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ABSTRACT:

Permafrost thaw has been observed at several locations across the Arctic tundra in recent decades; however, the pan-Arctic extent
and spatiotemporal dynamics of thaw remains poorly explained. Thaw-induced differential ground subsidence and dramatic
microtopographic transitions, such as transformation of low-centered ice-wedge polygons (IWPs) into high-centered IWPs can be
characterized using very high spatial resolution (VHSR) commercial satellite imagery. Arctic researchers demand for an accurate
estimate of the distribution of IWPs and their status across the tundra domain. The entire Arctic has been imaged in 0.5m resolution
by commercial satellite sensors; however, mapping efforts are yet limited to small scales and confined to manual or semi-automated
methods. Knowledge discovery through artificial intelligence (Al), big imagery, and high performance computing (HPC) resources is
just starting to be realized in Arctic science. Large-scale deployment of VHSR imagery resources requires sophisticated
computational approaches to automated image interpretation coupled with efficient use of HPC resources. We are in the process of
developing an automated Mapping Application for Permafrost Land Environment (MAPLE) by combining big imagery, Al, and
HPC resources. The MAPLE uses deep learning (DL) convolutional neural nets (CNNs) algorithms on HPCs to automatically map
IWPs from VHSR commercial satellite imagery across large geographic domains. We trained and tasked a DLCNN semantic object
instance segmentation algorithm to automatically classify IWPs from VHSR satellite imagery. Overall, our findings demonstrate the
robust performances of IWP mapping algorithm in diverse tundra landscapes and lay a firm foundation for its operational-level

application in repeated documentation of circumpolar permafrost disturbances.

1. INTRODUCTION

Arctic permafrost - unique landscapes comprising the Earth
materials that remains at or below 0°C for at least two
consecutive years - occupies approximately 24% of the exposed
land surface of the northern hemisphere. Ice-rich permafrost can
be identified by atypical surface features called ice-wedge
polygons (IWPs), which are underlain by several meter-wide
and deep ice-wedges that form a network across the tundra.

Thawing of ice-rich permafrost can be seen from satellites by
altered moisture and vegetation that follows the differential
ground subsidence when the top of the ice-wedges thaws. The
diameter of IWPs typically ranges from 5 m to 30 m and the
associated microtopographic features, such as troughs or rims,
are in sub-meter to ~l-meter scale (Kanevskiy et al. 2017).
Vegetation and geology maps suggest that about two-thirds or
more of the Arctic landscape is occupied by polygonal ground
(Raynolds et al. 2019) and therefore ice-rich ground, but the
exact extent and the prevailing IWP types (i.e. whether the ice
wedges experienced melt or not) are largely unknown (Liljedahl
et al. 2016). The microtopography associated with IWPs affects
the Arctic ecosystem from local to regional scales due to the
impacts on the flow and storage of water and therefore,
vegetation and carbon. Over recent decades, ice-wedge
degradation — transformation of low-centered polygons into
high-centered polygons due to ice-wedge degradation has been
documented at several locations across the Arctic tundra in the
field and through localized remote sensing analyses (Steedman
et al., 2017). The shift from one IWP type to the other is
documented to occur in less than a decade (Liljedahl et al. 2016)
with an unusual warm summer, wildfires, or human activities
initiating the onset of ice-wedge degradation. Subsequent

feedback processes can either continue, amplify, dampen or
even reverse the ice-wedge melt, with such processes remaining
active for multiple decades. Degradation of ice wedges is a
quasi-cyclic process with degradation often occurring over a
shorter time scale than the formation of new permafrost
(aggradation), with the latter controlled by accumulation of
organic and mineral soil above the ice-wedge (Kanevskiy et al.
2017). Understanding of spatiotemporal dynamics behind the
evolution of ice-wedge polygonal tundra demands for objective
and detailed maps consolidating the ice wedge extent and their
prevailing successional stages.

