Check for
Updates

Accelerating Data-Intensive Seismic Research Through Parallel
Workflow Optimization and Federated Cyberinfrastructure

Marcus Adair
Ivan Rodero

Manish Parashar
University of Utah
Scientific Computing and Imaging (SCI) Institute
Salt Lake City, UT, USA
{u1131818,ivan.rodero,manish.parashar}@utah.edu

ABSTRACT

Earthquake early warning systems use synthetic data from simu-
lation frameworks like MudPy to train models for predicting the
magnitudes of large earthquakes. MudPy, although powerful, has
limitations: a lengthy simulation time to generate the required data,
lack of user-friendliness, and no platform for discovering and shar-
ing its data. We introduce FakeQuakes DAGMan Workflow (FDW),
which utilizes Open Science Grid (OSG) for parallel computations
to accelerate and streamline MudPy simulations. FDW significantly
reduces runtime and increases throughput compared to a single-
machine setup. Using FDW, we also explore partitioned parallel
HTCondor DAGMan workflows to enhance OSG efficiency. Ad-
ditionally, we investigate leveraging cyberinfrastructure, such as
Virtual Data Collaboratory (VDC), for enhancing MudPy and OSG.
Specifically, we simulate using Cloud bursting policies to enforce
FDW job-offloading to VDC during OSG peak demand, addressing
shared resource issues and user goals; we also discuss VDC’s value
in facilitating a platform for broad access to MudPy products.

CCS CONCEPTS

» Computing methodologies — Parallel computing methodologies;
« Human-centered computing — Accessibility systems and tools;
« Applied computing — Earth and atmospheric sciences.

KEYWORDS

parallel workflow, HTC, OSG, cyberinfrastructure, data democrati-
zation, earthquake early warning, VDC

ACM Reference Format:

Marcus Adair, Ivan Rodero, Manish Parashar, and Diego Melgar. 2023. Ac-
celerating Data-Intensive Seismic Research Through Parallel Workflow
Optimization and Federated Cyberinfrastructure. In Workshops of The Inter-
national Conference on High Performance Computing, Network, Storage, and
Analysis (SC-W 2023), November 12—17, 2023, Denver, CO, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3624062.3624276

This work is licensed under a Creative Commons Attribution International
4.0 License.

SC-W 2023, November 12—17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0785-8/23/11.
https://doi.org/10.1145/3624062.3624276

1970

Diego Melgar
University of Oregon
Dept. of Earth Sciences
Eugene, OR, USA
dmelgarm@uoregon.edu

1 INTRODUCTION

Synthetic data from simulated large earthquakes (Mw 7.5+) have
proven valuable in training artificial intelligence (AI)-based earth-
quake early warning (EEW) models to identify large earthquake
magnitudes [14]. EEW systems provide advanced warning of dan-
gerous events before ground motion is experienced to mitigate the
profound risks posed [6, 10]. As large earthquakes are rare (e.g., in
a given year, only about 15 Mw 7+ events and one Mw 8+ event
occur [30]), synthetic data from simulation frameworks, such as
MudPy (openly available on GitHub [17]), are relied upon for train-
ing EEW models [14]. MudPy, although powerful, has limitations:
(1) running simulations to generate the required data can be time-
consuming, potentially taking up to several days); (2) the software
is not user-friendly; and (3) currently no platform is available for
easy discovery and widespread sharing of the data generated. These
limitations can hinder the broad adoption of MudPy, especially for
nonprogrammers.

In this paper, we leverage existing cyberinfrastructure (CI), and
specifically, the Open Science Grid (OSG), to create a high-throughput
workflow tool for accelerating MudPy earthquake simulations, over-
coming the framework’s limitations.

Utilizing OSG’s high-throughput computing (HTC) and storage
capabilities [1, 24, 27], our workflow automates and streamlines
the parallel execution of earthquake simulation and accelerates
synthetic data generation, addressing the performance limitations
of MudPy’s native sequential simulations.

We specifically present the FakeQuakes DAGMan Workflow
(FDW), our solution for accelerating and streamlining earthquake
simulations using National Science Foundation (NSF) CI. Our ex-
perimental results demonstrate a 56.8% decrease in runtime when
simulating 1,024 earthquakes in Chile using parallel computation
on OSG versus on a single machine. The throughput also increases
by approximately five times when running 50,000 simulations com-
pared to 1,024 with the FDW. Using FDW, we also explore the
optimal execution of HTCondor “DAGMan workflows” (which we
refer to as DAGMan(s)) [13] for this use case on the OSG, specif-
ically considering the behavior of partitioned parallel workflows.
Our goal is to enhance efficiency and provide insights that can
assist in meeting user-defined objectives (e.g., throughput).

Additionally, we investigate the acceleration of FDW MudPy sim-
ulations and OSG workflows more generally by developing bursting
policies for OSG job-offloading to existing CI, such as the Virtual
Data Collaboratory (VDC) [23]. VDC is an NSF-funded federated

SC-W 2023, November 12-17, 2023, Denver, CO, USA

data CI that supports interdisciplinary and collaborative research
and enables intense, data-driven science and engineering discover-
ies by offering efficient access to data, data services (e.g., metadata
curation and data discovery), and computing capabilities to scien-
tists through a web interface and API. We design and implement a
Python-based Cloud bursting simulator to investigate how OSG job
execution can be supplemented to meet user-driven goals, such as
increased or constant throughput, demonstrating the potential for
enhancing FDW performance by offloading jobs to VDC (which we
denote as VDC bursting) when the OSG’s resources are limited. We
develop and test three OSG-tailored bursting policies that respond
to congested queues, job submission gaps, and low throughput. We
also discuss integrating FDW into VDC, highlighting the value in
enabling a collaborative platform for seamlessly executing acceler-
ated MudPy simulations and efficiently accessing the framework’s
Al-ready data products.

The main contributions of this paper are (1) using parallel com-
puting to accelerate HTC earthquake simulations, (2) providing
policies for offloading jobs to alternative environments to explore
the potential of optimizing OSG workflows, and (3) exploring how
workflows, such as FDW, executed on federated CI can enhance
timely and equitable access to their data products and data services
(i-e., MudPy). Complementary engineering contributions include
building mechanisms for optimizing parallel job execution on OSG.

