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Mapping the configurational landscape and
aggregation phase behavior of the tau protein
fragment PHF6
Evan Prettia and M. Scott Shella,1
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The PHF6 (Val-Gln-Ile-Val-Tyr-Lys) motif, found in all isoforms of the microtubule-associated
protein tau, forms an integral part of ordered cores of amyloid fibrils formed in tauopathies
and is thought to play a fundamental role in tau aggregation. Because PHF6 as an isolated
hexapeptide assembles into ordered fibrils on its own, it is investigated as a minimal
model for insight into the initial stages of aggregation of larger tau fragments. Even for
this small peptide, however, the large length and time scales associated with fibrillization
pose challenges for simulation studies of its dynamic assembly, equilibrium configurational
landscape, and phase behavior. Here, we develop an accurate, bottom-up coarse-grained
model of PHF6 for large-scale simulations of its aggregation, which we use to uncover
molecular interactions and thermodynamic driving forces governing its assembly. The model,
not trained on any explicit information about fibrillar structure, predicts coexistence of
formed fibrils with monomers in solution, and we calculate a putative equilibrium phase
diagram in concentration-temperature space. We also characterize the configurational and
free energetic landscape of PHF6 oligomers. Importantly, we demonstrate with a model
of heparin that this widely-studied cofactor enhances the aggregation propensity of PHF6
by ordering monomers during nucleation, and remaining associated with growing fibrils,
consistent with experimentally characterized heparin-tau interactions. Overall, this effort
provides detailed molecular insight into PHF6 aggregation thermodynamics and pathways,
and furthermore, demonstrates the potential of modern multiscale modeling techniques to
produce predictive models of amyloidogenic peptides simultaneously capturing sequence-
specific effects and emergent aggregate structures.

tau protein | amyloid aggregation | multiscale modeling

Insight into amyloid aggregation of the microtubule-associated protein tau
is critical for establishing a molecular understanding of the progression of

Alzheimer’s disease and other tauopathies (1, 2), and more practically, for the
development of faithful benchtop aggregation models for therapeutic screening.
Although neurodegenerative diseases in this class all share the common feature of
tau fibril formation, remarkable advances in the field suggest that each tauopathy
is distinguished by a unique fold or set of folds of tau within its fibrils’ cores (3, 4).
Landmark cryo-electron microscopy (cryo-EM) studies (5–9) have revealed that,
despite a great diversity in fibrillar folds across diseases, all presently known
pathological tau fibril structures incorporate the 306VQIVYK311 (PHF6, Val-Gln-
Ile-Val-Tyr-Lys) motif into their cores. In these structures, PHF6, found in the R3
C-terminal repeat region present in all tau isoforms (10), participates in cross-β
hydrogen bonding, characteristic of amyloid aggregation, that structures successive
layers of fibrils (11–13). Interactions of the hydrophobic sidechains of PHF6 between
nearby monomers within fibrils contribute a significant stabilizing effect (14, 15).

PHF6, and the related 275VQIINK280 (PHF6*, Val-Gln-Ile-Ile-Asn-Lys) motif in
the R2 C-terminal repeat region found in 4R tau isoforms (16), are known to play key
roles in pathological tau aggregation (11, 17). PHF6 in particular, however, is known
to be essential as a motif for fibril formation (18), and PHF6 as the isolated VQIVYK
hexapeptide self-assembles on its own into ordered β-sheet-containing fibrils (12, 19).
Compared to full-length tau (352-441 residues depending on isoform) (16), or
known tau fibril cores, typically consisting of ∼ 100 residues, the 6-residue PHF6
fragment has a much smaller conformational landscape. Although the processes
of formation of larger ordered cores of tau fibrils necessarily entail more complex
conformational changes than those involving PHF6 alone, experimental evidence
continues to reveal the importance of this fragment in tau aggregation. In particular,
a small region of tau including PHF6 and 9 surrounding residues was recently
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proposed to form paired cross-β structures in the initial
stages of Alzheimer’s amyloid aggregation, based on findings
from time-resolved cryo-EM (20). Thus PHF6 fibrillization,
which serves as a useful model in its own right, is of major
interest for understanding the critical early stages of tau
aggregation. Yet, despite its small size, illuminating atomistic
simulations of PHF6 fibrillization remain intractable, due to
the number of chains needed to overcome the aggregation free
energy barrier and the long time scales of fibril nucleation
and elongation (21, 22). To gain insight into fibril phase
behavior, the configurational landscape of oligomers, and the
effects that seeding or aggregation cofactors might have on
fibril growth, a multiscale modeling approach that addresses
the complex balance between local (e.g., secondary structure)
and global (collective assembly) interactions is essential.

Here, we present de novo large-scale simulations of PHF6
aggregation, using a bottom-up coarse-grained (CG) modeling
approach. The model developed here predicts assembly of
PHF6 from monomers in solution into paired hydrophobically-
and cross-β-stabilized fibrils, even though no information
about fibrillar states is included during model training—
such that the preference for fibrillization emerges from the
effective interactions determined by underlying physical,
atomic-scale interactions. We use the model to map out the
detailed hierarchical configurational landscape of oligomers,
revealing unexpected cylindrin-like structures intermediate
in the aggregation pathway distinct from both single and
paired β-sheet oligomeric fibril precursors. We then use large-
scale simulations to construct the equilibrium phase diagram
of coexisting PHF6 fibrils and solution monomers, which
we show is consistent with a statistical-mechanical model
of fibrillization. We finally show that heparin as a model
polyelectrolyte enhances the propensity of PHF6 to fibrillize,
playing an active role in the arrangement of monomers during
nucleation and remaining associated with the growing fibrils
via electrostatic interactions.

While CG protein and peptide simulation models have
been used to study fibrillization, the present work demon-
strates a multiscale approach free of experimental input,
training on known fibril structures, and hand-tuning, and
thus provides a systematic way to investigate the conforma-
tionally dynamic aggregation pathways. Phenomenological
top-down CG models (23–26) have revealed fundamental
qualitative insights into aggregation thermodynamics and
kinetics, but often ignore sequence-dependent behaviors.
Alternatively, sequence-specific CG models have studied
amyloid aggregation (27–32), and two CG models (33, 34)
examined PHF6 aggregation in particular (22, 35). But
many existing models are parameterized using conformational
and contact information from experimental native structures
of globular proteins, or alternately, by ad hoc methods to
match CG system properties to higher resolution simulations.
In contrast, modern systematic bottom-up coarse-graining
approaches (36–40), posit “universal” variational principles
to optimize CG models. Notably, the relative entropy
approach has been used to model polyalanine (41, 42)
and to build a Gō-like model able to reproduce folded
protein structures given native contact information, with
high structural accuracy (43). However, predictive bottom-up
models for biologically relevant aggregating systems that take
advantage of advances in systematic coarse-graining, avoiding

a priori input of native contacts, secondary structures, or ad
hoc parameterization strategies, have yet to be realized. Such
models for aggregating peptides have the potential to inform
the effects of mutations or post-translational modifications,
or the presence of particular cofactors that have not been
previously experimentally characterized.

