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Abstract

The application of bottom-up coarse grained (CG) models to study the equilibrium

mixing behavior of liquids is rather challenging, since these models can be significantly

influenced by the density or the concentration of the state chosen during parametriza-

tion. This dependency leads to low transferability in density/concentration space and

has been one of the major limitations in bottom-up coarse graining. Recent approaches

proposed to tackle this shortcoming range from the addition of thermodynamic con-

straints, to an extended ensemble parametrization, to the addition of supplementary

terms to the system’s Hamiltonian. To study fluid phase equilibria with bottom-up CG

models, the application of local density (LD) potentials appears a promising approach,

as shown in previous work by Sanyal and Shell [T. Sanyal, M. S. Shell, J. Phys. Chem.

B, 2018, 122, 5678]. Here, we want to further explore this method and test its ability

to model a system which contains structural inhomogeneities only on the molecular
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scale, namely solutions of methanol and water. We find that a water-water LD poten-

tial improves the transferability of an implicit-methanol CG model towards high water

concentration. Conversely, a methanol-methanol LD potential does not significantly

improve the transferability of an implicit-water CG model towards high methanol con-

centration. These differences appear due to the presence of cooperative interactions

in water at high concentrations that the LD potentials can capture. In addition, we

compare two different approaches to derive our CG models, namely, relative entropy

optimization and the Inverse Monte Carlo method, and formally demonstrate that the

analytical and numerical assumptions under these two methods yield equivalent results.

1 Introduction

Our understanding of the driving forces behind processes in soft condensed matter has greatly

benefited from computer simulations, and from molecular dynamics (MD) simulations in

particular. This technique allows an atomistic view into complex systems, but is limited

by computational overhead to modeling length and time scales of tens of nanometers and

microseconds, respectively. This hurdle can be overcome with coarse-grained (CG) parti-

cle models whose number of degrees of freedom (DOFs) and interactions to be evaluated

are significantly smaller compared with fine-grained (FG) models. Apart from their com-

putational advantages in computer simulations, CG models, and methods to derive them,

provide important additional merits. Efforts to make models as simple as possible provide

additional insight into emergent driving forces that may not be as easily obtained based on

FG models alone. Systematic removal of DOFs involved in deriving a CG model based on

its FG counterpart is the basis for bottom-up or systematic coarse graining. 1–3 To reduce

DOFs, the high resolution, or FG, configuration space is projected onto a CG configuration

space lower in resolution. In order to evaluate the corresponding free energy surface, the so
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called multibody potential of mean force (PMF) must be calculated2

W (R) = −kBT ln

∫
V

dr exp[−βUFG(r)] δ(R−M(r)) (1)

where W (R) is the multibody PMF and β = 1/kBT with kB the Boltzmann constant and

T the temperature. M is the projection, or mapping, operator, which relates a FG config-

uration r to a CG one R. Due to the highly multibody nature of the integral, W (R) is

too complicated to compute exactly in practice, and only approximate solutions are possi-

ble. Solving an inverse problem is one way to obtain such an approximate solution to the

multibody PMF. The goal is then to find a CG model that accurately reproduces one or

multiple quantities of the FG model in the CG configuration space, by minimizing the differ-

ence between the FG and CG configuration space with respect to the quantity chosen. This

inverse problem can be solved by means of either a variational principle4–9 or by application

of iterative Newton or quasi-Newton inversion techniques.10–13

Despite the methodological differences, all bottom-up coarse grained models suffer from the

same two fundamental problems: accurate representability and state point transferability.

The representability characterizes the ability of a CG model to simultaneously reproduce

multiple properties of the FG system like structure, pressure and isothermal compressibil-

ity. The transferability instead describes the applicability of CG models at state points not

included in the parametrization. Whereas accurate representability is guaranteed for the

target property chosen to solve the inverse problem, it is not guaranteed for other proper-

ties, i.e. a match in structure does not automatically guarantee a match in thermodynamics

or dynamics, or a match in forces does not guarantee structural agreement. 14–18 An equally

outstanding challenge is the transferability of CG models.19–22 The main reason why it is

difficult to achieve both is that entropic contributions from particles ”lost” upon coarse grain-

ing are missing. Therefore, the generated effective pair potentials cannot capture changes in

entropy necessary to describe certain thermodynamic properties and necessary to be trans-
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ferable to different state points.16,23,24 Several approaches have been proposed to tackle both

representability and transferability. Among the most common are the addition of thermo-

dynamic constraints to account for accurate pressure,12 Kirkwood-Buff integrals25 or the

surface tension,26,27 the application of an extended ensemble parametrization,28,29 or the use

of a extended Hamiltonian description for the energy of the system.30–35

Allen and Rutledge proposed the idea of local density (LD) dependent interactions to im-

prove implicit solvent models.20 Interactions based on the LD of CG sites have been used

to improve the transferability36 and the representability37 of CG models. The local density

of a CG site is simply a weighted local co-ordination number around that site, and can

be written down generally for arbitrary combinations of central and neighboring types of

sites. The LD potential can then be cast as a function of the local density and added as

a corrective extension to the traditional pair-wise form of the Hamiltonian in CG models.

Unlike pairwise Hamiltonians, a LD potential incorporates information about the inherently

multibody environment around CG sites which contributes to enhanced model transferabil-

ity. Further, it is a mean-field potential with computational complexity similar to that of

pair potentials and thus does not sacrifice computational speed (further implementation de-

tails can be found in Ref [32] ). LD potentials have been used to improve the sampling of

conformation space in implicit solvent models of superhydrophobic polymers and were found

to enhance the model’s transferability to different polymer lengths.32 Recently, they have

also been shown to improve structural transferability in CG models of liquid mixtures such

as benzene in water.34

In this work we want to test the ability of LD dependent CG models to quantitatively and

qualitatively describe mixtures of water and methanol. These mixtures provide an interest-

ing test case for the LD dependent potentials, since they show strong microheterogeneities at

atomistic length scales as a function of methanol concentration, while remaining miscible at

a macroscopic scale.38–43Laaksonen et al. showed that these microheterogeneities are caused

by a non-homogeneous distribution of the two components in the mixture.44 This is expressed
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through structural patterns determined by the dominant component in the system. X-ray

emission spectroscopy experiments applied by Guo et al. revealed that the inhomogeneous

mixing between methanol and water can be explained by the formation of rings of methanol

bridged by water molecules.41 In agreement, Perera et al. found methanol molecules form-

ing chain-like structures, caused by water bridging the hydroxyl groups of the methanol

molecules.45 Further, Pascal and Goddard confirmed the picture of incomplete mixing.46 At

low methanol concentrations, methanol molecules bury their hydrophobic groups away from

water. With increasing methanol concentration this is no longer possible and free mixing is

observed. At high methanol concentrations, the system is best described as water dissolved

in methanol.46

Classical MD simulations of methanol-water mixtures have almost exclusively been based on

all-atom force field models.38,44–46 It is, however, interesting to ask if CG particle models can

equally well be used to describe the structural properties of these systems. This question

may provide insights to modeling large-scale phenomena driven by the interplay between hy-

drophobic and hydrophilic interactions in complex systems not amenable to all-atom models.

