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ABSTRACT: 
 
Permafrost thaw has been observed at several locations across the Arctic tundra in recent decades; however, the pan-Arctic extent 
and spatiotemporal dynamics of thaw remains poorly explained. Thaw-induced differential ground subsidence and dramatic 
microtopographic transitions, such as transformation of low-centered ice-wedge polygons (IWPs) into high-centered IWPs can be 
characterized using very high spatial resolution (VHSR) commercial satellite imagery. Arctic researchers demand for an accurate 
estimate of the distribution of IWPs and their status across the tundra domain. The entire Arctic has been imaged in 0.5m resolution 
by commercial satellite sensors; however, mapping efforts are yet limited to small scales and confined to manual or semi-automated 
methods. Knowledge discovery through artificial intelligence (AI), big imagery, and high performance computing (HPC) resources is 
just starting to be realized in Arctic science. Large-scale deployment of VHSR imagery resources requires sophisticated 
computational approaches to automated image interpretation coupled with efficient use of HPC resources. We are in the process of 
developing an automated Mapping Application for Permafrost Land Environment (MAPLE) by combining big imagery, AI, and 
HPC resources. The MAPLE uses deep learning (DL) convolutional neural nets (CNNs) algorithms on HPCs to automatically map 
IWPs from VHSR commercial satellite imagery across large geographic domains. We trained and tasked a DLCNN semantic object 
instance segmentation algorithm to automatically classify IWPs from VHSR satellite imagery. Overall, our findings demonstrate the 
robust performances of IWP mapping algorithm in diverse tundra landscapes and lay a firm foundation for its operational-level 
application in repeated documentation of circumpolar permafrost disturbances. 
 
 

1. INTRODUCTION 

Arctic permafrost - unique landscapes comprising the Earth 
materials that remains at or below 0°C for at least two 
consecutive years - occupies approximately 24% of the exposed 
land surface of the northern hemisphere. Ice-rich permafrost can 
be identified by atypical surface features called ice-wedge 
polygons (IWPs), which are underlain by several meter-wide 
and deep ice-wedges that form a network across the tundra.  
 
Thawing of ice-rich permafrost can be seen from satellites by 
altered moisture and vegetation that follows the differential 
ground subsidence when the top of the ice-wedges thaws. The 
diameter of IWPs typically ranges from 5 m to 30 m and the 
associated microtopographic features, such as troughs or rims, 
are in sub-meter to ~1-meter scale (Kanevskiy et al. 2017). 
Vegetation and geology maps suggest that about two-thirds or 
more of the Arctic landscape is occupied by polygonal ground 
(Raynolds et al. 2019) and therefore ice-rich ground, but the 
exact extent and the prevailing IWP types (i.e. whether the ice 
wedges experienced melt or not) are largely unknown (Liljedahl 
et al. 2016). The microtopography associated with IWPs affects 
the Arctic ecosystem from local to regional scales due to the 
impacts on the flow and storage of water and therefore, 
vegetation and carbon. Over recent decades, ice-wedge 
degradation – transformation of low-centered polygons into 
high-centered polygons due to ice-wedge degradation has been 
documented at several locations across the Arctic tundra in the 
field and through localized remote sensing analyses (Steedman 
et al., 2017). The shift from one IWP type to the other is 
documented to occur in less than a decade (Liljedahl et al. 2016) 
with an unusual warm summer, wildfires, or human activities 
initiating the onset of ice-wedge degradation. Subsequent 

feedback processes can either continue, amplify, dampen or 
even reverse the ice-wedge melt, with such processes remaining 
active for multiple decades. Degradation of ice wedges is a 
quasi-cyclic process with degradation often occurring over a 
shorter time scale than the formation of new permafrost 
(aggradation), with the latter controlled by accumulation of 
organic and mineral soil above the ice-wedge (Kanevskiy et al. 
2017). Understanding of spatiotemporal dynamics behind the 
evolution of ice-wedge polygonal tundra demands for objective 
and detailed maps consolidating the ice wedge extent and their 
prevailing successional stages.  
 
