

1 Mapping the configurational landscape and 2 aggregation phase behavior of the tau protein 3 fragment PHF6

4
5
6
7
8 Evan Pretti^a and M. Scott Shell^{a,1}

9 This manuscript was compiled on October 5, 2023

10
11 The PHF6 (Val-Gln-Ile-Val-Tyr-Lys) motif, found in all isoforms of the microtubule-associated
12 protein tau, forms an integral part of ordered cores of amyloid fibrils formed in tauopathies
13 and is thought to play a fundamental role in tau aggregation. Because PHF6 as an isolated
14 hexapeptide assembles into ordered fibrils on its own, it is investigated as a minimal
15 model for insight into the initial stages of aggregation of larger tau fragments. Even for
16 this small peptide, however, the large length and time scales associated with fibrillization
17 pose challenges for simulation studies of its dynamic assembly, equilibrium configurational
18 landscape, and phase behavior. Here, we develop an accurate, bottom-up coarse-grained
19 model of PHF6 for large-scale simulations of its aggregation, which we use to uncover
20 molecular interactions and thermodynamic driving forces governing its assembly. The model,
21 not trained on any explicit information about fibrillar structure, predicts coexistence of
22 formed fibrils with monomers in solution, and we calculate a putative equilibrium phase
23 diagram in concentration-temperature space. We also characterize the configurational and
24 free energetic landscape of PHF6 oligomers. Importantly, we demonstrate with a model
25 of heparin that this widely-studied cofactor enhances the aggregation propensity of PHF6
26 by ordering monomers during nucleation, and remaining associated with growing fibrils,
27 consistent with experimentally characterized heparin-tau interactions. Overall, this effort
28 provides detailed molecular insight into PHF6 aggregation thermodynamics and pathways,
29 and furthermore, demonstrates the potential of modern multiscale modeling techniques to
30 produce predictive models of amyloidogenic peptides simultaneously capturing sequence-
31 specific effects and emergent aggregate structures.

32
33 tau protein | amyloid aggregation | multiscale modeling

34
35 Insight into amyloid aggregation of the microtubule-associated protein tau
36 is critical for establishing a molecular understanding of the progression of
37 Alzheimer's disease and other tauopathies (1, 2), and more practically, for the
38 development of faithful benchtop aggregation models for therapeutic screening.
39 Although neurodegenerative diseases in this class all share the common feature of
40 tau fibril formation, remarkable advances in the field suggest that each tauopathy
41 is distinguished by a unique fold or set of folds of tau within its fibrils' cores (3, 4).
42 Landmark cryo-electron microscopy (cryo-EM) studies (5–9) have revealed that,
43 despite a great diversity in fibrillar folds across diseases, all presently known
44 pathological tau fibril structures incorporate the ³⁰⁶VQIVYK³¹¹ (PHF6, Val-Gln-
45 Ile-Val-Tyr-Lys) motif into their cores. In these structures, PHF6, found in the R3
46 C-terminal repeat region present in all tau isoforms (10), participates in cross- β
47 hydrogen bonding, characteristic of amyloid aggregation, that structures successive
48 layers of fibrils (11–13). Interactions of the hydrophobic sidechains of PHF6 between
49 nearby monomers within fibrils contribute a significant stabilizing effect (14, 15).

50 PHF6, and the related ²⁷⁵VQIINK²⁸⁰ (PHF6*, Val-Gln-Ile-Ile-Asn-Lys) motif in
51 the R2 C-terminal repeat region found in 4R tau isoforms (16), are known to play key
52 roles in pathological tau aggregation (11, 17). PHF6 in particular, however, is known
53 to be essential as a motif for fibril formation (18), and PHF6 as the isolated VQIVYK
54 hexapeptide self-assembles on its own into ordered β -sheet-containing fibrils (12, 19).
55 Compared to full-length tau (352–441 residues depending on isoform) (16), or
56 known tau fibril cores, typically consisting of ~100 residues, the 6-residue PHF6
57 fragment has a much smaller conformational landscape. Although the processes
58 of formation of larger ordered cores of tau fibrils necessarily entail more complex
59 conformational changes than those involving PHF6 alone, experimental evidence
60 continues to reveal the importance of this fragment in tau aggregation. In particular,
61 a small region of tau including PHF6 and 9 surrounding residues was recently

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 Significance Statement

100 Amyloid aggregation of the microtubule-associated protein tau is central to the pathology of
101 Alzheimer's disease and other tauopathies, but the molecular details underlying tau fibrillization
102 are poorly understood. The PHF6 hexapeptide forms a crucial part of the cross- β spines found in all
103 pathological tau structures. Here, we show that an entirely predictive, bottom-up coarse-grained model
104 of PHF6 illuminates the hierarchy of structures and driving forces underlying its aggregation. Large-
105 scale simulations quantify the phase behavior, fibrillization thermodynamics, and oligomer conformational landscape of PHF6, essential factors underlying fibril nucleation and growth, and further offer mechanisms of cofactor-induced aggregation. These
106 insights suggest the potential for modern multiscale methods to predictively inform experimental
107 efforts to study tau fragments with detailed molecular pictures of aggregation.

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
Author affiliations: ^aDepartment of Chemical Engineering, Engineering II Building, University of California, Santa Barbara, Santa Barbara, CA 93106-5080, USA

E.P. and M.S.S. designed research; E.P. performed research and analyzed data; and E.P. and M.S.S. wrote the paper.

The authors declare no competing interest.

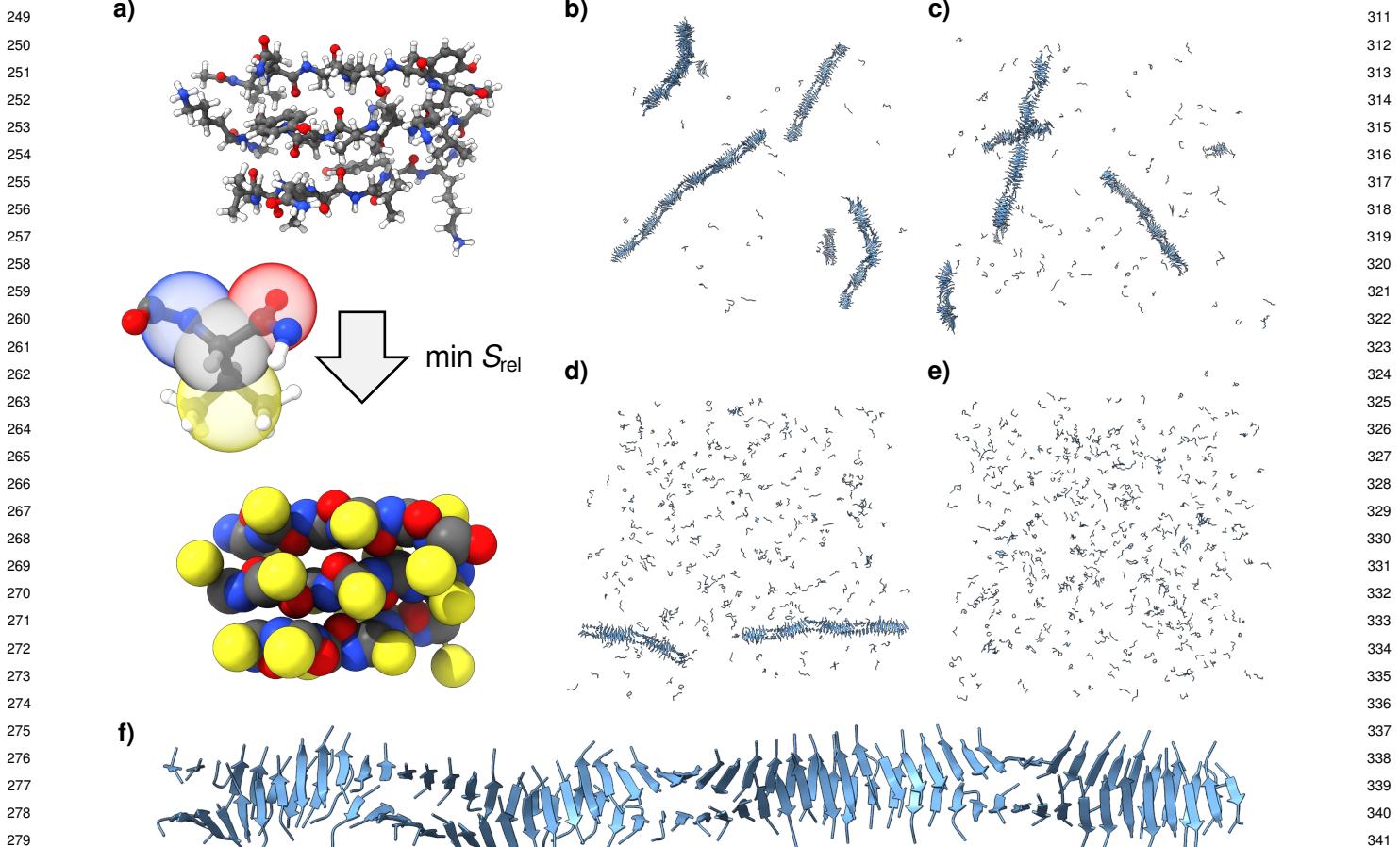
¹To whom correspondence may be addressed. Email: shell@ucsb.edu

125 proposed to form paired cross- β structures in the initial
126 stages of Alzheimer's amyloid aggregation, based on findings
127 from time-resolved cryo-EM (20). Thus PHF6 fibrillization,
128 which serves as a useful model in its own right, is of major
129 interest for understanding the critical early stages of tau
130 aggregation. Yet, despite its small size, illuminating atomistic
131 simulations of PHF6 fibrillization remain intractable, due to
132 the number of chains needed to overcome the aggregation free
133 energy barrier and the long time scales of fibril nucleation
134 and elongation (21, 22). To gain insight into fibril phase
135 behavior, the configurational landscape of oligomers, and the
136 effects that seeding or aggregation cofactors might have on
137 fibril growth, a multiscale modeling approach that addresses
138 the complex balance between local (*e.g.*, secondary structure)
139 and global (collective assembly) interactions is essential.

140 Here, we present *de novo* large-scale simulations of PHF6
141 aggregation, using a bottom-up coarse-grained (CG) modeling
142 approach. The model developed here predicts assembly of
143 PHF6 from monomers in solution into paired hydrophobically-
144 and cross- β -stabilized fibrils, even though no information
145 about fibrillar states is included during model training—
146 such that the preference for fibrillization emerges from the
147 effective interactions determined by underlying physical,
148 atomic-scale interactions. We use the model to map out the
149 detailed hierarchical configurational landscape of oligomers,
150 revealing unexpected cylindrin-like structures intermediate
151 in the aggregation pathway distinct from both single and
152 paired β -sheet oligomeric fibril precursors. We then use large-
153 scale simulations to construct the equilibrium phase diagram
154 of coexisting PHF6 fibrils and solution monomers, which
155 we show is consistent with a statistical-mechanical model
156 of fibrillization. We finally show that heparin as a model
157 polyelectrolyte enhances the propensity of PHF6 to fibrillize,
158 playing an active role in the arrangement of monomers during
159 nucleation and remaining associated with the growing fibrils
160 *via* electrostatic interactions.