In this study, we investigate the possibility to study this interplay with simple CG models.

We do this by explicitly accounting for LD effects and examine if LD potentials can effec-

tively describe the micro-heterogeneities observed in water/methanol mixture with a simple

single site CG model for both liquids, water and methanol in an implicit solvent environ-

ment. We derive two different CG models: (I) CG methanol in implicit water and (II) CG

water in implicit methanol. Further, we compare two different methods to generate bottom

up CG models, namely Inverse Monte-Carlo (IMC)11 and relative entropy optimization,13

and we show analytically and numerically under which assumptions these two methods are

equivalent.

The remainder of the article is structured as follows: first, the basic theoretical background

on IMC and relative entropy optimization is given. Second, we prove analytically under

which assumptions IMC and the relative entropy method are equivalent. Next, we briefly
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discuss the extension of the relative entropy method to LD potentials, followed by the details

of the numerical calculations performed. Adjacent, we present the main results of this study

along with a detailed discussion, followed by the conclusion.

2 Methods

2.1 Inverse Monte Carlo

The Inverse Monte Carlo (IMC) Method, or Newton inversion method (introduced by Lyubart-

sev and Laaksonen) aims to derive a CG force field (FF) that reproduces the pairwise struc-

ture, i.e. the radial distribution function (RDF), of the underlying atomistic or fine grained

(FG) system.11 The CG FF is estimated initially as the two-body potential of mean force

(PMF, U0(rij)) acting between two particles i and j along the distance rij obtained from

the corresponding RDF of the FG system (g0(rij)):

U0(rij) = −kBT ln g0(rij) (2)

In many cases, the PMF does not accurately resemble the effective pair potential in the CG

configuration space due to the relevance of higher order correlations. Thus, the potential is

updated a series of times n, solving a set of linear equations until the difference in the RDF

is minimized. This leads to numerical pair potentials.

The set of linear equations is given by Eq.(3), where Nα is the number of particle pairs at a

distance α either in the CG system or in the mapped reference system (N 0
α), J is a Jacobian

matrix, ∆U is the potential update and γ is a particle pair distance > α. The Jacobian

matrix is defined in Eq.(4), where Nγ is the number of particle pairs separated by a distance
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γ. Finally, the update of the PMF gets computed according to Eq.(5).

〈Nα〉CG −N0
α = Jα,γ∆Uγ (3)

J =
∂〈Nα〉CG

∂Uγ
= −β(〈NαNγ〉 − 〈Nα〉 · 〈Nγ〉) (4)

Un(rij) = Un−1(rij)− J−1(gn−1(rij)− g0(rij)) (5)

The number of particle pairs Nα is related to the g(r) via47

〈Nα〉 =
N(N − 1)

2

4πr2α∆r

V
g(rα) (6)

where V is the volume of the system, N the number of particles and ∆r is the discretization

grid spacing. The Jacobian defined in Eq.(4) explicitly contains cross correlations between

the number of particle pairs at different distances. This provides several advantages in con-

verging towards the final effective pair potentials, and some disadvantages in terms of nu-

merical stability of IMC, compared to the similar Iterative Boltzmann Inversion method 10,12

as discussed in the literature.26,48,49

2.2 Relative entropy optimization for pair potentials

Another way to determine a CG FF is through relative entropy optimization, as proposed by

Shell.13 The relative entropy is a quantity that measures the information loss upon reducing

the FG system to the CG model. It is defined as

Srel =
∑
i

p0(i) ln
p0(i)

pCG(i)
+ Smap (7)

where p is the probability to observe a certain configuration i determined either by the FG

FF (p0) or by the CG FF (pCG) and Smap is a mapping entropy which accounts for the

degeneracy of atomistic states in the CG configuration space. In the canonical ensemble the
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relative entropy can be expressed as

Srel = β〈UCG(ζ)− UFG〉FG − β(ACG(ζ)− AFG) + Smap (8)

where U is the potential energy, A is the Helmholtz free energy and ζ is a vector that contains

all parameters of the CG FF. The idea in relative entropy optimization is to find the optimal

set of parameters ζ that minimize the information loss between the FG and CG system.

Similar to IMC, where the pair potential U is updated, in relative entropy optimization the

FF parameters ζ are updated until a minimum in the relative entropy is reached.50 Using a

Newton-Raphson approach, the parameter update scheme is:

ζk = ζk−1 −H−1∇Srel (9)

In Eq.(9), H is the Hessian matrix and ∇Srel is the gradient of the relative entropy. Se-

quential iterations successively bring the parameters to a local Srel minimum. This scheme is

only applicable if the Hessian is positive definite, otherwise a steepest descent or conjugate

gradient optimization scheme is applied.50,51 It is interesting to note that if U consists of

splines or tabulated potentials (as in IMC), then the relative entropy has a single global

minimum and Eq.(9) always applies.51

2.3 Equivalence between Inverse Monte Carlo and relative en-

tropy optimization

The two methods, IMC and relative entropy optimization (when using a Newton-Raphson

update scheme), are equivalent for the derivation of effective pair potentials if the following
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applies:

∇Srel = (〈Nα〉CG −N0
α)) (10)

H−1 = J−1 (11)

For simplicity we assume a system with only one component, but the equations can be easily

extended to multi component systems as well.

As proposed by Lyubartsev and Laaksonen,11 we start with a discretized Hamiltonian (U )

to describe the potential energy of the system

U =
∑
α

Nα(q)ζα (12)

where ζα is the pair potential and Nα is the exact number of particle pairs at distance α,

given by:

〈Nα〉 =

∫
dqNα

∏
λ

exp(−βNλ(q)ζλ)∫
dq
∏
λ

exp(−βNλ(q)ζλ)
(13)

The Jacobian in Eq.(4) is then given by

∂〈Nα〉
∂ζγ

=
∂

∂ζγ

∫ dqNα

∏
λ

exp(−βNλ(q)ζλ) ·
1∫

dq
∏
λ

exp(−βNλ(q)ζλ)

 (14)

which by application of the chain rule results in:

J =
∂〈Nα〉
∂ζγ

= −β(〈NαNγ〉 − 〈Nα〉 · 〈Nγ〉) (15)

By inserting Eq.(15) in Eq.(3), the potential update, ∆Uγ, in IMC is computed by solving:

〈Nα〉CG −N0
α = (−β(〈NαNγ〉 − 〈Nα〉 · 〈Nγ〉))∆Uγ (16)
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where we define the left hand side (l.h.s) as

∆N IMC
α ≡ 〈Nα〉CG −N0

α (17)

