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Abstract:

Introduction: Predictive models have been used to aid early diagnosis of PCOS, though existing models
are based on small sample sizes and limited to fertility clinic populations. We built a predictive model
using machine learning algorithms based on an outpatient population at risk for PCOS to predict risk and
facilitate earlier diagnosis, particularly among those who meet diagnostic criteria but have not received a
diagnosis.

Methods: This is a retrospective cohort study from a SafetyNet hospital’s electronic health records
(EHR) from 2003-2016. The study population included 30,601 women aged 18-45 years without
concurrent endocrinopathy who had any visit to Boston Medical Center for primary care, obstetrics and
gynecology, endocrinology, family medicine, or general internal medicine. Four prediction outcomes
were assessed for PCOS. The first outcome was PCOS ICD-9 diagnosis with additional model outcomes
of algorithm-defined PCOS. The latter was based on Rotterdam criteria and merging laboratory values,
radiographic imaging, and ICD data from the EHR to define irregular menstruation, hyperandrogenism,
and polycystic ovarian morphology on ultrasound.

Results: We developed predictive models using four machine learning methods: logistic regression,
supported vector machine, gradient boosted trees, and random forests. Hormone values (follicle-
stimulating hormone, luteinizing hormone, estradiol, and sex hormone binding globulin) were combined
to create a multilayer perceptron score using a neural network classifier. Prediction of PCOS prior to
clinical diagnosis in an out-of-sample test set of patients achieved AUC of 85%, 81%, 80%, and 82%,
respectively in Models I, I1, IIT and IV. Significant positive predictors of PCOS diagnosis across models
included hormone levels and obesity; negative predictors included gravidity and positive bHCG.

Conclusions: Machine learning algorithms were used to predict PCOS based on a large at-risk
population. This approach may guide early detection of PCOS within EHR-interfaced populations to
facilitate counseling and interventions that may reduce long-term health consequences. Our model
illustrates the potential benefits of an artificial intelligence-enabled provider assistance tool that can be
integrated into the EHR to reduce delays in diagnosis. However, model validation in other hospital-based
populations is necessary.

Keywords: Polycystic ovary syndrome (PCOS), disease prediction, predictive model, machine learning,
artificial intelligence.

Word count: 5,712

Number of figures and tables: 7 (& 7 supplementary tables)
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Introduction

Polycystic ovary syndrome (PCOS) is the most common type of ovulation disorder and
endocrinopathy among reproductive age women. PCOS is a diagnosis of exclusion after other
endocrinopathies known to affect ovulation have been evaluated including thyroid, adrenal, and pituitary
related disease. Based on the Rotterdam criteria, PCOS is diagnosed when two of the three following
criteria are exhibited: clinical or biochemical hyperandrogenism, oligo-anovulation, and polycystic ovary
morphology (PCOM) on transvaginal or transabdominal ultrasound. PCOS has a population prevalence of
5-15%, depending on the diagnostic criteria used (1).

PCOS is associated with multiple health issues and increased morbidity and mortality, including a
high chronic disease burden that is also very costly for individuals with PCOS and insurers (2). PCOS is
the leading cause of anovulatory infertility in reproductive-aged women. In fact, over 90% of anovulatory
women who present to infertility clinics have PCOS (3). PCOS patients have an increased risk of
endometrial hyperplasia and endometrial cancer (4) due to anovulatory cycles leading to long periods of
exposure to the effects of unopposed estrogen. PCOS has been associated with the development of
metabolic syndrome (5), diabetes (6), cerebrovascular disease and hypertension (7), compared to women
without PCOS. Despite these serious health consequences, PCOS frequently goes undiagnosed due to the
wide range of symptom severity on presentation, leading to delayed treatment and potentially more severe
clinical sequelae due to lack of preventive care, health management, and counseling (4). Even when
PCOS is diagnosed, it is often very delayed. One study found that over one-third of women with PCOS
waited over two years and were seen by three or more providers before finally receiving the diagnosis (8).

Predictive models can play a significant role in aiding earlier diagnosis of PCOS, though several
include only those women presenting for fertility care. One model used serum anti-Miillerian hormone
(AMH) and androstenedione levels, menstrual cycle length, and BMI to predict the development of PCOS
in Chinese women (9). Another model used only AMH and BMI to predict a diagnosis of PCOS or other
ovulatory dysfunction disorders (10). Other studies have created predictive models for certain outcomes
among women with PCOS such as pregnancy outcomes (11,12) and insulin resistance (13). In this study,
we use clinical and socioeconomic variables among 30,601 women aged 18 to 45 years within the
electronic health records (EHR) to develop predictive model utilizing machine learning algorithms with
the goal of earlier detection and treatment of PCOS.