161 While CG protein and peptide simulation models have
162 been used to study fibrillization, the present work demon-
163 strates a multiscale approach free of experimental input,
164 training on known fibril structures, and hand-tuning, and
165 thus provides a systematic way to investigate the confor-
166 mationally dynamic aggregation pathways. Phenomenological
167 top-down CG models (23–26) have revealed fundamental
168 qualitative insights into aggregation thermodynamics and
169 kinetics, but often ignore sequence-dependent behaviors.
170 Alternatively, sequence-specific CG models have studied
171 amyloid aggregation (27–32), and two CG models (33, 34)
172 examined PHF6 aggregation in particular (22, 35). But
173 many existing models are parameterized using conformational
174 and contact information from experimental native structures
175 of globular proteins, or alternately, by *ad hoc* methods to
176 match CG system properties to higher resolution simulations.
177 In contrast, modern systematic bottom-up coarse-graining
178 approaches (36–40), posit “universal” variational principles
179 to optimize CG models. Notably, the relative entropy
180 approach has been used to model polyalanine (41, 42)
181 and to build a G_0 -like model able to reproduce folded
182 protein structures given native contact information, with
183 high structural accuracy (43). However, predictive bottom-up
184 models for biologically relevant aggregating systems that take
185 advantage of advances in systematic coarse-graining, avoiding
186

a priori input of native contacts, secondary structures, or *ad
hoc* parameterization strategies, have yet to be realized. Such
models for aggregating peptides have the potential to inform
the effects of mutations or post-translational modifications,
or the presence of particular cofactors that have not been
previously experimentally characterized.

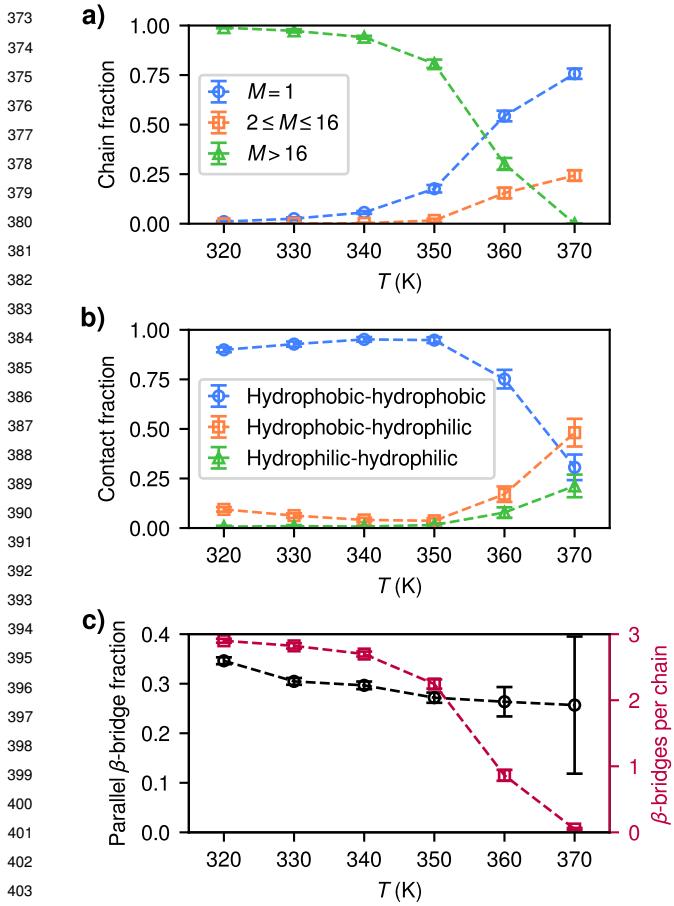

The relative-entropy-based multiscale strategy presented
here suggests a predictive route to quantitatively understanding
peptide aggregation, using only information from small-
scale atomistic (or all-atom, AA) simulations of interacting
PHF6 chains, without requiring any experimental structure
input. This approach enables large length- and time-scale
molecular dynamics (MD) simulations of PHF6 aggregation
and fibril coexistence with solution, as well as extensive
configurational sampling to explore the conformational land-
scape of oligomers. These insights create a detailed molecular
picture of PHF6 aggregation, including conformational states,
mechanisms, and thermodynamic driving forces, and provide
fundamental insight into the dynamic pathways of assembly
into fibrils, from monomers to oligomers to large-scale
aggregates.

Results and Discussion

PHF6 Fibrillization from Solution. We use relative entropy
coarse-graining to generate a CG model of PHF6 from
implicit-solvent (IS) AA reference systems of 3 interacting
capped PHF6 chains. We employ a CG mapping of 4 sites
per residue (Fig. 1a), in order to capture secondary and
tertiary assembled structures as shown earlier (41, 43). We
use the resulting model to simulate solutions of 512 PHF6 at
a concentration $\rho = 10 \text{ mM}$. Fig. 1b–e shows the systems at
four temperatures after $10 \mu\text{s}$ of CG MD; an animation at
350 K is available as Movie S1 of the Supporting Information
(SI). Except at 370 K where the solution phase alone persists
for the duration of the simulation (Fig. 1e), we observe
nucleation and growth of fibrillar aggregates of PHF6, each
consisting of two helically intertwined protofilament-like cross-
 β -sheet structures (Fig. 1f).

The CG model captures the fibrillization process, despite
no training on fibril states, and is essential to enabling equili-
bration of these large-scale aggregation simulations to obtain
thermodynamic properties. As measured by autocorrelation
times for backbone dihedral transitions (Fig. S1a: see the
SI Appendix), the CG model shows a $77 \pm 13 \times$ reduction
in time *vs.* an explicit-solvent (ES) model and a $93 \pm 16 \times$
reduction *vs.* an IS model. The chain end-to-end distance,
with a longer relaxation timescale, shows that the CG model
accelerates by $46.0 \pm 1.6 \times$ the ES and $3.59 \pm 0.13 \times$ the IS
model (Fig. S1b). Beyond these timescale accelerations, the
CG model shows additional practical computational speedups,
especially for larger systems (Fig. S1c). For 32 PHF6, the
performance is 23 ns/day for ES AA, 399 ns/day for IS AA,
and 2340 ns/day for CG simulations ($\sim 6 \times$ faster than IS and
 $\sim 100 \times$ faster than ES). CG performance is greatly enhanced
for larger systems necessary to equilibrate fibrils: IS AA MD
of 8 PHF6 gives 885 ns/day while nearly the same simulation
speed (893 ns/day) is possible for CG simulations of 1024
PHF6. The combination of dynamic acceleration within,
and reduced GPU time to advance by, a given interval of
simulated time, points to the great utility of coarse-graining

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248


Fig. 1. Illustration of the CG model and representative snapshots of simulated aggregates. (a) Representative configuration of the reference system containing 3 PHF6, with an illustration of the mapping operation to the corresponding CG configuration. (b–e) Systems of 512 PHF6 with $\rho = 10 \text{ mM}$ and $T = 340, 350, 360, 370 \text{ K}$, respectively, after $10 \mu\text{s}$ of MD simulation. (f) A representative fibril containing 106 PHF6 from a simulation at 350 K.

in exploring conformational landscapes and carrying out large-scale aggregation simulations.

The structural properties of the simulated aggregates provide a detailed picture of PHF6 fibrils. Fig. S2a calculates the sphericities of the aggregates showing that oligomers of size ~ 10 chains are more compact, while larger clusters have more extended geometries characteristic of fibrils. The spacing between consecutive layers of pairs of chains in fibrils is $4.52 \pm 0.10 \text{ \AA}$, and the pitch of the helical twist of the paired layers is $127 \pm 9 \text{ \AA}$; these are relatively independent of temperature (Fig. S2b). This corresponds to 28 ± 2 layers in a full 360° rotation, or $12.8^\circ \pm 0.9^\circ$ of rotation per layer. Compared to typical tau fibril geometries, *e.g.*, 4.7 \AA spacing and $\approx 1^\circ$ rotation in Alzheimer's disease paired helical filaments (PHFs) (5), the simulated PHF6 fibrils show slightly closer spacing and much tighter helical twisting. However, the angles observed here are in very good agreement with the theoretical investigation of PHF6 fibril geometries by Yang *et al.* (15) giving $\sim 11^\circ$ – 14° . The small cross-sectional areas of these fibrils compared to tau fibrils are also likely more permissive of a larger twist angle, consistent with experimental observations of decreasing rotation in β -lactoglobulin amyloid fibrils of increasing numbers of

protofilaments (44). Finally, the reduced layer spacing could be explained by a rotation of the chains in a fibril to accommodate twisting about its axis—such a rotation is evident in Fig. 1f.

The temperature dependence of the equilibrium PHF6 clusters reveals underlying thermodynamic and kinetic effects governing aggregation (Fig. 2a). At 370 K, most chains remain dissociated ($M = 1$) or otherwise form small clusters ($2 \leq M \leq 16$), but not larger aggregates ($M > 16$). At lower temperatures, fewer chains are found dissociated or in small oligomers, with most in large aggregates, as is also evident from Fig. 1b–d. The time dependence of these fractions (Fig. S3a–c) reveals that fibrilization spanning 320–350 K begins nearly immediately, and that the distributions of cluster sizes reach equilibrium within a few μs . At 360 K, the fibril growth rate is much lower, and longer simulations are likely necessary to equilibrate the system. It is unclear from these results alone whether or not the absence of aggregation at 370 K is due to thermodynamic instability of the fibrils, or that the timescale of fibril nucleation is simply significantly longer than the simulation; we address this issue further in *Aggregation Phase Behavior*.

Fig. 2. Temperature dependence of properties of aggregating systems. (a) Fractions of isolated chains ($M = 1$) and chains in clusters of sizes $2 \leq M \leq 16$ and $M > 16$, from the last 5 μ s of 10 μ s MD simulations of 512 PHF6 with $\rho = 10$ mM. (b) Likewise, fractions of non-hydrogen-bonded contacting chains for which the closest pair of sidechains consisted of residues from the hydrophobic and hydrophilic sides of PHF6. (c) Fractions of β -bridge-participating residues with parallel (vs. antiparallel) orientations, and total numbers of β -bridges per chain. Error bars show standard deviations of the measured properties.

The model predicts appropriate structural ordering of the PHF6 chains within their fibrils, as illustrated in Fig. 2b showing the fractions of closest, non-hydrogen-bonded contacts (in opposing protofilaments) as a function of temperature. We classify contacts by the participating residues: V³⁰⁶, I³⁰⁸, and Y³¹⁰ make up the “hydrophobic side” of PHF6, and Q³⁰⁷, V³⁰⁹, and K³¹¹ comprise the “hydrophilic side,” a division based on the steric zipper crystal structure of PHF6 (12, 45). When fibrils form, the majority of closest contacts are between sidechains on the hydrophobic sides of PHF6 (Fig. 2b), confirming that the model favors assembly into fibrils enclosing these sidechains in their interiors. On the other hand, at 370 K where no fibrils form, the distribution of contacts approaches what would be expected for random, transient, and unbiased association of monomers in solution (roughly 50% for hydrophobic-hydrophilic contacts, and 25% each for same-side contacts). A slight enhancement in contacts involving the hydrophobic side suggests that hydrophobic interactions are still slightly favored at high temperatures, even though significant enrichment in hydrophobic contacts