Next, we evaluate the relative entropy in Eq.(8). Its derivative can be written as:

∇Srel = β
〈
∂U
∂ζ

〉
FG
− β

〈
∂U
∂ζ

〉
CG

(18)

Substituting U defined by Eq.(12), we obtain:

∇Srel = N0
α − 〈Nα〉CG ≡ ∆NSrel

α (19)

In comparison with Eq.(17), the result of Eq.(19) reveals the following relation:

−∆NSrel
α = ∆N IMC

α (20)

The Hessian matrix in Eq.(9) is given by

H =

〈
∂2U

∂ζα∂ζγ

〉
FG

−
〈

∂2U

∂ζα∂ζγ

〉
CG

+ β

〈
∂U

∂ζα

∂U

∂ζγ

〉
CG

− β
〈
∂U

∂ζα

〉
CG

〈
∂U

∂ζγ

〉
CG

(21)

where the first two terms vanish due to the linearity of U in the parameters ζ.51 The lineariza-

tion that is exploited here results from using cubic splines for the effective pair potentials

in the relative entropy method. The fact that the CG pair potential is linear in its parame-

ters (spline knots) is crucial to the success of a simple scheme like Newton-Raphson descent

in discovering a global minimum on the relative entropy surface which then theoretically

guarantees robust representability at least for the pair correlations. Using the Hamiltonian
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defined in Eq.(12), the remainder is:

H = β〈NαNγ〉 − β〈Nα〉〈Nγ〉 (22)

which leads to a similar relation as in Eq.(20)

H−1 = −J−1 (23)

Taking these results and applying the definition for the potential update (see Eq.(5) and

Eq.(9)) we end with the following relation:

H−1(−∆NSrel
α ) = −J−1∆N IMC

α (24)

H−1∆NSrel
α = J−1∆N IMC

α (25)

This proves that under the assumption of a discretized Hamiltonian (tabulated in IMC

and represented with splines in the relative entropy method), quasi-Newton optimization

strategies like Newton-Raphson leads to an exact equivalence of the pair potentials obtained

through IMC and relative entropy. Moreover this shows that relative entropy optimization

leads to a match in the RDF between the FG and CG system without directly using it as

a target quantity in the optimization process. It is important to note that the agreement

between IMC and relative entropy minimization is likely to also hold when very knot-dense

spline potentials are employed in the latter (instead of discretized ones), although the nec-

essary knot density and discretization to observe quantitative agreement may be high.

2.4 Relative entropy optimization for local density potentials

Recently Sanyal and Shell applied the relative entropy approach not only for pair potentials,

but also for so called local density (LD) potentials.32,34 LD potentials (ULD) account for

the effect of neighboring particles on the effective pair potential (upair). This additional
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contribution changes the total CG potential energy to:

UCG =
∑
i<j

upair + ULD (26)

ULD is a sum over an unspecified function of the local density around each particle i in the

system,

ULD =
∑
i

f(ρi) (27)

where f(ρi) is practically represented using cubic B-splines. Here, the local density, ρi, is

the total number of neighboring particles within a specified and smoothed cutoff (rc)

ρi =
∑
j 6=i

φ(rij) (28)

where the indicator function (φ) adopts a value of 1 below an inner cutoff r0 but continuously

and quickly decays to 0 at rc. The shape of this function is chosen to be computationally

convenient and does not require the calculation of the absolute distance between pairs of

particles (or any square root operations).

φ(r) =


1 r ≤ r0

c0 + c2r
2 + c4r

4 + c6r
6 r ∈ (r0, rc)

0 r ≥ rc

(29)

The difference between r0 and rc will be called ∆ and is of the order of 0.1− 0.12 nm. The

exact form of the coefficients c as well as more details on the LD potentials can be found in

the original work by Sanyal and Shell and the recent extension to binary mixtures.32,34
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3 Simulation Details

FG and IMC CG simulations are performed with the Gromacs-5.1.2 MD engine.52,53 IMC

potentials are generated with the VOTCA coarse graining package (version 1.4). 47,54 The

relative entropy optimization is achieved with an in house code. To account for local density

potentials, CG simulations are executed with a modified version of the LAMMPS simulation

package that includes a custom local density potential.55

3.1 Fine grained simulations

All systems studied contain 5000 molecules in total, with different methanol mole fractions,

xM , of interest, namely 0.1, 0.5 and 0.9 in SPC/E water.56,57 For FG methanol a Kirkwood-

Buff based force field for united atoms is used.58 Newton’s equations of motion are integrated

based on a leap-frog algorithm with a timestep of 1 fs. All systems are equilibrated for 2 ns

at a constant pressure of 1 bar and at a constant temperature of 300 K (NPT condition). For

both the barostat and thermostat, the weak coupling method of Berendsen is applied with

a coupling constant of τp = 1 ps for the barostat and τT = 0.5 ps for the thermostat.59 The

barostat compressibility is 4.5 · 10−5 bar−1. For the short-range van der Waals interactions a

cut-off of 1.2 nm is applied with a long-range dispersion correction. Electrostatic interactions

are treated with the particle-mesh-Ewald method60 with a real space cut-off of 1.2 nm

and a grid size of 0.12 nm. Bonded interactions in methanol are constrained with the

LINCS algorithm.61,62 Periodic boundary conditions are applied in the x, y, and z directions.

The short equilibration is followed by a 10 ns run under NPT conditions replacing the

Berendsen barostat and thermostat with the Parrinello-Rahman barostat 63 and the Nosé-

Hoover thermostat64 respectively. The coupling constants are set to τp = 1 ps for the

barostat and τT = 0.5 ps thermostat. All other parameters are kept the same during the

short equilibration run. The average volume of the 10 ns NPT simulation is then used
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for the final production run under constant volume (NVT) conditions. Besides the volume

constraint, all other parameters are the same as during the 10 ns NPT run.

3.2 Implicit solvent model

To generate the CG model for the united atom model of methanol in implicit SPC/E wa-

ter56,57 and for SPC/E water56,57 in implicit methanol, a 3 to 1 mapping scheme is applied,

where each molecule is mapped to its center of mass as illustrated in figure 1.

Figure 1: top: mapping scheme for CG methanol with the FG model on the left and the 1
bead representation (green) on the right; bottom: mapping scheme for CG water with the
FG model on the left and the 1 bead representation (blue) on the right.