Materials and Methods
Data acquisition

The dataset was created by querying de-identified patient data from female patients aged 18 to 45
years who had or were considered at risk for PCOS diagnosis by having had any one of the three testing
procedures for PCOS in their EHR. Included within the initial sample were those patients who had any
visit to Boston Medical Center (BMC) for primary care, obstetrics and gynecology, endocrinology, family
medicine, or general internal medicine and received: 1) a pelvic/transvaginal ultrasound for any reason, 2)
androgen lab assessment, or had clinical symptoms of androgen excess, 3) an ICD-9 label for irregular
periods, or 4) a PCOS diagnosis, between October 2003 to December 2016 within the BMC Clinical Data
Warehouse (CDW). The start-date was selected to reflect the first day that ICD-9 codes were used and
recorded at BMC. The end date reflected cessation of use of the ICD-9 codes and transition to ICD-10
codes within BMC. To avoid misidentifying an ovulation disorder caused by another endocrinopathy,
exclusion criteria included diagnosis of concurrent endocrinopathy, such as thyroid disorders,
hyperaldosteronism, Cushing’s syndrome, other adrenal gland disorders, or malignancy based on ICD-9
codes as listed in Supplementary Table 1.

Ethical approval

The study was approved by the Institutional Review Board of Boston University School of
Medicine and the Harvard T.H. Chan School of Public Health (Protocol # H35708) and is considered
non-human subjects research.
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Reference label definitions
Individual predictors

Time-varying predictor variables with a date stamp before that of the outcome of interest were
included in our models. We considered the following predictor variables:

Socioeconomic and lifestyle demographic variables: age, race (White/Caucasian, Black/African
American, Hispanic/Latina, Asian, Native Hawaiian/Pacific Islander, Middle Eastern, Other/Unknown),
smoking status (yes/no), marital status (single, married, separated, divorced, widowed, other),
homelessness (yes/no), and highest level of education (8™ grade or less, some high school, high school
graduate, some college/technical/vocational training, graduated college/technical school/vocational
training, declined to answer, other).

Anthropometrics: Body mass index (BMI, kg/m?) was either calculated from height and weight or
abstracted as the listed BMI variable associated with each visit. BMI was then categorized into three
categories: normal (BMI < 25 kg/m?); overweight (BMI between 25-30 kg/m?); and obese (BMI > 30
kg/m?). To further capture the obesity population in the absence of height/weight/BMI data, the obese
category also included any patient with an ICD-9 code for unspecified obesity (278.00), morbid obesity
(278.01), localized adiposity (278.1), and/or a history of gastric bypass.

Cardiovascular health: To include blood pressure as a predictor variable, we defined a
categorical hypertension variable by using systolic (SBP) and diastolic (DBP) blood pressure readings
and ICD-9 diagnostic codes for unspecified essential hypertension (401.9), benign essential hypertension
(401.1), and essential primary hypertension (401.0). Blood pressure was categorized into three groups:
normal, defined by no ICD-9 codes for hypertension recorded and SBP < 120 mmHg, and DBP < 80
mmHg; elevated, defined by no ICD-9 codes for hypertension recorded and SBP was 120-129 mmHg or
DBP < 80 mmHg; hypertension, defined by any ICD-9 code for hypertension recorded or SBP > 140
mmHg or DBP > 90 mmHg.

Reproductive endocrine predictive variables: beta human chorionic gonadotropin (bHCG) level
(negative bHCG < 5 mIU/mL, positive bHCG > 5 mIU/mL), HIV status (negative/positive), age at
menarche, pelvic inflammatory disease diagnosis (614.9), history of hysterosalpingogram, and gravidity
(history of present or prior pregnancy within obstetric history). Endocrine and metabolic lab values
included: TSH, glycosylated hemoglobin (Alc) as a marker for diabetes, low-density lipoprotein (LDL),
high density lipoprotein (HDL), and diagnosis of hypercholesterolemia (272.0). Of note, our model did
not include androgen precursors such as DHEA or androstenedione as, according to Monash guidelines,
these values provide limited additional information in the diagnosis of PCOS (14,15).

