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Abstract:  32 
Introduction: Predictive models have been used to aid early diagnosis of PCOS, though existing models 33 
are based on small sample sizes and limited to fertility clinic populations. We built a predictive model 34 
using machine learning algorithms based on an outpatient population at risk for PCOS to predict risk and 35 
facilitate earlier diagnosis, particularly among those who meet diagnostic criteria but have not received a 36 
diagnosis. 37 
 38 
Methods: This is a retrospective cohort study from a SafetyNet hospital’s electronic health records 39 
(EHR) from 2003-2016. The study population included 30,601 women aged 18-45 years without 40 
concurrent endocrinopathy who had any visit to Boston Medical Center for primary care, obstetrics and 41 
gynecology, endocrinology, family medicine, or general internal medicine. Four prediction outcomes 42 
were assessed for PCOS. The first outcome was PCOS ICD-9 diagnosis with additional model outcomes 43 
of algorithm-defined PCOS. The latter was based on Rotterdam criteria and merging laboratory values, 44 
radiographic imaging, and ICD data from the EHR to define irregular menstruation, hyperandrogenism, 45 
and polycystic ovarian morphology on ultrasound.  46 
 47 
Results: We developed predictive models using four machine learning methods: logistic regression, 48 
supported vector machine, gradient boosted trees, and random forests. Hormone values (follicle-49 
stimulating hormone, luteinizing hormone, estradiol, and sex hormone binding globulin) were combined 50 
to create a multilayer perceptron score using a neural network classifier. Prediction of PCOS prior to 51 
clinical diagnosis in an out-of-sample test set of patients achieved AUC of 85%, 81%, 80%, and 82%, 52 
respectively in Models I, II, III and IV. Significant positive predictors of PCOS diagnosis across models 53 
included hormone levels and obesity; negative predictors included gravidity and positive bHCG.    54 
 55 
Conclusions: Machine learning algorithms were used to predict PCOS based on a large at-risk 56 
population. This approach may guide early detection of PCOS within EHR-interfaced populations to 57 
facilitate counseling and interventions that may reduce long-term health consequences. Our model 58 
illustrates the potential benefits of an artificial intelligence-enabled provider assistance tool that can be 59 
integrated into the EHR to reduce delays in diagnosis. However, model validation in other hospital-based 60 
populations is necessary.  61 
 62 
Keywords: Polycystic ovary syndrome (PCOS), disease prediction, predictive model, machine learning, 63 
artificial intelligence.  64 
 65 
Word count: 5,712 66 
 67 
Number of figures and tables: 7 (& 7 supplementary tables)  68 
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Introduction 69 
Polycystic ovary syndrome (PCOS) is the most common type of ovulation disorder and 70 

endocrinopathy among reproductive age women. PCOS is a diagnosis of exclusion after other 71 
endocrinopathies known to affect ovulation have been evaluated including thyroid, adrenal, and pituitary 72 
related disease. Based on the Rotterdam criteria, PCOS is diagnosed when two of the three following 73 
criteria are exhibited: clinical or biochemical hyperandrogenism, oligo-anovulation, and polycystic ovary 74 
morphology (PCOM) on transvaginal or transabdominal ultrasound. PCOS has a population prevalence of 75 
5-15%, depending on the diagnostic criteria used (1).  76 

PCOS is associated with multiple health issues and increased morbidity and mortality, including a 77 
high chronic disease burden that is also very costly for individuals with PCOS and insurers (2). PCOS is 78 
the leading cause of anovulatory infertility in reproductive-aged women. In fact, over 90% of anovulatory 79 
women who present to infertility clinics have PCOS (3). PCOS patients have an increased risk of 80 
endometrial hyperplasia and endometrial cancer (4) due to anovulatory cycles leading to long periods of 81 
exposure to the effects of unopposed estrogen. PCOS has been associated with the development of 82 
metabolic syndrome (5), diabetes (6), cerebrovascular disease and hypertension (7), compared to women 83 
without PCOS. Despite these serious health consequences, PCOS frequently goes undiagnosed due to the 84 
wide range of symptom severity on presentation, leading to delayed treatment and potentially more severe 85 
clinical sequelae due to lack of preventive care, health management, and counseling (4). Even when 86 
PCOS is diagnosed, it is often very delayed. One study found that over one-third of women with PCOS 87 
waited over two years and were seen by three or more providers before finally receiving the diagnosis (8).  88 