3.2.1 Inverse Monte Carlo optimization

On the basis of the FG RDFs between the centers of mass of water and water (WW ) and

methanol and methanol (MM) at xM = 0.5, implicit solvent models for CG water and CG

methanol are derived with the IMC method. As an initial guess for the iterative procedure,

the PMF is taken (see Eq. (2)). To generate the CG configuration of the atomistic model,
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water and methanol are mapped as illustrated in figure 1 and depending on the case –

either water in implicit methanol or methanol in implicit water – the second component is

implicitly present. This results in an uncharged single-site representation of the former 3

atom molecules. The effect of the lost component (either water in CG methanol or methanol

in CG water) as well as the electrostatic interactions are integrated into the effective pair

interaction generated via IMC. For the CG models of water in implicit methanol the RDFs

are evaluated between 0.24 and 1.2 nm with a grid spacing of 0.01 nm. For CG methanol

in implicit water the interval is changed to 0.3 and 1.5 nm with the same grid spacing. At

each iteration a short MD simulation of 2 ns is performed with a timestep of 1 fs and with

a leap-frog stochastic dynamics integrator. The simulations are performed at 300 K ((τT =

1.0 ps)) under NVT conditions using the average volume of the atomistic simulations at a

mole fraction of 50% methanol (xM = 0.5). No long-range dispersion correction for energy or

pressure is applied for the numerical potentials during the CG simulation. The cut-off for the

van der Waals interactions are the same as the maximum distance in the RDF evaluation.

The iterative procedure is run until no change in the RDFs as well as in the potentials is

further observed.

3.2.2 Relative entropy optimization

Relative entropy optimization is performed for the same CG models as described for IMC.

The effects of the second component and the charges are again built into the effective inter-

actions. The non-bonded pair potentials and the local density potentials are represented by

cubic splines whose knot point values are determined during the optimization process. For

both interactions 80 knot points are optimized. Models with only non-bonded pair interac-

tions will be referred to as REO (Relative Entropy Optimization) models, whereas the case

with pair splines and a local density potential will be called REO LD. The relative entropy at

each iteration is calculated from short trial MD simulations launched with current estimates

of the REO potentials. REO makes use of a reweighting scheme to decrease the number

of trial MD runs thus reducing overall computation cost and statistical error. 50 During the
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trial MD simulations the following steps are executed. First, the system is energy minimized

with a conjugate gradient algorithm for 1000 steps, followed by 1 ns equilibration. Second,

a 2 ns production run is performed under NVT conditions at 300 K. Newton’s equations of

motion are integrated according to the velocity-Verlet algorithm with a timestep of 1 fs. A

Langevin thermostat is applied with a coupling constant of 0.1 ps The cut-off value for the

REO potentials as well as the values for the outer cut-off (rc in Eq. 29) and the difference

between the outer and inner cut-off of the LD potentials (∆) are listed in table 1.

Table 1: Cut-off values for the pair-potentials (rc) and the outer cut-off values (rc) for the LD
potentials together with the difference between inner and outer cut-off for the LD potentials
(∆).

interaction type rc(nm) ∆ (nm)

Methanol-Methanol (MM) REO pair potentials 1.5
REO LD potentials 0.63 0.1

Water-Water (WW) REO pair potentials 1.2
REO LD potentials 0.34 0.1

3.2.3 Coarse grained simulations

On the basis of the derived CG models, MD simulations are performed for 10 ns under NVT

conditions at three different mole fractions of methanol xM = 0.1, xM = 0.5 and xM = 0.9.

The simulation parameters are the same as the ones used for the MD production phases in

the iterative optimization approaches for IMC and relative entropy optimization.

4 Results and Discussion

4.1 Kirkwood-Buff Analysis of the fine grained system

In order to compare the derived CG models with their parent reference systems beyond

structural accuracy, we also compute Kirkwood-Buff integrals (KBIs). KBIs relate local

structure and thermodynamic properties like activity coefficients, solvation free energies or
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the isothermal compressibility of stable mixtures.65 For mixture components i and j they

are defined as:66

Gij = 4π

∫ ∞
0

[gij(s)− 1]s2ds (30)

KBIs can be interpreted as the excess coordination number of particles j around a central

particle i. This means that the larger the KBI value, the higher is the affinity between

particles i and j and the more compressible is the system. To evaluate Eq.(30) in computer

simulations, a thermodynamic limit needs to be taken while the system should be open with

respect to its components. Notwithstanding the latter requirement, KBIs can be calculated in

computer simulations of closed (NV T or NPT ) systems. To this end, the integral in Eq.(30)

is usually truncated at an upper integration limit r < L/2 (with L the linear simulation box

dimension) where Gij(r) (the running KBI or RKBI) is observed to oscillate around a mean,

plateau value. In recent work, it has been shown that this mean value corresponds to the

thermodynamic limiting value of Eq. (30). A more detailed discussion on the issue of finite

size and ensemble effects is beyond the scope of this work and can be found elsewhere.67–69

By applying Eq.(30) one critical problem occurs that should not be ignored: RDFs do

not strictly approach a limiting value of 1 in closed systems. This leads to a drift in the

asymptotic behavior of the RKBIs. The drift is caused by depletion or accumulation of

particles j around a particle i at local scales. This local depletion or accumulation is then

compensated by a positive or negative excess of particles j at long distances, since the total

number of particles j is constant. This leads to incorrect limiting behavior (r →∞) of gij(r),

which must be corrected. We here use the empirical correction introduced by Ganguly and

van der Vegt22

gcorrij (r) = gij(r)
Nj(1− (4/3)πr3

V
)

Nj(1− (4/3)πr3

V
)−∆Nij(r)− δij

(31)

where Nj is the number of particles j, V is the volume of the system, ∆Nij is the excess

number of particles j around a particle i within a sphere of radius r and δij is the Kronecker
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delta. KBIs obtained from gcorrij (r) will be named Ganguly (GKBI) in the following.

Figure 2 shows the RKBIs of the FG simulations at xM = 0.5. One clearly sees a

drift in the asymptotic behavior of the water-water (WW ) RKBI (solid black line) and

how the empirical correction of Ganguly (solid red line) shifts the RKBI to larger values

at longer distances. This is also observed for methanol-methanol (MM) (dotted lines). In

case of methanol-water (MW , dashed lines), one observes that the RKBIs are already well

converged without any correction. Here the empirical correction of Ganguly introduces a

small shift in the tails of the KBIs towards lower values. Now if one compares the RKBI

values averaged between 1.0 and 1.5 nm, the influence of the Ganguly correction is fairly

small and the effect of the empirical correction becomes important only at larger distances.
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Figure 2: Influence of the Ganguly correction on the convergence of the Kirkwood-Buff
Integrals in the AA system for Water-Water (solid lines), Methanol-Water (dashed lines) and
Methanol-Methanol (dotted lines) at a mole fraction of xM=0.5:uncorrected RKBI (black)
and the RDF correction of Ganguly, GKBI, (red).

The average values for all KBIs obtained from FG simulations are presented in table 2.