Combined predictors

Expecting a nonlinear relationship between many reproductive hormones and a PCOS diagnosis,
we used a multilayer perceptron (MLP) neural network to map follicle-stimulating hormone (FSH),
luteinizing hormone (LH), sex hormone binding globulin (SHBG), and estradiol (E2) values to a
composite metric we call MLP score. The MLP score was repetitively trained and the hyperparameters
were tuned to generate a predictive probability associated with PCOS diagnosis for each predictive
model, as described with further detail below.

Outcomes

Defining PCOS: PCOS diagnosis was assigned for any patient who had an ICD-9 code for PCOS
(256.4) or met the Rotterdam criteria (16), according to which a positive diagnosis is made in the
presence of two out of the following three features: (i) irregular menses (IM) as defined by rare menses,
oligo-ovulation, or anovulation; (ii) hyperandrogenism (HA) as defined by clinical or biochemical
androgen excess; and (iii) polycystic ovarian morphology (PCOM) noted on transabdominal or
transvaginal ultrasound. Based on these three criteria, we defined three auxiliary variables IM, HA, and
PCOM to use in the definition of our labels. PCOM was captured through diagnostic radiology text
reports from ovarian ultrasound imaging for the subset that had ultrasound imaging (17).
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Defining Irregular Menstruation (IM): IM was defined with the following ICD-9 codes: absence
of menstruation (626.0), scanty or infrequent menstruation (626.1), irregular menstrual cycle (626.4),
unspecified disorders of menstruation and abnormal bleeding from female genital tract (626.9), and
infertility, female associated with anovulation (628.0) (3).

Defining Hyperandrogenism (HA): HA was assigned to a patient if any of the androgen lab
testing for bioavailable testosterone, free testosterone, or total testosterone was greater than clinical
thresholds of 11 ng/dL, 5 pg/mL, 45 ng/dL, respectively. In addition, HA was assigned if ICD-9 codes
for hirsutism (704.1) or acne (706.1 or 706.0) were recorded for a patient.

Defining Ultrasound characteristics for polycystic ovarian morphology (PCOM): Among those
with an ultrasound in this dataset, PCOM was identified on ultrasound reports using natural language
processing (NLP) with complete methods detailed by Cheng and Mahalingaiah (17), to report PCOM as
identified (PCOM present), unidentified (PCOM absent), or indeterminate (PCOM unidentifiable based
on source report data).

We considered four models to predict the following: Model I: patients with ICD-9 diagnosis of
PCOS (256.4) within the EHR; Model II: patients diagnosed with PCOS by Rotterdam criteria having IM
and HA without a specific ICD-9 PCOS code; Model III: patients diagnosed with PCOS by Rotterdam
criteria having two out of the three conditions IM/HA/PCOM and without a specific ICD-9 PCOS code;
Model IV: all patients with PCOS using either Model I or Model III criteria. ICD-9 codes were abstracted
from the billing code and diagnosis code associated with each encounter within the EHR. Model I
included all patients who were diagnosed with PCOS. Model II and its superset Model III was composed
of patients who did not have a PCOS diagnosis code but met diagnostic criteria of PCOS based on
Rotterdam criteria, representing the patient population with undiagnosed PCOS. Model IV essentially
captures all women who were diagnosed or met criteria for PCOS within our population. Supplementary
Table 2 details model definitions and includes the count and percent of patients in each category. The date
of diagnosis was assigned by the date of PCOS ICD-9 code (256.4) for Model I, the date of the latest
diagnostic criteria met for Model II and III, and the earlier date associated with Model I and Model III, for
Model IV.

Predictive models
Classification methods

We explored a variety of supervised classification methods, both linear and nonlinear. Linear
methods included logistic regression (LR) and support vector machines (SVM) (18) and were fitted with
an additional regularization term: an L1-norm of the coefficient vector to inject robustness (19) and
induce sparsity. Regularization added a penalty to the objective function, thereby minimizing the sum of a
metric capturing fitness to the data and a penalty term that is equal to some multiple of a norm of the
model parameters. Sparsity was motivated by the earlier works (20-23), where it was shown that sparse
classifiers can perform almost as well as very sophisticated classification methods. Nonlinear methods,
including gradient boosted trees (GBT/XGBoost) (24) and random forests (RF) (25) which produce large
ensembles of decision trees, may yield better classification performance, but are not interpretable or
explainable to enable a safety check by a clinician. Specifically, the RF is a large collection of decision
trees and it classifies by averaging the decisions of these trees. The GBT/XGBoost, also called gradient
boosting machine (GBM), similarly combines decisions by many decision trees. We used LightGBM
which is a fast, high-performance GBM framework (26). We tuned GBM’s hyperparameters through
cross-validation.

