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ABSTRACT

Earthquake early warning systems use synthetic data from simu-

lation frameworks like MudPy to train models for predicting the

magnitudes of large earthquakes. MudPy, although powerful, has

limitations: a lengthy simulation time to generate the required data,

lack of user-friendliness, and no platform for discovering and shar-

ing its data. We introduce FakeQuakes DAGMan Workflow (FDW),

which utilizes Open Science Grid (OSG) for parallel computations

to accelerate and streamline MudPy simulations. FDW significantly

reduces runtime and increases throughput compared to a single-

machine setup. Using FDW, we also explore partitioned parallel

HTCondor DAGMan workflows to enhance OSG efficiency. Ad-

ditionally, we investigate leveraging cyberinfrastructure, such as

Virtual Data Collaboratory (VDC), for enhancing MudPy and OSG.

Specifically, we simulate using Cloud bursting policies to enforce

FDW job-offloading to VDC during OSG peak demand, addressing

shared resource issues and user goals; we also discuss VDC’s value

in facilitating a platform for broad access to MudPy products.

CCS CONCEPTS

•Computingmethodologies→ Parallel computingmethodologies;
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• Applied computing→ Earth and atmospheric sciences.
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1 INTRODUCTION

Synthetic data from simulated large earthquakes (Mw 7.5+) have

proven valuable in training artificial intelligence (AI)-based earth-

quake early warning (EEW) models to identify large earthquake

magnitudes [14]. EEW systems provide advanced warning of dan-

gerous events before ground motion is experienced to mitigate the

profound risks posed [6, 10]. As large earthquakes are rare (e.g., in

a given year, only about 15 Mw 7+ events and one Mw 8+ event

occur [30]), synthetic data from simulation frameworks, such as

MudPy (openly available on GitHub [17]), are relied upon for train-

ing EEW models [14]. MudPy, although powerful, has limitations:

(1) running simulations to generate the required data can be time-

consuming, potentially taking up to several days); (2) the software

is not user-friendly; and (3) currently no platform is available for

easy discovery and widespread sharing of the data generated. These

limitations can hinder the broad adoption of MudPy, especially for

nonprogrammers.

In this paper, we leverage existing cyberinfrastructure (CI), and

specifically, theOpen ScienceGrid (OSG), to create a high-throughput

workflow tool for acceleratingMudPy earthquake simulations, over-

coming the framework’s limitations.

Utilizing OSG’s high-throughput computing (HTC) and storage

capabilities [1, 24, 27], our workflow automates and streamlines

the parallel execution of earthquake simulation and accelerates

synthetic data generation, addressing the performance limitations

of MudPy’s native sequential simulations.

We specifically present the FakeQuakes DAGMan Workflow

(FDW), our solution for accelerating and streamlining earthquake

simulations using National Science Foundation (NSF) CI. Our ex-

perimental results demonstrate a 56.8% decrease in runtime when

simulating 1,024 earthquakes in Chile using parallel computation

on OSG versus on a single machine. The throughput also increases

by approximately five times when running 50,000 simulations com-

pared to 1,024 with the FDW. Using FDW, we also explore the

optimal execution of HTCondor łDAGMan workflowsž (which we

refer to as DAGMan(s)) [13] for this use case on the OSG, specif-

ically considering the behavior of partitioned parallel workflows.

Our goal is to enhance efficiency and provide insights that can

assist in meeting user-defined objectives (e.g., throughput).

Additionally, we investigate the acceleration of FDWMudPy sim-

ulations and OSGworkflows more generally by developing bursting

policies for OSG job-offloading to existing CI, such as the Virtual

Data Collaboratory (VDC) [23]. VDC is an NSF-funded federated
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data CI that supports interdisciplinary and collaborative research

and enables intense, data-driven science and engineering discover-

ies by offering efficient access to data, data services (e.g., metadata

curation and data discovery), and computing capabilities to scien-

tists through a web interface and API. We design and implement a

Python-based Cloud bursting simulator to investigate how OSG job

execution can be supplemented to meet user-driven goals, such as

increased or constant throughput, demonstrating the potential for

enhancing FDW performance by offloading jobs to VDC (which we

denote as VDC bursting) when the OSG’s resources are limited. We

develop and test three OSG-tailored bursting policies that respond

to congested queues, job submission gaps, and low throughput. We

also discuss integrating FDW into VDC, highlighting the value in

enabling a collaborative platform for seamlessly executing acceler-

ated MudPy simulations and efficiently accessing the framework’s

AI-ready data products.