Predictive models can play a significant role in aiding earlier diagnosis of PCOS, though several 89 
include only those women presenting for fertility care. One model used serum anti-Müllerian hormone 90 
(AMH) and androstenedione levels, menstrual cycle length, and BMI to predict the development of PCOS 91 
in Chinese women (9). Another model used only AMH and BMI to predict a diagnosis of PCOS or other 92 
ovulatory dysfunction disorders (10). Other studies have created predictive models for certain outcomes 93 
among women with PCOS such as pregnancy outcomes (11,12) and insulin resistance (13). In this study, 94 
we use clinical and socioeconomic variables among 30,601 women aged 18 to 45 years within the 95 
electronic health records (EHR) to develop predictive model utilizing machine learning algorithms with 96 
the goal of earlier detection and treatment of PCOS. 97 
 98 
Materials and Methods 99 
Data acquisition 100 

The dataset was created by querying de-identified patient data from female patients aged 18 to 45 101 
years who had or were considered at risk for PCOS diagnosis by having had any one of the three testing 102 
procedures for PCOS in their EHR. Included within the initial sample were those patients who had any 103 
visit to Boston Medical Center (BMC) for primary care, obstetrics and gynecology, endocrinology, family 104 
medicine, or general internal medicine and received: 1) a pelvic/transvaginal ultrasound for any reason, 2) 105 
androgen lab assessment, or had clinical symptoms of androgen excess, 3) an ICD-9 label for irregular 106 
periods, or 4) a PCOS diagnosis, between October 2003 to December 2016 within the BMC Clinical Data 107 
Warehouse (CDW). The start-date was selected to reflect the first day that ICD-9 codes were used and 108 
recorded at BMC. The end date reflected cessation of use of the ICD-9 codes and transition to ICD-10 109 
codes within BMC. To avoid misidentifying an ovulation disorder caused by another endocrinopathy, 110 
exclusion criteria included diagnosis of concurrent endocrinopathy, such as thyroid disorders, 111 
hyperaldosteronism, Cushing’s syndrome, other adrenal gland disorders, or malignancy based on ICD-9 112 
codes as listed in Supplementary Table 1.   113 

 114 
Ethical approval 115 

The study was approved by the Institutional Review Board of Boston University School of 116 
Medicine and the Harvard T.H. Chan School of Public Health (Protocol # H35708) and is considered 117 
non-human subjects research. 118 

 119 
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Reference label definitions  120 
Individual predictors 121 

Time-varying predictor variables with a date stamp before that of the outcome of interest were 122 
included in our models. We considered the following predictor variables:  123 

Socioeconomic and lifestyle demographic variables: age, race (White/Caucasian, Black/African 124 
American, Hispanic/Latina, Asian, Native Hawaiian/Pacific Islander, Middle Eastern, Other/Unknown), 125 
smoking status (yes/no), marital status (single, married, separated, divorced, widowed, other), 126 
homelessness (yes/no), and highest level of education (8th grade or less, some high school, high school 127 
graduate, some college/technical/vocational training, graduated college/technical school/vocational 128 
training, declined to answer, other).  129 

Anthropometrics: Body mass index (BMI, kg/m2) was either calculated from height and weight or 130 
abstracted as the listed BMI variable associated with each visit. BMI was then categorized into three 131 
categories: normal (BMI < 25 kg/m2); overweight (BMI between 25-30 kg/m2); and obese (BMI > 30 132 
kg/m2). To further capture the obesity population in the absence of height/weight/BMI data, the obese 133 
category also included any patient with an ICD-9 code for unspecified obesity (278.00), morbid obesity 134 
(278.01), localized adiposity (278.1), and/or a history of gastric bypass.  135 