The relative-entropy-based multiscale strategy presented
here suggests a predictive route to quantitatively understand-
ing peptide aggregation, using only information from small-
scale atomistic (or all-atom, AA) simulations of interacting
PHF6 chains, without requiring any experimental structure
input. This approach enables large length- and time-scale
molecular dynamics (MD) simulations of PHF6 aggregation
and fibril coexistence with solution, as well as extensive
configurational sampling to explore the conformational land-
scape of oligomers. These insights create a detailed molecular
picture of PHF6 aggregation, including conformational states,
mechanisms, and thermodynamic driving forces, and provide
fundamental insight into the dynamic pathways of assembly
into fibrils, from monomers to oligomers to large-scale
aggregates.

Results and Discussion

PHF6 Fibrillization from Solution. We use relative entropy
coarse-graining to generate a CG model of PHF6 from
implicit-solvent (IS) AA reference systems of 3 interacting
capped PHF6 chains. We employ a CG mapping of 4 sites
per residue (Fig. 1a), in order to capture secondary and
tertiary assembled structures as shown earlier (41, 43). We
use the resulting model to simulate solutions of 512 PHF6 at
a concentration ρ = 10 mM. Fig. 1b–e shows the systems at
four temperatures after 10 µs of CG MD; an animation at
350 K is available as Movie S1 of the Supporting Information
(SI). Except at 370 K where the solution phase alone persists
for the duration of the simulation (Fig. 1e), we observe
nucleation and growth of fibrillar aggregates of PHF6, each
consisting of two helically intertwined protofilament-like cross-
β-sheet structures (Fig. 1f).

The CG model captures the fibrillization process, despite
no training on fibril states, and is essential to enabling equili-
bration of these large-scale aggregation simulations to obtain
thermodynamic properties. As measured by autocorrelation
times for backbone dihedral transitions (Fig. S1a: see the
SI Appendix), the CG model shows a 77 ± 13 × reduction
in time vs. an explicit-solvent (ES) model and a 93 ± 16 ×
reduction vs. an IS model. The chain end-to-end distance,
with a longer relaxation timescale, shows that the CG model
accelerates by 46.0 ± 1.6 × the ES and 3.59 ± 0.13 × the IS
model (Fig. S1b). Beyond these timescale accelerations, the
CG model shows additional practical computational speedups,
especially for larger systems (Fig. S1c). For 32 PHF6, the
performance is 23 ns/day for ES AA, 399 ns/day for IS AA,
and 2340 ns/day for CG simulations (∼ 6× faster than IS and
∼ 100× faster than ES). CG performance is greatly enhanced
for larger systems necessary to equilibrate fibrils: IS AA MD
of 8 PHF6 gives 885 ns/day while nearly the same simulation
speed (893 ns/day) is possible for CG simulations of 1024
PHF6. The combination of dynamic acceleration within,
and reduced GPU time to advance by, a given interval of
simulated time, points to the great utility of coarse-graining
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Fig. 1. Illustration of the CG model and representative snapshots of simulated aggregates. (a) Representative configuration of the reference system containing 3 PHF6, with an
illustration of the mapping operation to the corresponding CG configuration. (b–e) Systems of 512 PHF6 with ρ = 10 mM and T = 340, 350, 360, 370 K, respectively, after
10 µs of MD simulation. (f) A representative fibril containing 106 PHF6 from a simulation at 350 K.

in exploring conformational landscapes and carrying out large-
scale aggregation simulations.

The structural properties of the simulated aggregates
provide a detailed picture of PHF6 fibrils. Fig. S2a calculates
the sphericities of the aggregates showing that oligomers of
size ∼ 10 chains are more compact, while larger clusters
have more extended geometries characteristic of fibrils. The
spacing between consecutive layers of pairs of chains in fibrils
is 4.52 ± 0.10 Å, and the pitch of the helical twist of the
paired layers is 127 ± 9 Å; these are relatively independent
of temperature (Fig. S2b). This corresponds to 28 ± 2
layers in a full 360◦ rotation, or 12.8◦ ± 0.9◦ of rotation
per layer. Compared to typical tau fibril geometries, e.g.,
4.7 Å spacing and ≈ 1◦ rotation in Alzheimer’s disease
paired helical filaments (PHFs) (5), the simulated PHF6
fibrils show slightly closer spacing and much tighter helical
twisting. However, the angles observed here are in very good
agreement with the theoretical investigation of PHF6 fibril
geometries by Yang et al. (15) giving ∼ 11◦–14◦. The small
cross-sectional areas of these fibrils compared to tau fibrils are
also likely more permissive of a larger twist angle, consistent
with experimental observations of decreasing rotation in
β-lactoglobulin amyloid fibrils of increasing numbers of

protofilaments (44). Finally, the reduced layer spacing
could be explained by a rotation of the chains in a fibril
to accommodate twisting about its axis—such a rotation is
evident in Fig. 1f.

The temperature dependence of the equilibrium PHF6
clusters reveals underlying thermodynamic and kinetic effects
governing aggregation (Fig. 2a). At 370 K, most chains
remain dissociated (M = 1) or otherwise form small clusters
(2 ≤ M ≤ 16), but not larger aggregates (M > 16). At lower
temperatures, fewer chains are found dissociated or in small
oligomers, with most in large aggregates, as is also evident
from Fig. 1b–d. The time dependence of these fractions
(Fig. S3a–c) reveals that fibrillization spanning 320–350 K
begins nearly immediately, and that the distributions of
cluster sizes reach equilibrium within a few µs. At 360 K, the
fibril growth rate is much lower, and longer simulations are
likely necessary to equilibrate the system. It is unclear from
these results alone whether or not the absence of aggregation
at 370 K is due to thermodynamic instability of the fibrils, or
that the timescale of fibril nucleation is simply significantly
longer than the simulation; we address this issue further
in Aggregation Phase Behavior.