Performance metrics

To assess model performance, we obtained the Receiver Operating Characteristic (ROC) curve.
The ROC is created by plotting the true positive rate, which is indicative of sensitivity or recall, against
the false positive rate (equal to one minus specificity) at various thresholds. The c-statistic or the area
under the ROC curve (AUC), is used to evaluate the prediction performance. A perfect predictor is
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defined by generating an AUC score of 1, and a predictor which makes random guesses has an AUC
score of 0.5. We also used the weighted-F1 score to evaluate the models. The weighted-F1 score is the
average of the F1 scores of each class weighted by the number of participants in each class. The class-
specific F1 scores are computed as the harmonic mean of precision and recall of a classifier which
predicts the label of the given class. The weighted-F1 score is between 0 to 1, and a higher value
represents a better model. The AUC is more easily interpretable, and the weighted F1-score is more
robust to class imbalance (27).

Statistical feature selection (SFS)

Categorical variables were converted into dummy/indicator variables. To avoid collinearity, we
dropped the missing or unclassified data (NaN) category. For continuous variables, missing values were
imputed by the median value for that variable. A summary of the missing variables for each model is
provided in Supplementary Table 3. Variables with very low variability (SD<0.0001) were assessed for
removal from the models, however none were noted in any model. We applied statistical feature selection
(SFS) to reduce the less informative features and simplify the models. For each of the four models’
outcomes, the chi-squared test was applied for binary variables and the Kolmogorov-Smirnov statistic for
continuous variables; the variables for which we could not reject the null hypothesis of the same
distribution for each class (p-value >0.01) were removed. Representative aggregated patient-level
statistics for each model are shown in Supplementary Table 4. We also removed one from each pair of
highly correlated variables (with absolute value of the correlation coefficient > 0.8) to avoid redundant
variables. Highly correlated variables and the retained variable are provided in Supplementary Table 5.
For all models we standardized the corresponding features by subtracting the mean and scaling to unit
variance.

Training-test splitting

We split the dataset into five random parts, where four parts were used as the training set, and the
remaining part was used for testing. We used the training set to tune the model hyperparameters via 5-fold
cross-validation, and we evaluated the performance metrics on the testing set. We repeated training and
testing five times, each time with a different random split into training/test sets. The mean and standard
deviation of the metrics on the test sets over the five repetitions are reported.

Development of the MLP score

For every model, there was a considerable difference between the AUC of linear models and non-
linear models. To improve the performance of our linear models, we utilized nonlinear models to capture
intricate relationships between features. We utilized Gradient Boosted Trees (GBT) to find which features
most commonly appeared together among decision trees. We found FSH, LH, SHBG, and estradiol levels
to be a meaningful group of features which are all reproductive hormones and continuous variables that
appeared together among trees for all our models. We subsequently used these four features as input
features into a multilayer perceptron (MLP) neural network model with three hidden layers, each
employing the rectified linear unit (ReLU) activation function. The neural network was trained using the
training set to classify PCOS. We used the output probability of the MLP model, which we called “MLP
score,” as a new feature into our original predictive models.

Recursive feature elimination (RFE)

We also used a recursive feature elimination approach with L1-penalized logistic regression (L1-
regularized RFE) to extract the most informative features and develop parsimonious models. Specifically,
after running the L1-penalized logistic regression (L1-LR), we obtained weights associated with the
variables (i.e., the coefficients of the model, denoted by ), and we eliminated the variable with the
smallest absolute weight in each turn. We iterated in this fashion, eliminating one variable at a time, to
select a model that maximizes a metric equal to the mean AUC minus the standard deviation (SD) of the
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AUC in a validation dataset (using 5-fold cross-validation on the training set to obtain an average of this
metric over five repetitions).