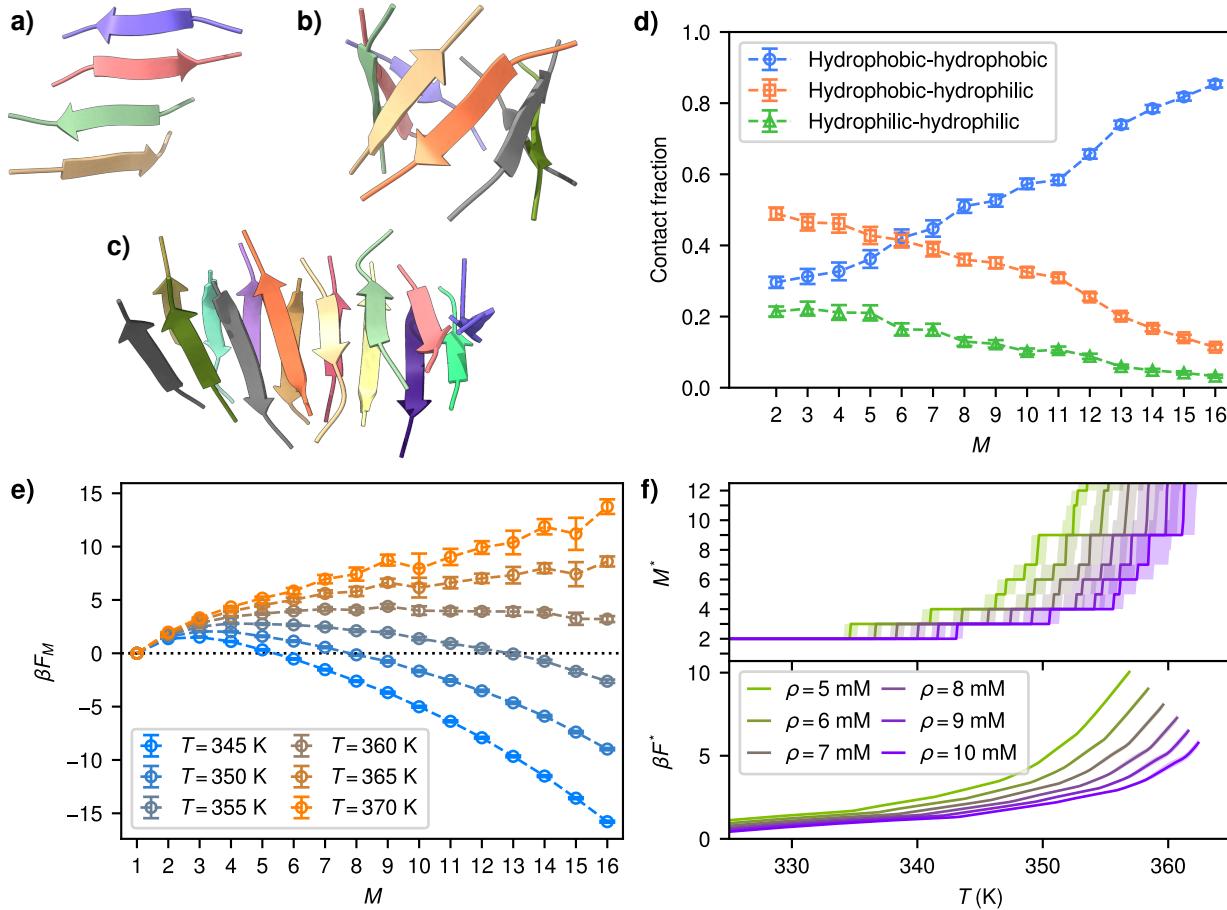
only occurs in fibrils. Fig. S3d–f illustrates that these contact fractions evolve from initial solution to final fibril values on similar timescales as fibril assembly itself. It is possible that the slight decrease in hydrophobic-hydrophobic contact fractions at the lowest temperatures is due to kinetic arrest in the quickly growing fibrils: at 320 K, most chains are depleted from the solution by 1 μ s and the fibril structure remains effectively “frozen in” from this point on. At, e.g., 350 K, however, this occurs more slowly, likely allowing for more annealing during fibril growth.

Under the conditions here, the overall fibrillization process occurs predominantly through primary nucleation from solution followed by fibril growth from attachment of monomers to fibril ends. To probe the growth process, we characterize chains that irreversibly attach to fibrils (Fig. S4) before and after the moment that contact is made and not subsequently broken. The probability of a chain-fibril contact rises steadily ~ 300 ns prior to this, suggesting reversible attachment and detachment; interestingly, an increase in contacts involving residues on the hydrophilic sides of PHF6 chains occurs during this period. However, formation of β -sheet secondary structure and intermolecular hydrogen bonding, along with the hydrophobic contacts characteristic of the formed fibrils, takes another ~ 300 ns to be established. That reversible association is seen leading up to integration of a chain into a fibril, and that attaching chains do not immediately adopt their final conformations, suggests either a “dock-and-lock” mechanism (46) for attachment, or that it is necessary for additional monomers to attach on top of an associated chain before it is stabilized within a fibril.

The model also suggests that a delicate balance of interactions governs the orientations (parallel and antiparallel) of β -bridges within fibrils. Fig. 2c indicates a bias towards antiparallel alignment, but with a significant amount of orientational disorder, slightly increasing at lower temperatures as the parallel fraction increases towards 50%. In contrast, experiments suggest that PHF6 forms fibrils with parallel β -sheets (12, 19). Interestingly, however, the CG model does reproduce the parallel-antiparallel balance present in the reference AA system, which forms ~ 20 –30% parallel β -bridges (Fig. S5). Several factors are known to influence PHF6 fibril stability, such as electrostatic, π – π , and CH– π interactions (47, 48), and these can vary between atomistic force fields (49), which predict different chain alignments within β -sheets (50). Our model suggests a free energetic bias towards antiparallel structures of ~ 1.0 –1.5 $k_B T$, so only a small change in force field interaction strengths is necessary to shift it. N-terminal capping, known to control PHF6 fibrillization (51) as well as affect morphologies of fibrils formed from fragments of islet amyloid polypeptide (52, 53), may also influence experimental findings for PHF6 structures. Sawaya *et al.* (12) provide a structure of uncapped, zwitterionic PHF6 with parallel β -sheet alignment, although notably this structure is for *microcrystalline* rather than *fibrillar* PHF6, and it involves positively-charged lysine sidechains forming favorable electrostatic contacts with negatively-charged C-termini of chains in adjacent β -sheets in the crystal. However, although Goux *et al.* (19) do not attempt to obtain atomistic structures of fibrillar PHF6 with neutral terminal caps, they report FTIR spectra consistent with the absence of antiparallel β -sheets.

497 In the end, experimental evidence points towards predominantly parallel orientation of the chains in PHF6 fibrils, 498 although the amount of orientational disorder in real fibrils 499 is unknown. That fibrils grow robustly in our simulations 500 despite significant mixing of parallel and antiparallel β -bridges 501 throughout suggests that this kind of order may not be of 502 great importance for PHF6 fibrillization specifically. This 503 contrasts with aggregation of longer tau, which by necessity 504 must form parallel cross- β structures in order to stack into 505 regular fibrils of complex folds; if the PHF6 region is involved 506 in initial aggregation stages as a recent study (20) suggests, 507 this raises the interesting possibility of a further aggregation 508 barrier involving strand alignment ordering. The lack of 509 strong specificity, echoed by the variety of behaviors observed 510 in force field predictions, has been observed in AA simulation 511 studies of PHF6 aggregation (54, 55). Moreover, a PHF6 512 fibrillization study (22) using the CG model of Bereau and 513 Deserno (33) found parallel orientation of chains within β - 514 sheets and antiparallel orientation across sheets, consistent 515 with experiments. On the other hand, Cheon *et al.* (35) 516 showed that the PRIME20 CG model (34) favors antiparallel 517 PHF6 β -sheet formation. Notably, however, adjustment of the 518 PRIME20 hydrogen bonding interaction distance constants 519 by just 5% causes PHF6 fibrils with nearly perfect parallel 520 chain orientation to grow. This again highlights the delicate 521 balance of interactions affecting cross- β orientation in PHF6 522 aggregation, compared to the much more robust preference 523 for hydrophobic sidechain contacts inside fibrillar cores that 524 our model captures accurately.

526 **Configurational Landscape for Oligomerization.** Although 527 direct MD simulations of aggregation can reveal general 528 information about fibril structure, they do not distinguish 529 clearly between the roles of thermodynamics and kinetics 530 in governing fibril formation. For instance, simulations 531 in which no fibrils nucleate cannot prove that fibrils are 532 thermodynamically unstable at the simulated conditions as 533 opposed to kinetically inaccessible due to a large nucleation 534 barrier. To more rigorously probe the initial stages of PHF6 535 aggregation, we use advanced sampling replica exchange MD 536 (REMD) simulations of $N = 2, 4, 8$, and 16 total chains to 537 map out the equilibrium configurational landscape of small 538 oligomers. Fig. 3a–c shows representative structures from 539 these simulations for oligomer sizes $M = 4, 8$, and 16 at 540 300 K.

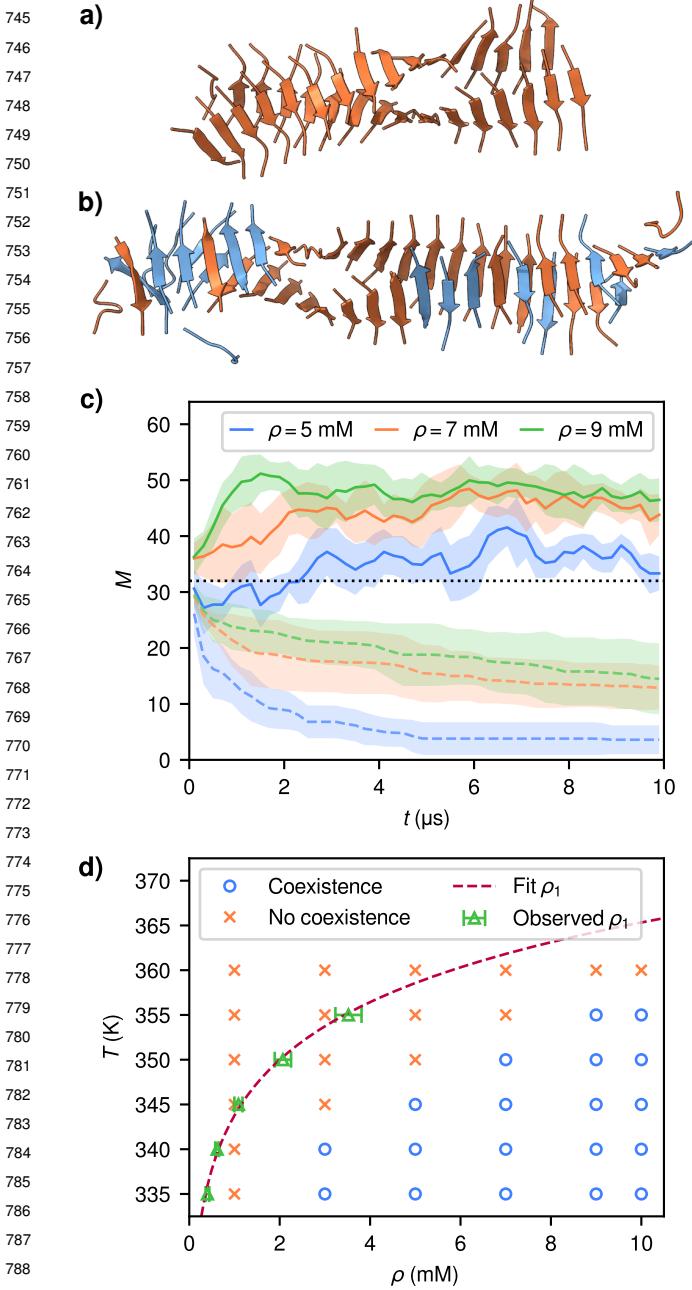

541 At low temperature (300 K), the systems spend most of 542 their time in single aggregates that reveal a hierarchy of 543 stable states. For the $N = 2$ system, these are simply dimers 544 of two β -strands. At $N = 4$, the predominant oligomeric 545 structure consists of a single β -sheet (Fig. 3a). The largest 546 system ($N = 16$) forms paired sheets (Fig. 3c) similar to small 547 sections of fibrils, while the $N = 8$ system forms cylindrical 548 structures (Fig. 3b) distinct from either single or paired 549 β -sheets. At 350 K, these aggregates break into multiple 550 oligomers of smaller sizes. We use simulation reweighting 551 techniques incorporating data from all temperatures to reveal 552 the probability of oligomeric structures of all sizes and types 553 at 300 K. Fig. S6 shows representative images of the most 554 probable oligomeric structures for all sizes $M = 2, 3, \dots, 16$ 555 along with the fractions of all possible structures of these 556 sizes that they comprise. Importantly, these results show 557 that single β -sheets predominate for $2 \leq M \leq 7$, the unique 558

559 cylindrical structure appears at $M = 8$, and paired β -sheets 560 are present for $9 \leq M \leq 16$.