Despite the alarming signals, yet, the Arctic science community 
has a limited understanding of the spatiotemporal continuity of 
the otherwise locally observed changes. The lack of knowledge 
on the larger geographical extent and successional stage of 
IWPs introduce uncertainties to regional and pan-Arctic 
estimates of carbon, water, and energy fluxes. Remote sensing 
provides transformational opportunities to observe, monitor, 
and measure the Arctic polygonal landscape at multiple spatial 
scales and varying temporal windows. IWPs are difficult to 
detect in any remote sensing imagery with spatial resolution 
greater than 4 m. Therefore, sub-meter resolution commercial 
satellite imagery (e.g. DigitalGlobe, Inc.) demonstrate a greater 
promise in accurate delineation and characterization of ice-
wedge polygonal networks. Due to IWPs’ varying spectral and 

morphometric characteristics visual inspection and manual 
digitization has so far been the most widely adopted and 
promising method to delineate polygons from high resolution 
remote sensing imagery. A considerable number of local-scale 
studies have analyzed ice wedge degradation processes using 
satellite imagery, and manned-/unmanned aerial 
imagery/LiDAR data (Muster et al. 2013). Most of the studies 
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to date have relied on manual image interpretation and/or semi-
automated approaches (Skurikhin et al. 2014). Therefore, there 
is a need and an opportunity for utilization of VHSR imagery in 
regional scale mapping efforts to spatio-temporally document 
microtopographic changes due to thawing ice-rich permafrost. 

Despite the accuracy, the intense workload of manual 
digitization constrains the size of a study area. Sophisticated 
image analysis algorithms are therefore needed to automatically 
extract ice-wedge polygons and their prevailing stages using 
hundreds to thousands of commercial satellite imagery. 
Recently, deep learning (DL) convolutional neural nets (CNNs) 
has shown great potential for object instance segmentation in 
detecting and delineating each distinct object in an image of 
common objects from everyday pictures. The success of 
DLCNNs in computer visions (CV) applications has received 
great interest from the remote sensing community. There has 
been an explosion of studies integrating DCLNN to address 
remote sensing classification problems spanning from general 
land use and land cover mapping to targeted feature extraction. 
Deep learning CNNs excel at object detection, semantic 
segmentation, and semantic object instance segmentation. A 
plethora of DLCNN architectures have been proposed, 
developed, and tested. The influx of new DLCNNs continues to 
grow. Each has its own merits and disadvantages with respect to 
the detection and/or classification problem at hand. DL-based 
approaches are being adapted to finely classify Arctic 
permafrost features from high-resolution remote sensing 
imagery (aerial (Zhang et al. 2018), satellite (Bhuiyan et al. 
2019), imagery-derived digital elevation models (DEMs), and 
LiDAR-based DEMs.  

Figure 1. (a) Circumpolar Arctic vegetation map 
(CAVM) showing the extent of tundra (Raynolds et al. 2019).
(b) A 100 km x 100 km grid overlain on CAVM to show the 

geographic extent to be mapped using commercial 
satellite imagery, comprising tundra of Alaska, Canada, and 
Russia. The area under the grid covers approximately 5 million 

km2. 

The entire Arctic has been imaged at 0.5 m resolution by 
commercial satellite sensors (DigitalGlobe, Inc.). The 
image repository at the Polar Geospatial Center (PGC) 
provides transformational opportunities to observe, 
monitor, and document permafrost thaw occurring across the 
Arctic, which is a remote region with extremely sparse 
field observation network. Alaska, Canada, and Russia 
collectively harbor approximately 5 million km2 of tundra 
(Figure 1). Producing a permafrost thaw map for the pan-Arctic 
tundra region just once would require an analysis of 
thousands commercial satellite image scenes. Such large-
scale deployment of imagery resources requires 
sophisticated computational approaches to automated image 
interpretation coupled with efficient use of high-performance 
computing (HPC) resources. Besides our ongoing efforts, to 
the best of our knowledge, no university-led study has so far 
been developed a fully automated and scalable method, which 
is capable of accurately detecting and 

characterizing surface features from sub-meter satellite imagery 
over large geographical areas (e.g. pan-Arctic) in an operational 
context.  