Despite the alarming signals, yet, the Arctic science community
has a limited understanding of the spatiotemporal continuity of
the otherwise locally observed changes. The lack of knowledge
on the larger geographical extent and successional stage of
IWPs introduce uncertainties to regional and pan-Arctic
estimates of carbon, water, and energy fluxes. Remote sensing
provides transformational opportunities to observe, monitor,
and measure the Arctic polygonal landscape at multiple spatial
scales and varying temporal windows. IWPs are difficult to
detect in any remote sensing imagery with spatial resolution
greater than 4 m. Therefore, sub-meter resolution commercial
satellite imagery (e.g. DigitalGlobe, Inc.) demonstrate a greater
promise in accurate delineation and characterization of ice-
wedge polygonal networks. Due to IWPs’ varying spectral and
morphometric characteristics visual inspection and manual
digitization has so far been the most widely adopted and
promising method to delineate polygons from high resolution
remote sensing imagery. A considerable number of local-scale
studies have analyzed ice wedge degradation processes using
satellite imagery, and manned-/unmanned aerial
imagery/LiDAR data (Muster et al. 2013). Most of the studies
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to date have relied on manual image interpretation and/or semi-
automated approaches (Skurikhin et al. 2014). Therefore, there
is a need and an opportunity for utilization of VHSR imagery in
regional scale mapping efforts to spatio-temporally document
microtopographic changes due to thawing ice-rich permafrost.

Despite the accuracy, the intense workload of manual
digitization constrains the size of a study area. Sophisticated
image analysis algorithms are therefore needed to automatically
extract ice-wedge polygons and their prevailing stages using
hundreds to thousands of commercial satellite imagery.
Recently, deep learning (DL) convolutional neural nets (CNNs)
has shown great potential for object instance segmentation in
detecting and delineating each distinct object in an image of
common objects from everyday pictures. The success of
DLCNNSs in computer visions (CV) applications has received
great interest from the remote sensing community. There has
been an explosion of studies integrating DCLNN to address
remote sensing classification problems spanning from general
land use and land cover mapping to targeted feature extraction.
Deep learning CNNs excel at object detection, semantic
segmentation, and semantic object instance segmentation. A
plethora of DLCNN architectures have been proposed,
developed, and tested. The influx of new DLCNNs continues to
grow. Each has its own merits and disadvantages with respect to
the detection and/or classification problem at hand. DL-based
approaches are being adapted to finely classify Arctic
permafrost features from high-resolution remote sensing
imagery (aerial (Zhang et al. 2018), satellite (Bhuiyan et al.
2019), imagery-derived digital elevation models (DEMs), and
LiDAR-based DEMs.

Figure 1. (a) Circumpolar Arctic vegetation map
(CAVM) showing the extent of tundra (Raynolds et al. 2019).
(b) A 100 km x 100 km grid overlain on CAVM to show the

geographic extent to be mapped using commercial
satellite imagery, comprising tundra of Alaska, Canada, and
Russia. The area under the grid covers approximately 5 million

km?.

The entire Arctic has been imaged at 0.5 m resolution by
commercial satellite sensors (DigitalGlobe, Inc.). The
image repository at the Polar Geospatial Center (PGC)
provides transformational = opportunities  to  observe,
monitor, and document permafrost thaw occurring across the
Arctic, which is a remote region with extremely sparse
field observation network. Alaska, Canada, and Russia
collectively harbor approximately 5 million km? of tundra
(Figure 1). Producing a permafrost thaw map for the pan-Arctic
tundra region just once would require an analysis of
thousands commercial satellite image scenes. Such large-
scale  deployment of  imagery resources requires
sophisticated computational approaches to automated image
interpretation coupled with efficient use of high-performance
computing (HPC) resources. Besides our ongoing efforts, to
the best of our knowledge, no university-led study has so far
been developed a fully automated and scalable method, which
is capable of accurately detecting and

characterizing surface features from sub-meter satellite imagery
over large geographical areas (e.g. pan-Arctic) in an operational
context.