The main contributions of this paper are (1) using parallel com-

puting to accelerate HTC earthquake simulations, (2) providing

policies for offloading jobs to alternative environments to explore

the potential of optimizing OSG workflows, and (3) exploring how

workflows, such as FDW, executed on federated CI can enhance

timely and equitable access to their data products and data services

(i.e., MudPy). Complementary engineering contributions include

building mechanisms for optimizing parallel job execution on OSG.

The rest of the paper is organized as follows: Section 2 provides

an overview of work related to our research. Section 3 describes

the implementation of the FDW and simulated OSG job-offloading.

Section 4 describes our experimental methodology followed by the

experimental results in Section 5. In Section 6 we assess the results,

elaborate on integration with the VDC, and discuss limitations.

Finally, Section 7 concludes the paper and outlines future work.

2 RELATED WORK

MudPy is a Python-based software package that can simulate earth-

quakes and other geoscience phenomena. Synthetic high-rate Global

Navigation Satellite Systems (GNSS)waveforms (representing ground

displacement information derived from satellites) produced by its

FakeQuakes (FQs) module offer valuable training data for EEW

models [14, 18ś20, 26]. GNSS waveforms are essential in EEW for

accurately characterizing large earthquakes [26]. Literature on nat-

ural hazards, AI-based earthquake modeling, and EEW systems is

extensive and growing, with recent years witnessing significant

research that leverages the MudPy framework. For example, Lin

et al. [14] recently used FQs waveforms to help train an EEW al-

gorithm that outperformed similar approaches in predicting the

magnitudes of five actual, large earthquakes in Chile. Successful

EEW deep learning algorithms prior to Lin et al. did not focus on

large earthquake events, which are the most dangerous.

The products of the FQs module have been validated against

actual earthquake events. Goldberg and Melgar [11] conducted

earthquake simulations based on a 2014 Mw 8.1 Chilean earth-

quake (using the same geometry data as described in Section 4),

and then compared the synthetic FQs data with the authentic earth-

quake observations. Their analysis confirms the reliability of FQs

in simulating large events by demonstrating good agreement with

observed data in both frequency and time domains (see Fig. 1 for

visualization of FQs’ products).

Figure 1: Simulation visualizations. These graphs depict ex-

amples of simulated ruptures (top) and GNSS waveforms

(bottom) from the FDW.

A recent study enhancing FQs performance conducted by Car-

illo [8] proposed modifications to MudPy’s code and the use of

GPU-equipped machines to speed up the software. He achieved a

10% improvement using this strategy, which was deemed not feasi-

ble at scale. Carillo suggested using HTC to improve performance,

which motivates the parallelization strategies in this paper. Notably,

MudPy already incorporates MPI and has some parallelism, but

the FQs module can be further parallelized due to its stochastic

nature [16], enabling concurrent simulation of earthquakes. Despite

the existing gap in research involving HTC and MudPy, various

studies utilize FQs. Notably, most existing work utilizing MudPy

has focused on geosciences and natural hazards [14, 18, 20, 26]. We

see untapped potential in the application and see enhancing its

capabilities as an opportunity to foster further research.

Cloud bursting, a technique that extends enterprise resource

functionalities by leveraging public Cloud capabilities [15], has

been explored in prior research. Sfiligoi et al. [28, 29] utilized Cloud

bursting across three major Cloud platforms (e.g., Amazon) in sup-

port of photon propagation simulation at the IceCube Neutrino

Observatory, an NSF major facility in Antarctica. IceCube employs

HTCondor as a workflow manager, partially executing workloads

on local on-prem infrastructure and partially on OSG. Their suc-

cessful results demonstrate runtime enhancements when applying

Cloud bursting to workflows partially using OSG. Although our

work does not delve into inventing new Cloud bursting techniques,

we contribute OSG-tailored bursting policies designed for work-

flows exclusively utilizing OSG.

To our knowledge, work related to partitioning approaches and

configurations for DAGMans on the OSG has yet to be published.