561 The most probable oligomers of all sizes at 350 K (see 562 Fig. S7), where the systems sample a wide variety of configura- 563 tions, reveal more diverse behavior. At this temperature, 564 oligomers of size $4 \leq M \leq 7$ show β -sheets of size $M - 1$ with 565 single chains associated with their surfaces. For $8 \leq M \leq 10$, 566 the same behavior is seen with 2 or 3 associated chains, 567 until paired sheets appear for $11 \leq M \leq 16$. Overall, the 568 results suggest that backbone hydrogen bonding and β -sheet 569 formation is crucial for the initial creation of small oligomers 570 from individual chains. As the oligomers grow, hydrophobic 571 interactions between sidechains draw in additional chains to 572 the forming β -sheet surfaces, until eventually paired cross- β 573 structures characteristic of fibrils are able to form. This 574 is supported by the sidechain contact types observed in 575 oligomers of each size at 350 K (Fig. 3d). For small oligomers 576 ($M \lesssim 6$), the distribution of contact types is similar to that 577 in solutions without aggregates (see, *e.g.*, 370 K in Fig. 2b), 578 but evolves towards that of extended fibrils as M increases. 579 A slightly greater preference for antiparallel alignment is seen 580 in smaller oligomers (Fig. S8), suggesting that sidechain 581 interactions may bias larger oligomers towards increased 582 parallel alignment where they are of greater importance 583 compared to hydrogen bonding alone.

584 The cylindrical β -barrel-like oligomers in the $N = 8$ 585 simulations are particularly striking in several ways beyond 586 their unique hydrogen bonding topology. Almost all of these 587 oligomers show antiparallel alignment for all of their β -bridges; 588 all of the adjacent pairs of β -strands are out of register; 589 moreover, the hydrophobic V³⁰⁶, I³⁰⁸, and Y³¹⁰ residues 590 point to the outside of, rather than towards the interior of, 591 the oligomer (Fig. S9). Notably, the octamers seen here are 592 structurally similar to trimeric and hexameric “cylindrins” 593 first observed in oligomers of the K11V fragment of α B- 594 crystallin (56), and to tetramers of an A β _{30–36}-containing 595 construct (57). Specifically, Liu *et al.* (57) demonstrate the 596 formation of cylindrin-like tetramers using model constructs 597 designed to aggregate out-of-register, and posit a mechanism 598 for toxicity involving membrane disruption from insertion of 599 the cylindrins aided by their exposed hydrophobic residues, 600 structurally similar to the PHF6 oligomers predicted here. 601 Whether or not the PHF6 cylindrins octamer has any bearing 602 on the potential toxicity of longer PHF6-containing tau 603 fragments is unclear; however, the unique octamer structure 604 nonetheless provides an interesting hypothesis about potentially 605 functional oligomeric structures of PHF6. In any case, 606 an in-register fibril cannot grow from a cylindrin containing 607 out-of-register hydrogen bonds without it first unrolling, then 608 breaking and re-forming these bonds, suggesting that such 609 oligomers could contribute to a nucleation barrier or off- 610 pathway state in PHF6 fibrillization.

611 To directly assess nucleation barriers, we calculate oligomer 612 free energies βF_M for a $\rho = 10$ mM solution (Fig. 3e). 613 At higher temperatures where aggregation is unfavorable, 614 barriers increase with M , presumably due to the entropic 615 penalty for association of free chains into oligomers, while 616 at lower temperatures, they level out and begin to decrease 617 for sufficiently large M . This is evident for $T \lesssim 360$ K, in 618 agreement with the large-scale assembly simulations. As the 619 temperature further decreases, the critical oligomer sizes and 620


Fig. 3. Oligomer structures and thermodynamic properties. (a-c) A representative tetramer, octamer, and 16-mer, respectively, from replica exchange simulations of PHF6 at $T = 300$ K and $\rho = 10$ mM. (d) Fractions of non-hydrogen-bonded contacting chains for which the closest pair of sidechains consists of residues from the hydrophobic and hydrophilic sides of PHF6, for a system with $N = 16$, $\rho = 10$ mM, and $T = 350$ K. (e) Free energies of oligomers of size M in a $\rho = 10$ mM solution. (f) Critical oligomer sizes estimated from free energies (upper panel), and corresponding free energy barrier heights (lower panel: curves are truncated when the most probable value of M^* reaches the largest system size $N = 16$). Error bars and bands show 95% confidence intervals of mean values, or in the case of M^* , median values.

free energy barrier heights, corresponding to the locations of the maxima in these free energy curves, also decrease. The dependence of these sizes and heights on temperature is shown in Fig. 3f for different solution concentrations. As expected, with increased supersaturation (increasing concentration at constant temperature, or decreasing temperature at a given concentration), fewer monomers must oligomerize to form a critical aggregate, and the free energy penalty is decreased.

Aggregation Phase Behavior. Beyond small PHF6 oligomers representative of the start of fibril growth, we investigate how larger fibrillar aggregates interact with chains in solution. Here, we first initialize MD simulations with seeds (see Fig. 4a) based on a known, parallel β -sheet crystal structure of PHF6 (12) (PDB: 2ON9) containing the hydrophobic interface characteristic of the paired PHF6 fibrils observed to grow in our simulations. Similar seeding approaches have been used with other CG models to understand fibril elongation and protofilament assembly (58, 59). Here, the PHF6 seeds are placed in solutions of additional monomers, and we monitor the dynamic equilibrium of chains exchanging between the fibrillar and solution phases. To begin, we choose a fixed temperature of 350 K and perform five independent

replicate runs each at *overall* concentrations of 5, 7, and 9 mM, *i.e.*, the solution concentrations that would be present were the seeds to dissolve completely.

The simulations reveal a significant dynamic exchange of monomers with the fibrils. Fig. 4b shows an example of the state of a fibril in one such simulation after 1 μ s (see also Movie S2). Many of the seed chains initially present (orange) remain, while additional chains (blue) join both ends, mixing with the originals. Overall, seeds grow in the 7 and 9 mM simulations, while those in the 5 mM simulations remain roughly around the same size (Fig. 4c, solid lines), illustrating the stability of the seed structures, and the ability of the model to reach an *equilibrium* coexistence between solution and fibril phases. The number of chains starting in the seeds that never detach into the solution phase (Fig. 4c, dashed lines) decreases with time, showing that chains quickly detach from the ends of fibrils and move about in solution, even if they might later rejoin the fibrils. Similarly, the fraction of parallel β -bridges (Fig. S10a) decreases over time from the initially purely parallel state of the seeds towards the expected value for fibrils grown directly from solution with the CG model. This occurs progressively through series of attachment and detachment events rather than complete

Fig. 4. Fibril seeding and fibril-solution coexistence. (a) Initial state and (b) state after 1 μ s, of a fibrillar seed of size 32 (orange) in a solution of 32 PHF6 (blue) in a volume corresponding to a total concentration $\rho = 9$ mM, and $T = 350$ K. (c) Fibril size (solid) and chains never having detached from the fibril (dashed) from 5 replicates each, $T = 350$ K. Means and standard deviations over 200 ns intervals are shown. (d) Theoretical coexistence curve (red —) of fibrillar PHF6 with solution, fit to observed solution concentrations (green \triangle) in equilibrium with fibrils. Blue \circ and orange \times symbols indicate the presence or absence, respectively, of persistent aggregates in 25 μ s simulations of 64 PHF6. Error bars show 95% confidence intervals.

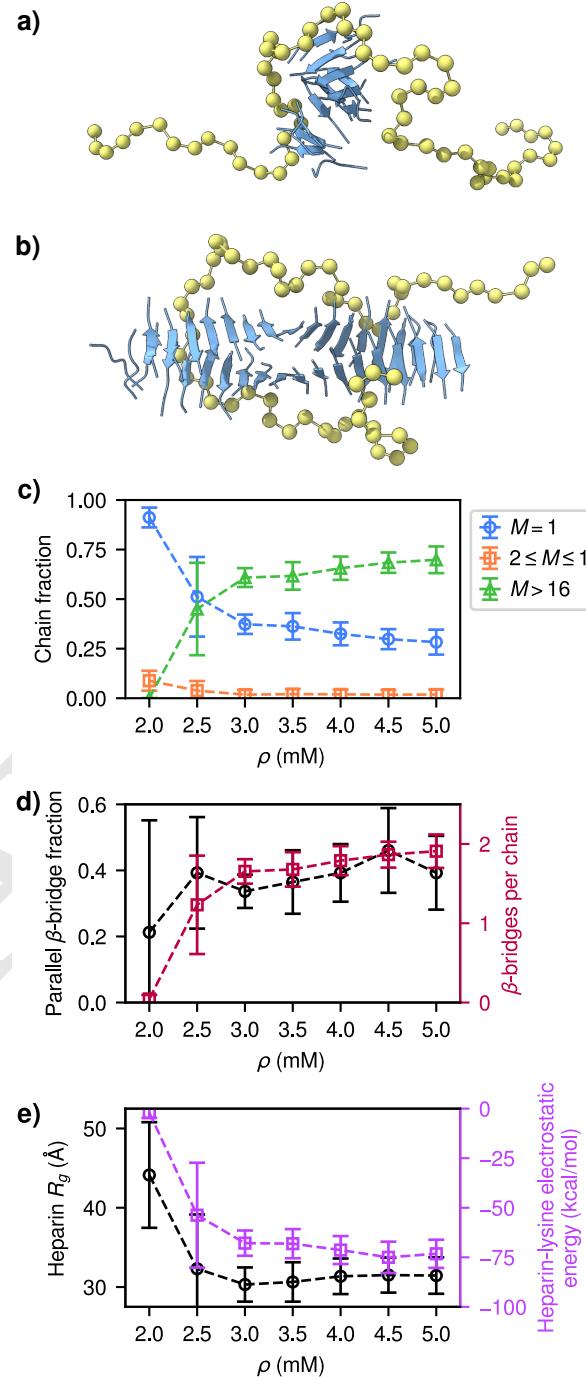
loss and recovery of fibril structure, shown by retention of hydrophobic-hydrophobic side contacts (Fig. S10b–d) throughout the equilibration process. However, it is clear that at higher concentrations, fibrils equilibrate at a notably slower rate, reflecting the stability of larger fibrils whose interior

monomers are far less kinetically accessible than those at the ends.

Based on these findings, the model supports a picture of PHF6 aggregation involving a dynamic equilibrium between fibrils and solution. To map its phase diagram, we find the concentrations of PHF6 solutions at given temperatures that are in equilibrium with fibrils, *i.e.*, the concentrations at which fibrils will neither grow nor shrink on average over time. The blue and orange symbols in Fig. 4d show the temperatures and concentrations at which fibrils do or do not, respectively, both grow over the first 5 μ s of 25 μ s MD simulations of 64 PHF6, starting from solutions, and persist for the duration of the simulations. Once a fibril grows from a solution of initial concentration ρ , the chains not incorporated into the fibril remain in solution, at a concentration $\rho_1 < \rho$.

Fig. 4d shows the simulation-measured coexistence concentrations ρ_1 for each T , alongside a fit to a thermodynamic phase boundary scaling law for aggregation discussed in *Methods*. The latter predicts $\rho_1 \sim e^{\beta \Delta \epsilon_F}$, where $-\Delta \epsilon_F$ is the latent heat of fibrillization. This simple van't Hoff form, which assumes that the heat capacity of a chain in solution is identical to that of one in a fibril, agrees with prior studies of the phase behavior of amyloid systems (60–62). We find here $-\Delta \epsilon_F = 26.7 \pm 2.3$ kcal/mol. Although we are not aware of a previously measured value of this quantity for PHF6, it is of a reasonable magnitude, considering, *e.g.*, the value of ~ 22 kcal/mol reported by Wang *et al.* (62) for paired β -sheet aggregates of the A β _{16–22} (KLVFFAE) peptide, although unlike these aggregates, we do not observe PHF6 fibrils with more than two β -sheets in cross-section.