The overarching goal of our ongoing effort is the production of 
the first pan-Arctic ice-wedge polygon map using large volume 
of commercial satellite imagery available at the Polar 
Geospatial Center and HPC resources. The resulting 
circumpolar ice-wedge polygon map will advance our 
understanding of the complex and interlinked processes 
responsible for the evolution of the pan-Arctic ice-wedge 
polygon tundra landscape. Here we unravel a new framework 
that we developed and tested – Mapping Application for 
Permafrost Land Environment (MAPLE) – to drive imagery-
enabled Arctic permafrost science applications. We also present 
some of the automated ice-wedge polygon mapping results 
while relating to the DLCNN model interoperability across 
different tundra vegetation types. As seen on Figure 1, we have 
so far completed mapping of over 10000 km2 of North Slope of 
Alaska. The rest of the Alaska is being processed at the moment 
and we will expand the mapping operation to rest of tundra 
regions. 

2. METHODS

2.1 Mapping Application for Permafrost Land Environment 

A general schematics of our mapping application for permafrost 
land environment (MAPLE) is shown in Figure 2. While our 
primary target is large volumes of commercial satellite imagery, 
manned- and unmanned-aerial imagery can also be integrated 
into the workflow as needed. Our target is to derive 
science-ready products from imagery. Such products are not 
limited to ice-wedge polygons but extend to other 
permafrost thaw features and microtopograpy such as thaw 
slumps, lake erosion, trough, and capillaries or even 
vegetation (shrubs) mapping. MAPLE primarily sits on 
HPC resources such XSEDE (eXtreme Science and 
Engineering Discovery Environment) that are available for 
the U.S. National Science Foundation (NSF) funded research.  

Accurate characterization of IWPs from VHSR imagery directly 
depend on the segmentation (i.e. isolation of targets from the 
surrounding) and classification (i.e. assigning the correct 
label to the targets) processes. Semantic object instance 
segmentation methods are designed to afford target isolation 
and labeling to thematic classes. Ideally, a mapping 
application for permafrost land environment should consist of 
candidate DLCNN models tailored to extract different 
permafrost features of interest from remote sensing imagery. 
Among suite of target features, micrtopography, thaw 
features, capillaries, and plant functional exhibit high priority. 
Given the diversity of target features and their heterogeneous 
characteristics coupled with semantic complexities, 
multiple model architectures better serve the purpose. In 
MAPLE, one pipeline targets on mapping ice-wedge polygons 
in which we utilized Mask RCNN algorithm. The pipeline 
is extensible and tailored to work with remote sensing imagery 
using high performance computing resources. This allows 
scalability to larger spatial extents. Mapping workflow and 
Mask-RCNN architecture is detailed out in Figure 2. Our 
mapping workflow is modular. First, input image scene is 
portioned into tiles of 200 pxl 200 pxl. Next, tiles are streamed 
to the trained model for prediction. Post processing of 
predictions takes place in stage 3. The predicted categorical 
raster is vectorized as a shapefile. All the individual shapefiles  
are post-processed by omitting duplicates along tile borders and 
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merged together to create a single shapefile corresponding to 
the extent of the input satellite image scene. The workflow is 
parallelized and optimized to work on multiple GPUs and 
nodes.  

Figure 2. Simplified schematic of the Mapping Application 
for Permafrost Land Environment (MAPLE) (top). 

Imagery-enabled workflow embedded with the Mask 
R-CNN architecture (bottom). 