Cardiovascular health: To include blood pressure as a predictor variable, we defined a 136 
categorical hypertension variable by using systolic (SBP) and diastolic (DBP) blood pressure readings 137 
and ICD-9 diagnostic codes for unspecified essential hypertension (401.9), benign essential hypertension 138 
(401.1), and essential primary hypertension (401.0). Blood pressure was categorized into three groups: 139 
normal, defined by no ICD-9 codes for hypertension recorded and SBP < 120 mmHg, and DBP < 80 140 
mmHg; elevated, defined by no ICD-9 codes for hypertension recorded and SBP was 120-129 mmHg or 141 
DBP < 80 mmHg; hypertension, defined by any ICD-9 code for hypertension recorded or SBP > 140 142 
mmHg or DBP > 90 mmHg.  143 

Reproductive endocrine predictive variables: beta human chorionic gonadotropin (bHCG) level 144 
(negative bHCG < 5 mIU/mL, positive bHCG > 5 mIU/mL), HIV status (negative/positive), age at 145 
menarche, pelvic inflammatory disease diagnosis (614.9), history of hysterosalpingogram, and gravidity 146 
(history of present or prior pregnancy within obstetric history). Endocrine and metabolic lab values 147 
included: TSH, glycosylated hemoglobin (A1c) as a marker for diabetes, low-density lipoprotein (LDL), 148 
high density lipoprotein (HDL), and diagnosis of hypercholesterolemia (272.0). Of note, our model did 149 
not include androgen precursors such as DHEA or androstenedione as, according to Monash guidelines, 150 
these values provide limited additional information in the diagnosis of PCOS (14,15).  151 
 152 
Combined predictors  153 

Expecting a nonlinear relationship between many reproductive hormones and a PCOS diagnosis, 154 
we used a multilayer perceptron (MLP) neural network to map follicle-stimulating hormone (FSH), 155 
luteinizing hormone (LH), sex hormone binding globulin (SHBG), and estradiol (E2) values to a 156 
composite metric we call MLP score. The MLP score was repetitively trained and the hyperparameters 157 
were tuned to generate a predictive probability associated with PCOS diagnosis for each predictive 158 
model, as described with further detail below.   159 
 160 
Outcomes 161 

Defining PCOS: PCOS diagnosis was assigned for any patient who had an ICD-9 code for PCOS 162 
(256.4) or met the Rotterdam criteria (16), according to which a positive diagnosis is made in the 163 
presence of two out of the following three features: (i) irregular menses (IM) as defined by rare menses, 164 
oligo-ovulation, or anovulation; (ii) hyperandrogenism (HA) as defined by clinical or biochemical 165 
androgen excess; and (iii) polycystic ovarian morphology (PCOM) noted on transabdominal or 166 
transvaginal ultrasound. Based on these three criteria, we defined three auxiliary variables IM, HA, and 167 
PCOM to use in the definition of our labels. PCOM was captured through diagnostic radiology text 168 
reports from ovarian ultrasound imaging for the subset that had ultrasound imaging (17).  169 
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Defining Irregular Menstruation (IM): IM was defined with the following ICD-9 codes: absence 170 
of menstruation (626.0), scanty or infrequent menstruation (626.1), irregular menstrual cycle (626.4), 171 
unspecified disorders of menstruation and abnormal bleeding from female genital tract (626.9), and 172 
infertility, female associated with anovulation (628.0) (3). 173 

Defining Hyperandrogenism (HA): HA was assigned to a patient if any of the androgen lab 174 
testing for bioavailable testosterone, free testosterone, or total testosterone was greater than clinical 175 
thresholds of 11 ng/dL, 5 pg/mL, 45 ng/dL, respectively. In addition, HA was assigned if ICD-9 codes 176 
for hirsutism (704.1) or acne (706.1 or 706.0) were recorded for a patient. 177 

Defining Ultrasound characteristics for polycystic ovarian morphology (PCOM): Among those 178 
with an ultrasound in this dataset, PCOM was identified on ultrasound reports using natural language 179 
processing (NLP) with complete methods detailed by Cheng and Mahalingaiah (17), to report PCOM as 180 
identified (PCOM present), unidentified (PCOM absent), or indeterminate (PCOM unidentifiable based 181 
on source report data).  182 