The rest of the paper is organized as follows: Section 2 provides
an overview of work related to our research. Section 3 describes
the implementation of the FDW and simulated OSG job-offloading.
Section 4 describes our experimental methodology followed by the
experimental results in Section 5. In Section 6 we assess the results,
elaborate on integration with the VDC, and discuss limitations.
Finally, Section 7 concludes the paper and outlines future work.

2 RELATED WORK

MudPy is a Python-based software package that can simulate earth-
quakes and other geoscience phenomena. Synthetic high-rate Global
Navigation Satellite Systems (GNSS) waveforms (representing ground
displacement information derived from satellites) produced by its
FakeQuakes (FQs) module offer valuable training data for EEW
models [14, 18-20, 26]. GNSS waveforms are essential in EEW for
accurately characterizing large earthquakes [26]. Literature on nat-
ural hazards, Al-based earthquake modeling, and EEW systems is
extensive and growing, with recent years witnessing significant
research that leverages the MudPy framework. For example, Lin
et al. [14] recently used FQs waveforms to help train an EEW al-
gorithm that outperformed similar approaches in predicting the
magnitudes of five actual, large earthquakes in Chile. Successful
EEW deep learning algorithms prior to Lin et al. did not focus on
large earthquake events, which are the most dangerous.

The products of the FQs module have been validated against
actual earthquake events. Goldberg and Melgar [11] conducted
earthquake simulations based on a 2014 Mw 8.1 Chilean earth-
quake (using the same geometry data as described in Section 4),
and then compared the synthetic FQs data with the authentic earth-
quake observations. Their analysis confirms the reliability of FQs
in simulating large events by demonstrating good agreement with

1971

Marcus Adair, Ivan Rodero, Manish Parashar, and Diego Melgar

observed data in both frequency and time domains (see Fig. 1 for
visualization of FQs’ products).

o
v o

D&ptkm)
D&ptHkm)
i

w
Slip (m)

- 0.0002 - 0.0002
‘E‘ 0.0000 *E' 0.0000
- -
5 5
£ -0.0002 £ -0.0002
3 3
& —0.0004 & —0.0004
[-3 [-3
w wn
35 —0.0006 3 —0.0006
0 50 100 0 50 100
Seconds Seconds

Figure 1: Simulation visualizations. These graphs depict ex-
amples of simulated ruptures (top) and GNSS waveforms
(bottom) from the FDW.

A recent study enhancing FQs performance conducted by Car-
illo [8] proposed modifications to MudPy’s code and the use of
GPU-equipped machines to speed up the software. He achieved a
10% improvement using this strategy, which was deemed not feasi-
ble at scale. Carillo suggested using HTC to improve performance,
which motivates the parallelization strategies in this paper. Notably,
MudPy already incorporates MPI and has some parallelism, but
the FQs module can be further parallelized due to its stochastic
nature [16], enabling concurrent simulation of earthquakes. Despite
the existing gap in research involving HTC and MudPy, various
studies utilize FQs. Notably, most existing work utilizing MudPy
has focused on geosciences and natural hazards [14, 18, 20, 26]. We
see untapped potential in the application and see enhancing its
capabilities as an opportunity to foster further research.

Cloud bursting, a technique that extends enterprise resource
functionalities by leveraging public Cloud capabilities [15], has
been explored in prior research. Sfiligoi et al. [28, 29] utilized Cloud
bursting across three major Cloud platforms (e.g., Amazon) in sup-
port of photon propagation simulation at the IceCube Neutrino
Observatory, an NSF major facility in Antarctica. IceCube employs
HTCondor as a workflow manager, partially executing workloads
on local on-prem infrastructure and partially on OSG. Their suc-
cessful results demonstrate runtime enhancements when applying
Cloud bursting to workflows partially using OSG. Although our
work does not delve into inventing new Cloud bursting techniques,
we contribute OSG-tailored bursting policies designed for work-
flows exclusively utilizing OSG.

To our knowledge, work related to partitioning approaches and
configurations for DAGMans on the OSG has yet to be published.
This paper describes our experiences and insights regarding DAG-
Man behaviors through FDW to help researchers use OSG most
efficiently when executing workloads.

Accelerating Data-Intensive Seismic Research Through Parallel Workflow Optimization and Federated CI

3 PARALLEL WORKFLOW IMPLEMENTATION

To enhance FQs speed and user experience, we leveraged the OSG’s
distributed processing and storage capabilities via its Open Science
Pool (OSPool). In this paper, we use the terms OSG and OSPool inter-
changeably. The OSG facilitates the automated execution of custom
software on shared computing resources contributed by research
collaborators such as universities and government-supported su-
percomputing institutions. FQs simulations align well with the
OSG, meeting “ideal” or “still advantageous” criteria for OSPool job
specifications [21]. We ran thousands of concurrent jobs, each with
a wall time of under 10 hours, using 4 CPU cores, which is ideal
(running jobs with 8 CPU cores or more would not be ideal). If we
instead ran hundreds of jobs or less, for example, each taking over
10 hours, this would not be ideal on OSG. Each job’s input data in
the FDW was less than 10GB, which is still advantageous according
to documentation (less than 500MB would be ideal).

The OSG integrates with HTCondor, a framework for automat-
ing and managing high-throughput workflows [4]. We employed
HTCondor’s “DAGMan workflows” tool [13] to parallelize and au-
tomate the steps of FQs. We can integrate with other workflow
engines, such as the powerful Pegasus [9], but we initially chose
HTCondor’s default, simpler engine DAGMan to assess the suit-
ability of parallelizing FQs. HTCondor uses “submit description
files” to specify job compute requirements, orchestrate scripts on
OSG nodes, and handle input files. Parallel FDW jobs on nodes
across the OSPool use 4 CPU cores and dynamically request varying
amounts of disk and memory, up to 16GB (depending on if jobs need
to generate large matrix files). If needed, our workflow tool could
be launched via the VDC portal’s graphical user interface (GUI).
Presently, it can be run directly on the OSG by placing the source
code in a OSG home directory; editing a configuration file for simu-
lation parameters; placing input files in a single, specified directory;
and running a script. The FDW’s streamlined process eliminates
the need to manually install packages, edit complex files, move files
between steps, and more when executing FQs simulations.