We find evidence of significant metastability in fibril equilibrium. Many of the state points falling just to the right of the coexistence curve in Fig. 4d do not produce fibrils in the 25 μ s simulations. This behavior is consistent with the finite size and length of the simulations and the anticipated barrier to fibril nucleation observed in oligomer free energies (Fig. S3f), since a sufficiently weakly supersaturated solution may fail to nucleate fibrils on any timescale if the concentration ρ_1 of chains remaining in the solution after formation of a critical nucleus falls below the coexistence concentration. Alternatively, timescales associated with fibril formation and dissolution may simply be very long, illustrated by the 7 mM, 355 K case (Fig. S11a), contrasted with 5 mM at the same temperature where no aggregation occurs, and the 9 mM case where it occurs immediately. At each of these concentrations, we take configurations containing the largest fibrils grown in simulations at 350 K and simulate 5 independent replicates at 355 K. Fig. S11b–d shows that at 5 mM, 4 out of 5 seeds dissolve by 10 μ s, at 7 mM, 1 seed dissolves, and at 9 mM, all remain stable despite shrinking on average. Thus, at conditions close to the saturation line, fibrils in these systems of finite size may be unstable or metastable. Nonetheless, we are still able to extract the temperature-dependent equilibrium concentrations from simulations that do eventually produce fibrils reaching coexistence with a solution phase.


As a final check to demonstrate that these simulations indeed reach equilibrium, we extract rate constants for association and dissociation of monomers from the seeded growth simulations in Fig. 4c as well as simulations of isolated seeds partially dissolving. We solve a master equation describing

869 the time evolution of the seed length probability distribution,
 870 similar to approaches previously applied to amyloid systems,
 871 often in the context of investigating primary and secondary
 872 nucleation mechanisms and fragmentation (63, 64). For this
 873 system, we always observe primary nucleation followed by
 874 growth *via* attachment, so our main interest is to consider the
 875 growth kinetics. Demonstrations of correspondence between
 876 seeded simulations and solutions to the master equation
 877 are provided in Fig. S12 (see *Methods* for details). From
 878 the rate constants, we then estimate at $T = 350$ K that
 879 $\rho_1 = 2.17 \pm 0.17$ mM, consistent with $\rho_1 = 2.00 \pm 0.16$ mM
 880 from the fitted model shown in Fig. 4d.

881 **Influence of Heparin as a Model Polyelectrolyte.** Experimentally,
 882 tau fibrillization is often induced by an anionic
 883 polyelectrolyte such as heparin or RNA (65). Heparin in
 884 particular has been shown not only to act as an initiator
 885 for tau aggregation, but also to remain associated with the
 886 grown fibrils, reacting stoichiometrically to form stabilizing
 887 complexes with tau rather than simply catalyzing fibril
 888 nucleation (66, 67). Heparin has furthermore been shown
 889 experimentally to enhance PHF6 aggregation and affect fibril
 890 morphology in a capping group-dependent manner (51). To
 891 quantify the molecular mechanisms behind the influence
 892 of polyanions like heparin on aggregation, we develop a
 893 CG model for heparin based on known experimentally-
 894 determined solution conformational ensembles (see *Methods*
 895 for details). In this model, each saccharide unit in a heparin
 896 chain is represented as a single negatively charged CG site,
 897 with a screened electrostatic attractive interaction with the
 898 positively charged lysine sidechain sites of PHF6. We do not
 899 attempt to capture here the chemical details of PHF6-heparin
 900 interactions, but instead probe the influence of heparin as an
 901 idealized, model anionic polyelectrolyte on PHF6 aggregation.

902 Simulations of 64 PHF6 at $T = 350$ K and a range
 903 of concentrations, along with single heparin chains of 60
 904 saccharide units (~ 17 kDa), show that heparin is capable of
 905 initiating PHF6 aggregation under conditions where it would
 906 not occur spontaneously. Heparin serves as a nucleation site
 907 for aggregation (see Fig. 5a), but also remains associated with
 908 elongated fibrils (see Fig. 5b and Movie S3). At the lowest
 909 PHF6 concentration tested, $\rho = 2.0$ mM, we do not observe
 910 fibril formation in any of 5 independent replicate simulations
 911 after 10 μ s: Fig. 5c shows that most chains are found as
 912 isolated monomers in solution in this case. At $\rho = 2.5$ mM,
 913 4 of 5 replicates form fibrils within 10 μ s; at $\rho = 3.0$ mM, all
 914 replicates formed fibrils within the first 8 μ s, and at higher
 915 concentrations, fibrillization begins almost immediately (see
 916 Fig. S13). In contrast, in identical conditions in the absence of
 917 heparin, no fibrillization occurs within 10 μ s for $\rho = 3.0$ mM
 918 and 4.0 mM, while fibrils only form spontaneously without
 919 heparin within this timespan once the PHF6 concentration
 920 is increased to $\rho = 5.0$ mM (Fig. S14a–c). Replacing the
 921 single heparin 60-mer at $\rho = 3.0$ mM (where Fig. S13b
 922 shows fibrillization in all replicates) instead with 15 heparin
 923 tetramers, also leads to no aggregation (Fig. S14d); the same
 924 is true when the heparin-PHF6 electrostatic attraction is
 925 explicitly excluded from the force field (Fig. S14e).

926 As these electrostatic interactions between heparin and
 927 the lysine sidechain sites are the only attractive interactions
 928 between the modeled heparin and PHF6 chains, they appear
 929 to play a crucial role in enhancing the ability of fibrils to

931 **Fig. 5.** Heparin-induced aggregation of PHF6. (a) Initial stages of heparin-induced
 932 aggregation at $T = 350$ K and $\rho = 2.5$ mM from a system of 64 PHF6 containing
 933 a heparin chain of 60 saccharide units. (b) Fully grown fibril under these conditions.
 934 (c) Fractions of chains in clusters of different sizes from the last 2 μ s of 5 replicates
 935 each of 10 μ s simulations of 64 PHF6 with a heparin chain of 60 saccharide units at
 936 $T = 350$ K. (d) Likewise, fractions of β -bridge-participating residues with parallel
 937 (vs. antiparallel) orientations, and total numbers of β -bridges per chain. (e) Radius of
 938 gyration of heparin chains and total electrostatic interaction energy between heparin
 939 and lysine sidechain CG sites. Error bars show standard deviations of the measured
 940 properties.

941 nucleate. The loss of heparin's cofactor effect upon its
 942 fragmentation highlights the importance of its *polyanionic*
 943

993 nature: localization of charges in heparin is important
994 for attracting PHF6 chains to form a sufficiently large
995 oligomer. A natural question is whether heparin chains
996 only serve to increase the local concentration of PHF6, or
997 if heparin also orders assembling chains in some way that
998 affects fibril structure. We do not observe any significant
999 differences in the layer spacing or pitch of heparin-induced
1000 *vs.* spontaneously aggregating fibrils. However, an increased
1001 fraction of parallel cross- β structures might be expected if the
1002 negatively charged polyelectrolyte were to cause the positively
1003 charged lysine sidechains to align along it. We do observe
1004 some such alignment (Fig. 5d): for transient association of
1005 monomers in solution in the absence of aggregation, the
1006 parallel fraction is similar to what is observed without any
1007 heparin present, but concentrations yielding heparin-induced
1008 aggregates show an enrichment in parallel β -sheets. The time-
1009 dependence of the alignment of chains in heparin-associated
1010 fibrils (Fig. S15) shows that some nucleation events produce
1011 fibrils initially more enriched in parallel β -sheets, but this
1012 effect is not universal. Others form initial aggregates with
1013 similar parallel alignment fractions to those not induced by
1014 heparin, and either remain predominantly antiparallel or
1015 increase in parallel cross- β content over time. It is likely that
1016 the particular bias observed in a given fibril is dependent on
1017 the conformations of heparin at the time of nucleation and
1018 while associated with the extended fibril.

1019 In general, the interplay between the structures of the
1020 fibrils and heparin may be complex. In fact, the fibrils
1021 themselves affect the conformations explored by heparin,
1022 illustrated by a decrease in the radius of gyration R_g of fibril-
1023 associated heparin compared to heparin in systems where
1024 fibrils are absent (Fig. 5e, left axis). This collapse, likely due
1025 to the favorable electrostatic interactions between heparin
1026 and the lysine sidechains (Fig. 5e, right axis), is also captured
1027 by a decrease in the average persistence length of heparin:
1028 at $\rho = 3.0$ mM, it decreases from 25.0 ± 1.2 Å before fibril
1029 formation (comparable with 30.5 ± 1.4 Å for the reference con-
1030 formations and ~ 21 Å (68, 69) and ~ 45 Å (70) from other
1031 experiments) to 6.7 ± 0.4 Å after fibril formation. Notably,
1032 heparin's interaction with PHF6 fibrils is consistent with
1033 the observed behavior of heparin in other amyloid systems,
1034 such as full length tau as discussed above, as well as with an
1035 atomistic simulation study by Khurshid *et al.* (71) of heparin-
1036 assisted aggregation of the $\text{A}\beta_{16-21}$ (KLVFFA) hexapeptide.
1037 The latter study observed significant flexing of aggregate-
1038 associated heparin chains compared to their normal, more
1039 extended solution conformations, and furthermore showed
1040 that artificially constraining heparin to remain extended
1041 decreases its ability to induce aggregation. We note, given
1042 that we do not use reference systems including both heparin
1043 and PHF6 interacting, that the magnitude of the changes in
1044 heparin chain properties upon PHF6 aggregation may not be
1045 quantitative; however, the results nonetheless provide insight
1046 into the influence of an anionic polyelectrolyte on PHF6
1047 aggregation, and suggest future work to probe the specific
1048 role of chain stiffness. Specifically, these results highlight
1049 the active role of such a polyelectrolyte in the aggregation
1050 process, not only as a catalyst but also as a reactant in the
1051 structure of formed fibrils.

1052
1053
1054

Conclusions

1055 In this study, we have shown that a purely bottom-up CG
1056 model of PHF6 developed using relative entropy minimization
1057 is able to accurately capture the interactions necessary to
1058 model the fibrillar aggregation of PHF6. Notably, no manual
1059 tuning of interaction parameters, or input of experimen-
1060 tal or simulated fibril geometry data, is needed; realistic
1061 fibrillization behavior arises from interactions determined
1062 solely from small-scale reference atomistic simulations not
1063 including fibril formation. The resulting simulated fibrils
1064 show important hallmarks of amyloid aggregation, namely,
1065 structures with long-range fibrillar order maintained through
1066 cross- β hydrogen bonding along their lengths, and in this
1067 case, helically wound paired protofilaments held together by
1068 hydrophobic interactions. Importantly, the model enables
1069 simulations of systems with sizes larger and timescales longer
1070 than are generally accessible through atomistic simulations
1071 alone. Significant acceleration of what would otherwise
1072 be intractably slow timescales for PHF6 chains exploring
1073 configurational space permits the mapping out of the confor-
1074 mational and free energetic landscape of oligomers, and the
1075 determination of equilibrium fibril phase behavior.

1076 The CG simulations here reveal important features of
1077 PHF6 aggregation that may be informative in understanding
1078 the wider issue of fibril formation of longer tau fragments.
1079 While the model does not reproduce a strong bias of PHF6
1080 towards parallel β -sheets as suggested by experiments, it
1081 demonstrates that, unlike in amyloid aggregation of much
1082 longer peptides where parallel alignment is necessary for
1083 any kind of fibrillar order, this is not of critical importance
1084 for PHF6. We observe significant disorder within fibrils
1085 with respect to parallel *vs.* antiparallel alignment, see that
1086 purely parallel alignment of chains in an initial fibrillar seed
1087 readily becomes more disordered upon exchange with chains
1088 in solution, and show that it can even be influenced by
1089 association of heparin with the fibrils. All of these processes
1090 can occur without loss of the properties actually crucial for
1091 fibril formation, namely, the formation of cross- β hydrogen
1092 bonds along protofilaments and of hydrophobic contacts in
1093 the interface between protofilaments.