We considered four models to predict the following: Model I: patients with ICD-9 diagnosis of 183 
PCOS (256.4) within the EHR; Model II: patients diagnosed with PCOS by Rotterdam criteria having IM 184 
and HA without a specific ICD-9 PCOS code; Model III: patients diagnosed with PCOS by Rotterdam 185 
criteria having two out of the three conditions IM/HA/PCOM and without a specific ICD-9 PCOS code; 186 
Model IV: all patients with PCOS using either Model I or Model III criteria. ICD-9 codes were abstracted 187 
from the billing code and diagnosis code associated with each encounter within the EHR. Model I 188 
included all patients who were diagnosed with PCOS. Model II and its superset Model III was composed 189 
of patients who did not have a PCOS diagnosis code but met diagnostic criteria of PCOS based on 190 
Rotterdam criteria, representing the patient population with undiagnosed PCOS. Model IV essentially 191 
captures all women who were diagnosed or met criteria for PCOS within our population. Supplementary 192 
Table 2 details model definitions and includes the count and percent of patients in each category. The date 193 
of diagnosis was assigned by the date of PCOS ICD-9 code (256.4) for Model I, the date of the latest 194 
diagnostic criteria met for Model II and III, and the earlier date associated with Model I and Model III, for 195 
Model IV. 196 
 197 
Predictive models 198 
Classification methods 199 

We explored a variety of supervised classification methods, both linear and nonlinear. Linear 200 
methods included logistic regression (LR) and support vector machines (SVM) (18) and were fitted with 201 
an additional regularization term: an L1-norm of the coefficient vector to inject robustness (19) and 202 
induce sparsity. Regularization added a penalty to the objective function, thereby minimizing the sum of a 203 
metric capturing fitness to the data and a penalty term that is equal to some multiple of a norm of the 204 
model parameters. Sparsity was motivated by the earlier works (20–23), where it was shown that sparse 205 
classifiers can perform almost as well as very sophisticated classification methods. Nonlinear methods, 206 
including gradient boosted trees (GBT/XGBoost) (24) and random forests (RF) (25) which produce large 207 
ensembles of decision trees, may yield better classification performance, but are not interpretable or 208 
explainable to enable a safety check by a clinician. Specifically, the RF is a large collection of decision 209 
trees and it classifies by averaging the decisions of these trees. The GBT/XGBoost, also called gradient 210 
boosting machine (GBM), similarly combines decisions by many decision trees. We used LightGBM 211 
which is a fast, high-performance GBM framework (26). We tuned GBM’s hyperparameters through 212 
cross-validation.  213 
 214 
Performance metrics 215 

To assess model performance, we obtained the Receiver Operating Characteristic (ROC) curve. 216 
The ROC is created by plotting the true positive rate, which is indicative of sensitivity or recall, against 217 
the false positive rate (equal to one minus specificity) at various thresholds. The c-statistic or the area 218 
under the ROC curve (AUC), is used to evaluate the prediction performance. A perfect predictor is 219 
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defined by generating an AUC score of 1, and a predictor which makes random guesses has an AUC 220 
score of 0.5. We also used the weighted-F1 score to evaluate the models. The weighted-F1 score is the 221 
average of the F1 scores of each class weighted by the number of participants in each class. The class-222 
specific F1 scores are computed as the harmonic mean of precision and recall of a classifier which 223 
predicts the label of the given class. The weighted-F1 score is between 0 to 1, and a higher value 224 
represents a better model. The AUC is more easily interpretable, and the weighted F1-score is more 225 
robust to class imbalance (27).  226 
 227 
Statistical feature selection (SFS) 228 

Categorical variables were converted into dummy/indicator variables. To avoid collinearity, we 229 
dropped the missing or unclassified data (NaN) category. For continuous variables, missing values were 230 
imputed by the median value for that variable. A summary of the missing variables for each model is 231 
provided in Supplementary Table 3. Variables with very low variability (SD<0.0001) were assessed for 232 
removal from the models, however none were noted in any model. We applied statistical feature selection 233 
(SFS) to reduce the less informative features and simplify the models. For each of the four models’ 234 
outcomes, the chi-squared test was applied for binary variables and the Kolmogorov-Smirnov statistic for 235 
continuous variables; the variables for which we could not reject the null hypothesis of the same 236 
distribution for each class (p-value >0.01) were removed. Representative aggregated patient-level 237 
statistics for each model are shown in Supplementary Table 4. We also removed one from each pair of 238 
highly correlated variables (with absolute value of the correlation coefficient > 0.8) to avoid redundant 239 
variables. Highly correlated variables and the retained variable are provided in Supplementary Table 5. 240 
For all models we standardized the corresponding features by subtracting the mean and scaling to unit 241 
variance. 242 
 243 
Training-test splitting 244 