This paper describes our experiences and insights regarding DAG-

Man behaviors through FDW to help researchers use OSG most

efficiently when executing workloads.
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3 PARALLEL WORKFLOW IMPLEMENTATION

To enhance FQs speed and user experience, we leveraged the OSG’s

distributed processing and storage capabilities via its Open Science

Pool (OSPool). In this paper, we use the terms OSG and OSPool inter-

changeably. The OSG facilitates the automated execution of custom

software on shared computing resources contributed by research

collaborators such as universities and government-supported su-

percomputing institutions. FQs simulations align well with the

OSG, meeting łidealž or łstill advantageousž criteria for OSPool job

specifications [21]. We ran thousands of concurrent jobs, each with

a wall time of under 10 hours, using 4 CPU cores, which is ideal

(running jobs with 8 CPU cores or more would not be ideal). If we

instead ran hundreds of jobs or less, for example, each taking over

10 hours, this would not be ideal on OSG. Each job’s input data in

the FDW was less than 10GB, which is still advantageous according

to documentation (less than 500MB would be ideal).

The OSG integrates with HTCondor, a framework for automat-

ing and managing high-throughput workflows [4]. We employed

HTCondor’s łDAGMan workflowsž tool [13] to parallelize and au-

tomate the steps of FQs. We can integrate with other workflow

engines, such as the powerful Pegasus [9], but we initially chose

HTCondor’s default, simpler engine DAGMan to assess the suit-

ability of parallelizing FQs. HTCondor uses łsubmit description

filesž to specify job compute requirements, orchestrate scripts on

OSG nodes, and handle input files. Parallel FDW jobs on nodes

across the OSPool use 4 CPU cores and dynamically request varying

amounts of disk andmemory, up to 16GB (depending on if jobs need

to generate large matrix files). If needed, our workflow tool could

be launched via the VDC portal’s graphical user interface (GUI).

Presently, it can be run directly on the OSG by placing the source

code in a OSG home directory; editing a configuration file for simu-

lation parameters; placing input files in a single, specified directory;

and running a script. The FDW’s streamlined process eliminates

the need to manually install packages, edit complex files, move files

between steps, and more when executing FQs simulations.

MudPy was installed in a Singularity image (now Apptainer) [2]

with a custom Conda environment [3] since Python and other de-

pendencies are necessary for its operation, which all jobs running

across the OSPool utilize. To facilitate faster delivery of large files

to and from execute nodes, the OSG employs caching tools. We

utilize their Stash Cache (now OSDF Cache [22]) to distribute the

928MB Singularity image across the OSPool efficiently. We have

developed a system to monitor the progress of running and com-

pleted DAGMans to improve MudPy with statistics on running

and postprocessing times for generated synthetic data: Shell scripts

parse HTCondor log files to extract information (e.g., runtime, wait

times, and complete/failed job count) and compute job states and

durations, enhancing simulation analysis and enabling policy im-

plementation. After simulation, thousands of files are congregated,

labeled, and archived on OSG storage capacity.

3.0.1 DAGManWorkflow Phases. The FDWconsists of three phases,

as described in the listing below. The phases run sequentially, with

the numerous jobs of each one executed in parallel. Each phase

utilizes a distinct script that executes on OSPool nodes to establish

the required, łrigidž [16] MudPy folder structure, perform distinct

FQs steps, and compress the output.

• A Phase simulates rupture scenarios in parallel. To do so,

MudPy requires two recyclable łdistance matrixž files (.𝑛𝑝𝑦);

generating these files is time-consuming, so recycling them

is crucial. In this phase, if no .𝑛𝑝𝑦 files are provided, a single

job will create the matrices, which parallel jobs will then use

in this phase.

• B Phase generates Green’s functions (GF) matrices, required

by the next phase, as .𝑚𝑠𝑒𝑒𝑑 files. This process can span

multiple hours depending on the length of a required input

list of GNSS stations.

• C Phase consists of simulating the requested number of

waveforms (based on the ruptures) in parallel to produce the

final, desired output. To help expedite the delivery time of

the large, compressed .𝑚𝑠𝑒𝑒𝑑 files (possibly exceeding 1GB)

to OSG nodes in this phase, we use Stash Cache (which is

the same for .𝑛𝑝𝑦 files).

3.1 VDC Bursting Simulator Implementation

After implementing the FDW, we constructed a VDC bursting simu-

lation framework in Python. Instead of actual Cloud job execution,

we mimicked execution times and associated costs. The baseline

times used by the bursting simulator for completing offloaded jobs

(see 3.1.1) were derived from statistics using a single Amazon AWS

equipped with 4 Intel(R) Xeon(R) Platinum 8175M CPUs and the

Singularity image from Section 3 to automatically run MudPy. Us-

ing the AWS Cloud Machine, we generated the same quantity of

synthetic MudPy data as individual OSG jobs do while employing

identical FQs parameters as in Section 4 to calculate average Cloud

job times used by the simulator. Amazon AWS was chosen due

to VDC’s capability of connecting Cloud services, such as Ama-

zon [23]. In practice, bursting will target physical and Cloud nodes

managed by VDC.