Final predictive models

We computed the performance of the following models: L1-penalized logistic regression (LR-
L1), support vector machine (SVM-L1), random forests (RF), and gradient boosted trees
(GBT/XGBoost). We calculated each variable’s LR coefficient with a 95% confidence interval (3
[95%CI]), the correlation of the variable with the outcome (Y -correlation), the p-value of each variable
(p-value), the mean of the variable (Y 1-mean) in the PCOS labeled patients, the mean of the variable (Y0-
mean) in the patients without the PCOS label, and the mean and standard deviation of the variable over all
patients (All-mean and All-SD). Ranking predictor variables by the absolute value of their coefficients in
the logistic regression model amounts to ranking these variables by how much they affect the predicted
probability of the outcome. A positive coefficient implies that the larger the value of the variable within
the range specified by the data, the higher the chance of having a PCOS diagnosis as defined by the model
outcome.

Results
Results of data acquisition and data pre-processing

After inclusion and exclusion criteria were applied to all 65,431 women within the initial data
pool, 30,601 patient records were available for this analysis and defined populations are included in
Figure 1. There were 1,329 patients (4.5%) with a PCOS ICD-9 diagnosis code (Model I). 1,465 patients
had records with PCOM results as present, absent, or unidentifiable. There were 1,056 patients (3.6%)
with undiagnosed PCOS (Model II), and a total of 1,116 (3.8%) of patients with no ICD 256.4 indication
and two out of IM/HA/PCOM positive criteria (Model III). Finally, there were 2,445 PCOS patients
(8.0%) in the combined analysis (Model V). The total number of records in each model are included in
Supplementary Table 2. In the total cohort, the patients were predominantly Black/African American
(40.3%) and White (26.5%), with an average age of 33.6 years (SD = 6.6). Complete demographic
characteristics are described in Table 1.

There were 43 categorical variables and 12 continuous variables retained as predictors after the
data pre-processing procedures. There were four pairs of highly correlated variables and one variable
from each correlated pair included in the final model as noted in Supplemental Table 5. Supplementary
Table 4 describes all 51 variables used by the predictive models.

Model Performance

Tables 2, 3, 4 and 5 display the parsimonious models that use the MLP score (LR-L2-MLP score)
and show the most significant variables in the prediction of the outcome for Models I, 11, III, and 1V,
respectively. All p-values were less than 0.05, which was set as the significance level.

For Model I, the parsimonious predictive model achieved an AUC (SD) of 82.3% (1.7). The MLP
score (f=0.71) and obesity (B = 0.45) were positively correlated with PCOS diagnosis. Pregnancy
(gravidity = -0.53; positive pregnancy test § = -0.50), normal BMI (B = -0.24), smoking ( =-0.18), age
(B=-0.16), and Hispanic race ( = -0.10) were inversely correlated with PCOS diagnosis as shown in
Table 2.

For Model 11, the parsimonious predictive model achieved an AUC (SD) of 77.6% (1.3). The
MLP score (p =0.61), obesity ( = 0.21), normal BMI (B = 0.15), normal blood pressure (f = 0.16),
negative pregnancy test (B = 0.12), and normal HDL ( = 0.08) were positively correlated with
undiagnosed PCOS. Age (B =-0.27), pregnancy (gravidity p = -0.26; positive pregnancy test f =-0.19),
and Hispanic race (f = -0.18) were inversely correlated with undiagnosed PCOS as show in Table 3.

For Model III, the parsimonious predictive model achieved an AUC (SD) of 77.4% (1.6). The
MLP score (p = 0.60), obesity ( = 0.19), normal blood pressure (f = 0.17), normal BMI ( = 0.14), Black
race (0.13), negative pregnancy test (f = 0.12), and normal HDL (B = 0.09) were positively correlated
with undiagnosed PCOS. Age (B = -0.25), pregnancy (gravidity B = -0.24; positive pregnancy test ff = -
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0.20), and Hispanic race (f = -0.15) were inversely correlated with undiagnosed PCOS as show in Table
4.

For Model 1V, the parsimonious predictive model achieved an AUC (SD) of 79.1% (1.1). The
MLP score (p = 0.7), obesity (B = 0.31), normal BMI ( = 0.15), hypertension ( = 0.07) and some higher
degree of education, such as college or vocational/technical school (f = 0.06) were positively correlated
with PCOS diagnosis. Age (B =-0.21), pregnancy (gravidity = -0.37; positive pregnancy test = -0.34;
negative pregnancy test f = -0.05), Hispanic race (p = -0.12), and smoking ( = -0.08) were inversely
correlated with PCOS diagnosis as shown in Table 5.