MudPy was installed in a Singularity image (now Apptainer) [2]
with a custom Conda environment [3] since Python and other de-
pendencies are necessary for its operation, which all jobs running
across the OSPool utilize. To facilitate faster delivery of large files
to and from execute nodes, the OSG employs caching tools. We
utilize their Stash Cache (now OSDF Cache [22]) to distribute the
928MB Singularity image across the OSPool efficiently. We have
developed a system to monitor the progress of running and com-
pleted DAGMans to improve MudPy with statistics on running
and postprocessing times for generated synthetic data: Shell scripts
parse HTCondor log files to extract information (e.g., runtime, wait
times, and complete/failed job count) and compute job states and
durations, enhancing simulation analysis and enabling policy im-
plementation. After simulation, thousands of files are congregated,
labeled, and archived on OSG storage capacity.

3.0.1 DAGMan Workflow Phases. The FDW consists of three phases,
as described in the listing below. The phases run sequentially, with
the numerous jobs of each one executed in parallel. Each phase
utilizes a distinct script that executes on OSPool nodes to establish
the required, “rigid” [16] MudPy folder structure, perform distinct
FQs steps, and compress the output.

1972

SC-W 2023, November 12-17, 2023, Denver, CO, USA

e A Phase simulates rupture scenarios in parallel. To do so,
MudPy requires two recyclable “distance matrix” files (.npy);
generating these files is time-consuming, so recycling them
is crucial. In this phase, if no .npy files are provided, a single
job will create the matrices, which parallel jobs will then use
in this phase.

¢ B Phase generates Green’s functions (GF) matrices, required
by the next phase, as .mseed files. This process can span
multiple hours depending on the length of a required input
list of GNSS stations.

e C Phase consists of simulating the requested number of
waveforms (based on the ruptures) in parallel to produce the
final, desired output. To help expedite the delivery time of
the large, compressed .mseed files (possibly exceeding 1GB)
to OSG nodes in this phase, we use Stash Cache (which is
the same for .npy files).

3.1 VDC Bursting Simulator Implementation

After implementing the FDW, we constructed a VDC bursting simu-
lation framework in Python. Instead of actual Cloud job execution,
we mimicked execution times and associated costs. The baseline
times used by the bursting simulator for completing offloaded jobs
(see 3.1.1) were derived from statistics using a single Amazon AWS
equipped with 4 Intel(R) Xeon(R) Platinum 8175M CPUs and the
Singularity image from Section 3 to automatically run MudPy. Us-
ing the AWS Cloud Machine, we generated the same quantity of
synthetic MudPy data as individual OSG jobs do while employing
identical FQs parameters as in Section 4 to calculate average Cloud
job times used by the simulator. Amazon AWS was chosen due
to VDC’s capability of connecting Cloud services, such as Ama-
zon [23]. In practice, bursting will target physical and Cloud nodes
managed by VDC.

This bursting simulator requires two .csv files as input that con-
tain the submission, execution, and termination times of an actual
DAGMan batch and the same information for individual jobs within
it. These times are used to iterate through the batch’s runtime, mon-
itor job status, and simulate the potential performance enhance-
ments from running specific jobs on VDC resources, as our three
policies dictate. The simulator uses the required .csv files to make a
time range to loop over while checking job times. After initializing
variables and running the main simulation loop, statistics are com-
puted and reported in detailed output, and a .cso file is generated
with the simulation’s instantaneous throughput for each runtime
second.

3.1.1 Bursting Simulation Loop. The main loop iterates through
each second of a DAGMan run analyzing OSG job times to detect
completion. While doing so, it implements our policies by checking
DAGMan throughput and inspecting submission/execution times
to assess OSG’s queue and frequency of job submissions. Regarding
simulated bursted jobs, for each second in the main loop, we exam-
ine each simulated VDC job and increment their tracked runtime
by 1 second unless it meets our simulated completion time, which
remains constant for both rupture and waveform jobs at 287 and
144 seconds, respectively. In all cases of simulated job completion
(VDC and OSG), we have a variable to keep track of overall job

SC-W 2023, November 12-17, 2023, Denver, CO, USA

completion that is used with the runtime of the loop to calculate
instant throughput via (5).

3.1.2 OSG-Tailored Job Bursting Policies.

e Policy 1: To address low throughput in general, we peri-
odically evaluate if the instant throughput of the DAGMan
batch falls below a set threshold. If so, we burst the last
unsubmitted OSG job for the phase.

e Policy 2: To address congested queues, we regularly analyze
submitted OSG jobs and assess their queue duration. If a job
has been waiting longer than desired, we remove it from the
queue and burst it.

e Policy 3: To address gaps in job submissions, we monitor
the timestamp of the most recent job added to the OSPool’s
queue. If there has been more time than desired since then,
we periodically burst the last unsubmitted job in the phase.

4 EXPERIMENTAL EVALUATION

For experiments on the FDW, we ran FQs simulations in the Chilean
subduction zone, utilizing geometry data from the U.S. Geological
Survey project by Hayes et al. [12]. Chile’s suitability as a testing
ground lies in its record of at least five large earthquake events cap-
tured by a dense network of over 120 operating GNSS stations since
2010 [14], which allows for validating and comparing simulated
ruptures and waveforms against authentic events. All experiments
were designed to recycle the necessary, large matrices (some derived
from a required input list of 120+ GNSS stations) in simulations,
running with consistent parameters using MudPy’s default settings
from the GitHub repository. The FDW source code and simulation
configurations are openly available at [5] for reproducibility.

4.1 Increasing Earthquake Simulation
Quantities

First, we ran simulations in increasing quantities with the FDW, run-
ning three DAGMans for each quantity to calculate runtime/total
throughput averages and standard deviations (SD(s)). We explored
six waveform quantities: 1,024, 2,000, 5,120, 10,000, 24,960, and
50,000, comparable to past work producing 36,800 synthetic FQs
waveforms on a single machine [14]. For each quantity, we tested
two sizes of an input GNSS station list: one used a full list with 121
stations (full Chilean input), and the other used 2 (small Chilean
input). In this experiment, we aimed to gain insight into the runtime
(hours), throughput (jobs/min), and result variability of the FDW to
assess OSG’s feasibility in accelerating FQs and parallelizing tens
of thousands of simulations.