The averages are taken between 1.0 and 1.5 nm and the errors calculated by averaging over

5 independent simulations according to

err =

√∑N
i (Gij − 〈Gij〉)2
N(N − 1)

(32)
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where N = 5 is the number of simulations. As one sees, all KBI values are nearly the same

no matter if the Ganguly correction is applied or not. The largest discrepancy between the

RKBI and GKBI occurs for WW at xM = 0.9. Further, one observes a minimum in GMM

at xM = 0.1, which means that at low methanol concentrations the methanol molecules

are mutually stronger depleted than at higher concentrations. This is in agreement with the

work of Laaksonen et al.,44 who showed that at low xM the methanol molecules are separated

by larger distances. Going from xM = 0.1 to xM = 0.5, GWW and GMM become larger (less

negative). GWW even changes sign and becomes positive. This indicates stronger water-

water and methanol-methanol association in the xM = 0.5 mixture. Upon further increasing

the methanol content from xM = 0.5 to xM = 0.9, the values of GMW in turn become larger

while GWW becomes smaller. Thus, at high mole fractions of methanol, the water molecules

preferentially interact with methanol molecules. This observation agrees with the work of

Pascal and Goddard.46 The increase in GWW upon raising the methanol concentration is

also supported by other studies, which found that small water aggregates are formed the

more methanol molecules are present in the system.44–46 We note that the values of GMM

at xM = 0.1, and of GWW at xM = 0.9, suffer from large uncertainties. This indicates that

the KBIs are not fully converged and much longer sampling is needed.22 For the purpose of

this study we compare the FG model with the different CG models within the range of these

uncertainties, being aware that a quantitative match might be difficult to achieve.

4.2 Effective potentials for the different implicit solvent models

The implicit solvent models are generated as described in the simulation details. The final

CG potentials are presented in figure 3. Figure 3 a) shows the final effective pair potentials

for the methanol-methanol (MM) interaction. As theoretically derived in the section on the

equality between IMC and REO, REO (dashed green line) and IMC (solid red line) lead to

very nearly the same set of pair potentials. The REO LD model shows a slightly smaller

second maximum in the pair potential, which is illustrated through the dashed blue curve
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Table 2: Kirkwood-Buff Integrals for methanol-methanol (MM), methanol-water(MW ) and
water-water (WW ) at different methanol mole fractions (xM) obtained by averaging RKBIs
and GKBIs between 1.0 and 1.5 nm.

Gij xM RKBI (nm3) GKBI (nm3)

GWW 0.1 -0.026 ± 2.2·10−3 -0.025 ± 2.5·10−3

0.5 0.021 ± 3.0·10−3 0.025 ± 2.5 ·10−3

0.9 -0.02 ± 1.97·10−2 0.01 ± 1.05 ·10−2

GMW 0.1 -0.039 ± 8.1 ·10−3 -0.043 ± 8.7 ·10−3

0.5 -0.041 ± 1.3·10−3 -0.043 ± 1.0 ·10−3

0.9 -0.016 ± 0.3 ·10−3 -0.016 ± 0.4 ·10−3

GMM 0.1 -0.16 ± 3.58 ·10−2 -0.14 ± 3.70 ·10−2

0.5 -0.078 ± 0.3·10−3 -0.077 ± 0.4 ·10−3

0.9 -0.075 ± 0.2 ·10−3 -0.075 ± 0.2 ·10−3

in figure 3 a). This shift is caused by the additional MM LD potential, presented in figure

3 c). This potential is small in magnitude, but weakly attractive and lowers the potential

barrier in the pair potential. Notably, the small magnitude of the LD potential reveals only

a weak multibody nature of the MM interaction at this state point.

The CG potentials for water in implicit methanol are shown in figure 3 b). Similarly to

CG methanol in implicit water, the effective pair potentials obtained from IMC (solid red

line) and from the pair only relative entropy optimization (dashed green line) nearly overlap,

with a small difference between the first maximum and the second minimum. Interestingly,

the pair potential of the REO LD model (dashed blue line) lacks the inner potential well

present in the other two models, but the absence of an attractive well is compensated by the

additional WW LD potential (figure 3 d)). This points towards a strong coupling between the

pair and LD potentials, which may mean that the attractive interactions are more naturally

captured at a mean-field multibody level (LD potential), but this result may also be an

outcome of an overlap in the function space of the pair and LD potentials whereby either

can compensate for the another in a manner to which the CG optimization procedure is

insensitive. Indeed similar compensation effects were reported by Sanyal and Shell34 and

more recently by Scherer and Andrienko for the coupling between two- and three-body
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interactions.70 The WW LD potential is larger in magnitude compared to the MM one and

saturates at a minimum of four neighboring water molecules, which no doubt corresponds

to the preference for tetrahedral coordination in liquid water. The LD potential reaches a

plateau from 4 neighbors onwards, which is by design of the relative entropy optimization.

At some point the system no longer explores local densities beyond a maximal value (see

for example figure 4 c)) where the largest is ≈ 15. So, beyond these values there is no

information in the reference simulation that can be used to tune the potential. The relative

entropy algorithm thus extrapolates a constant value thereafter. Noticeably, the WW IMC

potentials needed 10 iterations more to converge than the MM ones (15 vs. 5 iterations).

4.3 Structural and Thermodynamic Representability

To evaluate the representability of the derived CG models, we compute the RDF between

CG water in implicit methanol, and between CG methanol in implicit water, both at a mole

fraction of xM=0.5. In figure 4 a), the RDFs between methanol molecules for the different

CG models in comparison with the center of mass RDF calculated from FG simulations are

presented. As one sees, all CG models overlap with the FG RDF, showing two distinct max-

ima, one at ≈ 0.3 nm that stems from the methyl-hydroxyl interaction and one at ≈ 0.5 nm

that stems from the methyl-methyl interaction. In figure 4 c), the LD distributions obtained

from the REO and REO LD model are shown in comparison with the FG reference. As

one sees, the REO model (dashed green line) already captures the FG LD distribution (solid

black line) quite accurately and the additional LD potential improves the match only slightly

(dashed blue line). This corresponds to the similarity in the underlying pair potentials and

the small contribution of the LD potentials, and further indicates only a weak multibody

nature of the MM interaction.

The water-water (WW ) RDFs presented in figure 4 b), show a very sharp first peak that

is present in all models. This points towards a high probability to find a water molecule

next to another one, but due to the narrow width, only ≈ 4 water molecules are found in
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the first solvation shell, in comparison to icosahedral coordination in simple liquids. This is

in agreement with prior experimental and theoretical studies.44,45,71 Despite the similarity

in the qualitative appearance of the RDF, the REO LD model (dashed blue line) slightly

underestimates this first peak, as shown in figure 4 b). The REO model (dashed green line)

also slightly underestimates the first peak and the IMC model (solid red line) - by construc-

tion - shows the best agreement. This is surprising, since IMC and REO show only minor

differences in the underlying pair potentials. One possible reason could be the different in-

terpolation and extrapolation schemes applied by the two coarse graining software packages

during the generation and/or evaluation of the final tabulated potentials. This assumption

is supported by figure 5 a), where we compare the raw output of VOTCA, i.e. no interpo-

lation between data points, and the two tabulated potentials used in the simulation. Here,

potentials are interpolated. Moreover, the relative entropy approach utilizes piecewise cubic

splines to represent interactions that are distinct from the potential interpolation in the IMC

approach that uses the Akima interpolation scheme. Another reason for the differences be-

tween IMC and REO models may be the distinct convergence strategies, involving iteration

in the former and minimization in the latter.