Pretti et al. PNAS | October 5, 2023 | vol. XXX | no. XX | 3
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Fig. 2. Temperature dependence of properties of aggregating systems. (a) Fractions
of isolated chains (M = 1) and chains in clusters of sizes 2 ≤ M ≤ 16
and M > 16, from the last 5 µs of 10 µs MD simulations of 512 PHF6 with
ρ = 10 mM. (b) Likewise, fractions of non-hydrogen-bonded contacting chains
for which the closest pair of sidechains consisted of residues from the hydrophobic
and hydrophilic sides of PHF6. (c) Fractions of β-bridge-participating residues with
parallel (vs. antiparallel) orientations, and total numbers of β-bridges per chain.
Error bars show standard deviations of the measured properties.

The model predicts appropriate structural ordering of the
PHF6 chains within their fibrils, as illustrated in Fig. 2b show-
ing the fractions of closest, non-hydrogen-bonded contacts
(in opposing protofilaments) as a function of temperature.
We classify contacts by the participating residues: V306, I308,
and Y310 make up the “hydrophobic side” of PHF6, and Q307,
V309, and K311 comprise the “hydrophilic side,” a division
based on the steric zipper crystal structure of PHF6 (12, 45).
When fibrils form, the majority of closest contacts are between
sidechains on the hydrophobic sides of PHF6 (Fig. 2b), con-
firming that the model favors assembly into fibrils enclosing
these sidechains in their interiors. On the other hand, at
370 K where no fibrils form, the distribution of contacts
approaches what would be expected for random, transient,
and unbiased association of monomers in solution (roughly
50% for hydrophobic-hydrophilic contacts, and 25% each
for same-side contacts). A slight enhancement in contacts
involving the hydrophobic side suggests that hydrophobic
interactions are still slightly favored at high temperatures,
even though significant enrichment in hydrophobic contacts

only occurs in fibrils. Fig. S3d–f illustrates that these contact
fractions evolve from initial solution to final fibril values
on similar timescales as fibril assembly itself. It is possible
that the slight decrease in hydrophobic-hydrophobic contact
fractions at the lowest temperatures is due to kinetic arrest
in the quickly growing fibrils: at 320 K, most chains are
depleted from the solution by 1 µs and the fibril structure
remains effectively “frozen in” from this point on. At, e.g.,
350 K, however, this occurs more slowly, likely allowing for
more annealing during fibril growth.

Under the conditions here, the overall fibrillization process
occurs predominantly through primary nucleation from solu-
tion followed by fibril growth from attachment of monomers
to fibril ends. To probe the growth process, we characterize
chains that irreversibly attach to fibrils (Fig. S4) before and
after the moment that contact is made and not subsequently
broken. The probability of a chain-fibril contact rises steadily
∼ 300 ns prior to this, suggesting reversible attachment and
detachment; interestingly, an increase in contacts involving
residues on the hydrophilic sides of PHF6 chains occurs
during this period. However, formation of β-sheet secondary
structure and intermolecular hydrogen bonding, along with
the hydrophobic contacts characteristic of the formed fibrils,
takes another ∼ 300 ns to be established. That reversible
association is seen leading up to integration of a chain into a
fibril, and that attaching chains do not immediately adopt
their final conformations, suggests either a “dock-and-lock”
mechanism (46) for attachment, or that it is necessary for
additional monomers to attach on top of an associated chain
before it is stabilized within a fibril.

The model also suggests that a delicate balance of
interactions governs the orientations (parallel and antiparallel)
of β-bridges within fibrils. Fig. 2c indicates a bias towards
antiparallel alignment, but with a significant amount of ori-
entational disorder, slightly increasing at lower temperatures
as the parallel fraction increases towards 50%. In contrast,
experiments suggest that PHF6 forms fibrils with parallel
β-sheets (12, 19). Interestingly, however, the CG model
does reproduce the parallel-antiparallel balance present in
the reference AA system, which forms ∼ 20–30% parallel
β-bridges (Fig. S5). Several factors are known to influence
PHF6 fibril stability, such as electrostatic, π-π, and CH-π
interactions (47, 48), and these can vary between atomistic
force fields (49), which predict different chain alignments
within β-sheets (50). Our model suggests a free energetic
bias towards antiparallel structures of ∼ 1.0–1.5 kBT , so
only a small change in force field interaction strengths is
necessary to shift it. N-terminal capping, known to control
PHF6 fibrillization (51) as well as affect morphologies of fibrils
formed from fragments of islet amyloid polypeptide (52, 53),
may also influence experimental findings for PHF6 structures.
Sawaya et al. (12) provide a structure of uncapped, zwitteri-
onic PHF6 with parallel β-sheet alignment, although notably
this structure is for microcrystalline rather than fibrillar
PHF6, and it involves positively-charged lysine sidechains
forming favorable electrostatic contacts with negatively-
charged C-termini of chains in adjacent β-sheets in the crystal.
However, although Goux et al. (19) do not attempt to obtain
atomistic structures of fibrillar PHF6 with neutral terminal
caps, they report FTIR spectra consistent with the absence
of antiparallel β-sheets.
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In the end, experimental evidence points towards pre-
dominantly parallel orientation of the chains in PHF6 fibrils,
although the amount of orientational disorder in real fibrils
is unknown. That fibrils grow robustly in our simulations
despite significant mixing of parallel and antiparallel β-bridges
throughout suggests that this kind of order may not be of
great importance for PHF6 fibrillization specifically. This
contrasts with aggregation of longer tau, which by necessity
must form parallel cross-β structures in order to stack into
regular fibrils of complex folds; if the PHF6 region is involved
in initial aggregation stages as a recent study (20) suggests,
this raises the interesting possibility of a further aggregation
barrier involving strand alignment ordering. The lack of
strong specificity, echoed by the variety of behaviors observed
in force field predictions, has been observed in AA simulation
studies of PHF6 aggregation (54, 55). Moreover, a PHF6
fibrillization study (22) using the CG model of Bereau and
Deserno (33) found parallel orientation of chains within β-
sheets and antiparallel orientation across sheets, consistent
with experiments. On the other hand, Cheon et al. (35)
showed that the PRIME20 CG model (34) favors antiparallel
PHF6 β-sheet formation. Notably, however, adjustment of the
PRIME20 hydrogen bonding interaction distance constants
by just 5% causes PHF6 fibrils with nearly perfect parallel
chain orientation to grow. This again highlights the delicate
balance of interactions affecting cross-β orientation in PHF6
aggregation, compared to the much more robust preference
for hydrophobic sidechain contacts inside fibrillar cores that
our model captures accurately.