To compute averages for total runtime (), we summed the three
runtimes collected (r1, r2, r3) for each quantity of scenarios and
divided the sum by 3 as seen in (1):

(rm+r+r)/3=a (1)
To compute throughput, we divided the number of OSG jobs in
each DAGMan (j) by its runtime (r,). This process was done three

times for each rupture amount, and then an average was taken to
get the average total throughput (f) as follows:

(Gr/ry) + (o/r2) + (j3/r3)) /3= B @

1973

Marcus Adair, Ivan Rodero, Manish Parashar, and Diego Melgar

4.2 Concurrent HTCondor DAGMans

In optimizing the FDW, we compared the performance of a sin-
gle DAGMan generating 16,000 waveforms and when two, four,
or eight workflows launch simultaneously to create 16,000 wave-
forms together (using only the full Chilean input). Simulations were
configured as described in Section 4. We looked at the same statis-
tics as in Section 4.1: average total runtime, throughput, and the
datasets’ SDs and maximums/minimums. We also looked at indi-
vidual jobs’ execution and wait times (minutes), instant throughput
(jobs/minute), and the number of running jobs during a workflow.
This experiment contributes to a deeper understanding of the OSG’s
behavior, facilitating optimization efforts in accelerating FQs simu-
lations and other tools utilizing HTCondor DAGMan workflows.

The average total runtime () was calculated by summing each
DAGMan’s runtime (d;) within the parallel batches and dividing
that sum by the number of DAGMans (N) it took to create 16,000
rupture scenarios three times:

Oldi)IN =« @

The average total throughputs () were calculated by first divid-
ing the number of jobs in each DAGMan (j;) by its total runtime (r;).
Then, for each different number of DAGMans running in parallel,
we summed their total throughputs and divided by the number of
batches (N) it took to create 16,000 rupture scenarios three times
as shown in (4):

O G/ IN=p ()

Instant throughput () is the number of complete jobs (j) divided
by the current runtime (m) in minutes, as seen in (5):

w=j/m (5)

4.3 Simulated VDC Bursting

This experiment used job times from two actual DAGMan batches to
explore parameter variations in two bursting policies. The DAGMan
job times used come from Section 4.2 where single DAGMan batches
produced 16,000 waveforms. We ran VDC bursting simulations
evaluating instant throughput with different probe times (1, 2, 5,
10, 30, 60, 120 seconds) against a 34 jobs/minute threshold (Policy
1), preventing job-offloading until the threshold was met, with
maximum wait times of 90 and 120 minutes on OSG’s queue until
bursting (Policy 2). To compare the simulated bursting results with
actual OSG performance, we used the original time performance
from the two DAGMans as a control. The objective was to validate
our hypothesis that simulated VDC bursting would reduce total
runtime in the FDW and help it to achieve higher, more consistent
throughput while maintaining a reasonable percentage of bursted
jobs (not more than 30%). This experiment further supported the
optimization efforts of the FDW and aimed to demonstrate that
supplemental job bursting to federated CI can enhance baseline
OSG performance.

We looked at the average instant throughput (jobs/minute) (),
which is the sum of the instant throughputs for every second of
the bursting simulation (r,) divided by the number of simulation
seconds (N):

Q. rm)IN=a ©

Accelerating Data-Intensive Seismic Research Through Parallel Workflow Optimization and Federated CI

We also noted the total runtimes of differing simulations, the
maximums/minimums and SDs of the datasets, and the percentage
of VDC resources used compared to OSG.

We simulated a bursting cost (USD) (6) by multiplying the num-
ber of simulated VDC minutes used (Cm) by the cost-per-minute
(¢) for utilized Cloud resources as seen in (7):

Cmxc=6 (7)

In this experiment, we used a single cost of 0.0017$ per minute
for Cloud computing based on Amazon EC2 on-demand pricing
for an al.xlarge instance with 4 CPUs and 8GB of memory (which
should satisfy our needs) [7].

5 EXPERIMENTAL RESULTS

5.1 Increasing Earthquake Simulation
Quantities Results

Small Chile Input Full Chile Input

'.E 1 Avg. Runtime T | 3°7 = Avg. Runtime
33' T Max/Min m— 404 L Max/Min
i o (SD) | B oisD
=, T S
v - -
El-x XL || =
Tt i3
2 A “m=E e[l
& NET 1 i
-
£
_E 2004 1 Avg. Throughput 354 [Avg. Throughput
2 E
20
0 150 s il o
= 150 [ol
- 2 15 -
3 100 1 %
2 — = i i 104
£
o 50 | 54
; = Y = ﬁ
] =
E o= - IS T T T 0 =
=

5 o0 a0 R & o0 O .10 0 o
vl QY A7)) QO X o0 4) o2 o
A O 0y \pp 52°,50 L 00 52%.90

Rupture Scenarios Generated Rupture Scenarios Generated

Figure 2: Increasing earthquake simulation quantities ex-
periment statistics. These graphs illustrate the average total
runtime and throughput of the FDW simulating varying
amounts of earthquake scenarios using two different-sized
input lists (2 and 121 stations).

5.1.1 Average Total Runtimes. The average total runtime of work-
flows using the small Chilean input ranged from 0.8 hours (1,024
waveforms) to 2.7 hours (50,000 waveforms), with an increase of
230.9% in runtime and 4,782.8% in the number of waveforms gen-
erated (rounded to 1 decimal place throughout this paper). For
workflows using the full Chilean input, the average runtime ranged
from 3.3 hours (2,000 waveforms) to 34.8 hours (50,000 waveforms),
showing a time increase of 940.5% and a 2,400% increase in simu-
lated scenarios. Although the number of simulations approximately
doubled with each increase, the runtime did not follow a directly
proportional relationship for both input sizes. The average runtime
did not double except at 50,000 waveforms, where it increased by
178% compared to generating 24,960 with the full input (Fig. 2). The
dataset with 50,000 ruptures using the full input had the widest

1974

SC-W 2023, November 12-17, 2023, Denver, CO, USA

range (33.4 hours) and the highest SD (13.9). SDs for all full input
scenarios were below 1.2 hours, except for 5,120 and 50,000, and all
small input scenarios had average runtime SDs below 1 hour.