The Mask R-CNN (He et al. 2016) serves as the key DLCNN 
algorithm in MAPLE. It has widely been acknowledged as a 
promising algorithm in semantic segmentation tasks across 
multitude scientific domains. The Mask-RCNN is an extended 
method for object instance segmentation built on the Faster R-
CNN with the aid of a function for predicting masks for distinct 
objects. The Mask R-CNN generates proposals (i.e., candidate 
object bounding boxes) after scanning the image, and 
subsequently, the model predicts the class, bounding box, and 
binary mask for each region of interest (ROI). The primary 
segments of the Mask R-CNN include: backbone architecture 
Residual Learning network (ResNet) for feature extraction, 
Feature Pyramid Network (FPN) for improving representation 
of objects at multiple scales, and other modules, such as Region 
Proposal Network (RPN) for generating (RoI), RoI Classifier 
for class prediction of each RoI, Bounding Box Regressor 
(BBR) for refining RoI, and FCN with RoIAlign and bilinear 
interpolation for predicting pixel-accurate mask. 

2.2 Model Training 

We practiced transfer learning strategy to re-train the Mask-
RCNN network. Annotated data (defining and labelling regions 
of interest) were created using an online web tool “VGG Image 

Annotator” from satellite imagery comprising heterogeneous 

tundra types. We randomly selected 262 cropped subsets (tiles 
of 200 pxl by 200 pxl) (~15,000 polygons) from different tundra 
types (tussock, non-tussock, and sedge) considering the spectral, 
and spatial variability. Each file has 200 x 200 pixels. Dataset 
are annotated for two classes: Low-centered (LC) polygons 
(8962 objects) and high-centered (HC) polygons (6038 objects). 
The annotated tiles were randomly divided into a training 
dataset, validation dataset, and test dataset based on the 8:1:1 
split rule. We trained the Mask R-CNN model with a mini-batch 
size of two image tiles, 350 steps per epoch, learning rate of 
0.001, learning momentum of 0.9, and weight decay of 0.0001. 
To minimize overfitting, random horizontal flips augmentation 
was applied to introduce variability in the training data that has 
acceptable estimation accuracy. During calibration, the weights 
and biases of each neuron were estimated iteratively by 

minimizing a mean squared error cost function using a gradient 
descent algorithm with back propagation. Training was 
implemented using NVIDIA V100 GPUs on XSEDE 
supercomputing resources. We trained the Mask R-CNN with 
100 epochs. To optimize Mask R-CNN, we examined different 
losses, such as (a) Smooth-L1 loss, defines box regression on 
object detection systems, which is less sensitive to outliers, than 
other regression loss; (b) Mask R-CNN bounding box loss 
indicates the difference between predicted bounding box 
correction and true bounding box; (c) Mask R-CNN classifier 
loss estimates difference of class labels between prediction and 
ground truth ; (d) mask binary cross-entropy loss measures 
(probability value between 0 and 1) the performance of a 
classification model by observing predicted class and actual 
class; (e) RPN bounding box loss identifies the regression loss 
of bounding boxes only when there is object and; (f) RPN 
anchor classifier loss indicates the difference between the 
predicted(RPN) and actual (closest ground truth box to the 
anchor box) regression. 

2.3 Model Interoperability 

We employed a systematic experiment to investigate the 
model’s immunity to landscape heterogeneity across three 

tundra types (tussock, non-tussock, and sedge). The experiment 
was based on four summer-time multi-spectral images acquired 
by the WorldView-2 satellite sensor (Figure 3). Pansharpened 
multispectral images at 0.5m were provided by the Polar 
Geospatial Center as orthorectified, atmospherically corrected 
data products.. Scenes primarily comprised wet-sedge, tussock, 
and non-tussock tundra according to the Circumpolar Arctic 
Vegetation map (Raynolds et al. 2019). Candidate scenes cover 
1500 km2 of coastal and upland tundra (tussock, non-tussock, 
and sedge), from the North Slope, Alaska. We selected training 
study sites comprising tussock, non-tussock, sedge, and barren 
tundra dominant landscapes, primarily from coastal tundra 
region of North Slope Alaska, Canada, and Wrangler Island of 
Russia. The training sites provide a substantial landscape 
heterogeneity for model classifying and detection of ice-wedge 
polygons. 

Figure 3. Geographic setting (left) and (b) tundra 
vegetation map overlain by four candidate satellite image 

scenes. 
2.4 Accuracy Assessment 

We tasked several error metrics to assess the DL model 
performances across tundra vegetation types.  