One sees that the repulsive part as well as the potential well in the tabulated IMC potential

(solid black line) is slightly softer than for the REO tabulated potential (red line) and the

raw output of VOTCA (green line). On the basis that structure is mainly determined by

the short range part of a potential and given the narrow width of the first peak in the RDF,

this small difference between raw output data and final tabulated potentials could cause

the structural difference observed. For methanol-methanol, those small differences in the

repulsive region are not observed as depicted in figure 5 b).

The methanol-methanol LD distributions seem insensitive to the parametrization method,

consistent with the weak LD interactions that emerge in the REO LD model. The water-

water LD distribution, on the other hand, reveals that the agreement between the FG model

(solid black line) and the REO model (dashed green line) is improved by the LD potential
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(dashed blue line), as shown in figure 4 d). Nevertheless, the improved agreement in the LD

distributions comes with a loss of accuracy in the RDF, so it seems difficult to quantitatively

match both at the same time with the current set of potentials. A reason for this may be

the expanded parameter space for relative entropy minimization when LD potentials are in-

cluded, in which spline discretization (i.e., knot density) begins to become important. This

issue may also relate to the particular balancing of attractive interactions, which manifest

in the LD strategy as a compensation between repulsive pair interactions and attractive LD

ones, as discussed above. Indeed, in principle relative entropy minimization with pair and LD

potentials should exactly reproduce both the pair and LD correlation functions, as discussed

by Chaimovich and Shell,72 such that observed differences must be due either to algorithm

convergence, statistical fluctuations, or the manner by which the potential is approximated

(e.g., splines of a chosen knot density).

To quantify the mismatch in the RDF, the root mean squared (RMS) error in the g(r)

calculation between the FG and the CG system is computed as,

RMS error =

√√√√ N∑
i=1

(gFG(r)− gCGi (r))2 (33)

by performing the summation over a total of N = 5 simulations. The results are presented

in figure 6. The error for the MM interaction, which is depicted in figure 6 a), is less than

0.01 for all the CG models, which further confirms the accurate structural quality of all

CG methanol models in implicit water. However, for CG water the REO LD model (see

figure 6 b)) shows a deviation of about 0.4 at the short distances, which corresponds to the

underestimation of the first peak in the g(r) presented in figure 4 b). The IMC and REO

models are very similar with respect to the RMS error and perform much better in terms of

structural agreement compared to the REO LD model.

To further assess the quality of the derived implicit solvent CG models, the average

GKBI values are computed for all models and compared to the FG system (see table 3).
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Figure 4: Representability analysis of the RDFs for the implicit solvent models at xM = 0.5:
a) Comparison of center of mass RDFs between methanol molecules (MM); b) Comparison
of center of mass RDFs between water molecules (WW); Representability analysis of the LD
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Note that these assessments are intimately connected to a model’s representation of the pair

correlation functions, which all three methods should reproduce exactly in the limit of an

infinite number of pair potential bins or spline points, according to the considerations in

the section on the equality between IMC and REO. As such, differences in GKBI values

between models necessarily represent differences in CG algorithm convergence properties

and/or particulars of numerical representation of the potentials.

The GKBIs of all CG methanol models, GMM , are in good agreement with the underlying

FG one. This is in agreement with the structural overlap between all models. All CG water

models show larger GKBI values compared to the FG reference. This general increase in

the GKBIs for CG water in implicit methanol implies an effective stronger affinity between

water molecules outside the first solvation shell. As a consequence, all CG water models are

more compressible. The difference between the IMC and REO and REO LD model coincides

with the differences observed in the RDFs. The REO and REO LD model show the same

value within error bars. In general, inclusion of the LD potentials does not seem to impact

the GKBI values, with respect to relative entropy pair-only models. This is likely due to the

emphasis on long range correlations of the GKBI integrals and the fact that the LD potential

modifies short range interactions.

Table 3: Ganguly corrected Running Kirkwood-Buff Integrals averaged between 1.0 and 1.5
nm for the different CG models

XM model GWW (nm3) GMM (nm3)

0.5 FG 0.025 ± 2.5·10−3 -0.077 ± 0.4 ·10−3

IMC 0.094 ± 0.9 ·10−3 -0.078 ± 0.2·10−3

REO 0.063 ± 2.2 ·10−3 -0.076 ± 0.2 ·10−3

REO LD 0.065 ± 1.1 ·10−3 -0.074 ± 0.1 ·10−3

The similarity in the GKBIs between the REO and REO LD models might further point

towards a dominant role of direct pairwise interactions in the system. To probe this idea,

we compute the cluster size distribution that is an emergent property dependent on the col-

lective interactions in the system. If multibody effects are significant, then one expects the
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Figure 6: RMS error between FG and CG RDFs for the implicit solvent models at xM = 0.5:
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cluster size distribution to be impacted by the ability of the CG model to reproduce them.32

To evaluate the cluster size distributions, we chose the same cut-off values as for the LD

potentials to determine whether or not particles are in contact and thus belong to the same

cluster. In practice, the cluster size distribution can be very sensitive to the cutoff choice.

As one sees in figure 7 a), the FG methanol molecules comprise a single, system-spanning

cluster at xM = 0.5. A corresponding snapshot of the FG system presented in figure 7 a)

confirms this picture. Note that for visual clarity we do not show the water molecules, which

are explicitly present in the simulation. The network-like structure is similar to the forma-

tion of rings and strings, which follows the observations made by Guo et al. and Perera et

al..41,45 Since all CG models are able to match the cluster size distribution of the underlying

FG system, it suggests that multibody effects play a less significant role in forming this

percolating structure.

Figure 7 b) shows the cluster size distribution of water molecules for the FG model and the

implicit methanol models. Here, no large water clusters are formed and the water molecules

largely populate isolated clusters as well as doublets and triplets, as indicated from the snap-

shot presented in the inset (methanol molecules are not depicted in the snapshot for visual

clarity). The network-like methanol structure restricts the number of water-water contacts.

At this concentration, water molecules are not significantly tetrahedrally coordinated, which

supports the picture that the LD potential has a less attractive impact on the performance of

the model compared to the REO or IMC model, since the number of neighboring molecules

is most likely to be < 3.

Further, the formation of only small aggregates points towards a less dominant role of multi-

body effects, at least at the level of water-water interactions, and implies a weakened effect of

the LD potentials. That observation most likely explains why the REO LD model is slightly

less populated at low coordination numbers and cluster sizes. This observations coincides

with the work of Laaksonen et al., who showed a loss in tetrahedral coordination of water

molecules from xM = 0.5 onwards.44 The difference between the REO and REO LD model
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can be explained by an increased attraction between water molecules introduced by the neg-

ative tail of the LD potential if the number of neighboring waters is ≥ 3. This tail has a

lower value than the minimum in the REO model and thus introduces stronger attraction.