1094 Results highlighting the structural properties of oligomers
1095 point to the importance of these hydrophobic contacts for
1096 sufficiently large aggregates once paired β -sheets begin to
1097 form. The transition from a mixture of various kinds
1098 of sidechain contacts to the almost exclusive presence of
1099 contacts between sidechains on the hydrophobic sides of PHF6
1100 chains as oligomer size increases suggests a cooperative effect
1101 governing oligomer structures: sufficiently many hydrogen
1102 bonds are needed to stabilize small oligomers that paired
1103 sheets do not form, but as the number of chains grows,
1104 more such contacts can form within these paired structures.
1105 Such a mechanism could be relevant in explaining the
1106 high kinetic barrier to primary nucleation of fibrils from
1107 larger tau fragments, where the pairing of protofilaments
1108 is partially replaced by peptides folding in particular ways
1109 so as to optimize the sidechain contacts formed. That
1110 heparin-induced PHF6 fibrils are stabilized by electrostatic
1111 attraction of heparin to lysine sidechains is also consistent
1112 with the known behavior of heparin complexation with larger
1113 tau fragments. Further studies with this coarse-graining
1114 methodology applied to larger fragments could shed more
1115

light on the structures of oligomers in these aggregates, the effects of seeding by multiple distinct fibrillar folds, and the role of heparin and other polyelectrolytes in structuring larger aggregates. In particular, extension to longer constructs may be particularly informative for understanding the interplay between the PHF6 region and other parts of the chain in organizing the initial stages of tau aggregation, as suggested by very recent experimental work (20).

Methods

Relative Entropy Coarse-Graining of PHF6. We used relative entropy minimization to parameterize a CG model of PHF6. The relative entropy of a CG system with respect to an AA reference system is

$$S_{\text{rel}}(\lambda) = \int \mathcal{P}_{\text{AA}}(\mathbf{R}) \ln \frac{\mathcal{P}_{\text{AA}}(\mathbf{R})}{\mathcal{P}_{\text{CG}}(\mathbf{R}; \lambda)} d\mathbf{R}, \quad [1]$$

where $\mathcal{P}_{\text{CG}}(\mathbf{R}; \lambda)$ is the probability of CG configurations \mathbf{R} given CG model parameters λ , and $\mathcal{P}_{\text{AA}}(\mathbf{R})$ is the corresponding distribution of AA configurations \mathbf{r} mapped to CG coordinates by the mapping $\mathbf{M} : \mathbf{r}^n \mapsto \mathbf{R}^N$. For a given AA reference system, model parameters λ are found by minimizing S_{rel} . The theory and implementation of this approach are detailed elsewhere (38–40). The relative entropy is extensible to multiple AA reference ensembles as

$$S_{\text{rel,multi}}(\lambda) = \sum_i S_{\text{rel},i}(\lambda), \quad [2]$$

where $S_{\text{rel},i}$ is the relative entropy for a given AA system and the corresponding CG ensemble. Such an extended-ensemble approach was proposed by Mullinax and Noid (72) in the context of force matching, and the form of Eq. 2 for $S_{\text{rel,multi}}$ was justified by Sanyal *et al.* (43).

Here, we used an AA reference system of 3 interacting PHF6 peptides. Each PHF6 chain is capped with neutral acetyl and *N*-methylamine groups on its N- and C-termini (*i.e.*, Ac–VQIVYK–NHCH₃). N- and C-terminal capping has been shown to affect PHF6 fibril formation *in vitro*, with uncapped, zwitterionic PHF6 exhibiting lower aggregation propensity (51), motivating our choice of charge-neutral capping groups. We used the Amber ff14SBonlysc force field (73) with the GB-Neck2 generalized Born implicit solvation model (74) and the pwSASA method (75) for solvent-accessible surface area estimation in all reference AA simulations. The use of an implicit-solvent AA three-chain reference system is motivated by the need to achieve extensive sampling of conformational space using REMD, including associated and dissociated states, which becomes significantly more challenging with explicit-solvent models and particularly for larger chains. Further simulation details are given in SI Sec. A.

We used a formulation (76) of the multistate Bennett acceptance ratio (MBAR) method (77) for analysis and reweighting of REMD trajectories. The DSSP algorithm and its criterion for backbone hydrogen bonding (78, 79) identified hydrogen bonds and secondary structures. The REMD simulation of the reference system was reweighted to two temperatures $T_1 = 300.0$ K and $T_2 = 348.9$ K for use as two reference ensembles in Eq. 2. We chose T_1 as a representative lower temperature to include configurations with significant cross- β hydrogen bonding, and we set the higher temperature T_2 at the inflection point of the β -strand secondary structure fraction to include partially associated states (see Fig. S16a). T_2 also corresponds closely with the maximum of the trace of the Fisher information matrix of the relative entropy with respect to the model parameters (see Fig. S16b), which was shown by Shen *et al.* (80) to yield improved predictions from CG models.

We chose a mapping from centers of mass of atoms to CG site coordinates (Fig. 1a) including only heavy (non-H) atoms. The CG force field consists of bond, angle, and proper dihedral interactions, as well as pairwise interactions between sites, excluding 1-2, 1-3, and 1-4 bond connections. SI Sec. B gives details of the CG mapping and force field terms, and SI Sec. C describes the CG simulations used during model optimization. Figs. S17–21 show

plots of the CG potentials, along with AA and CG probability distributions for associated degrees of freedom, and a Python script to tabulate potentials from their parameters is provided as SI.

Coarse-Grained Model Simulations and Analysis. We performed 5–25 μ s NVT MD simulations with the optimized CG model at temperatures ranging between 320–370 K and concentrations between 1–10 mM, with 64–512 peptides in the systems; we chose other simulation parameters identically to the CG simulations used for model optimization. Initial configurations distributed peptides at random in the periodic simulation boxes and were equilibrated at 500 K for 1 μ s, or used fibrillar seeds generated from the crystal structure of PHF6 due to Sawaya *et al.* (12) (PDB: 2ON9). Seeds containing 32 or 64 PHF6 (16 or 32 fibril layers) were relaxed for 150 ns using CG MD simulations with temperatures increasing from 20 K to 300 K in equal-length steps of 20 K (see Fig. S22). In addition to simulations at single temperatures, we performed CG REMD simulations of 2, 4, 8, and 16 peptides over a range of temperatures between 290–370 K, at concentrations of 10 mM (see SI Sec. D for details). Finally, we performed CG simulations to compare performance with implicit- and explicit-solvent AA systems (see SI Sec. E).

CG trajectories were analyzed by first mapping CG N , C , and O sites back to N, H, Ca, C, and O atoms. Motivated by other simple protein backmapping schemes (81, 82), we devised a geometric approach to identify coordinates of H, C, and O atoms from those of CG sites (see SI Sec. F). We then performed backbone hydrogen bond and secondary structure analysis as with the AA trajectories. Fibrils, oligomers, and other aggregates were identified *via* cluster analysis, with two PHF6 chains considered to be in contact if any of their sidechain sites were within 7 Å. This cutoff was chosen based on sidechain-sidechain radial distribution functions (see Fig. S23) of the trajectories of Fig. 1. Oligomers isolated with this clustering criterion were characterized by the eigenvalue spectra of the adjacency matrices of their backbone hydrogen bond graphs; such spectra provide an efficient approximate method to distinguish graph topologies (83). Helix geometries and aggregate sphericities were found using principal moments and axes from C sites of individual peptides and C site centroids of peptides in clusters (see SI Sec. G). All renderings of CG trajectories were made with the UCSF ChimeraX (84, 85) molecular visualization software.

We used conformational ensembles of heparin chains containing 18, 24, 30, and 36 saccharide units (PDB: 4J8H, 4J8I, 4J8J, 4J8K) derived from solution scattering data (86, 87) as reference systems for relative entropy optimization of the CG polyelectrolyte model. We mapped all heavy atoms of a saccharide unit to a single site. We chose a screened Coulomb potential for heparin-heparin and heparin-lysine sidechain interactions, assigning -2 charges to heparin sites, and +1 to lysine sidechains. To avoid overlaps, an r^{-12} repulsive potential was applied between all heparin and PHF6 sites. Interaction functional forms used and their optimized or selected parameters are given in SI Sec. H.

Thermodynamics of Oligomerization and Aggregation and Growth Kinetics. To relate oligomer size distributions to free energies, we suppose that a canonical system of N molecules in a volume V is arranged such that there are N_1 unassociated monomers, N_2 dimers, *etc.*, and in general, N_M oligomers of size M , and that it behaves as an ideal mixture of oligomers. Its partition function can be written as

$$Q = Q_1^N \sum_{\{\mathbf{N}\} \in \mathcal{D}_N} \prod_{M=1}^N \frac{e^{-\beta N_M \Delta A_M}}{N_M!}, \quad [3]$$

where Q_1 is the partition function for a single molecule, \mathcal{D}_N denotes the set of all oligomer size distributions $\{\mathbf{N}\} \in \mathbb{N}^N$ such that $\sum_{M=1}^N M N_M = N$, and $\Delta A_M = A_M - M A_1$ where A_M is the free energy of an oligomer of size M in the volume V . The average number of oligomers of size M in the system is

$$\overline{N_M} = \frac{\sum_{\{\mathbf{N}\} \in \mathcal{D}_N} N_M \prod_{M'=1}^N e^{-\beta N_{M'} \Delta A_{M'}} / N_{M'}!}{\sum_{\{\mathbf{N}\} \in \mathcal{D}_N} \prod_{M'=1}^N e^{-\beta N_{M'} \Delta A_{M'}} / N_{M'}!}; \quad [4]$$

1241 a system of these equations can be solved for the ΔA_M given
 1242 values of \overline{N}_M from simulations. Unlike the \overline{N}_M , which depend on
 1243 the finite size N of the system, these free energies can be used to
 1244 predict the behavior of systems of any size (88). More details are
 1245 given in SI Sec. I.

1246 For large N , it is impractical to evaluate these expressions
 1247 due to the magnitude of $|\mathcal{D}_N|$. Working instead from the grand
 1248 canonical ensemble, it is possible to estimate the free energy for
 1249 forming an oligomer of size M from a solution of monomers of
 1250 concentration ρ in the limit $N \rightarrow \infty$ as

$$1250 \beta F_M = \beta \Delta A_M - (M-1) \ln(\rho V_0), \quad [5]$$

1251 where V_0 is the volume to which ΔA_M corresponds. Alternatively,
 1252 to analyze fibril-solution coexistence, we can assume constant and
 1253 equivalent heat capacities of PHF6 in both phases, giving

$$1254 \rho_1 = \rho_0 e^{\beta \Delta \epsilon_F}, \quad [6]$$

1255 where $\rho_1 = N_1/V$, $\Delta \epsilon_F$ is a fibrilization-associated energy, and
 1256 ρ_0 is a constant. Details are provided in SI Sec. I.

1257 To find rate constants for monomer-wise growth and dissolution
 1258 of fibrils from the seeded simulations, we first assume
 1259 that a system with a fixed number of chains N has a single
 1260 fibril of size M along with $N_1 = N - M$ monomers. We
 1261 consider the reactions $\text{PHF6}_M + \text{PHF6} \rightleftharpoons \text{PHF6}_{M+1}$, with the
 1262 rates $r_{M \rightarrow M+1} = \kappa_+ \rho_1$ and $r_{M+1 \rightarrow M} = \kappa_-$. For a given
 1263 simulation, the constants are fit to fibril length data taken
 1264 at periodic intervals $\tau = 100$ ns using a maximum likelihood
 1265 approach on the probabilities $\mathcal{P}(M', t + \tau | M, t) = e_M^T e^{\mathbf{A} \tau} e_{M'}$
 1266 with $A_{M,M'} = r_{M \rightarrow M'} - \delta_{M,M'} \sum_{M''} r_{M \rightarrow M''}$. We find $\kappa_+ =$
 1267 $0.0223 \pm 0.0012 \text{ ns}^{-1} \text{ mM}^{-1}$ and $\kappa_- = 0.0485 \pm 0.0026 \text{ ns}^{-1}$.
 1268 Since relative entropy coarse-graining establishes a rigorous AA-
 1269 to-CG correspondence only with equilibrium configurations, not
 1270 dynamics (89), unless a modified theoretical approach is used to
 1271 explicitly account for them (90, 91), such rate constants should
 1272 only be considered qualitatively. However, at equilibrium, we can
 1273 meaningfully interpret the ratio $\kappa_-/\kappa_+ = \rho_1$. More details on this
 1274 and the master equation model are given in SI Sec. J.

