 780°C at 1°C/min, held at that temperature for 1 h, then cooled at 10°C/min to room temperature are determined and these results are presented in Figure 2A. Figure S3 shows these results over a wider 2θ range. Fe₂O₃ was heat treated under the same conditions, though there were no phase transitions observed (results not shown here).

The in situ HTXRD scan in Figures 2A and S3 shows that when α -Bi₂O₃ is heated by itself, the initial monoclinic α-Bi₂O₃ persists to between 700 and 750°C, at which temperature it transitions to fcc δ -Bi₂O₃. On cooling, the δ -Bi₂O₃ converts to γ -Bi₂O₃, which is consistent with Harwig and Gerards¹¹ and Levin and Roth.¹⁵ In the present study as well as in the works of Harwig and Gerards¹¹ and Levin and Roth, 16 the γ -Bi₂O₃ phase is only observed during cooling. At approximately 500°C during cooling, the γ -Bi₂O₃ transitions to α -Bi₂O₃, demonstrating reversibility to the original phase upon cooling. In other experiments not shown here, milled α -Bi₂O₃ powders were heated at 1°C/min and unmilled α -Bi₂O₃ was heated at 5°C/min, and the same phase transitions were observed, showing the persistence of this observation with different sample preparation methods and heating rates. The observation that γ -Bi₂O₃ is not present on heating is discussed later in the manuscript in relation to the reactions to form BiFeO₃.

To synthesize BiFeO₃, an equimolar mixture of milled Bi_2O_3 and Fe_2O_3 was heated to $780^{\circ}C$, a temperature, determined from iterative experiments, which enabled full reaction to form BiFeO₃. The HTXRD measurements of the full reaction to form BiFeO₃ are shown in Figure 2B. Figure S4 shows these results over a wider 2θ range.

There are several features to highlight in the in situ HTXRD measurements in Figures 2B and S4. First, all the α -Bi₂O₃ converts into a different crystal structure at approximately 600°C. In Figure 2A, α -Bi₂O₃ by itself does not appear to change phase until approximately 750°C, at which temperature it converts to δ -Bi₂O₃. The comparison of this initial observation (in Figure 2B) to that of Bi₂O₃ heated by itself (Figure 2A) indicates a possible phase transition and/or an intermediate phase. More specifically, that Fe causes this intermediate phase, suggests that it is likely sillenite, $Bi_{25}FeO_{39}$, rather than γ - Bi_2O_3 . Another important observation in Figure 2B is that BiFeO₃ starts to form at approximately 700°C, before the Bi₂₅FeO₃₉ phase has completely disappeared. As the sillenite phase disappears, mullite forms and persists through the entire thermal process. The mullite phase peak positions agree with positions reported previously in literature.1 With continued heating, the remainder of the Fe₂O₃ reacts with the sillenite to form BiFeO₃. On cooling (Figure 2B), the BiFeO₃ product remains.

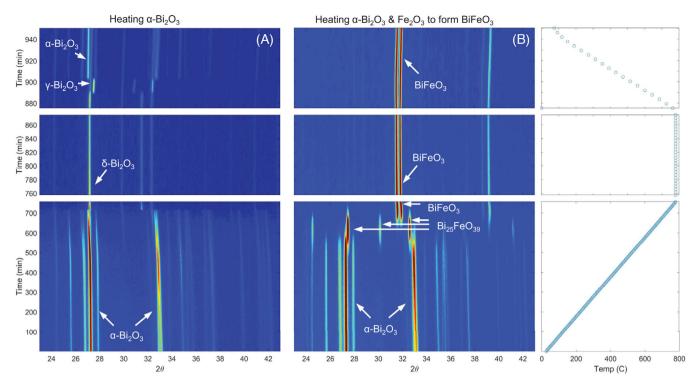


FIGURE 2 Powder diffraction patterns measured in situ during high-temperature X-ray diffraction (HTXRD) of (A) Bi₂O₃ heating and cooling by itself, and (B) Bi₂O₃ and Fe₂O₃ heated to react and form BiFeO₃.