This bursting simulator requires two .𝑐𝑠𝑣 files as input that con-

tain the submission, execution, and termination times of an actual

DAGMan batch and the same information for individual jobs within

it. These times are used to iterate through the batch’s runtime, mon-

itor job status, and simulate the potential performance enhance-

ments from running specific jobs on VDC resources, as our three

policies dictate. The simulator uses the required .𝑐𝑠𝑣 files to make a

time range to loop over while checking job times. After initializing

variables and running the main simulation loop, statistics are com-

puted and reported in detailed output, and a .𝑐𝑠𝑣 file is generated

with the simulation’s instantaneous throughput for each runtime

second.

3.1.1 Bursting Simulation Loop. The main loop iterates through

each second of a DAGMan run analyzing OSG job times to detect

completion. While doing so, it implements our policies by checking

DAGMan throughput and inspecting submission/execution times

to assess OSG’s queue and frequency of job submissions. Regarding

simulated bursted jobs, for each second in the main loop, we exam-

ine each simulated VDC job and increment their tracked runtime

by 1 second unless it meets our simulated completion time, which

remains constant for both rupture and waveform jobs at 287 and

144 seconds, respectively. In all cases of simulated job completion

(VDC and OSG), we have a variable to keep track of overall job
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completion that is used with the runtime of the loop to calculate

instant throughput via (5).

3.1.2 OSG-Tailored Job Bursting Policies.

• Policy 1: To address low throughput in general, we peri-

odically evaluate if the instant throughput of the DAGMan

batch falls below a set threshold. If so, we burst the last

unsubmitted OSG job for the phase.

• Policy 2: To address congested queues, we regularly analyze

submitted OSG jobs and assess their queue duration. If a job

has been waiting longer than desired, we remove it from the

queue and burst it.

• Policy 3: To address gaps in job submissions, we monitor

the timestamp of the most recent job added to the OSPool’s

queue. If there has been more time than desired since then,

we periodically burst the last unsubmitted job in the phase.

4 EXPERIMENTAL EVALUATION

For experiments on the FDW, we ran FQs simulations in the Chilean

subduction zone, utilizing geometry data from the U.S. Geological

Survey project by Hayes et al. [12]. Chile’s suitability as a testing

ground lies in its record of at least five large earthquake events cap-

tured by a dense network of over 120 operating GNSS stations since

2010 [14], which allows for validating and comparing simulated

ruptures and waveforms against authentic events. All experiments

were designed to recycle the necessary, largematrices (some derived

from a required input list of 120+ GNSS stations) in simulations,

running with consistent parameters using MudPy’s default settings

from the GitHub repository. The FDW source code and simulation

configurations are openly available at [5] for reproducibility.

4.1 Increasing Earthquake Simulation
Quantities

First, we ran simulations in increasing quantities with the FDW, run-

ning three DAGMans for each quantity to calculate runtime/total

throughput averages and standard deviations (SD(s)). We explored

six waveform quantities: 1,024, 2,000, 5,120, 10,000, 24,960, and

50,000, comparable to past work producing 36,800 synthetic FQs

waveforms on a single machine [14]. For each quantity, we tested

two sizes of an input GNSS station list: one used a full list with 121

stations (full Chilean input), and the other used 2 (small Chilean

input). In this experiment, we aimed to gain insight into the runtime

(hours), throughput (jobs/min), and result variability of the FDW to

assess OSG’s feasibility in accelerating FQs and parallelizing tens

of thousands of simulations.