1275 **Data Availability.** All data referenced in the article are presented
 1276 within or in the *SI Appendix*. Values of the PHF6 CG model
 1277 parameters are provided within the Python script given as SI.

1278 **ACKNOWLEDGMENTS.** We gratefully acknowledge funding
 1279 support from the National Science Foundation through Award
 1280 No. CHEM-1800344. We acknowledge the W. M. Keck Foundation
 1281 for a Medical Research Grant. This material is based upon
 1282 work supported by the National Science Foundation Graduate
 1283 Research Fellowship under Grant No. 1650114. Use was made of
 1284 computational facilities purchased with funds from the National
 1285 Science Foundation (OAC-1925717) and administered by the
 1286 Center for Scientific Computing (CSC). The CSC is supported by
 1287 the California NanoSystems Institute and the Materials Research
 1288 Science and Engineering Center (MRSEC; NSF DMR 1720256)
 1289 at UC Santa Barbara. We are grateful to Pritam Ganguly, Songi
 1290 Han, Kenneth Kosik, Samuel Lobo, Andrew Longhini, Saeed Najafi,
 1291 Joan-Emma Shea, and Michael Vigers for helpful discussions during
 1292 the preparation of this work.

1. C Ballatore, VMY Lee, JQ Trojanowski, Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. *Nat. Rev. Neurosci.* **8**, 663–672 (2007).
2. M Goedert, DS Eisenberg, RA Crowther, Propagation of tau aggregates and neurodegeneration. *Annu. Rev. Neurosci.* **40**, 189–210 (2017).
3. D Sanders, et al., Distinct tau prion strains propagate in cells and mice and define different tauopathies. *Neuron* **82**, 1271–1288 (2014).
4. J Vaquer-Alicea, MI Diamond, LA Joachimiak, Tau strains shape disease. *Acta Neuropathol.* **142**, 57–71 (2021).
5. AWP Fitzpatrick, et al., Cryo-EM structures of tau filaments from Alzheimer's disease. *Nature* **547**, 185–190 (2017).
6. B Falcon, et al., Structures of filaments from Pick's disease reveal a novel tau protein fold. *Nature* **561**, 137–140 (2018).
7. B Falcon, et al., Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. *Nature* **568**, 420–423 (2019).
8. W Zhang, et al., Novel tau filament fold in corticobasal degeneration. *Nature* **580**, 283–287 (2020).
9. Y Shi, et al., Structure-based classification of tauopathies. *Nature* **598**, 359–363 (2021).

10. P Ganguly, et al., Tau assembly: The dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3. *J. Phys. Chem. B* **119**, 4582–4593 (2015).
11. M von Bergen, et al., Assembly of τ protein into Alzheimer paired helical filaments depends on a local sequence motif $(^30^6 \text{VQIVYK}^{31})$ forming β structure. *Proc. Natl. Acad. Sci. U.S.A.* **97**, 5129–5134 (2000).
12. MR Sawaya, et al., Atomic structures of amyloid cross- β spines reveal varied steric zippers. *Nature* **447**, 453–457 (2007).
13. V Daebel, et al., β -Sheet core of tau paired helical filaments revealed by solid-state NMR. *J. Am. Chem. Soc.* **134**, 13982–13989 (2012).
14. H Liu, et al., Disclosing the mechanism of spontaneous aggregation and template-induced misfolding of the key hexapeptide (PHF6) of tau protein based on molecular dynamics simulation. *ACS Chem. Neurosci.* **10**, 4810–4823 (2019).
15. J Yang, MV Agnihotri, CJ Huseby, J Kuret, SJ Singer, A theoretical study of polymorphism in VQIVYK fibrils. *Biophys. J.* **120**, 1396–1416 (2021).
16. M Goedert, MC Spillantini, D Rutherford, RA Crowther, Multiple isoforms of human microtubule-associated protein tau: Sequences and localization in neurofibrillary tangles of Alzheimer's disease. *Neuron* **3**, 519–526 (1989).
17. AM Giannetti, et al., Fibers of tau fragments, but not full length tau, exhibit a cross β -structure: Implications for the formation of paired helical filaments. *Protein Sci.* **9**, 2427–2435 (2000).
18. W Li, VMY Lee, Characterization of two VQIXXK motifs for tau fibrilization in vitro. *Biochemistry* **45**, 15692–15701 (2006).
19. WJ Goux, et al., The formation of straight and twisted filaments from short tau peptides. *J. Biol. Chem.* **279**, 26868–26875 (2004).
20. S Lövestam, et al., Disease-specific tau filaments assemble via polymorphic intermediates (bioRxiv: 10.1101/2023.07.24.550295) (2023).
21. C Wu, JE Shea, Coarse-grained models for protein aggregation. *Curr. Opin. Struct. Biol.* **21**, 209–220 (2011).
22. FX Smit, JA Luiken, PG Bolhuis, Primary fibril nucleation of aggregation-prone tau fragments PHF6 and PHF6*. *J. Phys. Chem. B* **121**, 3250–3261 (2017).
23. MS Li, DK Klimov, JE Straub, D Thirumalai, Probing the mechanisms of fibril formation using lattice models. *J. Chem. Phys.* **129**, 175101 (2008).
24. S Abel, M Vendruscolo, CM Dobson, D Frenkel, A simple lattice model that captures protein folding, aggregation and amyloid formation. *PLoS ONE* **9**, e85185 (2014).
25. NS Bieler, TPJ Knowles, D Frenkel, R Vácha, Connecting macroscopic observables and microscopic assembly events in amyloid formation using coarse grained simulations. *PLoS Comput. Biol.* **8**, e1002692 (2012).
26. A Šarić, YC Chebaro, TPJ Knowles, D Frenkel, Crucial role of nonspecific interactions in amyloid nucleation. *Proc. Natl. Acad. Sci. U.S.A.* **111**, 17869–17874 (2014).
27. A Davtyan, et al., AWSEM-MD: Protein structure prediction using coarse-grained physical potentials and bioinformatically based local structure biasing. *J. Phys. Chem. B* **116**, 8494–8503 (2012).
28. M Chen, NP Schafer, W Zheng, PG Wolynes, The associative memory, water mediated, structure and energy model (AWSEM)-amylorometer: Predicting amyloid propensity and fibril topology using an optimized folding landscape model. *ACS Chem. Neurosci.* **9**, 1027–1039 (2018).
29. F Sterpone, et al., The OPEP protein model: From single molecules, amyloid formation, crowding and hydrodynamics to DNA/RNA systems. *Chem. Soc. Rev.* **43**, 4871–4893 (2014).
30. J Nasica-Labouze, M Meli, P Derreumaux, G Colombo, N Mousseau, A multiscale approach to characterize the early aggregation steps of the amyloid-forming peptide GNNQQNY from the yeast prion Sup-35. *PLoS Comput. Biol.* **7**, e1002051 (2011).
31. GG Maisuradze, P Senet, C Czaplewski, A Liwo, HA Scheraga, Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field. *J. Phys. Chem. A* **114**, 4471–4485 (2010).
32. A Rojas, A Liwo, D Browne, HA Scheraga, Mechanism of fiber assembly: Treatment of $\text{A}\beta$ peptide aggregation with a coarse-grained united-residue force field. *J. Mol. Biol.* **404**, 537–552 (2010).
33. T Bereau, M Deserno, Generic coarse-grained model for protein folding and aggregation. *J. Chem. Phys.* **130**, 235106 (2009).
34. M Cheon, I Chang, CK Hall, Extending the PRIME model for protein aggregation to all 20 amino acids. *Proteins* **78**, 2950–2960 (2010).
35. M Cheon, I Chang, CK Hall, Influence of temperature on formation of perfect tau fragment fibrils using PRIME20/DMD simulations. *Protein Sci.* **21**, 1514–1527 (2012).
36. S Izvekov, GA Voth, A multiscale coarse-graining method for biomolecular systems. *J. Phys. Chem. B* **109**, 2469–2473 (2005).
37. S Izvekov, GA Voth, Multiscale coarse graining of liquid-state systems. *J. Chem. Phys.* **123**, 134105 (2005).
38. MS Shell, The relative entropy is fundamental to multiscale and inverse thermodynamic problems. *J. Chem. Phys.* **129**, 144108 (2008).
39. A Chaimovich, MS Shell, Anomalous waterlike behavior in spherically-symmetric water models optimized with the relative entropy. *Phys. Chem. Chem. Phys.* **11**, 1901 (2009).
40. A Chaimovich, MS Shell, Coarse-graining errors and numerical optimization using a relative entropy framework. *J. Chem. Phys.* **134**, 094112 (2011).
41. SP Carmichael, MS Shell, A new multiscale algorithm and its application to coarse-grained peptide models for self-assembly. *J. Phys. Chem. B* **116**, 8383–8393 (2012).
42. SP Carmichael, MS Shell, Entropic (de)stabilization of surface-bound peptides conjugated with polymers. *J. Chem. Phys.* **143**, 243103 (2015).
43. T Sanyal, J Mittal, MS Shell, A hybrid, bottom-up, structurally accurate, Gō-like coarse-grained protein model. *J. Chem. Phys.* **151**, 044111 (2019).
44. J Adamcik, R Mezzenga, Adjustable twisting periodic pitch of amyloid fibrils. *Soft Matter* **7**, 5437 (2011).
45. JJW Wiltzius, et al., Molecular mechanisms for protein-encoded inheritance. *Nat. Struct. Mol. Biol.* **16**, 973–978 (2009).

1365 46. PH Nguyen, MS Li, G Stock, JE Straub, D Thirumalai, Monomer adds to preformed
1366 structured oligomers of A β -peptides by a two-stage dock-lock mechanism. *Proc. Natl.
1367 Acad. Sci. U.S.A.* **104**, 111–116 (2007).

1368 47. JH Zhao, et al., Molecular dynamics simulations to investigate the stability and aggregation
1369 behaviour of the amyloid-forming peptide VQIVYK from tau protein. *Mol. Simul.* **36**,
1013–1024 (2010).

1370 48. K Sogawa, et al., CH- π interaction in VQIVYK sequence elucidated by NMR spectroscopy
1371 is essential for PHF formation of tau. *Biopolymers* **102**, 288–295 (2014).

1372 49. Y Li, X Peng, Comparison of the force fields on monomeric and fibrillar PHF6 of tau protein.
1373 *Biophys. Chem.* **277**, 106631 (2021).

1374 50. VH Man, X He, J Gao, J Wang, Effects of all-atom molecular mechanics force fields on
1375 amyloid peptide assembly: the case of PHF6 peptide of tau protein. *J. Chem. Theory
1376 Comput.* **17**, 6458–6471 (2021).

1377 51. S Arya, et al., Terminal capping of an amyloidogenic tau fragment modulates its fibrillation
1378 propensity. *J. Phys. Chem. B* **124**, 8772–8783 (2020).

1379 52. ST Wang, et al., Sequence-dependent self-assembly and structural diversity of islet amyloid
1380 polypeptide-derived β -sheet fibrils. *ACS Nano* **11**, 8579–8589 (2017).

1381 53. X Zottig, et al., Guiding the morphology of amyloid assemblies by electrostatic capping:
1382 From polymorphic twisted fibrils to uniform nanorods. *Small* **15**, 1901806 (2019).

1383 54. DW Li, S Mohanty, A Irbäck, S Huo, Formation and growth of oligomers: A Monte Carlo
1384 study of an amyloid tau fragment. *PLoS Comput. Biol.* **4**, e1000238 (2008).