Configurational Landscape for Oligomerization. Although
direct MD simulations of aggregation can reveal general
information about fibril structure, they do not distinguish
clearly between the roles of thermodynamics and kinetics
in governing fibril formation. For instance, simulations
in which no fibrils nucleate cannot prove that fibrils are
thermodynamically unstable at the simulated conditions as
opposed to kinetically inaccessible due to a large nucleation
barrier. To more rigorously probe the initial stages of PHF6
aggregation, we use advanced sampling replica exchange MD
(REMD) simulations of N = 2, 4, 8, and 16 total chains to
map out the equilibrium configurational landscape of small
oligomers. Fig. 3a–c shows representative structures from
these simulations for oligomer sizes M = 4, 8, and 16 at
300 K.

At low temperature (300 K), the systems spend most of
their time in single aggregates that reveal a hierarchy of
stable states. For the N = 2 system, these are simply dimers
of two β-strands. At N = 4, the predominant oligomeric
structure consists of a single β-sheet (Fig. 3a). The largest
system (N = 16) forms paired sheets (Fig. 3c) similar to small
sections of fibrils, while the N = 8 system forms cylindrical
structures (Fig. 3b) distinct from either single or paired
β-sheets. At 350 K, these aggregates break into multiple
oligomers of smaller sizes. We use simulation reweighting
techniques incorporating data from all temperatures to reveal
the probability of oligomeric structures of all sizes and types
at 300 K. Fig. S6 shows representative images of the most
probable oligomeric structures for all sizes M = 2, 3, . . . , 16
along with the fractions of all possible structures of these
sizes that they comprise. Importantly, these results show
that single β-sheets predominate for 2 ≤ M ≤ 7, the unique

cylindrical structure appears at M = 8, and paired β-sheets
are present for 9 ≤ M ≤ 16.

The most probable oligomers of all sizes at 350 K (see
Fig. S7), where the systems sample a wide variety of configu-
rations, reveal more diverse behavior. At this temperature,
oligomers of size 4 ≤ M ≤ 7 show β-sheets of size M − 1 with
single chains associated with their surfaces. For 8 ≤ M ≤ 10,
the same behavior is seen with 2 or 3 associated chains,
until paired sheets appear for 11 ≤ M ≤ 16. Overall, the
results suggest that backbone hydrogen bonding and β-sheet
formation is crucial for the initial creation of small oligomers
from individual chains. As the oligomers grow, hydrophobic
interactions between sidechains draw in additional chains to
the forming β-sheet surfaces, until eventually paired cross-β
structures characteristic of fibrils are able to form. This
is supported by the sidechain contact types observed in
oligomers of each size at 350 K (Fig. 3d). For small oligomers
(M ≲ 6), the distribution of contact types is similar to that
in solutions without aggregates (see, e.g., 370 K in Fig. 2b),
but evolves towards that of extended fibrils as M increases.
A slightly greater preference for antiparallel alignment is seen
in smaller oligomers (Fig. S8), suggesting that sidechain
interactions may bias larger oligomers towards increased
parallel alignment where they are of greater importance
compared to hydrogen bonding alone.

The cylindrical β-barrel-like oligomers in the N = 8
simulations are particularly striking in several ways beyond
their unique hydrogen bonding topology. Almost all of these
oligomers show antiparallel alignment for all of their β-bridges;
all of the adjacent pairs of β-strands are out of register;
moreover, the hydrophobic V306, I308, and Y310 residues
point to the outside of, rather than towards the interior of,
the oligomer (Fig. S9). Notably, the octamers seen here are
structurally similar to trimeric and hexameric “cylindrins”
first observed in oligomers of the K11V fragment of αB-
crystallin (56), and to tetramers of an Aβ30–36-containing
construct (57). Specifically, Liu et al. (57) demonstrate the
formation of cylindrin-like tetramers using model constructs
designed to aggregate out-of-register, and posit a mechanism
for toxicity involving membrane disruption from insertion of
the cylindrins aided by their exposed hydrophobic residues,
structurally similar to the PHF6 oligomers predicted here.
Whether or not the PHF6 cylindrin octamer has any bearing
on the potential toxicity of longer PHF6-containing tau
fragments is unclear; however, the unique octamer structure
nonetheless provides an interesting hypothesis about poten-
tially functional oligomeric structures of PHF6. In any case,
an in-register fibril cannot grow from a cylindrin containing
out-of-register hydrogen bonds without it first unrolling, then
breaking and re-forming these bonds, suggesting that such
oligomers could contribute to a nucleation barrier or off-
pathway state in PHF6 fibrillization.

To directly assess nucleation barriers, we calculate oligomer
free energies βFM for a ρ = 10 mM solution (Fig. 3e).
At higher temperatures where aggregation is unfavorable,
barriers increase with M , presumably due to the entropic
penalty for association of free chains into oligomers, while
at lower temperatures, they level out and begin to decrease
for sufficiently large M . This is evident for T ≲ 360 K, in
agreement with the large-scale assembly simulations. As the
temperature further decreases, the critical oligomer sizes and
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Fig. 3. Oligomer structures and thermodynamic properties. (a-c) A representative tetramer, octamer, and 16-mer, respectively, from replica exchange simulations of PHF6 at
T = 300 K and ρ = 10 mM. (d) Fractions of non-hydrogen-bonded contacting chains for which the closest pair of sidechains consists of residues from the hydrophobic and
hydrophilic sides of PHF6, for a system with N = 16, ρ = 10 mM, and T = 350 K. (e) Free energies of oligomers of size M in a ρ = 10 mM solution. (f) Critical oligomer
sizes estimated from free energies (upper panel), and corresponding free energy barrier heights (lower panel: curves are truncated when the most probable value of M∗

reaches the largest system size N = 16). Error bars and bands show 95% confidence intervals of mean values, or in the case of M∗, median values.

free energy barrier heights, corresponding to the locations of
the maxima in these free energy curves, also decrease. The
dependence of these sizes and heights on temperature is shown
in Fig. 3f for different solution concentrations. As expected,
with increased supersaturation (increasing concentration at
constant temperature, or decreasing temperature at a given
concentration), fewer monomers must oligomerize to form a
critical aggregate, and the free energy penalty is decreased.