The mean intersection over union (mIoU) between predicted 
and actual polygon. A mIoU score > 0.5 is considered a “good” 

prediction which indicates successful delineation.  

Absolute mean relative error (AMRE) is the mean of the 
relative percentage error, calculated by the normalized average 

…………(1) 
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Here, umber of predicted polygons , the number of actual 
polygons . For an unbiased model, the AMRE would be 0.

Correctness, which indicates how many of predicted positives 
were truly positive; Completeness, determines   what 
percentage   of   actual   positives were detected; F1 Score, 
which determines a balance between Correctness and 
Completeness into one value [29]. High magnitudes of 
Correctness suggest that there are less false positives in the 
classification. In addition, if the model classification always 
predicts positive magnitudes, Completeness will be 1, which 
indicates ice-wedge polygon is properly detected by the model. 
Moreover, an accurate prediction of ice-wedge polygon is 
represented by F1 score, where score of 1 specifies perfect 
prediction. An accurate prediction is represented by all metric 
values closing to 1.  

Here, true positive (TP) is the number of polygons correctly 
identified, false positive (FP) is the number of polygons 
identified by model but not true, and false negative (FN) is 
undetected polygons. 

3. RESULTS AND DISCUSSION

We statistically evaluated the performances of the DL model in 
detecting and classifying IWPs. For the quantitative 
assessments, from each image scene, we randomly selected 40 
subsets to manually delineate polygons as a reference (ground-
truth polygons). The mean intersection over union (mIoU) 
values varied between 0.85 to 0.91 (Table 1), which indicted 
that predicted polygons that agree with the ground-truth 
polygons. 

Scene mIoU 
S1 0.91 
S2 0.87 
S3 0.86 
S44 0.85 

Table 1. Summary Statistics of mean intersection over union 

Zoomed-in views of the original imagery, ground truth, 
and model classification results show that our predicted 
IWPs closely matched ground-truth IWPs (Figure 4).  

(a) (b) (c) 
Figure 4. Zoomed-in views of (a) original imagery, (b) ground 
truth (manual delineation, blue outline) and (c) model result 

(yellow outline) for candidate scene 4. Imagery © [ 2016] 
DigitalGlobe, Inc.  

We used three quantitative error statistics (correctness, 
completeness, and F1 score) to show the performances of 
the framework. Candidate scenes 1, 2, 3, and 4 produced 
high model detection accuracies for the F1 score, ranging from 
0.89 to 0.96 (Figure 5, Table 2).  

Scene #of 
reference 
polygons 

Correctness Completeness F1 
Score 

S1 582 0.99 89% 0.96 
S2 567 1 85% 0.94 
S3 579 1 83% 0.92 
S4 573 1 81% 0.89 
Table 2. Reported scores for correctness, completeness, and F1 

measure  

(a) Scene 1 (c) Scene 3

(b) Scene 2 (d) Scene 4
Figure 5. Sample views of original imagery (left) and model 

classification (right) for candidate scenes. Yellow 
outlines denote automatically detected IWPs. Imagery © 

[2010, 2012, 2015, 2016] DigitalGlobe, Inc. 

Although all the image scenes are geographically close to 
each other, but they still have different tundra variations 
in the microtopography. Predominance of tussock sedge 
tundra and the high spatial resolution of imagery 
information provide landscape-scale variation within the 
original CAVM polygons throughout northern Alaska. Scene 
4 (covering tundra tussock sedge) achieves mIoU 0.85 (Table 
1) which still have a chance to improve model prediction by 
increasing more training data from that tundra region. 
Moreover, lake rich regions, such of Alaska's North Slope 
demonstrated dominant sedges tundra, which contains more 
detailed information which will help IWP mapping for that 
tundra type. Image scenes 2 and 3 represents non-tussock 
sedge tundra of Alaska's North Slope. Model 
performances for image scenes 2-3 (F1 score: 0.92-0.94) were 
consistent, which means training sample were sufficient 
to predict IWPs for non-tussock sedge tundra regions. In a 
similar fashion, scenes 1-4 scored high values for 
completeness (81-89%). In all four cases, the correctness 
metric scored ~ 1, allowing less freedom for false alarms. 
Classification accuracies varied from 0.94 to 0.97 for 
candidate scenes, indicating a robust performance of the 
new version of the ice-wedge polygon mapping algorithm 
across different tundra types in northern Alaska. Results 
showed substantially low systematic errors (AMRE values 
from 0.17 to 0.23) for all candidate scenes (Figure 6). Overall, 
both quantitative and qualitative evaluations support the 
possible interoperability of the IWP mapping algorithm 
across different tundra assemblages in northern Alaska. 