To compute averages for total runtime (𝛼), we summed the three

runtimes collected (𝑟1, 𝑟2, 𝑟3) for each quantity of scenarios and

divided the sum by 3 as seen in (1):

(𝑟1 + 𝑟2 + 𝑟3 )/3 = 𝛼 (1)

To compute throughput, we divided the number of OSG jobs in

each DAGMan ( 𝑗𝑛) by its runtime (𝑟𝑛). This process was done three

times for each rupture amount, and then an average was taken to

get the average total throughput (𝛽) as follows:

( ( 𝑗1/𝑟1 ) + ( 𝑗2/𝑟2 ) + ( 𝑗3/𝑟3 ) )/3 = 𝛽 (2)

4.2 Concurrent HTCondor DAGMans

In optimizing the FDW, we compared the performance of a sin-

gle DAGMan generating 16,000 waveforms and when two, four,

or eight workflows launch simultaneously to create 16,000 wave-

forms together (using only the full Chilean input). Simulations were

configured as described in Section 4. We looked at the same statis-

tics as in Section 4.1: average total runtime, throughput, and the

datasets’ SDs and maximums/minimums. We also looked at indi-

vidual jobs’ execution and wait times (minutes), instant throughput

(jobs/minute), and the number of running jobs during a workflow.

This experiment contributes to a deeper understanding of the OSG’s

behavior, facilitating optimization efforts in accelerating FQs simu-

lations and other tools utilizing HTCondor DAGMan workflows.

The average total runtime (𝛼) was calculated by summing each

DAGMan’s runtime (𝑑𝑖 ) within the parallel batches and dividing

that sum by the number of DAGMans (𝑁 ) it took to create 16,000

rupture scenarios three times:

(
∑︁

𝑑𝑖 )/𝑁 = 𝛼 (3)

The average total throughputs (𝛽) were calculated by first divid-

ing the number of jobs in each DAGMan ( 𝑗𝑖 ) by its total runtime (𝑟𝑖 ).

Then, for each different number of DAGMans running in parallel,

we summed their total throughputs and divided by the number of

batches (𝑁 ) it took to create 16,000 rupture scenarios three times

as shown in (4):

(
∑︁

( 𝑗𝑖/𝑟𝑖 ) )/𝑁 = 𝛽 (4)

Instant throughput (𝜔) is the number of complete jobs ( 𝑗 ) divided

by the current runtime (𝑚) in minutes, as seen in (5):

𝜔 = 𝑗/𝑚 (5)

4.3 Simulated VDC Bursting

This experiment used job times from two actual DAGMan batches to

explore parameter variations in two bursting policies. The DAGMan

job times used come from Section 4.2 where single DAGMan batches

produced 16,000 waveforms. We ran VDC bursting simulations

evaluating instant throughput with different probe times (1, 2, 5,

10, 30, 60, 120 seconds) against a 34 jobs/minute threshold (Policy

1), preventing job-offloading until the threshold was met, with

maximum wait times of 90 and 120 minutes on OSG’s queue until

bursting (Policy 2). To compare the simulated bursting results with

actual OSG performance, we used the original time performance

from the two DAGMans as a control. The objective was to validate

our hypothesis that simulated VDC bursting would reduce total

runtime in the FDW and help it to achieve higher, more consistent

throughput while maintaining a reasonable percentage of bursted

jobs (not more than 30%). This experiment further supported the

optimization efforts of the FDW and aimed to demonstrate that

supplemental job bursting to federated CI can enhance baseline

OSG performance.

We looked at the average instant throughput (jobs/minute) (𝛼),

which is the sum of the instant throughputs for every second of

the bursting simulation (𝑟𝑛) divided by the number of simulation

seconds (𝑁 ):

(
∑︁

𝑟𝑛 )/𝑁 = 𝛼 (6)
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We also noted the total runtimes of differing simulations, the

maximums/minimums and SDs of the datasets, and the percentage

of VDC resources used compared to OSG.

We simulated a bursting cost (USD) (𝛿) by multiplying the num-

ber of simulated VDC minutes used (𝐶𝑚) by the cost-per-minute

(𝑐) for utilized Cloud resources as seen in (7):
𝐶𝑚 ∗ 𝑐 = 𝛿 (7)

In this experiment, we used a single cost of 0.0017$ per minute

for Cloud computing based on Amazon EC2 on-demand pricing

for an a1.xlarge instance with 4 CPUs and 8GB of memory (which

should satisfy our needs) [7].

5 EXPERIMENTAL RESULTS

5.1 Increasing Earthquake Simulation
Quantities Results

Figure 2: Increasing earthquake simulation quantities ex-

periment statistics. These graphs illustrate the average total

runtime and throughput of the FDW simulating varying

amounts of earthquake scenarios using two different-sized

input lists (2 and 121 stations).