5.1.2 Average Total Throughput. With the small Chilean input, the
average total throughput ranged from 14.6 jobs per minute (JPM)
(1,024 waveforms) to 185 JPM (50,000 waveforms), increasing by
1,165.5%. Using the complete Chilean input with the FDW, through-
put ranged from 3.3 JPM (1,024 waveforms) to 18.8 JPM (24,960
waveforms), increasing by 470.2%. When generating 50,000 wave-
forms, the throughput declined to 16.6 JPM but still exceeded the
value when producing 10,000 (13.1 JPM) with the complete input.
Notably, the SDs in throughput were significantly lower in the full
Chilean input scenarios than in the small ones, as depicted in Fig. 2.

5.2 Concurrent HTCondor DAGMan Results

” w
8w~ 10 5 301
© 3 o
- o= =
[T =] E]
> o 201
g3y
— 94 5 E
ek 3
-4
0 0 . . .
1Ix 2x 4x 8x Ix 2x 4x 8x
Number of DAGMans Running

[16,000 Rupture Made I Max/Min 0 sStandard Deviation

Figure 3: Concurrent HTCondor DAGMan statistics. This fig-
ure illustrates the average total throughput and runtime of
DAGMan workflows that ran parallel to create 16,000 rup-
tures using the full Chilean input.

5.2.1 Average Total Throughput. Increasing the number of concur-
rently running DAGMans resulted in a decrease in throughput for
individual DAGMans. When one DAGMan was running, the aver-
age total throughput was 10.7 JPM to simulate 16,000 waveforms;
for two running, both averaged 6.5 JPM; for four, the average was
3.7; and for eight, it was 2.2 JPM. The average total throughput
consistently decreased by at least 39.5% as the DAGMan concur-
rency level increased (see Fig. 3). When a single DAGMan ran, the
throughput was 381.3% better than when eight did.

5.2.2 Average Total Runtime. Although the number of waveforms
generated by individual DAGMans decreased as more ran con-
currently, the average total runtime for individual DAGMans did
not decrease proportionately. For instance, when eight DAGMans
were running to create 16,000 waveforms (each making 2,000), their
average total runtime was slower than when a single DAGMan
produced 16,000. The average total runtime for a single workflow
was 14.1 hours (SD 1.3); when two, four, and eight DAGMans ran
simultaneously, they were 11.9 (SD 1.8), 12.5 (SD 7), and 15.7 (SD
12) hours, respectively.

5.2.3 Job Execution and Wait Times. The execution times of FDW
jobs remained consistent across all experiments (4.1 and 4.2). Jobs
simulating waveforms with the full 121-station list typically took 15
to 20 minutes, whereas those using two stations often completed in

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Number of DAGMans Running
4x

- 1x 2x 8x
c 2000
= B Execution Time e
< 10004 ™= Wait Time [
7] J ‘ r
- Q QO 0 Q Q P Q 0 0] O 0
’5(:’0 600 ")QQ 600 Jobs ’590 600 ’5(:’0 600
; —
o E B Inst. Throughput
5 E 20
=
(-]
£9 o | i
]
i EEE Running Jobs
Q 250
Q
-—
0 S
o) o Q 0 9) O POOP
oY o 8 Q' O oa®
AR o0 A0 A%

Running Seconds

Figure 4: Concurrent DAGMan statistics continued. These
graphs showcase examples of individual jobs’ execution and
wait times (sorted by duration) and instant throughput and
running job count (for every running second of individual
workflows) in various numbers of concurrently running
DAGMans.

under 1 minute. Jobs simulating ruptures consistently executed in
around 2.5 minutes across all experiments. Overall, job wait times
varied, ranging from multiple hours to seconds. When multiple
DAGMans ran concurrently, there was a higher frequency of jobs
with long wait times (refer to Fig. 4). For example, with four DAG-
Mans, the average wait time for waveform jobs was 189.2 minutes,
whereas, with one, it was 70.1 minutes.

5.2.4 Instant Throughput and Running Jobs. The instant through-
put of running DAGMans exhibited unpredictability, except for a
significant initial spike caused by the A Phase, comprising fewer
and shorter jobs than C. These peaks were notably lower when
more DAGMans ran simultaneously. For instance, when four ran in
parallel, their peaks rarely exceeded 6 JPM, whereas lone batches
reached heights of over 35, as seen in Fig. 4. Notably, more concur-
rent DAGMans led to lower instant throughput on average.

In Fig. 4, the running job footprints exhibited erratic behavior
across all batches. Increasing the number of concurrent DAGMans
resulted in more gaps and running job peaks, possibly due to a
decrease in the number of jobs per DAGMan. However, similarities
were observed in running job peaks between single and multiple
batch executions. For example, all sizes of DAGMans running (1,
2, 4, and 8) had instances with over 400 running jobs (see Fig. 4).
Although running job footprints in DAGMan runs differed signif-
icantly from throughput, there was a correlation between their
peaks/dips when the OSG launched job groups.

5.3 Simulated VDC Bursting Results

5.3.1 Average Instant Throughput. In our VDC bursting simulation,
the probing of Policy 1 influenced the average instant throughput
(AIT), as seen in Fig. 5 - faster probe times for bursting increased

1975

Marcus Adair, Ivan Rodero, Manish Parashar, and Diego Melgar

instant throughput and throughput variability. The control (rep-
resenting OSG performance) had the lowest AIT: 14.1 JPM (Batch
1) and 8.6 JPM (Batch 2); the maximums were 31.7 and 32.4 JPM
for batches 1 and 2, respectively, with a probe time of 1 second
and an allowed queue time of 90 minutes Within each batch, the
maximum and minimum average throughputs remained consistent.
The minimum was always 0 JPM before job completion, whereas
short jobs in the A Phase influenced the maximum. The throughput
remained similar for differing queue times before bursting OSG
jobs in Policy 2. A 30-minute shorter maximum queue time resulted
in more bursted jobs and a slight increase in instant throughput for
both batches. However, the difference never increased the AIT by
more than 1 JPM.