In the specific experiment shown in Figure 2B, the persistence of a very minor fraction of $\mathrm{Bi}_2\mathrm{Fe}_4\mathrm{O}_9$ is a reminder of the importance of starting particle size, as can be inferred from Figure 1. By repeating this experiment multiple times, examples can be found where the final products are phase-pure BiFeO_3 within the resolution limits of diffraction. The variability in the final phase is a consequence of the small quantities of powders used in the HTXRD experiment and their state of mixing when placed on the heating stage. An indexed pattern of a resulting phase-pure BiFeO_3 in one of these experiments is shown in Figure 3.

Another important observation that needs to be informed for understanding of the reaction sequence is the behavior of the Fe₂O₃ diffraction peaks. The intensity of Bi₂O₃ is much higher than that of Fe₂O₃ (mostly attributed to the difference in atomic scattering factors of Bi vs. Fe), meaning that most of the reflections in the lower 2θ region of Figure 2B are assigned to Bi₂O₃. The major peaks of the initial rhombohedral Fe₂O₃ phase (PDF pattern 04-015-6947) are at 2θ approximately 24.15° (012 reflection), and at 2θ approximately 33.16° (104 reflection), which lies in the same 2θ range as α -Bi₂O₃ 122/200. To illustrate the reaction sequence more closely, a magnified section of Figure 2B is included as shown in Figure 4.

Figure 4 shows that the α -Bi₂O₃ (peak at approximately 21.7° 2 θ) disappears by approximately 545°C, much lower than the beginning of BiFeO₃ formation. The disappear-

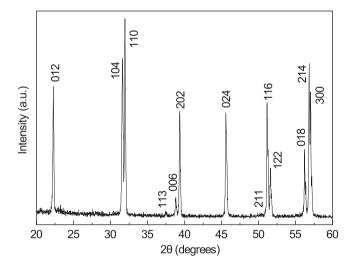
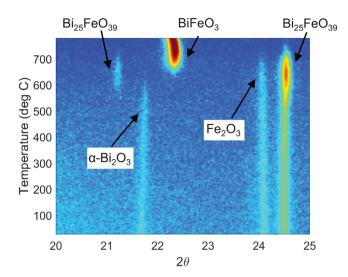



FIGURE 3 Indexed diffraction pattern of BiFeO₃ resulting from a high-temperature X-ray diffraction (HTXRD) experiment.

ance of the α -Bi₂O₃ peak does, however, coincide with the appearance of the peak at approximately 21.1° 2θ (which could be assigned to either Bi₂₅FeO₃₉ or γ -Bi₂O₃). The Fe₂O₃ (peak at approximately 21.1° 2θ) persists to at least 100°C higher than the α -Bi₂O₃. The peak at approximately 24.5° 2θ is initially α -Bi₂O₃, and then intensifies, which appears to be a major peak of the intermediate phase. The persistence of the peak at approximately 24.5° 2θ suggests a crystallographic relationship between the α -Bi₂O₃ and the intermediate phase (Bi₂₅FeO₃₉ or γ -Bi₂O₃).

FIGURE 4 Magnified view of Figure 2 in the 2θ range of 20° – 25° C.

To further study the intermediate phase, a separate in situ reaction was performed and quenched with the aim of locking in the intermediate phase (Bi $_{25}$ FeO $_{39}$ or $\gamma\text{-Bi}_2O_3$), for example, to examine (ir)reversibility of the phase transitions. The experiment involved heating equimolar Bi $_2O_3$ and Fe $_2O_3$ at a 1°C/min heating rate to 650°C, then cooled at 20°C/min to room temperature. The result of this experiment is shown in Figure 5A. Multiple room temperature XRD patterns are recorded over several days following the experiment and a representative pattern is shown in Figure 5B.

Figure 5A shows that the intermediate phase appears at the times and temperatures expected relative to that shown earlier in Figure 2B. After quenching from 650°C to room temperature, the intermediate phase persists, as shown in Figure 5B. Referring to the experiment involving heating of Bi₂O₃ by itself (Figure 2A), if the intermediate phase is metastable γ -Bi₂O₃, it should revert to α -Bi₂O₃ on cooling. However, the room temperature XRD patterns after quenching (e.g., Figure 5B) show the persistence of sillenite Bi₂₅FeO₃₉ for several days after the experiment. The phases present at room temperature after the interrupted reaction are Bi₂₅FeO₃₉, Fe₂O₃, and a minor fraction of BiFeO₃. Most importantly, no α -Bi₂O₃ remains after cooling. The persistence of the intermediate phase after cooling proves that it is not γ -Bi₂O₃ and is consistent with the formation of Bi₂₅FeO₃₉.