4.4 Structural and Thermodynamic transferability

Despite the negligible contribution of LD potentials to the representability of the CG models

at xM = 0.5, we now test their effect on the transferability towards different methanol mole

fractions. Because the IMC and REO optimized pair models are nearly identical, we focus

on comparison of the IMC and the REO LD models to study the effect of LD potentials on

the transferability of the derived CG models.

In the top panel of figure 8, the RDFs for the two CG models are shown at a mole fraction

of xM = 0.1 in comparison with the FG RDF at xM = 0.1 and at xM = 0.5. In figure 8 a),

one can see that at xM = 0.1 the CG models consistently show a decrease in the first peak

of the MM RDF relative to the FG one at the same composition, and lower than the FG

structure at xM = 0.5. Further, the CG models underestimate the second maximum and

overestimate the second minimum relative to the FG simulation at the same composition.

Despite this quantitative mismatch, both CG models reproduce the main features (maxima,

minima) of the FG structure well and show some aspects of transferability, when compared

to the reference structure at xM = 0.5.

For water, the REO LD model (solid light blue line) closely matches the structure of the FG

system at high water content (solid black line), as depicted in figure 8 b). In contrast, the

IMC water model fails to capture the g(r) structure and instead better seems to match the

FG structure at xM = 0.5 (solid orange line) that was the original parametrization condition.

This may point to the role of multibody water-water interactions as relevant to the solution

behavior at high water concentrations.

The bottom panel of figure 8 shows the RDFs at xM = 0.9. In figure 8 c), the CG model for

methanol in implicit water shows no significant difference between the IMC model (solid red
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Figure 7: Representability analysis of the cluster size distributions for the implicit solvent
models at xM = 0.5: a) Comparison between the cluster size distribution of methanol
molecules (MM). The inset depicts a snapshot of the FG trajectory without the water
molecules for visual clarity; b) Comparison between the cluster size distribution of water
molecules (WW). The FG model is illustrated through the black circles, the IMC model
through the dashed red line, the REO model through the dotted green line and the REO
LD model through the dashed blue line. The inset depicts a snapshot of the FG trajectory
without the methanol molecules for visual clarity.

31



line) and the REO LD model (dotted light blue line). Similar to the lower mole fraction case,

both of these models cannot reproduce exactly the FG structure (solid black line), but are

able to capture the location of the first maximum in the RDF compared to the structure at

at xM = 0.5 (solid orange line). In figure 8 d), one sees that the IMC model (solid red line)

leads to a decreased first peak in the RDF for CG water in implicit methanol compared to the

FG model (solid black line). Further, the RDF obtained from the IMC model overlaps with

the RDF of the FG system (dashed orange line) at the reference point (xM = 0.5). These

results suggest that IMC (and relative entropy minimization with pair potentials only) em-

bed composition-specific interactions and correlations that propagate to other compositions.

They also suggest that local density interactions can improve transferability when multibody

interactions are present. On the other hand, the presence of the LD potential (solid light blue

line) leads to a stronger water-water aggregation and a significantly enhanced first peak. It is

likely in this case that multibody water interactions are over emphasized in dilute solutions

where each water has few neighbors and the LD potential at low water-water coordination

is inappropriate, having been constructed from a more water-rich reference.

In general, it seems that to model the structural transferability, LD dependent potentials

play no significant role for methanol in implicit water. Contrarily, for water in implicit

methanol, the presence of a LD potential improves the structural transferability with de-

creasing methanol concentration. This is in agreement with the observations of Sanyal and

Shell,34 who pointed out that water-water LD potentials lead to transferable CG models

of aqueous mixtures only when water-water interactions have a major contribution to the

multibody PMF. Further, this corresponds to the work of Laaksonen et al.,44 who found out

that the dominant species in the system is mainly responsible for the structural features of

the mixture. Following this argument, the decreasing effect of LD contributions with increas-

ing methanol concentration reveals the difficulty of using LD potentials to effectively capture

the unusual mixing behavior of methanol and water upon increasing methanol mole fraction.
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Figure 8: a) Comparison of the center of mass RDFs at xM = 0.1 between methanol molecules
(MM); b) Comparison of the center of mass RDFs at xM = 0.1 between water molecules
(WW); c) Comparison of the center of mass RDFs at xM = 0.9 between methanol molecules
(MM); d) Comparison of the center of mass RDFs at xM = 0.9 between water molecules
(WW). The FG model is illustrated through a solid black line, the IMC model is illustrated
through the solid red line and the REO LD model is illustrated through the solid/dotted
light blue line and the FG reference at xM = 0.5 is illustrated through the solid orange line.
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The negligible effect of multibody contributions is again illustrated by the methanol

cluster size distribution for non-reference cases, as presented in figure 9. In figure 9 a),

one sees that at low methanol concentrations only a few methanol molecules are grouped

together, whereas at high concentrations (figure 9 b)) there exists only a single cluster

composed of all methanol molecules in the system, which is qualitatively similar to xM=0.5.

These observations are further supported by the snapshots of the FG system depicted in

the inset of the figures, where water molecules are not shown for visual clarity. There again

a network-like structure is visible for methanol mole fractions > 0.5. Since all CG models

perform in the same way, it further indicates that methanol-methanol interactions are not

dominated by multibody effects in aqueous solutions.

We now turn to the cluster size distributions in the implicit-methanol systems. In figure

10 a), the distribution for waters at xM = 0.1 shows two distinct cluster sizes for the FG

system. On the one hand, a cluster emerges with very few water molecules, while on the

other hand one appears with the number of water molecules in the system (i.e., a percolating

or system spanning cluster). A snapshot of the FG system (shown in the inset) illustrates

this, where the methanol molecules are not depicted for visual clarity. One sees a smaller

cluster in the lower left corner and a large, system spanning cluster. It appears that small

methanol sub-domains, present at low methanol concentration (xM = 0.1, see figure 9 a)),

limit that all of the water aggregates into a single cluster. This produces the separation of

peaks in the WW cluster distribution (see figure 10 a)) and is in agreement with the study

of Perera et al..45 The IMC model produces clusters with only few water molecules, that

is more similar to the cluster distributions at xM = 0.5. This is in agreement to what we

observe for the g(r) as well, where the g(r) of the IMC model is more similar to the one of

the FG model at xM = 0.5 than at xM = 0.1. Thus, this model is not transferable towards

lower methanol concentrations. Interestingly, the REO LD model cluster distribution attains

better agreement with the cluster size distribution, in particular capturing the two-state

population at low and high cluster size. In this case, we adjusted the distance cut-off to
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Figure 9: Transferability analysis of the cluster size distributions for the implicit solvent
models: a): Comparison of cluster size distribution of methanol molecules (MM) at xM = 0.1;
b) Comparison at xM = 0.9. The FG model is illustrated through black circles, the IMC
model through the dashed red line and the REO LD model is illustrated through the dashed
blue line. The insets depict a snapshot of the corresponding FG trajectories without the
water molecules for visual clarity.
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0.37 nm to effectively locate water neighbors in this heterogeneous environment. The cluster

size distribution at xM = 0.1 clearly shows that the LD potential improves the CG water

model. Moreover, it confirms the picture that in water rich phases, multibody effects play

a significant role and LD dependent potentials are effective strategies for capturing such

interactions. At high methanol concentrations (xM = 0.9), no large clusters of water are

formed and the LD dependent potential does not improve the CG model compared to the