5.1.1 Average Total Runtimes. The average total runtime of work-

flows using the small Chilean input ranged from 0.8 hours (1,024

waveforms) to 2.7 hours (50,000 waveforms), with an increase of

230.9% in runtime and 4,782.8% in the number of waveforms gen-

erated (rounded to 1 decimal place throughout this paper). For

workflows using the full Chilean input, the average runtime ranged

from 3.3 hours (2,000 waveforms) to 34.8 hours (50,000 waveforms),

showing a time increase of 940.5% and a 2,400% increase in simu-

lated scenarios. Although the number of simulations approximately

doubled with each increase, the runtime did not follow a directly

proportional relationship for both input sizes. The average runtime

did not double except at 50,000 waveforms, where it increased by

178% compared to generating 24,960 with the full input (Fig. 2). The

dataset with 50,000 ruptures using the full input had the widest

range (33.4 hours) and the highest SD (13.9). SDs for all full input

scenarios were below 1.2 hours, except for 5,120 and 50,000, and all

small input scenarios had average runtime SDs below 1 hour.

5.1.2 Average Total Throughput. With the small Chilean input, the

average total throughput ranged from 14.6 jobs per minute (JPM)

(1,024 waveforms) to 185 JPM (50,000 waveforms), increasing by

1,165.5%. Using the complete Chilean input with the FDW, through-

put ranged from 3.3 JPM (1,024 waveforms) to 18.8 JPM (24,960

waveforms), increasing by 470.2%. When generating 50,000 wave-

forms, the throughput declined to 16.6 JPM but still exceeded the

value when producing 10,000 (13.1 JPM) with the complete input.

Notably, the SDs in throughput were significantly lower in the full

Chilean input scenarios than in the small ones, as depicted in Fig. 2.

5.2 Concurrent HTCondor DAGMan Results

Figure 3: Concurrent HTCondor DAGMan statistics. This fig-

ure illustrates the average total throughput and runtime of

DAGMan workflows that ran parallel to create 16,000 rup-

tures using the full Chilean input.

5.2.1 Average Total Throughput. Increasing the number of concur-

rently running DAGMans resulted in a decrease in throughput for

individual DAGMans. When one DAGMan was running, the aver-

age total throughput was 10.7 JPM to simulate 16,000 waveforms;

for two running, both averaged 6.5 JPM; for four, the average was

3.7; and for eight, it was 2.2 JPM. The average total throughput

consistently decreased by at least 39.5% as the DAGMan concur-

rency level increased (see Fig. 3). When a single DAGMan ran, the

throughput was 381.3% better than when eight did.

5.2.2 Average Total Runtime. Although the number of waveforms

generated by individual DAGMans decreased as more ran con-

currently, the average total runtime for individual DAGMans did

not decrease proportionately. For instance, when eight DAGMans

were running to create 16,000 waveforms (each making 2,000), their

average total runtime was slower than when a single DAGMan

produced 16,000. The average total runtime for a single workflow

was 14.1 hours (SD 1.3); when two, four, and eight DAGMans ran

simultaneously, they were 11.9 (SD 1.8), 12.5 (SD 7), and 15.7 (SD

12) hours, respectively.

5.2.3 Job Execution and Wait Times. The execution times of FDW

jobs remained consistent across all experiments (4.1 and 4.2). Jobs

simulating waveforms with the full 121-station list typically took 15

to 20 minutes, whereas those using two stations often completed in
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Figure 4: Concurrent DAGMan statistics continued. These

graphs showcase examples of individual jobs’ execution and

wait times (sorted by duration) and instant throughput and

running job count (for every running second of individual

workflows) in various numbers of concurrently running

DAGMans.

under 1 minute. Jobs simulating ruptures consistently executed in

around 2.5 minutes across all experiments. Overall, job wait times

varied, ranging from multiple hours to seconds. When multiple

DAGMans ran concurrently, there was a higher frequency of jobs

with long wait times (refer to Fig. 4). For example, with four DAG-

Mans, the average wait time for waveform jobs was 189.2 minutes,

whereas, with one, it was 70.1 minutes.

5.2.4 Instant Throughput and Running Jobs. The instant through-

put of running DAGMans exhibited unpredictability, except for a

significant initial spike caused by the A Phase, comprising fewer

and shorter jobs than C. These peaks were notably lower when

more DAGMans ran simultaneously. For instance, when four ran in

parallel, their peaks rarely exceeded 6 JPM, whereas lone batches

reached heights of over 35, as seen in Fig. 4. Notably, more concur-

rent DAGMans led to lower instant throughput on average.