GBT models had the highest performance. Predictions of PCOS in a test set of patients not used
during algorithm training achieved 85%, 81%, 80%, and 82% AUC for Models L, II, I1I, and IV,
respectively. We also report the performance with the logistic regression model (LR-L1) after SFS and
the performance when using our developed MLP score alongside variables selected via recursive feature
elimination (LR-L2-MLP score). Supplementary Table 6 displays features for each model, associated
with LR-L1 algorithm after SFS. As we hypothesized, developing models using the MLP score (LR-L2-
MLP score) leads to improvement of the performance of linear models (LR-L1) for Models I, 11, III, and
IV, respectively from 79%, 72%, 73%, and 75% AUC to 82%, 78%, 77%, and 79% AUC. Table 6 details
the models with the best performance (highest AUC) using all 51 features before and after statistical
feature selection (SFS). In Table 6, the means and standard deviations of AUC and weighted-F1 scores on
the test set over the five repetitions are listed. Supplementary Table 7 displays the performance of all
models and all algorithms, before and after statistical feature selection (SFS).

Discussion

Evaluating an at-risk population for PCOS is essential for early diagnosis and initiating multi-
disciplinary care with the goal of reducing health risks (endometrial hyperplasia/cancer), infertility and
pregnancy complications, and chronic disease burden including cardiometabolic disorders associated with
PCOS. Retrospective analysis of the at-risk population within an urban health center allows for
assessment of factors predictive of diagnosis. Of note, the study sample represents a population of
patients who had any visit to BMC for primary care, obstetrics and gynecology, endocrinology, family
medicine, or general internal medicine and does not represent a random sample. While this is not a
population level assessment, our model is applicable to patients with high suspicion for PCOS who
interact with the healthcare system.

The ranked list of variables, from the most predictive to the least predictive of the PCOS
outcome, informed the main drivers of the predictive models. For example, non-gravidity, high levels of
LH, low levels of FSH, obesity, and higher BMI increase the likelihood of PCOS. These variables are
consistent with key variables from other models and in the pathophysiology of PCOS. The overall
predictive accuracy was high for all models, suggesting that a predictive model may assist in early
detection of PCOS within those at risk in an electronically interfaced medical record. Furthermore, we
found that non-linear models had superior predictive capacity compared to linear models for all four
model outcomes, potentially allowing for inclusion of non-linear reproductive hormone relationships.

When assessing patients who received a diagnosis of PCOS (Model I), the most predictive factors
related to diagnosis were hormone levels (as captured by the MLP score) and obesity, a clinical factor in
supporting a PCOS diagnosis. Specifically, there is a non-linear relationship between reproductive
hormones such as FSH, LH, and estradiol. Often these hormonal lab tests are obtained randomly in those
with oligomenorrhea, and it is also common to find an elevated FSH to LH ratio. A concern may also be
the misclassification of hypothalamic amenorrhea into the group classified as PCOS where the FSH and
LH levels would be low or suppressed, or in the setting of premature ovarian insufficiency, notable by an
elevated FSH and low estradiol. The MLP score allows for the diversity of relationships of these hormone
levels and was trained using a neural network to appropriately classify PCOS. Additionally, prior
pregnancy (gravidity) and a positive pregnancy test were negatively associated with a diagnosis of PCOS,
consistent with the underlying increased risk of infertility due to oligo-ovulation. Normal BMI and
smoking, a known ovarian toxicant, were negatively associated with the presence of a PCOS diagnosis,
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which may indicate patient characteristics that increase risk of a delayed PCOS diagnosis. These
identified variables demonstrate the robustness of the model towards predicting phenotypic traits of
patients with PCOS, which is aligned with the performance accuracy. While the significant factors such
as hormone levels, gravidity, bHCG, and obesity identified in the model are already known to be
associated with PCOS, the true impact of our model lies within the implementation of such a tool within
the EHR. For example, a real-world application of this model in the clinical setting would entail
integration of our model into the electronic health record system that would provide the probability of
PCOS diagnosis or set a threshold for suspicion for each patient to aid a provider’s evaluation. This
would lead to more timely diagnosis and optimize referrals for downstream follow-up for known clinical
sequelae associated with PCOS.