IMC one. The more isolated behavior of water molecules is again depicted in a snapshot of

the corresponding molecules taken from the FG system. This indicates a negligible role of

water and multibody effects in methanol rich phases, which corresponds to the picture of

Laaksonen and Perera.44,45

Another prediction of LD potentials is further indicated by the GKBIs presented in table

4. At low concentrations, both the IMC and REO LD model, show stronger affinity between

methanol molecules than the FG model does. The LD potential even emphasizes this effect.

The same trend can be observed at xM = 0.9. Here, the REO LD model shows again the

largest GKBI value, whereas the IMC model is closer to the FG system. This suggests

further that LD effects do not play a significant role on the behavior of methanol in aqueous

solutions.

Contrary to that, the REO LD model reproduces the FG WW -GKBI at low methanol

concentrations (xM = 0.1). At xM = 0.9, the WW -GKBI is however overestimated by the

REO LD model, as indicated by the RDF as well. Thus, the GKBI analysis follows the

same trends observed in the RDFs. This brings us to the following conclusion: in water rich

phases, where LD effects have a larger contribution to the water-water multibody PMF, LD

potentials improve the transferability of the derived CG models. However, with increasing

methanol concentrations, these contributions become less significant and the CG models do

not further improve.

However, it is essential to note that the performance of all models in reproducing GKBIs

is purely algorithmic in nature because the IMC, REO, and REO LD methods all formally
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Figure 10: Transferability analysis of the cluster size distributions for the implicit solvent
models: a) Comparison between the cluster size distribution of water molecules (WW) at
xM=0.1; b) Comparison between the cluster size distribution of water molecules (WW) at
xM=0.9. The FG model is illustrated through black circles, the IMC model through the
dashed red line and the REO LD model is illustrated through the dashed blue line. The
insets depict a snapshot of the corresponding FG trajectories without the methanol molecules
for visual clarity.
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should (in principle) locate CG models that reproduce exact g(r) forms upon which the

GKBIs rely. Therefore, any difference between the properties in table 4 must be considered

a result of numerical approximations (e.g., tabulated or splined potentials) or convergence

(CG method), and the fact that the GKBI integrals are sensitive to subtle pair correlation

effects at large distances.

Table 4: Average Ganguly corrected Running Kirkwood-Buff Integrals at different concen-
trations of methanol obtained either from FG simulations or from CG simulations with
previously generated potentials at xM = 0.5.

xM model GWW (nm3) GMM (nm3)

0.1 FG -0.025 ± 2.5·10−3 -0.14 ± 3.70 ·10−2

IMC 0.090 ± 1.4·10−3 -0.091 ± 1.2·10−3

REO LD -0.026 ± 0.2·10−3 -0.054 ± 0.2·10−3

0.9 FG 0.01 ± 1.05·10−2 -0.075 ± 0.3·10−3

IMC 0.084 ± 3.5·10−3 -0.071 ± 0.2·10−3

REO LD 0.380 ± 0.6·10−3 -0.066 ± 0.2·10−3

5 Conclusion

In this work, we addressed the question of whether single site CG models for methanol and

water mixtures, in an implicit solvent environment, can capture the mixing behavior of these

two components. We could have also considered mapping methanol to a two-bead model to

account for non-polar and polar sites. But, this would require up to 6 local density poten-

tials for the combination of central and neighbor type. This would make the model (and

its parameterization) significantly more complex, which we wanted to avoid. We derived

implicit solvent CG models for various water/methanol mixtures by application of two dif-

ferent coarse graining methods, namely IMC and relative entropy optimization. We showed

analytically and numerically, that under the assumptions of a discretized Hamiltonian and

the application of a Newton-Raphson scheme, the methods are formally equal.

We further investigated if embedding of LD potentials improves the derived CG models
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in terms of concentration transferability. In agreement with previous work by Sanyal and

Shell32,34 we found, if water-water LD contributions play a dominant role in the multibody

PMF, LD potentials improve the transferability of water in implicit methanol towards lower

methanol concentrations. Unlike the work in [32], here we find that LD potentials do not

improve transferability in water-lean solutions. The LD included CG model for methanol in

implicit water shows no significant improvement at either concentrations. When compared

to a CG model with pair potentials only, the presence of a LD potential even emphasizes

the affinity between methanol molecules as indicated by the GKBI. One difference in the

present study from [34], which showed that LD models were consistently able to improve

transferability across composition space in benzene-water mixtures, is that here a species is

made implicit. It may be that LD potentials are more effective when all species are explicitly

present but coarse-grained. The interpretation that multibody effects have a less significant

effect on the structural arrangement of methanol molecules is further supported by the anal-

ysis of the cluster size distributions in the systems. Here, all CG models show similar size

distributions for all concentrations independent of the presence of a LD dependent potential.

The CG methanol models show more network-like structure due to large volume occupancy

in the system, whereas the CG water stays mostly isolated, perhaps due to restraints posed

by the methanol network. In agreement with our work, Scherer and Andrienko recently

found a negligible effect of multibody contributions on methanol-methanol interactions by

investigating the impact of three-body potentials on the pair structure of liquid methanol. 70

What seems to be more important than multibody contributions is the ability to form hy-

drogen bond networks in order to accurately describe water/methanol mixtures as discussed

in the literature.41,71 Explicit electrostatics or any directionality introduced to the model,

as for example done on the basis of point multipole and Gay-Berne potentials,73,74 seems to

be necessary, to accomplish the effect of hydrogen bonding. Without performing extensive

analysis on the FG system, we used bottom-up coarse graining techniques to identify the

negligible contribution of LD dependent potentials on structural changes in alcohol/water
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mixtures. This does not mean that LD potentials cannot improve the transferability of

CG models as nicely demonstrated in the literature.32–34 It rather shows that one should

carefully consider the underlying physics of the system, specifically the extent of multibody

effects, for a successful application of LD potentials. Further, this study highlights the aid

of bottom-up coarse graining to identify important degrees of freedom, e.g. here the ability

to explicitly form hydrogen bonds, to accurately describe a system in the CG configuration

space.
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