5.3.2 Cloud/VDC Usage Compared to OSG. Similarly, the percent-
age of Cloud/VDC usage was dependent on Policy 1 and not on
the other two policies; when the probe time shortens in seconds, it
leads to higher VDC utilization. For Batch 1 and Batch 2, the maxi-
mum simulated Cloud usages were 52.8% and 85.6%, respectively,
whereas the minimums were 19.1% and 22.9%, respectively. Batch
2 had more Cloud usage than Batch 1 because its execution was
longer than that of 1, allowing more time for probing and bursting.
The increased use is more apparent when the probe time is less
than 10 seconds, as seen in Fig. 5.

5.3.3 Runtime. The results of the total runtimes of the VDC burst-
ing simulations were similar to that of the AIT; they were much
more influenced by Policy 1than 2 and 3. In some cases, although
the batch’s AIT increased in the simulator over the original OSG
performance, the runtime stayed similar. For example, in Batch 2,
with a 90-minute allowed queue time and a 1-minute probe time,
the AIT improved by approximately 22%, but the runtime decreased
by less than one minute (see Fig. 6). Simulated VDC bursting led to
reduced runtimes in Batch 1, with some cases experiencing multiple
hours of improvement, for instance, when using a 10-second probe
and 120-minute queue time.

5.3.4 Cost. In the simulations, we spent up to $11 for Batch 1 and
$13.9 for Batch 2 to help generate 16,000 waveforms, ensuring that
no more than 30% of jobs were bursted. The probe time in Policy 1
and the runtime of the batch had the most significant influence on
cost.

6 DISCUSSION

Using the FDW, we generated 1,024 waveforms with the full Chilean
input in less than half the time compared to running an automated
version of MudPy’s FakeQuakes on a single host (the Amazon AWS
instance described in 3.1) with the same simulation parameters.
Parallel computation exhibited a powerful effect, significantly re-
ducing execution time and increasing throughput as the number
of simulations increased. The FDW excelled in doing tens of thou-
sands of simulations, a challenge for Lin et al. [14]. In contrast to
their over-20-day generation of 36,800 waveforms, we produced,
on average, 24,960 in 12.5 hours and 50,000 in under 35 hours. Al-
though the FDW generally exhibited low variability, with 50,000
waveforms using the full input, significant volatility was observed,
likely due to OSG’s variable resources and many simulations. The
SDs of the throughput datasets were much greater when using the

Accelerating Data-Intensive Seismic Research Through Parallel Workflow Optimization and Federated CI

VDC-Bursting Simulator - Throughput _ ,
- = e by B R CREma RS
2 a0l . os
= 31 = il | i |] | .
g I
c]
E = 30 0.6 e
~ &
P-. .g 20+ L 0.4 nF:'
0 | -
c=
" A)
> ‘ ’
< o - l ‘ ‘ 0.0
1 2 5 10 30 60 120 CTRL

Probe Time (sec)

SC-W 2023, November 12-17, 2023, Denver, CO, USA

1.0 1.0 1.0
0.8 0.8 0.8 Batch 1 90 min Batch 1 120 min
== (B190) (B1120)
060601060 T Max/Min I Max/Min
A (o] (o]
I 2 o I sp SD
0.4@| 04pm| 0.4 am B21LCH 2 90 min Batch 2 120 min
(B290) (B2120)
0.2 0.2 0.2 Max/Min T Max/Min
SD SD
0.0 0.0 0.0

VDC Usage %

Figure 5: VDC bursting experiment statistics. This graph illustrates the average instant throughputs and VDC utilization
percentages while simulating supplemental job bursting for OSG jobs. We investigated two policies: the first evaluated against
a throughput threshold with varying probe times for bursting, and the second examined different maximum allowed queue

times until VDC bursting jobs.

Simulated Cloud Cost

= B1 90 min. wait
3 B2 90 min. wait

Instant Throughput
Batch 1 - OSG (B1)
Batch 2 - OSG (B2)

(9]
e (hrs)

I
)

—_ ; " B1 - Sim. 10 sec. probe
a mm snizomnwat | B g and 120 min. wai

g 20 min. wat B2 - Sim. 1 min. probe
= 3 and 90 min. wait

ﬁ g

O 10

O 10

o

= N
VDC Compute T

Throughput (jobs/min.)
N
o

1 2

5 10 30 60 120
Probe Time (sec)

0 7_0000 A,00°°
Seconds of DAGMan Execution

Figure 6: VDC bursting results continued. These graphs show-
case the simulated cost (left) for supplemental VDC burst-
ing on two real OSG DAGMans examples and their instant
throughput over time (right).

full input compared to the small. Thus, the FDW’s performance is
less variable for more complex simulations, which is desirable.

Our experiment investigating the impact of splitting the creation
of 16,000 waveforms into multiple DAGMans compared to a single
one revealed that OSG performs best with a single running DAG-
Man. Increasing the number of simultaneous running batches leads
to decreased throughput, and reducing the number of jobs in each
batch does not result in the expected decrease in runtime, as seen
in Fig. 3. Also, as the number of concurrently running DAGMans
increases, the SDs grow, indicating increasing result instability.
Although varying resource availability might influence some out-
comes, the overall trend is evident: partitioning workloads into
multiple simultaneously running DAGMans is not advantageous
on the OSG.

Our VDC bursting simulator improved FDW runtime and through-
put in all experiments, with varying performance across different
batches. Notably, Batch 2 showed negligible runtime reduction
when the VDC bursted job limit was reached. However, Batch 1
demonstrated promising results with a substantial 38.7% decrease
in simulated workflow runtime while staying within our desired
bursted job limit, as seen in Fig. 6. Additionally, simulated through-
put SDs deteriorated compared to OSG. Hence, there is room for

1976

improvement to achieve consistent throughput in real-world imple-
mentations. Based on the simulation, the experimental evaluation
is an initial stage in creating a comprehensive, elastic algorithm for
bursting OSG jobs to VDC resources. By enhancing policy dynam-
ics, we aim to achieve similar execution times for FDW workloads
and improve OSG workflow behaviors by scaling utilized VDC re-
sources based on OSG’s common resources. Although our bursting
simulator showed promising results in one of the two tested batches,
our policies (especially Policy 1) demonstrate an ability to enhance
the OSG with federated CI resources.