We split the dataset into five random parts, where four parts were used as the training set, and the 245 
remaining part was used for testing. We used the training set to tune the model hyperparameters via 5-fold 246 
cross-validation, and we evaluated the performance metrics on the testing set. We repeated training and 247 
testing five times, each time with a different random split into training/test sets. The mean and standard 248 
deviation of the metrics on the test sets over the five repetitions are reported.  249 

 250 
Development of the MLP score 251 

For every model, there was a considerable difference between the AUC of linear models and non-252 
linear models. To improve the performance of our linear models, we utilized nonlinear models to capture 253 
intricate relationships between features. We utilized Gradient Boosted Trees (GBT) to find which features 254 
most commonly appeared together among decision trees. We found FSH, LH, SHBG, and estradiol levels 255 
to be a meaningful group of features which are all reproductive hormones and continuous variables that 256 
appeared together among trees for all our models. We subsequently used these four features as input 257 
features into a multilayer perceptron (MLP) neural network model with three hidden layers, each 258 
employing the rectified linear unit (ReLU) activation function. The neural network was trained using the 259 
training set to classify PCOS. We used the output probability of the MLP model, which we called “MLP 260 
score,” as a new feature into our original predictive models.  261 
 262 
Recursive feature elimination (RFE) 263 

We also used a recursive feature elimination approach with L1-penalized logistic regression (L1-264 
regularized RFE) to extract the most informative features and develop parsimonious models. Specifically, 265 
after running the L1-penalized logistic regression (L1-LR), we obtained weights associated with the 266 
variables (i.e., the coefficients of the model, denoted by β), and we eliminated the variable with the 267 
smallest absolute weight in each turn. We iterated in this fashion, eliminating one variable at a time, to 268 
select a model that maximizes a metric equal to the mean AUC minus the standard deviation (SD) of the 269 
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AUC in a validation dataset (using 5-fold cross-validation on the training set to obtain an average of this 270 
metric over five repetitions).  271 
 272 
Final predictive models 273 

We computed the performance of the following models: L1-penalized logistic regression (LR-274 
L1), support vector machine (SVM-L1), random forests (RF), and gradient boosted trees 275 
(GBT/XGBoost). We calculated each variable’s LR coefficient with a 95% confidence interval (β 276 
[95%CI]), the correlation of the variable with the outcome (Y-correlation), the p-value of each variable 277 
(p-value), the mean of the variable (Y1-mean) in the PCOS labeled patients, the mean of the variable (Y0-278 
mean) in the patients without the PCOS label, and the mean and standard deviation of the variable over all 279 
patients (All-mean and All-SD). Ranking predictor variables by the absolute value of their coefficients in 280 
the logistic regression model amounts to ranking these variables by how much they affect the predicted 281 
probability of the outcome. A positive coefficient implies that the larger the value of the variable within 282 
the range specified by the data, the higher the chance of having a PCOS diagnosis as defined by the model 283 
outcome.   284 
 285 
Results 286 
Results of data acquisition and data pre-processing 287 

After inclusion and exclusion criteria were applied to all 65,431 women within the initial data 288 
pool, 30,601 patient records were available for this analysis and defined populations are included in 289 
Figure 1. There were 1,329 patients (4.5%) with a PCOS ICD-9 diagnosis code (Model I). 1,465 patients 290 
had records with PCOM results as present, absent, or unidentifiable. There were 1,056 patients (3.6%) 291 
with undiagnosed PCOS (Model II), and a total of 1,116 (3.8%) of patients with no ICD 256.4 indication 292 
and two out of IM/HA/PCOM positive criteria (Model III). Finally, there were 2,445 PCOS patients 293 
(8.0%) in the combined analysis (Model IV). The total number of records in each model are included in 294 
Supplementary Table 2. In the total cohort, the patients were predominantly Black/African American 295 
(40.3%) and White (26.5%), with an average age of 33.6 years (SD = 6.6). Complete demographic 296 
characteristics are described in Table 1.   297 