When assessing patients who met diagnostic criteria without the ICD-9 label of PCOS (Models 11
and III), predictive factors both supported the underlying PCOS diagnosis and alluded towards factors
that may contribute to missing the diagnosis despite meeting Rotterdam criteria. Similar to Model I,
gravidity and a positive pregnancy test were negatively associated with Models II and III diagnosis, while
obesity was positively associated with Models II and III diagnosis, consistent with Model I. Interestingly,
distinct positive predictors among Models II and III were normal BMI, normal blood pressure, and
normal HDL. These patients may present as the “lean” phenotype of PCOS or those with mild features,
leading to underdiagnosis of PCOS. Diagnosing “lean” PCOS can be more nuanced, potentially delaying
diagnosis or requiring more specialized consultation (28). Within our cohort, 1,116 individuals were
identified by the model without the ICD-9 code that met Rotterdam PCOS diagnostic criteria (Model III),
suggesting the predictive value of our models to identify at risk groups within a large health system and
reduce delays in diagnosis. Given that women often wait over two years and see numerous health
professionals before receiving a diagnosis of PCOS, the integration of high-quality Al-based diagnostic
tools with the EHR could significantly contribute to more timely diagnosis (8).

Consistent with Models [, 11, and III, positive pregnancy test and gravidity were both negatively
associated with PCOS diagnosis in Model IV while obesity and presence of hypertension were both
positively associated with the Model IV combined PCOS outcome. Some higher degree of education,
such as college or vocational/technical school, was also positively associated with the outcomes of
undiagnosed PCOS and combined PCOS (Models 11, III, and IV), which may suggest that education
status and patient’s self-advocacy for seeking care within a medical system may be implicated specifically
in under-diagnosed individuals. Of note, we dropped insurance status after finding that the null was a
strong predictor of PCOS, though it is interesting to note that 83% of 331 patients in this dataset with
missing insurance have PCOS. Insurance status alludes to socioeconomic barriers such as access to care,
which can result in a delay in timely diagnosis through either inability to seek evaluation or follow
through with testing. While the implications of insurance status and social determinants of health are
beyond the scope of this paper, it is important to note that persistence in seeking treatment within a
fractionated health care system can be challenging financially and psychologically, as patients may need
multiple evaluation or specialist’s consultation to reach the right diagnosis.

A recent systematic review investigated the utility of artificial intelligence and machine learning
in the diagnosis or classification of PCOS (29). Their search ultimately included 31 studies with sample
sizes ranging from 9 to 2,000 patients with PCOS. Methods employed by these models included support
vector machine, K-nearest neighbor, regression models, random forest, and neural networks. Only 19% of
included studies performed all major steps of training, testing, and validating their model. Furthermore,
only 32% of included studies used standardized diagnostic criteria such as the Rotterdam criteria or NIH
criteria. The authors found that the ROC of included studies ranged from 73-100%. Only one study
sourced their data from electronic health records to build their model (30). Despite the lack of
standardized model training and diagnostic criteria used in these studies, the review concluded that
artificial intelligence and machine learning provide promise in detecting PCOS, allowing for an avenue
for early diagnosis.

Outside of the machine learning models included in the systematic review, other predictive
models have been created for earlier detection of PCOS as well as for predicting long-term health
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outcomes among women with a diagnosis of PCOS. One such model was created from 11,720 ovarian
stimulation cycles at Peking University Third Hospital. The model used serum antimullerian hormone
(AMH) and androstenedione levels, BMI, and menstrual cycle length to predict a diagnosis of PCOS. The
algorithm was then developed into an online platform that is able to calculate one’s risk of PCOS given
certain indicators that are inputted into the model, allowing for better screening abilities in the clinic (31).
Another study created a similar model, taking into account AMH and BMI to predict a diagnosis of PCOS
or other ovulatory dysfunction disorders among 2,322 women (10). They found that in women with
higher BMIs and lower AMH levels could be used to predict PCOS compared to normal-weight or
underweight women. Deshmukh et al. created a simple four-variable model which included free androgen
index (FAI), 17-hydroxyprogesterone, AMH, and waist circumference for predicting risk of PCOS in a
cross-sectional study involving 111 women with PCOS and 67 women without PCOS (32). Lastly, Joo et
al. used polygenic and phenotypic risk scores to develop a PCOS risk prediction algorithm (33). They
found high degrees of association between PCOS and various metabolic and endocrine disorders
including obesity, type 2 diabetes, hypercholesterolemia, disorders of lipid metabolism, hypertension, and
sleep apnea (33).