The quenched powders are also investigated using transmission electron microscopy with energy-dispersive spectroscopy (EDS) and representative images are shown in Figure 6. The EDS maps show two distinct regions which are consistent with the XRD observations: (i) regions "1" are from the larger of two particle sizes which are

Bi-rich with a small amount of Fe distributed homogeneously throughout, consistent with the sillenite phase, and (ii) regions "2" are from the smaller particle size which are Fe-rich with no Bi, consistent with Fe₂O₃. These two types of particles are commensurate with the results from XRD, which shows a mixture of $Bi_{25}FeO_{39}$ and Fe_2O_3 .

Since Figure 6 illustrates that Fe has diffused homogeneously throughout the particles that were originally Bi₂O₃, it is natural to question whether larger particles of Bi₂O₃ would still react with the Fe₂O₃ to form sillenite, given that they require longer diffusion lengths. To test whether sillenite forms when starting with larger particles, Bi₂O₃ was intentionally coarsened to increase the grain size, using a heating rate of 1°C/min, a hold at 650°C for 2 h, and then cooling at a rate of 5°C/min. The coarsened Bi₂O₃ particles were then combined with equimolar Fe₂O₃ and heated in the diffractometer. The HTXRD results, reported in Figure S5, show that the sillenite phase occurs in parallel to the disappearance of the Bi₂O₃ phase. With further heating, the sillenite reacts with Fe₂O₃ to form BiFeO₃, and some sillenite phase is retained in the final pattern. Fe can, therefore, still diffuse into larger Bi₂O₃ particles, forming sillenite during the reaction. SEM images and EDS maps of the starting particles and the final products of this experiment are shown in Figure S6. The SEM images and EDS maps are consistent with the HTXRD results, showing that some BiFeO3 forms while the larger particles exacerbate the persistence of the sillenite phase.

Data from the XRD pattern shown in Figure 5B are used to refine crystal structure models using the Rietveld method. The XRD pattern was modeled using either the $Bi_{25}FeO_{39}$ phase or the γ - Bi_2O_3 phase. Although the final phase is already proven through the quenching study to not be γ -Bi₂O₃, we nevertheless model this phase to compare to the work of Levin and Roth.¹⁵ Both calculated patterns fitted the experimental pattern well, with Bragg R factors of approximately 4%. The refinement using Bi₂₅FeO₃₉ resulted in marginally better fit parameters, however it was not sufficiently better that it could be used as a basis for determining which phase is present, demonstrating the need for complementary experiments, such as heating of the powders independently (e.g., Figure 2A). Figure S7 shows the results of this refinement when using Bi₂₅FeO₃₉ as the major phase which was used to obtain the cubic unit cell parameter. The refined lattice parameter is 10.1876(3) Å which matches the distinct, stable bcc phase of Bi₂O₃ with Fe₂O₃ incorporation (\sim 10.18 Å) in Figure S1, ¹⁵ better than Bi₂O₃ (\sim 10.27 Å), supporting the presence of the intermediate phase, Bi₂₅FeO₃₉.

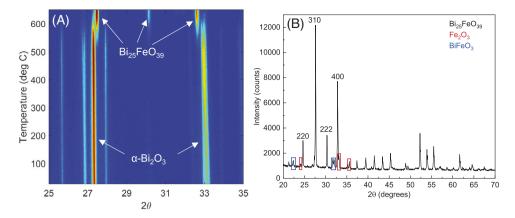


FIGURE 5 (A) Powder diffraction patterns measured in situ during high-temperature X-ray diffraction (HTXRD) of Bi_2O_3 with Fe_2O_3 up to 650°C, after which the sample was furnace-quenched. (B) Room temperature X-ray diffraction (XRD) pattern of the quenched product, showing the major phase of Bi_2SFeO_3 , with minor amounts of Fe_2O_3 (unreacted starting material), and the first appearance of product $BiFeO_3$.