1385 55. C Fagnani, J Giovannini, M Catto, AS Voisin-Chiret, J Sopkova-de Oliveira Santos, On the
1386 tracks of the aggregation mechanism of the PHF6 peptide from tau protein: Molecular
1387 dynamics, energy, and interaction network investigations. *ACS Chem. Neurosci.* **13**,
2874–2887 (2022).

1388 56. A Laganowsky, et al., Atomic view of a toxic amyloid small oligomer. *Science* **335**,
1228–1231 (2012).

1389 57. C Liu, et al., Out-of-register β -sheets suggest a pathway to toxic amyloid aggregates. *Proc.
1390 Natl. Acad. Sci. U.S.A.* **109**, 20913–20918 (2012).

1391 58. J Zhang, M Muthukumar, Simulations of nucleation and elongation of amyloid fibrils. *J.
1392 Chem. Phys.* **130**, 035102 (2009).

1393 59. J Sørensen, X Periole, KK Skeby, SJ Marrink, B Schiøtt, Protomeric assembly toward the
1394 formation of amyloid fibrils. *J. Phys. Chem. Lett.* **2**, 2385–2390 (2011).

1395 60. S Auer, D Kashchiev, Phase diagram of α -helical and β -sheet forming peptides. *Phys. Rev.
1396 Lett.* **104**, 168105 (2010).

1397 61. LG Rizzi, S Auer, Amyloid fibril solubility. *J. Phys. Chem. B* **119**, 14631–14636 (2015).

1398 62. Y Wang, et al., Thermodynamic phase diagram of amyloid- β (16–22) peptide. *Proc. Natl.
1399 Acad. Sci. U.S.A.* **116**, 2091–2096 (2019).

1400 63. TPJ Knowles, et al., An analytical solution to the kinetics of breakable filament assembly.
1401 *Science* **326**, 1533–1537 (2009).

1402 64. TCT Michaels, TPJ Knowles, Mean-field master equation formalism for biofilament growth.
1403 *Am. J. Phys.* **82**, 476–483 (2014).

1404 65. B Nizynski, W Dzwolak, K Nieznanski, Amyloidogenesis of Tau protein. *Protein Sci.* **26**,
2126–2150 (2017).

1405 66. Y Fichou, et al., Cofactors are essential constituents of stable and seeding-active tau fibrils.
1406 *Proc. Natl. Acad. Sci. U.S.A.* **115**, 13234–13239 (2018).

1407 67. Y Fichou, et al., Tau-cofactor complexes as building blocks of tau fibrils. *Front. Neurosci.* **13**,
1339 (2019).

1408 68. SS Stivala, Physico-chemical studies of fractionated bovine heparin. V. Some low-angle
1409 X-ray scattering data. *Arch. Biochem. Biophys.* **127**, 795–802 (1968).

1410 69. B Khorramian, S Stivala, Small-angle x-ray scattering of high- and low-affinity heparin. *Arch.
1411 Biochem. Biophys.* **247**, 384–392 (1986).

1412 70. G Pavlov, S Finet, K Tatarenko, E Korneeva, C Ebel, Conformation of heparin studied with
1413 macromolecular hydrodynamic methods and X-ray scattering. *Eur. Biophys. J.* **32**, 437–449
(2003).

1414 71. B Khurshid, et al., Heparin-assisted amyloidogenesis uncovered through molecular
1415 dynamics simulations. *ACS Omega* **7**, 15132–15144 (2022).

1416 72. JW Mullinax, WG Noid, Extended ensemble approach for deriving transferable
1417 coarse-grained potentials. *J. Chem. Phys.* **131**, 104110 (2009).

1418 73. H Nguyen, J Maier, H Huang, V Perrone, C Simmerling, Folding simulations for proteins with
1419 diverse topologies are accessible in days with a physics-based force field and implicit
1420 solvent. *J. Am. Chem. Soc.* **136**, 13959–13962 (2014).

1421 74. H Nguyen, DR Roe, C Simmerling, Improved generalized Born solvent model parameters
1422 for protein simulations. *J. Chem. Theory Comput.* **9**, 2020–2034 (2013).

1423 75. H Huang, C Simmerling, Fast pairwise approximation of solvent accessible surface area for
1424 implicit solvent simulations of proteins on CPUs and GPUs. *J. Chem. Theory Comput.* **14**,
5797–5814 (2018).

1425 76. X Ding, JZ Vilseck, CL Brooks, Fast solver for large scale multistate Bennett acceptance
1426 ratio equations. *J. Chem. Theory Comput.* **15**, 799–802 (2019).

1427 77. MR Shirts, JD Chodera, Statistically optimal analysis of samples from multiple equilibrium
1428 states. *J. Chem. Phys.* **129**, 124105 (2008).

1429 78. W Kabsch, C Sander, Dictionary of protein secondary structure: Pattern recognition of
1430 hydrogen-bonded and geometrical features. *Biopolymers* **22**, 2577–2637 (1983).

1431 79. WG Touw, et al., A series of PDB-related databanks for everyday needs. *Nucleic Acids Res.*
1432 **43**, D364–D368 (2015).

1433 80. K Shen, et al., Learning composition-transferable coarse-grained models: Designing
1434 external potential ensembles to maximize thermodynamic information. *J. Chem. Phys.* **153**,
154116 (2020).

1435 81. LE Lombardi, MA Martí, L Cabece, CG2AA: Backmapping protein coarse-grained
1436 structures. *Bioinformatics* **32**, 1235–1237 (2016).

1437 82. MR Machado, S Pantano, SIRAH tools: Mapping, backmapping and visualization of
1438 coarse-grained models. *Bioinformatics* **32**, 1568–1570 (2016).

1439 83. P Wills, FG Meyer, Metrics for graph comparison: A practitioner's guide. *PLoS ONE* **15**,
e0228728 (2020).

1440 84. TD Goddard, et al., UCSF ChimeraX: Meeting modern challenges in visualization and
1441 analysis. *Protein Sci.* **27**, 14–25 (2018).

1442 85. EF Pettersen, et al., UCSF ChimeraX: Structure visualization for researchers, educators,
1443 and developers. *Protein Sci.* **30**, 70–82 (2021).

1443 86. S Khan, J Gor, B Mulloy, SJ Perkins, Semi-rigid solution structures of heparin by
1444 constrained X-ray scattering modelling: New insight into heparin–protein complexes. *J. Mol.
1445 Biol.* **395**, 504–521 (2010).

1446 87. S Khan, J Gor, B Mulloy, SJ Perkins, Corrigendum to “Semi-rigid solution structures of
1447 heparin by constrained X-ray scattering modelling: New insight into heparin–protein
1448 complexes” [J. Mol. Biol. 395 (2010) 504–521]. *J. Mol. Biol.* **425**, 1847 (2013).

1449 88. JT Kindt, Accounting for finite-number effects on cluster size distributions in simulations of
1450 equilibrium aggregation. *J. Chem. Theory Comput.* **9**, 147–152 (2013).

1450 89. J Jin, KS Schweizer, GA Voth, Understanding dynamics in coarse-grained models. I.
1451 Universal excess entropy scaling relationship. *J. Chem. Phys.* **158**, 034103 (2023).

1451 90. P Español, I Zúñiga, Obtaining fully dynamic coarse-grained models from MD. *Phys. Chem.
1452 Chem. Phys.* **13**, 10538 (2011).

1452 91. MA Katsoulakis, P Plecháč, Information-theoretic tools for parametrized coarse-graining of
1453 non-equilibrium extended systems. *J. Chem. Phys.* **139**, 074115 (2013).

1453 92. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
1444 14441–14452 (2011).

1454 93. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14451–14460 (2011).

1455 94. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14461–14470 (2011).

1456 95. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14471–14480 (2011).

1457 96. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14481–14490 (2011).

1458 97. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14491–14500 (2011).

1459 98. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14501–14510 (2011).

1460 99. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14511–14520 (2011).

1461 100. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14521–14530 (2011).

1462 101. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14531–14540 (2011).

1463 102. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14541–14550 (2011).

1464 103. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14551–14560 (2011).

1465 104. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14561–14570 (2011).

1466 105. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14571–14580 (2011).

1467 106. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14581–14590 (2011).

1468 107. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14591–14600 (2011).

1469 108. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14601–14610 (2011).

1470 109. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14611–14620 (2011).

1471 110. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14621–14630 (2011).

1472 111. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14631–14640 (2011).

1473 112. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14641–14650 (2011).

1474 113. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14651–14660 (2011).

1475 114. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14661–14670 (2011).

1476 115. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14671–14680 (2011).

1477 116. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14681–14690 (2011).

1478 117. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14691–14700 (2011).

1479 118. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14701–14710 (2011).

1480 119. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14711–14720 (2011).

1481 120. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14721–14730 (2011).

1482 121. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14731–14740 (2011).

1483 122. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14741–14750 (2011).

1484 123. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14751–14760 (2011).

1485 124. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14761–14770 (2011).

1486 125. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14771–14780 (2011).

1487 126. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14781–14790 (2011).

1488 127. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14791–14800 (2011).

1489 128. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14801–14810 (2011).

1490 129. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14811–14820 (2011).

1491 130. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14821–14830 (2011).

1492 131. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14831–14840 (2011).

1493 132. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14841–14850 (2011).

1494 133. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14851–14860 (2011).

1495 134. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14861–14870 (2011).

1496 135. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14871–14880 (2011).

1497 136. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14881–14890 (2011).

1498 137. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14891–14900 (2011).

1499 138. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14901–14910 (2011).

1500 139. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14911–14920 (2011).

1501 140. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14921–14930 (2011).

1502 141. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14931–14940 (2011).

1503 142. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14941–14950 (2011).

1504 143. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14951–14960 (2011).

1505 144. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14961–14970 (2011).

1506 145. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14971–14980 (2011).

1507 146. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14981–14990 (2011).

1508 147. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
14991–15000 (2011).

1509 148. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15001–15010 (2011).

1510 149. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15011–15020 (2011).

1511 150. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15021–15030 (2011).

1512 151. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15031–15040 (2011).

1513 152. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15041–15050 (2011).

1514 153. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15051–15060 (2011).

1515 154. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15061–15070 (2011).

1516 155. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15071–15080 (2011).

1517 156. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15081–15090 (2011).

1518 157. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15091–15100 (2011).

1519 158. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15101–15110 (2011).

1520 159. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15111–15120 (2011).

1521 160. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15121–15130 (2011).

1522 161. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15131–15140 (2011).

1523 162. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15141–15150 (2011).

1524 163. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15151–15160 (2011).

1525 164. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15161–15170 (2011).

1526 165. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15171–15180 (2011).

1527 166. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15181–15190 (2011).

1528 167. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15191–15200 (2011).

1529 168. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15201–15210 (2011).

1530 169. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15211–15220 (2011).

1531 170. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15221–15230 (2011).

1532 171. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15231–15240 (2011).

1533 172. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15241–15250 (2011).

1534 173. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15251–15260 (2011).

1535 174. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15261–15270 (2011).

1536 175. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15271–15280 (2011).

1537 176. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15281–15290 (2011).

1538 177. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15291–15300 (2011).

1539 178. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15301–15310 (2011).

1540 179. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15311–15320 (2011).

1541 180. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15321–15330 (2011).

1542 181. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15331–15340 (2011).

1543 182. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15341–15350 (2011).

1544 183. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15351–15360 (2011).

1545 184. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15361–15370 (2011).

1546 185. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15371–15380 (2011).

1547 186. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15381–15390 (2011).

1548 187. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15391–15400 (2011).

1549 188. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15401–15410 (2011).

1550 189. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15411–15420 (2011).

1551 190. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15421–15430 (2011).

1552 191. P Espa  ol, I Z  niga, Coarse-graining of protein dynamics. *Phys. Chem. Chem. Phys.* **13**,
15431–15440 (2011).

1553 192. P Espa  ol,