The overarching goal of our ongoing effort is the production of
the first pan-Arctic ice-wedge polygon map using large volume
of commercial satellite imagery available at the Polar
Geospatial Center and HPC resources. The resulting
circumpolar ice-wedge polygon map will advance our
understanding of the complex and interlinked processes
responsible for the evolution of the pan-Arctic ice-wedge
polygon tundra landscape. Here we unravel a new framework
that we developed and tested — Mapping Application for
Permafrost Land Environment (MAPLE) — to drive imagery-
enabled Arctic permafrost science applications. We also present
some of the automated ice-wedge polygon mapping results
while relating to the DLCNN model interoperability across
different tundra vegetation types. As seen on Figure 1, we have
so far completed mapping of over 10000 km? of North Slope of
Alaska. The rest of the Alaska is being processed at the moment
and we will expand the mapping operation to rest of tundra
regions.

2. METHODS

2.1 Mapping Application for Permafrost Land Environment

A general schematics of our mapping application for permafrost
land environment (MAPLE) is shown in Figure 2. While our
primary target is large volumes of commercial satellite imagery,
manned- and unmanned-aerial imagery can also be integrated
into the workflow as needed. Our target is to derive
science-ready products from imagery. Such products are not
limited to ice-wedge polygons but extend to other
permafrost thaw features and microtopograpy such as thaw
slumps, lake erosion, trough, and capillaries or even
vegetation (shrubs) mapping. MAPLE primarily sits on
HPC resources such XSEDE (eXtreme Science and
Engineering Discovery Environment) that are available for
the U.S. National Science Foundation (NSF) funded research.

Accurate characterization of IWPs from VHSR imagery directly
depend on the segmentation (i.e. isolation of targets from the
surrounding) and classification (i.e. assigning the correct
label to the targets) processes. Semantic object instance
segmentation methods are designed to afford target isolation
and labeling to thematic classes. Ideally, a mapping
application for permafrost land environment should consist of
candidate  DLCNN models tailored to extract different
permafrost features of interest from remote sensing imagery.
Among suite of target features, micrtopography, thaw
features, capillaries, and plant functional exhibit high priority.
Given the diversity of target features and their heterogeneous
characteristics ~ coupled  with  semantic complexities,
multiple model architectures better serve the purpose. In
MAPLE, one pipeline targets on mapping ice-wedge polygons
in which we utilized Mask RCNN algorithm. The pipeline
is extensible and tailored to work with remote sensing imagery
using high performance computing resources. This allows
scalability to larger spatial extents. Mapping workflow and
Mask-RCNN architecture is detailed out in Figure 2. Our
mapping workflow is modular. First, input image scene is
portioned into tiles of 200 pxl 200 pxl. Next, tiles are streamed
to the trained model for prediction. Post processing of
predictions takes place in stage 3. The predicted categorical
raster is vectorized as a shapefile. All the individual shapefiles
are post-processed by omitting duplicates along tile borders and
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merged together to create a single shapefile corresponding to
the extent of the input satellite image scene. The workflow is
parallelized and optimized to work on multiple GPUs and
nodes.
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Figure 2. Simplified schematic of the Mapping Application
for Permafrost Land Environment (MAPLE) (top).
Imagery-enabled workflow embedded with the Mask
R-CNN architecture (bottom).

The Mask R-CNN (He et al. 2016) serves as the key DLCNN
algorithm in MAPLE. It has widely been acknowledged as a
promising algorithm in semantic segmentation tasks across
multitude scientific domains. The Mask-RCNN is an extended
method for object instance segmentation built on the Faster R-
CNN with the aid of a function for predicting masks for distinct
objects. The Mask R-CNN generates proposals (i.e., candidate
object bounding boxes) after scanning the image, and
subsequently, the model predicts the class, bounding box, and
binary mask for each region of interest (ROI). The primary
segments of the Mask R-CNN include: backbone architecture
Residual Learning network (ResNet) for feature extraction,
Feature Pyramid Network (FPN) for improving representation
of objects at multiple scales, and other modules, such as Region
Proposal Network (RPN) for generating (Rol), Rol Classifier
for class prediction of each Rol, Bounding Box Regressor
(BBR) for refining Rol, and FCN with RolAlign and bilinear
interpolation for predicting pixel-accurate mask.