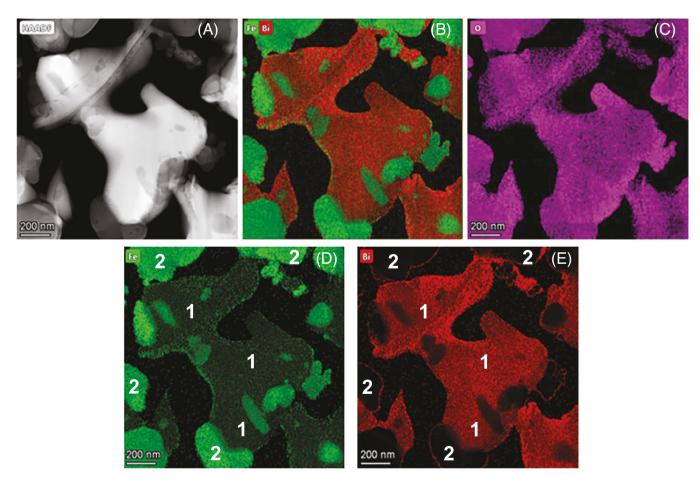


FIGURE 6 Transmission electron microscopy (TEM) image and energy-dispersive spectroscopy (EDS) maps of the equimolar Bi_2O_3 and Fe_2O_3 mixture that was heated to 650°C and then quenched in order to examine the intermediate phase. High-angle annular dark field (HAADF) in (A), combined Fe and Bi chemical map in (B), O map in (C), Fe map in (D), and Bi map in (E). In parts (D) and (E), two types of particles are identified, 1 and 2, which correspond to the sillenite phase and remaining Fe_2O_3 , respectively.

FIGURE 7 Schematic diagram illustrating the reaction sequence of Bi₂O₃ and Fe₂O₃ during the formation of BiFeO₃.

4 | CONCLUSIONS

Collectively, these experiments demonstrate that the reaction of Bi₂O₃ with Fe₂O₃ to form BiFeO₃ occurs through an intermediate phase; specifically, the Bi₂O₃ transforms to Bi₂₅FeO₃₉ through the incorporation of a small fraction of the Fe₂O₃. It is emphasized that all the Bi₂O₃ transforms to Bi₂₅FeO₃₉. Thus, Bi₂₅FeO₃₉ is not only present due to the chemical gradients innate to Bi₂O₃ and Fe₂O₃ interdiffusion⁴ and from thermodynamic decomposition from BiFeO₃;^{1,13} in addition, Bi₂₅FeO₃₉ forms as an intermediate compound in the reaction that further reacts with remaining Fe₂O₃ to form BiFeO₃. The reaction sequence in the solid-state synthesis of BiFeO3 is illustrated in Figure 7. Sillenite Bi₂₅FeO₃₉ is indicated as an intermediate phase that reacts with the remainder of the Fe₂O₃ to yield BiFeO₃. Given these new insights that Bi₂₅FeO₃₉ is inevitably formed during the synthesis of BiFeO₃, continuing studies can focus on other factors such as the purity of the starting materials, the Bi:Fe stoichiometry, and the particle sizes.

In summary, the experiments demonstrate that sillenite $Bi_{25}FeO_{39}$ occurs as an intermediate product of Bi_2O_3 and a small amount of Fe_2O_3 . All the Bi_2O_3 reacts to form sillenite $Bi_{25}FeO_{39}$, which then reacts with the remaining Fe_2O_3 to form the product $BiFeO_3$. Therefore, the synthesis of perovskite $BiFeO_3$ is shown to occur via a two-step reaction sequence with $Bi_{25}FeO_{39}$ as an intermediate compound.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation (NSF), as part of the Center for Dielectrics and Piezoelectrics under grant nos. IIP-1841453 and IIP-1841466. This work was performed at the Analytical Instrumentation Facility (AIF) at North Carolina State University and at the NC State Nanofabrication Facility (NNF), both of which are supported by the State of North Carolina

and the National Science Foundation (Award No. ECCS-2025064). AIF and NNF are members of the North Carolina Research Triangle Nanotechnology Network (RTNN), a site in the National Nanotechnology Coordinated Infrastructure (NNCI). Dr. Alexandra Goodnight is acknowledged for redrawing Figure 1 and creating Figure 7, Darrell Harry for assistance with the SEM experiments, and Dr. Chris Winkler for assistance with the TEM experiments.