In Fig. 4, the running job footprints exhibited erratic behavior

across all batches. Increasing the number of concurrent DAGMans

resulted in more gaps and running job peaks, possibly due to a

decrease in the number of jobs per DAGMan. However, similarities

were observed in running job peaks between single and multiple

batch executions. For example, all sizes of DAGMans running (1,

2, 4, and 8) had instances with over 400 running jobs (see Fig. 4).

Although running job footprints in DAGMan runs differed signif-

icantly from throughput, there was a correlation between their

peaks/dips when the OSG launched job groups.

5.3 Simulated VDC Bursting Results

5.3.1 Average Instant Throughput. In our VDC bursting simulation,

the probing of Policy 1 influenced the average instant throughput

(AIT), as seen in Fig. 5 - faster probe times for bursting increased

instant throughput and throughput variability. The control (rep-

resenting OSG performance) had the lowest AIT: 14.1 JPM (Batch

1) and 8.6 JPM (Batch 2); the maximums were 31.7 and 32.4 JPM

for batches 1 and 2, respectively, with a probe time of 1 second

and an allowed queue time of 90 minutes Within each batch, the

maximum and minimum average throughputs remained consistent.

The minimum was always 0 JPM before job completion, whereas

short jobs in the A Phase influenced the maximum. The throughput

remained similar for differing queue times before bursting OSG

jobs in Policy 2. A 30-minute shorter maximum queue time resulted

in more bursted jobs and a slight increase in instant throughput for

both batches. However, the difference never increased the AIT by

more than 1 JPM.

5.3.2 Cloud/VDC Usage Compared to OSG. Similarly, the percent-

age of Cloud/VDC usage was dependent on Policy 1 and not on

the other two policies; when the probe time shortens in seconds, it

leads to higher VDC utilization. For Batch 1 and Batch 2, the maxi-

mum simulated Cloud usages were 52.8% and 85.6%, respectively,

whereas the minimums were 19.1% and 22.9%, respectively. Batch

2 had more Cloud usage than Batch 1 because its execution was

longer than that of 1, allowing more time for probing and bursting.

The increased use is more apparent when the probe time is less

than 10 seconds, as seen in Fig. 5.

5.3.3 Runtime. The results of the total runtimes of the VDC burst-

ing simulations were similar to that of the AIT; they were much

more influenced by Policy 1 than 2 and 3. In some cases, although

the batch’s AIT increased in the simulator over the original OSG

performance, the runtime stayed similar. For example, in Batch 2,

with a 90-minute allowed queue time and a 1-minute probe time,

the AIT improved by approximately 22%, but the runtime decreased

by less than one minute (see Fig. 6). Simulated VDC bursting led to

reduced runtimes in Batch 1, with some cases experiencing multiple

hours of improvement, for instance, when using a 10-second probe

and 120-minute queue time.

5.3.4 Cost. In the simulations, we spent up to $11 for Batch 1 and

$13.9 for Batch 2 to help generate 16,000 waveforms, ensuring that

no more than 30% of jobs were bursted. The probe time in Policy 1

and the runtime of the batch had the most significant influence on

cost.

6 DISCUSSION

Using the FDW,we generated 1,024 waveformswith the full Chilean

input in less than half the time compared to running an automated

version of MudPy’s FakeQuakes on a single host (the Amazon AWS

instance described in 3.1) with the same simulation parameters.

Parallel computation exhibited a powerful effect, significantly re-

ducing execution time and increasing throughput as the number

of simulations increased. The FDW excelled in doing tens of thou-

sands of simulations, a challenge for Lin et al. [14]. In contrast to

their over-20-day generation of 36,800 waveforms, we produced,

on average, 24,960 in 12.5 hours and 50,000 in under 35 hours. Al-

though the FDW generally exhibited low variability, with 50,000

waveforms using the full input, significant volatility was observed,

likely due to OSG’s variable resources and many simulations. The

SDs of the throughput datasets were much greater when using the

1975



Accelerating Data-Intensive Seismic Research Through Parallel Workflow Optimization and Federated CI SC-W 2023, November 12–17, 2023, Denver, CO, USA

Figure 5: VDC bursting experiment statistics. This graph illustrates the average instant throughputs and VDC utilization

percentages while simulating supplemental job bursting for OSG jobs. We investigated two policies: the first evaluated against

a throughput threshold with varying probe times for bursting, and the second examined different maximum allowed queue

times until VDC bursting jobs.