2.2 Model Training

We practiced transfer learning strategy to re-train the Mask-
RCNN network. Annotated data (defining and labelling regions
of interest) were created using an online web tool “VGG Image
Annotator” from satellite imagery comprising heterogeneous
tundra types. We randomly selected 262 cropped subsets (tiles
of 200 pxl by 200 pxl) (~15,000 polygons) from different tundra
types (tussock, non-tussock, and sedge) considering the spectral,
and spatial variability. Each file has 200 x 200 pixels. Dataset
are annotated for two classes: Low-centered (LC) polygons
(8962 objects) and high-centered (HC) polygons (6038 objects).
The annotated tiles were randomly divided into a training
dataset, validation dataset, and test dataset based on the 8:1:1
split rule. We trained the Mask R-CNN model with a mini-batch
size of two image tiles, 350 steps per epoch, learning rate of
0.001, learning momentum of 0.9, and weight decay of 0.0001.
To minimize overfitting, random horizontal flips augmentation
was applied to introduce variability in the training data that has
acceptable estimation accuracy. During calibration, the weights
and biases of each neuron were estimated iteratively by

minimizing a mean squared error cost function using a gradient
descent algorithm with back propagation. Training was
implemented using NVIDIA V100 GPUs on XSEDE
supercomputing resources. We trained the Mask R-CNN with
100 epochs. To optimize Mask R-CNN, we examined different
losses, such as (a) Smooth-L1 loss, defines box regression on
object detection systems, which is less sensitive to outliers, than
other regression loss; (b) Mask R-CNN bounding box loss
indicates the difference between predicted bounding box
correction and true bounding box; (c) Mask R-CNN classifier
loss estimates difference of class labels between prediction and
ground truth ; (d) mask binary cross-entropy loss measures
(probability value between 0 and 1) the performance of a
classification model by observing predicted class and actual
class; (e) RPN bounding box loss identifies the regression loss
of bounding boxes only when there is object and; (f) RPN
anchor classifier loss indicates the difference between the
predicted(RPN) and actual (closest ground truth box to the
anchor box) regression.

2.3 Model Interoperability

We employed a systematic experiment to investigate the
model’s immunity to landscape heterogeneity across three
tundra types (tussock, non-tussock, and sedge). The experiment
was based on four summer-time multi-spectral images acquired
by the WorldView-2 satellite sensor (Figure 3). Pansharpened
multispectral images at 0.5m were provided by the Polar
Geospatial Center as orthorectified, atmospherically corrected
data products.. Scenes primarily comprised wet-sedge, tussock,
and non-tussock tundra according to the Circumpolar Arctic
Vegetation map (Raynolds et al. 2019). Candidate scenes cover
1500 km? of coastal and upland tundra (tussock, non-tussock,
and sedge), from the North Slope, Alaska. We selected training
study sites comprising tussock, non-tussock, sedge, and barren
tundra dominant landscapes, primarily from coastal tundra
region of North Slope Alaska, Canada, and Wrangler Island of
Russia. The training sites provide a substantial landscape
heterogeneity for model classifying and detection of ice-wedge

polygons.
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Figure 3. Geographic setting (left) and (b) tundra
vegetation map overlain by four candidate satellite image
scenes.

2.4 Accuracy Assessment

We tasked several error metrics to assess the DL model
performances across tundra vegetation types.