Waveform dataset (e.g., 50,000)

42 HTCondtst >
)SG -
Launch workflow
MudPy/FakeQuakes/FDW via VDC portal
Produces synthetic ruptures/) .
waveforms and matrices Deposit/curation
(data & metadata)
Real-time data Virtual Data

streams

(Mix of sensor
observations from
natural hazard events)

Collaboratory

VDC Data
Services

Train models

Train models
> <

L

288
FVDC

Earthquake Early Warning
Systems

Figure 7: Workflow for accelerating seismic research. This
figure depicts the flow of simulated data from the FDW to
the VDC and beyond. VDC provides means for curating FDW
data, which can be retrieved and used by earthquake early
warning models and more.

In this paper, we lay the groundwork for integrating the MudPy
synthetic data toolkit into the VDC and implementing an auto-
mated system for bursting OSG jobs to VDC Cloud resources based
on user-defined policies. We aim to optimize simulations further,
promote tool democratization and data sharing, and expand VDC
data services. The VDC serves to enhance MudPy by providing
a GUI-based platform for executing accelerated simulations and
monitoring their progress, providing equitable access to MudPy for

SC-W 2023, November 12-17, 2023, Denver, CO, USA

researchers of all backgrounds. Furthermore, VDC data services en-
able data deposition, curation, and tagging with metadata, allowing
synthetic data products to be accessed more easily and timely for
training EEW models, as illustrated in Fig. 7. Large datasets will be
able to be efficiently distributed via optimized caching systems and
even prefetched for users via Al-based “intelligent data delivery
services” [25] that utilize user query traces and institutional data,
thus providing opportunities for accelerated research.

7 CONCLUSION AND FUTURE WORK

This paper leverages the NSF-funded OSG to parallelize MudPy’s
earthquake simulations and accelerate their execution; using our
workflow, we observed a significant reduction in execution time
and increased throughput for tens of thousands of simulations. Op-
timization insights into HTCondor DAGMans using our workflow
demonstrate higher throughput when running a single DAGMan
versus running multiple concurrently (e.g., eight) to execute a work-
load. Additionally, we address OSG’s shared resource issues through
our VDC bursting simulation framework and three policies that
respond to long waits, gaps in job submissions, and low throughput.
Further elaboration on our VDC bursting model will be required.
This work is the first step in integrating MudPy and OSG into the
VDC ecosystem. Our overarching goal is democratizing and facili-
tating efficient data access and integrating scientific data sources
with diverse research communities. Experience gained from devel-
oping the workflow and Cloud/VDC bursting simulator described
in this paper can apply to other data services. Efficiently made AlI-
ready products from the FDW, curated by the VDC, can accelerate
interdisciplinary scientific research to fully unleash the potential
of data and Al in science workflows for significant societal impacts
(e.g., earthquake early warning). Future work includes experiment-
ing with regions beyond Chile, helping researchers leverage and
modify existing datasets and create new meaningful products, and
exploring HTC workflows and VDC bursting policies for other use
cases and CI configurations.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation
under grants OAC 2219975 and OAC 2220826 and was done using
services provided by the OSG Consortium [1, 24, 27], which is
supported by the National Science Foundation awards OAC 2030508
and OAC 1836650.

REFERENCES

[1] 2006. Open science pool. https://doi.org/10.21231/906P-4D78

[2] 2023. Apptainer. Retrieved May 23, 2023 from https://apptainer.org/

[3] 2023. Conda. Retrieved May 23, 2023 from https://docs.conda.io/en/latest/

[4] 2023. HTCondor. Retrieved May 23, 2023 from https://htcondor.org/

[5] Marcus Adair. 2023. FDW Source Code. https://github.com/Marcus-
Adair/Accelerating-Data-Intensive-Seismic-Research-Through-Parallel-
Workflow- Optimization-and-Federated- CI

Richard M. Allen and Diego Melgar. 2019. Earthquake Early Warning: Advances,
Scientific Challenges, and Societal Needs. Annual Review of Earth and Plane-
tary Sciences 47, 1 (May 2019), 361-388. https://doi.org/10.1146/annurev-earth-
053018-060457

[7] Amazon. 2023. Amazon EC2 On-Demand Pricing. Retrieved May 23, 2023 from
https://aws.amazon.com/ec2/pricing/on-demand/

Marc C. Carrillo. 2023. Paral-lelitzacio del codi del simulador de terratrémols MudPy
amb CUDA. Master’s thesis. Dept. Computer Science, Open Univ. of Catalonia,
Barcelona, Spain, June 2021.

6

=

1977

Marcus Adair, Ivan Rodero, Manish Parashar, and Diego Melgar

[9] Ewa Deelman, Karan Vahi, Mats Rynge, Rajiv Mayani, Rafael Ferreira da Silva,
George Papadimitriou, and Miron Livny. 2019. The Evolution of the Pegasus
Workflow Management Software. Computing in Science & Engineering 21, 4
(2019), 22-36. https://doi.org/10.1109/MCSE.2019.2919690

Kevin Fauvel, Daniel Balouek-Thomert, Diego Melgar, Pedro Silva, Anthony Si-
monet, Gabriel Antoniu, Alexandru Costan, Véronique Masson, Manish Parashar,
Ivan Rodero, et al. 2020. A distributed multi-sensor machine learning approach
to earthquake early warning. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34. 403-411. https://doi.org/10.1609/aaai.v34i01.5376

Dara E. Goldberg and Diego Melgar. 2020. Generation and Validation of Broad-
band Synthetic P Waves in Semistochastic Models of Large Earthquakes. Bulletin
of the Seismological Society of America 110, 4 (07 2020), 1982-1995. https://doi.
0rg/10.1785/0120200049 arXiv:https://pubs.geoscienceworld.org/ssa/bssa/article-
pdf/110/4/1982/5114114/bssa-2020049.1.pdf