In addition to the goal of improved screening for PCOS, models have been created to predict
long-term clinical outcomes in women with PCOS, such as ovulation, conception, and live birth (11,12).
Given the increased risk of insulin resistance in women with PCOS, Gennarelli et al. created a
mathematical model to predict insulin sensitivity based on variables such as BMI, waist and hip
circumferences, truncal-abdominal skin folds, and serum concentrations of androgens, SHBG,
triglycerides, and cholesterol (13). Models to predict non-alcoholic fatty liver disease risk among young
adults with PCOS have also been generated (34). Combining earlier detection with more accurate risk
stratification of clinical sequalae through predictive modeling can significantly improve the long-term
health outcomes of women with PCOS. Application of our models to predict other downstream health
risks after the diagnosis of PCOS is a future area of research.

Beyond the long-term health impacts of PCOS, the condition also carries a significant economic
cost for our healthcare system. A study by Riestenberg et al (2022) recently estimated the total economic
burden of PCOS, as well as the cost specifically for pregnancy-related complications and long-term health
morbidities (2). The authors estimated the annual economic burden of PCOS to be $8 billion as of 2020 in
the United States. Furthermore, the excess cost of pregnancy-related comorbidities such as gestational
hypertension, gestational diabetes, and preeclampsia attributable to PCOS totals $375 million USD
annually. Outside of pregnancy, the cost of long-term comorbidities associated with PCOS including
stroke and type 2 diabetes mellitus was estimated at $3.9 billion USD. Meanwhile, the cost for diagnostic
evaluation of PCOS was less than 2% of the total economic burden. This estimated financial burden
suggests that predictive models aiding earlier diagnosis could not only reduce long-term health
consequences of PCOS but also alleviate significant healthcare costs associated with the condition.

Given the high prevalence, significant healthcare burden, and heterogeneity in clinical
presentation of PCOS, Al-based tools are well suited for earlier diagnosis of PCOS. Our study had many
strengths. First, our machine learning models, which were highly accurate and robust in PCOS diagnosis
prediction, were created using the largest sample size to date (29). Second, our model was tested and
trained on a diverse Safety-Net hospital-sourced population not restricted to the context of fertility care.
Third, it is the only model that incorporated three data streams (ICD-9 codes, clinical laboratory findings,
and radiologic findings) and an MLP score. Fourth, the parsimonious and interpretable models were very
close in achieving full model predictive accuracy, performing relatively closely to the best-performing
non-linear models. Essentially, our parsimonious models “isolate” nonlinearities in hormone levels
(captured by the MLP score) and linearly combine that score with other variables. Most models evaluate
reproductive hormones (FSH, estradiol, LH, and SHBG) as individual variables within linear models,
which does not account for the high inter- and intra-patient variability. By using non-linear mapping of
the hormone values, we were able to generate a composite variable allowing for a linear function that
correlates with the likelihood of an accurate prediction. Last, our variables are easily accessible in an
electronic health dataset, rendering the models helpful for clinical prediction. Our study did not evaluate
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AMH as a predictive variable because it was not widely utilized during the time window of this data
extraction corresponding with ICD-9 codes.

Despite these strengths, our model is not without limitations. First, it is only directly applicable to
those who interact with the medical system and those deemed “at-risk” for a PCOS diagnosis, which
would not facilitate population-based prediction. Additional studies need to be conducted in other patient
populations or unselected community-based populations to validate the use of these models, especially
expanding to the entire population within a health system to evaluate the accuracy of our models (35).
Second, we must interpret our data within the limitations of informative presence in EHR data.
Informative presence is defined as data that is present and informed with respect to the health outcome, in
this case PCOS, as well as behavioral patterns of interaction with healthcare institutions which may be
additionally impacted by marginalization (36). This is an important consideration for interpreting
predictive models using EHR data (36,37). Nevertheless, we were able to extract over 1000 patients who
were undiagnosed with PCOS among the population, suggesting the predictive value of the modelling in
identifying diagnosis gaps among specific populations within a large health system. Third, it is possible
that additional examination of the medical record beyond ICD-9 diagnosis may allow for more
clarification of risk in the presumed PCOS group. Last, our exclusion of concurrent endocrinopathies was
chosen to avoid incorrectly including ovulation disorders caused by other endocrinopathies, but it is
possible that this was an overly strict exclusion criterion.

In conclusion, this novel machine learning algorithm incorporates three data streams from a large
EHR dataset to assess PCOS risk. This model can be integrated into the EHR to aid clinicians in earlier
diagnosis of PCOS and connect patients to interventions and healthcare providers across their
reproductive lifespan with the goal of health optimization and risk reduction.
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