The mean intersection over union (mloU) between predicted
and actual polygon. A mloU score > 0.5 is considered a “good”
prediction l\{vhich indicates successful delineation.

w0

mlol =
=g

Absolute mean relative error (AMRE) is the mean of the

relative percentage error, calculated by the normalized average
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AMRE = &i (%Jq

i=1
Here, umber of predicted polygons ¥, the number of actual

polygons ¥;. For an unbiased model, the AMRE would be 0.

Correctness, which indicates how many of predicted positives
were truly positive; Completeness, determines what
percentage of actual positives were detected; F1 Score,
which determines a balance between Correctness and
Completeness into one value [29]. High magnitudes of
Correctness suggest that there are less false positives in the
classification. In addition, if the model classification always
predicts positive magnitudes, Completeness will be 1, which
indicates ice-wedge polygon is properly detected by the model.
Moreover, an accurate prediction of ice-wedge polygon is
represented by F1 score, where score of 1 specifies perfect
prediction. An accurate prediction is represented by all metric
values closing to 1.

Correctness = 'I'F'—-I-FF‘ ........... 3)
c TP @
et =
ompleteness TP FN
2 * Correctness = Completeness (5)
F1 Score =

Completeness + Completeness

Here, true positive (TP) is the number of polygons correctly
identified, false positive (FP) is the number of polygons
identified by model but not true, and false negative (FN) is
undetected polygons.

3. RESULTS AND DISCUSSION

We statistically evaluated the performances of the DL model in
detecting and classifying IWPs. For the quantitative
assessments, from each image scene, we randomly selected 40
subsets to manually delineate polygons as a reference (ground-
truth polygons). The mean intersection over union (mloU)
values varied between 0.85 to 0.91 (Table 1), which indicted
that predicted polygons that agree with the ground-truth

polygons.

Scene mloU
S1 0.91
S2 0.87
S3 0.86
S44 0.85

Table 1. Summary Statistics of mean intersection over union

Zoomed-in views of the original imagery, ground truth,
and model classification results show that our predicted
IWPs closely matched ground-truth IWPs (Figure 4).
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Figure 4. Zoomed-in views of (a) original imagery, (b) ground
truth (manual delineation, blue outline) and (c) model result

(yellow outline) for candidate scene 4. Imagery © [ 2016]
DigitalGlobe, Inc.

We used three quantitative error statistics (correctness,
completeness, and F1 score) to show the performances of
the framework. Candidate scenes 1, 2, 3, and 4 produced
high model detection accuracies for the F1 score, ranging from
0.89 to 0.96 (Figure 5, Table 2).

Scene #of Completeness  F1
reference Score
polygons

S1 582 0.99 89% 0.96

S2 567 1 85% 0.94

S3 579 1 83% 0.92

S4 573 1 81% 0.89

Table 2. Reported scores for correctness, completeness, and F1

measure

I

(a) Scene 1

| MY NS}

(d) Scene 4

f I

(b) Scene 2

Figure 5. Sample views of original imagery (left) and model
classification (right) for candidate scenes. Yellow
outlines denote automatically detected IWPs. Imagery ©
[2010, 2012, 2015, 2016] DigitalGlobe, Inc.