Gavin P. Hayes, Ginevra L. Moore, Daniel E. Portner, Mike Hearne, et al. 2018.
Slab2, a comprehensive subduction zone geometry model. Science 362, 6410
(2018), 58-61. https://doi.org/10.1126/science.aat4723

HTCondor. 2023. Dagman workflows. Retrieved August 1, 2023 from
https://htcondor.readthedocs.io/en/latest/automated-workflows/index.html?
highlight=DAGMan

Jiun-Ting Lin, Diego Melgar, Amanda M. Thomas, and Jacob Searcy. 2021. Early
Warning for Great Earthquakes From Characterization of Crustal Deformation
Patterns With Deep Learning. Journal of Geophysical Research: Solid Earth 126,
10 (September 2021). https://doi.org/10.1029/2021]JB022703

Michael Mattess, Christian Vecchiola, Saurabh Garg, and Rajkumar Buyya. 2017.
Cloud Bursting: Managing Peak Loads by Leasing Public Cloud Services. Cloud
Computing: Methodology, Systems, and Applications (January 2017), 343-367.
Diego Melgar. 2019. Stochastic slip (fakequakes). Retrieved May 23, 2023 from
https://github.com/dmelgarm/MudPy/wiki/Stochastic-slip- (fakequakes)

Diego Melgar. 2022. MudPy. Retrieved May 19, 2022 from https://github.com/
dmelgarm/MudPy

Diego Melgar, Brendan W. Crowell, Timothy I. Melbourne, Walter Szeliga,
Marcelo Santillan, and Craig Scrivner. 2020. Noise Characteristics of Oper-
ational Real-Time High-Rate GNSS Positions in a Large Aperture Network.
Journal of Geophysical Research: Solid Earth 125, 7 (June 2020), e2019JB019197.
https://doi.org/10.1029/2019JB019197

Diego Melgar and Gavin P. Hayes. 2019. Characterizing large earthquakes before
rupture is complete. Science Advances 5, 5 (May 2019). https://doi.org/10.1126/
sciadv.aav2032

Diego Melgar, Randall J. LeVeque, Douglas S. Dreger, and Richard M. Allen.
2016. Kinematic rupture scenarios and synthetic displacement data: An example
application to the Cascadia subduction zone. Journal of Geophysical Research:
Solid Earth 121, 9 (August 2016), 6658—6674. https://doi.org/10.1002/2016JB013314
OSG. 2023. Computation on the open science pool. Retrieved May 23, 2023
from https://portal.osg-htc.org/documentation/overview/account_setup/is-it-
for-you/

OSG. 2023. Running OSDF cache in a container. Retrieved May 23, 2023 from
https://osg-htc.org/docs/data/stashcache/run-stashcache- container/

Manish Parashar, Anthony Simonet, Ivan Rodero, Forough Ghahramani, Grace
Agnew, Ron Jantz, and Vasant Honavar. 2020. The Virtual Data Collaboratory: A
Regional Cyberinfrastructure for Collaborative Data-Driven Research. Computing
in Science & Engineering 22, 3 (June 2020), 79-92. https://doi.org/10.1109/MCSE.
2019.2908850

Ruth Pordes, Don Petravick, Bill Kramer, Doug Olson, et al. 2007. The open science
grid. In J. Phys. Conf. Ser. (78, Vol. 78). 012057. https://doi.org/10.1088/1742-
6596/78/1/012057

[25] Yubo Qin, Ivan Rodero, and Manish Parashar. 2022. Toward Democratizing Access
to Facilities Data: A Framework for Intelligent Data Discovery and Delivery.
Computing in Science & Engineering 24, 3 (2022), 52-60. https://doi.org/10.1109/
MCSE.2022.3179408

Christine J. Ruhl, Diego Melgar, Ronni Grapenthin, and Richard M. Allen. 2017.
The value of real-time GNSS to earthquake early warning. Geophysical Research
Letters 44, 16 (August 2017), 8311-8319. https://doi.org/10.1002/2017GL074502
Igor Sfiligoi, Daniel C Bradley, Burt Holzman, Parag Mhashilkar, Sanjay Padhi,
and Frank Wurthwein. 2009. The pilot way to grid resources using glideinWMS.
In 2009 WRI World Congress on Computer Science and Information Engineering (2,
Vol. 2). 428-432. https://doi.org/10.1109/CSIE.2009.950

Igor Sfiligoi, Michael Hare, David Schultz, Frank Wiirthwein, Benedikt Riedel,
Tom Hutton, Steve Barnet, and Vladimir Brik. 2021. Managing Cloud Networking
Costs for Data-Intensive Applications by Provisioning Dedicated Network Links.
In Practice and Experience in Advanced Research Computing (Boston, MA, USA)
(PEARC °21). Association for Computing Machinery, New York, NY, USA, Article
18, 8 pages. https://doi.org/10.1145/3437359.3465563

Igor Sfiligoi, David Schultz, Frank Wiirthwein, and Benedikt Riedel. 2021. Pushing
the Cloud Limits in Support of IceCube Science. IEEE Internet Computing 25, 1
(2021), 71-75. https://doi.org/10.1109/MIC.2020.3045209

U.S. Geological Survey. 2023. Search earthquake catalog. Retrieved June 19, 2023
from https://earthquake.usgs.gov/earthquakes/search/

[10

[11

[12

[13

[14

jpory
)

(16

(17

[18

[19

)
=

[21

[22

[23

[24

[26

[27

&
2

[29

[30

	scw2023-214--.pdf
	Abstract
	1 Introduction
	2 Related Work
	3 Parallel Workflow Implementation
	3.1 VDC Bursting Simulator Implementation

	4 Experimental Evaluation
	4.1 Increasing Earthquake Simulation Quantities
	4.2 Concurrent HTCondor DAGMans
	4.3 Simulated VDC Bursting

	5 Experimental Results
	5.1 Increasing Earthquake Simulation Quantities Results
	5.2 Concurrent HTCondor DAGMan Results
	5.3 Simulated VDC Bursting Results

	6 Discussion
	7 Conclusion and Future Work
	Acknowledgments
	References