Aggregation Phase Behavior. Beyond small PHF6 oligomers
representative of the start of fibril growth, we investigate how
larger fibrillar aggregates interact with chains in solution.
Here, we first initialize MD simulations with seeds (see
Fig. 4a) based on a known, parallel β-sheet crystal structure
of PHF6 (12) (PDB: 2ON9) containing the hydrophobic
interface characteristic of the paired PHF6 fibrils observed
to grow in our simulations. Similar seeding approaches
have been used with other CG models to understand fibril
elongation and protofilament assembly (58, 59). Here, the
PHF6 seeds are placed in solutions of additional monomers,
and we monitor the dynamic equilibrium of chains exchanging
between the fibrillar and solution phases. To begin, we choose
a fixed temperature of 350 K and perform five independent

replicate runs each at overall concentrations of 5, 7, and 9 mM,
i.e., the solution concentrations that would be present were
the seeds to dissolve completely.

The simulations reveal a significant dynamic exchange of
monomers with the fibrils. Fig. 4b shows an example of the
state of a fibril in one such simulation after 1 µs (see also
Movie S2). Many of the seed chains initially present (orange)
remain, while additional chains (blue) join both ends, mixing
with the originals. Overall, seeds grow in the 7 and 9 mM
simulations, while those in the 5 mM simulations remain
roughly around the same size (Fig. 4c, solid lines), illustrating
the stability of the seed structures, and the ability of the
model to reach an equilibrium coexistence between solution
and fibril phases. The number of chains starting in the seeds
that never detach into the solution phase (Fig. 4c, dashed
lines) decreases with time, showing that chains quickly detach
from the ends of fibrils and move about in solution, even if
they might later rejoin the fibrils. Similarly, the fraction
of parallel β-bridges (Fig. S10a) decreases over time from
the initially purely parallel state of the seeds towards the
expected value for fibrils grown directly from solution with
the CG model. This occurs progressively through series of
attachment and detachment events rather than complete
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Fig. 4. Fibril seeding and fibril-solution coexistence. (a) Initial state and (b) state
after 1 µs, of a fibrillar seed of size 32 (orange) in a solution of 32 PHF6 (blue) in a
volume corresponding to a total concentration ρ = 9 mM, and T = 350 K. (c)
Fibril size (solid) and chains never having detached from the fibril (dashed) from 5
replicates each, T = 350 K. Means and standard deviations over 200 ns intervals
are shown. (d) Theoretical coexistence curve (red – –) of fibrillar PHF6 with solution,
fit to observed solution concentrations (green △) in equilibrium with fibrils. Blue ◦
and orange × symbols indicate the presence or absence, respectively, of persistent
aggregates in 25 µs simulations of 64 PHF6. Error bars show 95% confidence
intervals.

loss and recovery of fibril structure, shown by retention
of hydrophobic-hydrophobic side contacts (Fig. S10b–d)
throughout the equilibration process. However, it is clear that
at higher concentrations, fibrils equilibrate at a notably slower
rate, reflecting the stability of larger fibrils whose interior

monomers are far less kinetically accessible than those at the
ends.

Based on these findings, the model supports a picture of
PHF6 aggregation involving a dynamic equilibrium between
fibrils and solution. To map its phase diagram, we find the
concentrations of PHF6 solutions at given temperatures that
are in equilibrium with fibrils, i.e., the concentrations at
which fibrils will neither grow nor shrink on average over
time. The blue and orange symbols in Fig. 4d show the
temperatures and concentrations at which fibrils do or do
not, respectively, both grow over the first 5 µs of 25 µs MD
simulations of 64 PHF6, starting from solutions, and persist
for the duration of the simulations. Once a fibril grows from a
solution of initial concentration ρ, the chains not incorporated
into the fibril remain in solution, at a concentration ρ1 < ρ.

Fig. 4d shows the simulation-measured coexistence con-
centrations ρ1 for each T , alongside a fit to a thermody-
namic phase boundary scaling law for aggregation discussed
in Methods. The latter predicts ρ1 ∼ eβ∆ϵF , where −∆ϵF

is the latent heat of fibrillization. This simple van’t Hoff
form, which assumes that the heat capacity of a chain in
solution is identical to that of one in a fibril, agrees with prior
studies of the phase behavior of amyloid systems (60–62).
We find here −∆ϵF = 26.7 ± 2.3 kcal/mol. Although we are
not aware of a previously measured value of this quantity
for PHF6, it is of a reasonable magnitude, considering, e.g.,
the value of ∼ 22 kcal/mol reported by Wang et al. (62) for
paired β-sheet aggregates of the Aβ16–22 (KLVFFAE) peptide,
although unlike these aggregates, we do not observe PHF6
fibrils with more than two β-sheets in cross-section.

We find evidence of significant metastability in fibril
equilibrium. Many of the state points falling just to the right
of the coexistence curve in Fig. 4d do not produce fibrils in the
25 µs simulations. This behavior is consistent with the finite
size and length of the simulations and the anticipated barrier
to fibril nucleation observed in oligomer free energies (Fig. 3f),
since a sufficiently weakly supersaturated solution may fail
to nucleate fibrils on any timescale if the concentration ρ1
of chains remaining in the solution after formation of a
critical nucleus falls below the coexistence concentration.
Alternatively, timescales associated with fibril formation and
dissolution may simply be very long, illustrated by the 7 mM,
355 K case (Fig. S11a), contrasted with 5 mM at the same
temperature where no aggregation occurs, and the 9 mM case
where it occurs immediately. At each of these concentrations,
we take configurations containing the largest fibrils grown in
simulations at 350 K and simulate 5 independent replicates
at 355 K. Fig. S11b–d shows that at 5 mM, 4 out of 5
seeds dissolve by 10 µs, at 7 mM, 1 seed dissolves, and
at 9 mM, all remain stable despite shrinking on average.
Thus, at conditions close to the saturation line, fibrils in
these systems of finite size may be unstable or metastable.
Nonetheless, we are still able to extract the temperature-
dependent equilibrium concentrations from simulations that
do eventually produce fibrils reaching coexistence with a
solution phase.

As a final check to demonstrate that these simulations
indeed reach equilibrium, we extract rate constants for asso-
ciation and dissociation of monomers from the seeded growth
simulations in Fig. 4c as well as simulations of isolated seeds
partially dissolving. We solve a master equation describing
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the time evolution of the seed length probability distribution,
similar to approaches previously applied to amyloid systems,
often in the context of investigating primary and secondary
nucleation mechanisms and fragmentation (63, 64). For this
system, we always observe primary nucleation followed by
growth via attachment, so our main interest is to consider the
growth kinetics. Demonstrations of correspondence between
seeded simulations and solutions to the master equation
are provided in Fig. S12 (see Methods for details). From
the rate constants, we then estimate at T = 350 K that
ρ1 = 2.17 ± 0.17 mM, consistent with ρ1 = 2.00 ± 0.16 mM
from the fitted model shown in Fig. 4d.