ORCID

Corrado Wesley https://orcid.org/0000-0001-6964-7265 Elizabeth C. Dickey https://orcid.org/0000-0003-4005-7872

Jacob L. Jones https://orcid.org/0000-0002-9182-0957

REFERENCES

- Rojac T, Bencan A, Malic B, Tutuncu G, Jones JL, Daniels JE, et al. BiFeO₃ ceramics: processing, electrical, and electromechanical properties. J Am Ceram Soc. 2014;97(7):1993– 2011.
- Selbach SM, Einarsrud M-A, Tybell T, Grande T. Synthesis of BiFeO₃ by wet chemical methods. J Am Ceram Soc. 2007;90(11):3430–34.
- 3. Xu J-H, Ke H, Jia D-C, Wang W, Zhou Y. Low-temperature synthesis of BiFeO₃ nanopowders via a sol-gel method. J Alloys Compd. 2009;472:473–77.
- Bernardo MS, Jardiel T, Peiteado M, Caballero AC, Villegas M. Reaction pathways in the solid state synthesis of multiferroic BiFeO₃. J Eur Ceram Soc. 2011;31:3047–53.
- 5. Palai R, Katiyar RS, Schmid H, Tissot P, Clark SJ, Robertson J, et al. β phase and γ - β metal-insulator transition in multiferroic BiFeO₃. Phys Rev. 2008;B77:014110.
- Valant M, Axelsson A-K, Alford N. Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO₃. Chem Mater. 2007;19(22):5431–36. https://doi.org/10.1021/cm071730
- Morozov MI, Lomanova NA, Gusarov V. Specific features of BiFeO₃ formation in a mixture of bismuth(III) and iron(III) oxides. Russ J Gen Chem. 2003;73(11):1676–80.
- 8. Thrall M, Freer R, Martin C, Azough F, Patterson B, Cernik RJ.
 An in situ study of the formation of multiferroic bismuth ferrite

- using high resolution synchrotron X-ray powder diffraction. J Eur Ceram Soc. 2008;28(13):2567–72.
- 9. Rao CNR, Subba Rao GV, S Ramdas S. Phase transformations and electrical properties of bismuth sesquioxide. J Phys Chem. 1969;73:672–75.
- 10. Hull S. Superionics: crystal structures and conduction processes. Rep Prog Phys. 2004;67:1233–314.
- 11. Harwig HA, Gerards AG. The polymorphism of bismuth sesquioxide. Thermochim Acta. 1979;28:121–31.
- Selbach SM, Einarsrud M-A, Grande T. On the thermodynamic stability of BiFeO₃. Chem Mater. 2009;21:169– 173.
- 13. Salazar-Pérez AJ, Camacho-López MA, Morales-Luckie RA, Sánchez-Mendieta V, Ureña-Núñez F, Arenas-Alatorre J. Structural evolution of ${\rm Bi_2O_3}$ prepared by thermal oxidation of bismuth nano-particles. Superf y Vacío. 2005;18(3): 4–8.
- Jebari H, Tahiri N, Boujnah M, El Bounagui O, Taibi M, Ez-Zahraouy H. Theoretical investigation of electronic, magnetic and magnetocaloric properties of Bi₂₅FeO₄₀ compound. Phase Transit. 2021;94(3–4):147–58.

- 15. Levin EM, Roth RS. Polymorphism of bismuth sesquioxide. II. Effect of oxide additions on the polymorphism of $\rm Bi_2O_3$. J Res Natl Bur Stand A. 1964;68A:197–206.
- Levin EM, Roth RS. Polymorphism of bismuth sesquioxide. I. Pure Bi₂O₃. J Res Natl Bur Stand A. 1964;68A:189–95.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Wesley C, Bellcase L, Forrester JS, Dickey EC, Reaney IM, Jones JL. Solid state synthesis of BiFeO₃ occurs through the intermediate Bi₂₅FeO₃₉ compound. J Am Ceram Soc. 2024;1–8. https://doi.org/10.1111/jace.19702