Figure 6: VDC bursting results continued. These graphs show-

case the simulated cost (left) for supplemental VDC burst-

ing on two real OSG DAGMans examples and their instant

throughput over time (right).

full input compared to the small. Thus, the FDW’s performance is

less variable for more complex simulations, which is desirable.

Our experiment investigating the impact of splitting the creation

of 16,000 waveforms into multiple DAGMans compared to a single

one revealed that OSG performs best with a single running DAG-

Man. Increasing the number of simultaneous running batches leads

to decreased throughput, and reducing the number of jobs in each

batch does not result in the expected decrease in runtime, as seen

in Fig. 3. Also, as the number of concurrently running DAGMans

increases, the SDs grow, indicating increasing result instability.

Although varying resource availability might influence some out-

comes, the overall trend is evident: partitioning workloads into

multiple simultaneously running DAGMans is not advantageous

on the OSG.

Our VDC bursting simulator improved FDWruntime and through-

put in all experiments, with varying performance across different

batches. Notably, Batch 2 showed negligible runtime reduction

when the VDC bursted job limit was reached. However, Batch 1

demonstrated promising results with a substantial 38.7% decrease

in simulated workflow runtime while staying within our desired

bursted job limit, as seen in Fig. 6. Additionally, simulated through-

put SDs deteriorated compared to OSG. Hence, there is room for

improvement to achieve consistent throughput in real-world imple-

mentations. Based on the simulation, the experimental evaluation

is an initial stage in creating a comprehensive, elastic algorithm for

bursting OSG jobs to VDC resources. By enhancing policy dynam-

ics, we aim to achieve similar execution times for FDW workloads

and improve OSG workflow behaviors by scaling utilized VDC re-

sources based on OSG’s common resources. Although our bursting

simulator showed promising results in one of the two tested batches,

our policies (especially Policy 1) demonstrate an ability to enhance

the OSG with federated CI resources.

Figure 7: Workflow for accelerating seismic research. This

figure depicts the flow of simulated data from the FDW to

the VDC and beyond. VDC provides means for curating FDW

data, which can be retrieved and used by earthquake early

warning models and more.

In this paper, we lay the groundwork for integrating the MudPy

synthetic data toolkit into the VDC and implementing an auto-

mated system for bursting OSG jobs to VDC Cloud resources based

on user-defined policies. We aim to optimize simulations further,

promote tool democratization and data sharing, and expand VDC

data services. The VDC serves to enhance MudPy by providing

a GUI-based platform for executing accelerated simulations and

monitoring their progress, providing equitable access to MudPy for
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researchers of all backgrounds. Furthermore, VDC data services en-

able data deposition, curation, and tagging with metadata, allowing

synthetic data products to be accessed more easily and timely for

training EEW models, as illustrated in Fig. 7. Large datasets will be

able to be efficiently distributed via optimized caching systems and

even prefetched for users via AI-based łintelligent data delivery

servicesž [25] that utilize user query traces and institutional data,

thus providing opportunities for accelerated research.

7 CONCLUSION AND FUTUREWORK

This paper leverages the NSF-funded OSG to parallelize MudPy’s

earthquake simulations and accelerate their execution; using our

workflow, we observed a significant reduction in execution time

and increased throughput for tens of thousands of simulations. Op-

timization insights into HTCondor DAGMans using our workflow

demonstrate higher throughput when running a single DAGMan

versus running multiple concurrently (e.g., eight) to execute a work-

load. Additionally, we address OSG’s shared resource issues through

our VDC bursting simulation framework and three policies that

respond to long waits, gaps in job submissions, and low throughput.

Further elaboration on our VDC bursting model will be required.

This work is the first step in integrating MudPy and OSG into the

VDC ecosystem. Our overarching goal is democratizing and facili-

tating efficient data access and integrating scientific data sources

with diverse research communities. Experience gained from devel-

oping the workflow and Cloud/VDC bursting simulator described

in this paper can apply to other data services. Efficiently made AI-

ready products from the FDW, curated by the VDC, can accelerate

interdisciplinary scientific research to fully unleash the potential

of data and AI in science workflows for significant societal impacts

(e.g., earthquake early warning). Future work includes experiment-

ing with regions beyond Chile, helping researchers leverage and

modify existing datasets and create new meaningful products, and

exploring HTC workflows and VDC bursting policies for other use

cases and CI configurations.
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