Influence of Heparin as a Model Polyelectrolyte. Experi-
mentally, tau fibrillization is often induced by an anionic
polyelectrolyte such as heparin or RNA (65). Heparin in
particular has been shown not only to act as an initiator
for tau aggregation, but also to remain associated with the
grown fibrils, reacting stoichiometrically to form stabilizing
complexes with tau rather than simply catalyzing fibril
nucleation (66, 67). Heparin has furthermore been shown
experimentally to enhance PHF6 aggregation and affect fibril
morphology in a capping group-dependent manner (51). To
quantify the molecular mechanisms behind the influence
of polyanions like heparin on aggregation, we develop a
CG model for heparin based on known experimentally-
determined solution conformational ensembles (see Methods
for details). In this model, each saccharide unit in a heparin
chain is represented as a single negatively charged CG site,
with a screened electrostatic attractive interaction with the
positively charged lysine sidechain sites of PHF6. We do not
attempt to capture here the chemical details of PHF6-heparin
interactions, but instead probe the influence of heparin as an
idealized, model anionic polyelectrolyte on PHF6 aggregation.

Simulations of 64 PHF6 at T = 350 K and a range
of concentrations, along with single heparin chains of 60
saccharide units (∼ 17 kDa), show that heparin is capable of
initiating PHF6 aggregation under conditions where it would
not occur spontaneously. Heparin serves as a nucleation site
for aggregation (see Fig. 5a), but also remains associated with
elongated fibrils (see Fig. 5b and Movie S3). At the lowest
PHF6 concentration tested, ρ = 2.0 mM, we do not observe
fibril formation in any of 5 independent replicate simulations
after 10 µs: Fig. 5c shows that most chains are found as
isolated monomers in solution in this case. At ρ = 2.5 mM,
4 of 5 replicates form fibrils within 10 µs; at ρ = 3.0 mM, all
replicates formed fibrils within the first 8 µs, and at higher
concentrations, fibrillization begins almost immediately (see
Fig. S13). In contrast, in identical conditions in the absence of
heparin, no fibrillization occurs within 10 µs for ρ = 3.0 mM
and 4.0 mM, while fibrils only form spontaneously without
heparin within this timespan once the PHF6 concentration
is increased to ρ = 5.0 mM (Fig. S14a–c). Replacing the
single heparin 60-mer at ρ = 3.0 mM (where Fig. S13b
shows fibrillization in all replicates) instead with 15 heparin
tetramers, also leads to no aggregation (Fig. S14d); the same
is true when the heparin-PHF6 electrostatic attraction is
explicitly excluded from the force field (Fig. S14e).

As these electrostatic interactions between heparin and
the lysine sidechain sites are the only attractive interactions
between the modeled heparin and PHF6 chains, they appear
to play a crucial role in enhancing the ability of fibrils to

a)

b)

Fig. 5. Heparin-induced aggregation of PHF6. (a) Initial stages of heparin-induced
aggregation at T = 350 K and ρ = 2.5 mM from a system of 64 PHF6 containing
a heparin chain of 60 saccharide units. (b) Fully grown fibril under these conditions.
(c) Fractions of chains in clusters of different sizes from the last 2 µs of 5 replicates
each of 10 µs simulations of 64 PHF6 with a heparin chain of 60 saccharide units at
T = 350 K. (d) Likewise, fractions of β-bridge-participating residues with parallel
(vs. antiparallel) orientations, and total numbers of β-bridges per chain. (e) Radius of
gyration of heparin chains and total electrostatic interaction energy between heparin
and lysine sidechain CG sites. Error bars show standard deviations of the measured
properties.

nucleate. The loss of heparin’s cofactor effect upon its
fragmentation highlights the importance of its polyanionic
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nature: localization of charges in heparin is important
for attracting PHF6 chains to form a sufficiently large
oligomer. A natural question is whether heparin chains
only serve to increase the local concentration of PHF6, or
if heparin also orders assembling chains in some way that
affects fibril structure. We do not observe any significant
differences in the layer spacing or pitch of heparin-induced
vs. spontaneously aggregating fibrils. However, an increased
fraction of parallel cross-β structures might be expected if the
negatively charged polyelectrolyte were to cause the positively
charged lysine sidechains to align along it. We do observe
some such alignment (Fig. 5d): for transient association of
monomers in solution in the absence of aggregation, the
parallel fraction is similar to what is observed without any
heparin present, but concentrations yielding heparin-induced
aggregates show an enrichment in parallel β-sheets. The time-
dependence of the alignment of chains in heparin-associated
fibrils (Fig. S15) shows that some nucleation events produce
fibrils initially more enriched in parallel β-sheets, but this
effect is not universal. Others form initial aggregates with
similar parallel alignment fractions to those not induced by
heparin, and either remain predominantly antiparallel or
increase in parallel cross-β content over time. It is likely that
the particular bias observed in a given fibril is dependent on
the conformations of heparin at the time of nucleation and
while associated with the extended fibril.

In general, the interplay between the structures of the
fibrils and heparin may be complex. In fact, the fibrils
themselves affect the conformations explored by heparin,
illustrated by a decrease in the radius of gyration Rg of fibril-
associated heparin compared to heparin in systems where
fibrils are absent (Fig. 5e, left axis). This collapse, likely due
to the favorable electrostatic interactions between heparin
and the lysine sidechains (Fig. 5e, right axis), is also captured
by a decrease in the average persistence length of heparin:
at ρ = 3.0 mM, it decreases from 25.0 ± 1.2 Å before fibril
formation (comparable with 30.5±1.4 Å for the reference con-
formations and ∼ 21 Å (68, 69) and ∼ 45 Å (70) from other
experiments) to 6.7 ± 0.4 Å after fibril formation. Notably,
heparin’s interaction with PHF6 fibrils is consistent with
the observed behavior of heparin in other amyloid systems,
such as full length tau as discussed above, as well as with an
atomistic simulation study by Khurshid et al. (71) of heparin-
assisted aggregation of the Aβ16–21 (KLVFFA) hexapeptide.
The latter study observed significant flexing of aggregate-
associated heparin chains compared to their normal, more
extended solution conformations, and furthermore showed
that artificially constraining heparin to remain extended
decreases its ability to induce aggregation. We note, given
that we do not use reference systems including both heparin
and PHF6 interacting, that the magnitude of the changes in
heparin chain properties upon PHF6 aggregation may not be
quantitative; however, the results nonetheless provide insight
into the influence of an anionic polyelectrolyte on PHF6
aggregation, and suggest future work to probe the specific
role of chain stiffness. Specifically, these results highlight
the active role of such a polyelectrolyte in the aggregation
process, not only as a catalyst but also as a reactant in the
structure of formed fibrils.