………..(2) 

………..(3) 

………..(4) 
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Figure 6. Absolute Mean relative Error (AMRE) for candidate 
scenes 

Considering the geographical extent of Arctic tundra and 
associated landscape complexities that yet to be exposed, we 
make no strong claims that our transferability study is 
comprehensive but an exploratory effort. Arctic tundra 
landscapes cover spatially isolated ponds, lakes, marshes, river, 
and stream corridor wetlands, which representing highly 
heterogeneous features, varying in soil moisture, vegetation 
composition, elevation, surficial geology, ground ice content, 
soil thermal regimes and surface hydrology. Fine-scale 
differences in microtopography, limit the ability to comprehend 
local scale controls on regional to global scale patterns which, is 
an important factor in characterizing IWPs in arctic varying 
tundra areas. As Arctic tundra vegetation are spatially 
heterogeneous which vary significantly over small spatial 
scales, including additional different tundra landforms with 
different vegetation, hydrology, or soil characteristics could 
further improve the model. Further research is inevitably needed 
to better understand how trained models behave across tundra 
types. Such study can incorporate not only vegetation cover but 
also other factors as well, such as terrain units, soil types, 
hydro-climatic regimes, and permafrost characteristics. For 
instance, Arctic tundra types are very sensitive in summer 
temperature, which can cause major changes to vegetation 
structure via by pose spectral/textural changes in the acquired 
imagery. Thus, the seasonality could be an important factor 
deciding the appearance of ice wedge polygon on the satellite 
imagery because changes to spectral and textural characteristics 
can alter the overall semantics of the target. The model can be 
biased when it is trained only based on the imagery acquired in 
particular time window. The predictions can be suffered, if the 
model is given imagery from different time windows, for 
example early summer image vs late summer image. As much 
as important to understand model’s interoperability across 
space, it is also imperative to examine how model responds to 
temporal variations. Operator biasness in hand-annotated data 
production can also negatively influence model performances. 
Tasking multiple operators to produce sizeable amount of 
quality-controlled training datasets can help improving the 
variability training samples and eventually leveraging the model 
performances. 

4. CONCLUSION

We are in the process of developing a Mapping Application for 
Permafrost Land Environment (MAPLE) by combining big 
imagery, AI, and HPC resources. The MAPLE uses DLCNNs 
algorithms on HPCs to automatically map IWPs from VHSR 
commercial satellite imagery across large geographic domains. 
We trained and tasked a DLCNN semantic object instance 
segmentation algorithm to automatically classify IWPs from 
VHSR satellite imagery. We explored the DLCNN model 
interoperability across different tundra types and image scene 
complexities in order to understand the opportunities and 
challenges prior to any future circumpolar IWP mapping 

applications. The DL model exhibited promising performances 
with high detection and classification accuracies. Also reported 
low systematic error for all image scenes and indicated 
significant improvement in model predictions across the 
heterogeneous tundra regions. Consideration of contextual 
information (e.g. edges, vegetation, shape, area, and the 
consistency of feature distributions) increased the reliability of 
the model classification and helped generalizing the DL model 
across tundra vegetation types. Complex topography play a vital 
role in controlling the spatial variation in image scenes. Effort 
to further refine model prediction accuracies could include a) 
increasing the variability of training samples with additional 
annotated IWPs from a larger set of tundra vegetation types, and 
b) explore more sophisticated image pre-processing steps such
as differing data fusion approaches.
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