Although all the image scenes are geographically close to
each other, but they still have different tundra variations
in the microtopography. Predominance of tussock sedge
tundra and the high spatial resolution of imagery
information provide landscape-scale variation within the
original CAVM polygons throughout northern Alaska. Scene
4 (covering tundra tussock sedge) achieves mloU 0.85 (Table
1) which still have a chance to improve model prediction by
increasing more training data from that tundra region.
Moreover, lake rich regions, such of Alaska's North Slope
demonstrated dominant sedges tundra, which contains more
detailed information which will help IWP mapping for that
tundra type. Image scenes 2 and 3 represents non-tussock
sedge tundra of Alaska's North  Slope. Model
performances for image scenes 2-3 (F1 score: 0.92-0.94) were
consistent, which means training sample were sufficient
to predict IWPs for non-tussock sedge tundra regions. In a
similar fashion, scenes 1-4 scored high values for
completeness (81-89%). In all four cases, the correctness
metric scored ~ 1, allowing less freedom for false alarms.
Classification accuracies varied from 094 to 0.97 for
candidate scenes, indicating a robust performance of the
new version of the ice-wedge polygon mapping algorithm
across different tundra types in northern Alaska. Results
showed substantially low systematic errors (AMRE values
from 0.17 to 0.23) for all candidate scenes (Figure 6). Overall,
both quantitative and qualitative evaluations support the
possible interoperability of the IWP mapping algorithm
across different tundra assemblages in northern Alaska.
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Figure 6. Absolute Mean relative Error (AMRE) for candidate
scenes
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Considering the geographical extent of Arctic tundra and
associated landscape complexities that yet to be exposed, we
make no strong claims that our transferability study is
comprehensive but an exploratory effort. Arctic tundra
landscapes cover spatially isolated ponds, lakes, marshes, river,
and stream corridor wetlands, which representing highly
heterogeneous features, varying in soil moisture, vegetation
composition, elevation, surficial geology, ground ice content,
soil thermal regimes and surface hydrology. Fine-scale
differences in microtopography, limit the ability to comprehend
local scale controls on regional to global scale patterns which, is
an important factor in characterizing IWPs in arctic varying
tundra areas. As Arctic tundra vegetation are spatially
heterogeneous which vary significantly over small spatial
scales, including additional different tundra landforms with
different vegetation, hydrology, or soil characteristics could
further improve the model. Further research is inevitably needed
to better understand how trained models behave across tundra
types. Such study can incorporate not only vegetation cover but
also other factors as well, such as terrain units, soil types,
hydro-climatic regimes, and permafrost characteristics. For
instance, Arctic tundra types are very sensitive in summer
temperature, which can cause major changes to vegetation
structure via by pose spectral/textural changes in the acquired
imagery. Thus, the seasonality could be an important factor
deciding the appearance of ice wedge polygon on the satellite
imagery because changes to spectral and textural characteristics
can alter the overall semantics of the target. The model can be
biased when it is trained only based on the imagery acquired in
particular time window. The predictions can be suffered, if the
model is given imagery from different time windows, for
example early summer image vs late summer image. As much
as important to understand model’s interoperability across
space, it is also imperative to examine how model responds to
temporal variations. Operator biasness in hand-annotated data
production can also negatively influence model performances.
Tasking multiple operators to produce sizeable amount of
quality-controlled training datasets can help improving the
variability training samples and eventually leveraging the model
performances.
4. CONCLUSION

We are in the process of developing a Mapping Application for
Permafrost Land Environment (MAPLE) by combining big
imagery, Al, and HPC resources. The MAPLE uses DLCNNs
algorithms on HPCs to automatically map IWPs from VHSR
commercial satellite imagery across large geographic domains.
We trained and tasked a DLCNN semantic object instance
segmentation algorithm to automatically classify IWPs from
VHSR satellite imagery. We explored the DLCNN model
interoperability across different tundra types and image scene
complexities in order to understand the opportunities and
challenges prior to any future circumpolar IWP mapping

applications. The DL model exhibited promising performances
with high detection and classification accuracies. Also reported
low systematic error for all image scenes and indicated
significant improvement in model predictions across the
heterogeneous tundra regions. Consideration of contextual
information (e.g. edges, vegetation, shape, area, and the
consistency of feature distributions) increased the reliability of
the model classification and helped generalizing the DL model
across tundra vegetation types. Complex topography play a vital
role in controlling the spatial variation in image scenes. Effort
to further refine model prediction accuracies could include a)
increasing the variability of training samples with additional
annotated IWPs from a larger set of tundra vegetation types, and
b) explore more sophisticated image pre-processing steps such
as differing data fusion approaches.
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