Conclusions

In this study, we have shown that a purely bottom-up CG
model of PHF6 developed using relative entropy minimization
is able to accurately capture the interactions necessary to
model the fibrillar aggregation of PHF6. Notably, no manual
tuning of interaction parameters, or input of experimen-
tal or simulated fibril geometry data, is needed; realistic
fibrillization behavior arises from interactions determined
solely from small-scale reference atomistic simulations not
including fibril formation. The resulting simulated fibrils
show important hallmarks of amyloid aggregation, namely,
structures with long-range fibrillar order maintained through
cross-β hydrogen bonding along their lengths, and in this
case, helically wound paired protofilaments held together by
hydrophobic interactions. Importantly, the model enables
simulations of systems with sizes larger and timescales longer
than are generally accessible through atomistic simulations
alone. Significant acceleration of what would otherwise
be intractably slow timescales for PHF6 chains exploring
configurational space permits the mapping out of the confor-
mational and free energetic landscape of oligomers, and the
determination of equilibrium fibril phase behavior.

The CG simulations here reveal important features of
PHF6 aggregation that may be informative in understanding
the wider issue of fibril formation of longer tau fragments.
While the model does not reproduce a strong bias of PHF6
towards parallel β-sheets as suggested by experiments, it
demonstrates that, unlike in amyloid aggregation of much
longer peptides where parallel alignment is necessary for
any kind of fibrillar order, this is not of critical importance
for PHF6. We observe significant disorder within fibrils
with respect to parallel vs. antiparallel alignment, see that
purely parallel alignment of chains in an initial fibrillar seed
readily becomes more disordered upon exchange with chains
in solution, and show that it can even be influenced by
association of heparin with the fibrils. All of these processes
can occur without loss of the properties actually crucial for
fibril formation, namely, the formation of cross-β hydrogen
bonds along protofilaments and of hydrophobic contacts in
the interface between protofilaments.

Results highlighting the structural properties of oligomers
point to the importance of these hydrophobic contacts for
sufficiently large aggregates once paired β-sheets begin to
form. The transition from a mixture of various kinds
of sidechain contacts to the almost exclusive presence of
contacts between sidechains on the hydrophobic sides of PHF6
chains as oligomer size increases suggests a cooperative effect
governing oligomer structures: sufficiently many hydrogen
bonds are needed to stabilize small oligomers that paired
sheets do not form, but as the number of chains grows,
more such contacts can form within these paired structures.
Such a mechanism could be relevant in explaining the
high kinetic barrier to primary nucleation of fibrils from
larger tau fragments, where the pairing of protofilaments
is partially replaced by peptides folding in particular ways
so as to optimize the sidechain contacts formed. That
heparin-induced PHF6 fibrils are stabilized by electrostatic
attraction of heparin to lysine sidechains is also consistent
with the known behavior of heparin complexation with larger
tau fragments. Further studies with this coarse-graining
methodology applied to larger fragments could shed more
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light on the structures of oligomers in these aggregates, the
effects of seeding by multiple distinct fibrillar folds, and the
role of heparin and other polyelectrolytes in structuring larger
aggregates. In particular, extension to longer constructs may
be particularly informative for understanding the interplay
between the PHF6 region and other parts of the chain in
organizing the initial stages of tau aggregation, as suggested
by very recent experimental work (20).

Methods

Relative Entropy Coarse-Graining of PHF6. We used relative entropy
minimization to parameterize a CG model of PHF6. The relative
entropy of a CG system with respect to an AA reference system is

Srel (λ) =
∫

PAA (R) ln
PAA (R)

PCG (R; λ)
dR, [1]

where PCG (R; λ) is the probability of CG configurations R
given CG model parameters λ, and PAA (R) is the corresponding
distribution of AA configurations r mapped to CG coordinates by
the mapping M : rn 7→ RN . For a given AA reference system,
model parameters λ are found by minimizing Srel. The theory
and implementation of this approach are detailed elsewhere (38–
40). The relative entropy is extensible to multiple AA reference
ensembles as

Srel,multi (λ) =
∑

i

Srel,i (λ) , [2]

where Srel,i is the relative entropy for a given AA system and the
corresponding CG ensemble. Such an extended-ensemble approach
was proposed by Mullinax and Noid (72) in the context of force
matching, and the form of Eq. 2 for Srel,multi was justified by
Sanyal et al. (43).

Here, we used an AA reference system of 3 interacting
PHF6 peptides. Each PHF6 chain is capped with neutral
acetyl and N -methylamine groups on its N- and C-termini (i.e.,
Ac–VQIVYK–NHCH3). N- and C-terminal capping has been
shown to affect PHF6 fibril formation in vitro, with uncapped,
zwitterionic PHF6 exhibiting lower aggregation propensity (51),
motivating our choice of charge-neutral capping groups. We
used the Amber ff14SBonlysc force field (73) with the GB-Neck2
generalized Born implicit solvation model (74) and the pwSASA
method (75) for solvent-accessible surface area estimation in all
reference AA simulations. The use of an implicit-solvent AA
three-chain reference system is motivated by the need to achieve
extensive sampling of conformational space using REMD, including
associated and dissociated states, which becomes significantly more
challenging with explicit-solvent models and particularly for larger
chains. Further simulation details are given in SI Sec. A.

We used a formulation (76) of the multistate Bennett acceptance
ratio (MBAR) method (77) for analysis and reweighting of
REMD trajectories. The DSSP algorithm and its criterion for
backbone hydrogen bonding (78, 79) identified hydrogen bonds
and secondary structures. The REMD simulation of the reference
system was reweighted to two temperatures T1 = 300.0 K and
T2 = 348.9 K for use as two reference ensembles in Eq. 2.
We chose T1 as a representative lower temperature to include
configurations with significant cross-β hydrogen bonding, and we
set the higher temperature T2 at the inflection point of the β-strand
secondary structure fraction to include partially associated states
(see Fig. S16a). T2 also corresponds closely with the maximum of
the trace of the Fisher information matrix of the relative entropy
with respect to the model parameters (see Fig. S16b), which was
shown by Shen et al. (80) to yield improved predictions from CG
models.

We chose a mapping from centers of mass of atoms to CG site
coordinates (Fig. 1a) including only heavy (non-H) atoms. The CG
force field consists of bond, angle, and proper dihedral interactions,
as well as pairwise interactions between sites, excluding 1-2, 1-3,
and 1-4 bond connections. SI Sec. B gives details of the CG
mapping and force field terms, and SI Sec. C describes the CG
simulations used during model optimization. Figs. S17–21 show

plots of the CG potentials, along with AA and CG probability
distributions for associated degrees of freedom, and a Python script
to tabulate potentials from their parameters is provided as SI.

Coarse-Grained Model Simulations and Analysis. We performed
5–25 µs NV T MD simulations with the optimized CG model
at temperatures ranging between 320–370 K and concentrations
between 1–10 mM, with 64–512 peptides in the systems; we chose
other simulation parameters identically to the CG simulations used
for model optimization. Initial configurations distributed peptides
at random in the periodic simulation boxes and were equilibrated
at 500 K for 1 µs, or used fibrillar seeds generated from the crystal
structure of PHF6 due to Sawaya et al. (12) (PDB: 2ON9). Seeds
containing 32 or 64 PHF6 (16 or 32 fibril layers) were relaxed for
150 ns using CG MD simulations with temperatures increasing
from 20 K to 300 K in equal-length steps of 20 K (see Fig. S22).
In addition to simulations at single temperatures, we performed
CG REMD simulations of 2, 4, 8, and 16 peptides over a range
of temperatures between 290–370 K, at concentrations of 10 mM
(see SI Sec. D for details). Finally, we performed CG simulations
to compare performance with implicit- and explicit-solvent AA
systems (see SI Sec. E).

CG trajectories were analyzed by first mapping CG N, C, and O
sites back to N, H, Cα, C, and O atoms. Motivated by other simple
protein backmapping schemes (81, 82), we devised a geometric
approach to identify coordinates of H, C, and O atoms from those
of CG sites (see SI Sec. F). We then performed backbone hydrogen
bond and secondary structure analysis as with the AA trajectories.
Fibrils, oligomers, and other aggregates were identified via cluster
analysis, with two PHF6 chains considered to be in contact if
any of their sidechain sites were within 7 Å. This cutoff was
chosen based on sidechain-sidechain radial distribution functions
(see Fig. S23) of the trajectories of Fig. 1. Oligomers isolated
with this clustering criterion were characterized by the eigenvalue
spectra of the adjacency matrices of their backbone hydrogen bond
graphs; such spectra provide an efficient approximate method to
distinguish graph topologies (83). Helix geometries and aggregate
sphericities were found using principal moments and axes from
C sites of individual peptides and C site centroids of peptides in
clusters (see SI Sec. G). All renderings of CG trajectories were
made with the UCSF ChimeraX (84, 85) molecular visualization
software.

We used conformational ensembles of heparin chains containing
18, 24, 30, and 36 saccharide units (PDB: 4J8H, 4J8I, 4J8J, 4J8K)
derived from solution scattering data (86, 87) as reference systems
for relative entropy optimization of the CG polyelectrolyte model.
We mapped all heavy atoms of a saccharide unit to a single
site. We chose a screened Coulomb potential for heparin-heparin
and heparin-lysine sidechain interactions, assigning −2 charges
to heparin sites, and +1 to lysine sidechains. To avoid overlaps,
an r−12 repulsive potential was applied between all heparin and
PHF6 sites. Interaction functional forms used and their optimized
or selected parameters are given in SI Sec. H.

Thermodynamics of Oligomerization and Aggregation and Growth
Kinetics. To relate oligomer size distributions to free energies, we
suppose that a canonical system of N molecules in a volume V
is arranged such that there are N1 unassociated monomers, N2
dimers, etc., and in general, NM oligomers of size M , and that it
behaves as an ideal mixture of oligomers. Its partition function
can be written as

Q = QN
1

∑
{N}∈DN

N∏
M=1

e−βNM ∆AM

NM !
, [3]

where Q1 is the partition function for a single molecule, DN

denotes the set of all oligomer size distributions {N} ∈ NN such
that

∑N

M=1 MNM = N , and ∆AM = AM − MA1 where AM is
the free energy of an oligomer of size M in the volume V . The
average number of oligomers of size M in the system is

NM =

∑
{N}∈DN

NM

∏N

M′=1 e−βNM′ ∆AM′ /NM′ !∑
{N}∈DN

∏N

M′=1 e−βNM′ ∆AM′ /NM′ !
; [4]
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a system of these equations can be solved for the ∆AM given
values of NM from simulations. Unlike the NM , which depend on
the finite size N of the system, these free energies can be used to
predict the behavior of systems of any size (88). More details are
given in SI Sec. I.

For large N , it is impractical to evaluate these expressions
due to the magnitude of |DN |. Working instead from the grand
canonical ensemble, it is possible to estimate the free energy for
forming an oligomer of size M from a solution of monomers of
concentration ρ in the limit N → ∞ as

βFM = β∆AM − (M − 1) ln(ρV0), [5]

where V0 is the volume to which ∆AM corresponds. Alternatively,
to analyze fibril-solution coexistence, we can assume constant and
equivalent heat capacities of PHF6 in both phases, giving

ρ1 = ρ0eβ∆ϵF , [6]

where ρ1 = N1/V , ∆ϵF is a fibrillization-associated energy, and
ρ0 is a constant. Details are provided in SI Sec. I.

To find rate constants for monomer-wise growth and disso-
lution of fibrils from the seeded simulations, we first assume
that a system with a fixed number of chains N has a single
fibril of size M along with N1 = N − M monomers. We
consider the reactions PHF6M + PHF6 ⇌ PHF6M+1, with the
rates rM→M+1 = κ+ρ1 and rM+1→M = κ−. For a given
simulation, the constants are fit to fibril length data taken
at periodic intervals τ = 100 ns using a maximum likelihood
approach on the probabilities P (M ′, t + τ |M, t) = eT

M eAτ eM′

with AM,M′ = rM→M′ − δM,M′
∑

M′′ rM→M′′ . We find κ+ =
0.0223 ± 0.0012 ns−1 mM−1 and κ− = 0.0485 ± 0.0026 ns−1.
Since relative entropy coarse-graining establishes a rigorous AA-
to-CG correspondence only with equilibrium configurations, not
dynamics (89), unless a modified theoretical approach is used to
explicitly account for them (90, 91), such rate constants should
only be considered qualitatively. However, at equilibrium, we can
meaningfully interpret the ratio κ−/κ+ = ρ1. More details on this
and the master equation model are given in SI Sec. J.

Data Availability. All data referenced in the article are presented
within or in the SI Appendix. Values of the PHF6 CG model
parameters are provided within the Python script given as SI.
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