There were 43 categorical variables and 12 continuous variables retained as predictors after the 298 
data pre-processing procedures. There were four pairs of highly correlated variables and one variable 299 
from each correlated pair included in the final model as noted in Supplemental Table 5. Supplementary 300 
Table 4 describes all 51 variables used by the predictive models. 301 
 302 
Model Performance 303 

Tables 2, 3, 4 and 5 display the parsimonious models that use the MLP score (LR-L2-MLP score) 304 
and show the most significant variables in the prediction of the outcome for Models I, II, III, and IV, 305 
respectively. All p-values were less than 0.05, which was set as the significance level. 306 

For Model I, the parsimonious predictive model achieved an AUC (SD) of 82.3% (1.7). The MLP 307 
score (β = 0.71) and obesity (β = 0.45) were positively correlated with PCOS diagnosis. Pregnancy 308 
(gravidity β = -0.53; positive pregnancy test β = -0.50), normal BMI (β = -0.24), smoking (β = -0.18), age 309 
(β = -0.16), and Hispanic race (β = -0.10) were inversely correlated with PCOS diagnosis as shown in 310 
Table 2.  311 

For Model II, the parsimonious predictive model achieved an AUC (SD) of 77.6% (1.3). The 312 
MLP score (β = 0.61), obesity (β = 0.21), normal BMI (β = 0.15), normal blood pressure (β = 0.16), 313 
negative pregnancy test (β = 0.12), and normal HDL (β = 0.08) were positively correlated with 314 
undiagnosed PCOS. Age (β = -0.27), pregnancy (gravidity β = -0.26; positive pregnancy test β = -0.19), 315 
and Hispanic race (β = -0.18) were inversely correlated with undiagnosed PCOS as show in Table 3. 316 

For Model III, the parsimonious predictive model achieved an AUC (SD) of 77.4% (1.6). The 317 
MLP score (β = 0.60), obesity (β = 0.19), normal blood pressure (β = 0.17), normal BMI (β = 0.14), Black 318 
race (0.13), negative pregnancy test (β = 0.12), and normal HDL (β = 0.09) were positively correlated 319 
with undiagnosed PCOS. Age (β = -0.25), pregnancy (gravidity β = -0.24; positive pregnancy test β = -320 
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0.20), and Hispanic race (β = -0.15) were inversely correlated with undiagnosed PCOS as show in Table 321 
4. 322 

For Model IV, the parsimonious predictive model achieved an AUC (SD) of 79.1% (1.1). The 323 
MLP score (β = 0.7), obesity (β = 0.31), normal BMI (β = 0.15), hypertension (β = 0.07) and some higher 324 
degree of education, such as college or vocational/technical school (β = 0.06) were positively correlated 325 
with PCOS diagnosis. Age (β = -0.21), pregnancy (gravidity β = -0.37; positive pregnancy test β = -0.34; 326 
negative pregnancy test β = -0.05), Hispanic race (β = -0.12), and smoking (β = -0.08) were inversely 327 
correlated with PCOS diagnosis as shown in Table 5.  328 

GBT models had the highest performance. Predictions of PCOS in a test set of patients not used 329 
during algorithm training achieved 85%, 81%, 80%, and 82% AUC for Models I, II, III, and IV, 330 
respectively. We also report the performance with the logistic regression model (LR-L1) after SFS and 331 
the performance when using our developed MLP score alongside variables selected via recursive feature 332 
elimination (LR-L2-MLP score). Supplementary Table 6 displays features for each model, associated 333 
with LR-L1 algorithm after SFS. As we hypothesized, developing models using the MLP score (LR-L2-334 
MLP score) leads to improvement of the performance of linear models (LR-L1) for Models I, II, III, and 335 
IV, respectively from 79%, 72%, 73%, and 75% AUC to 82%, 78%, 77%, and 79% AUC.  Table 6 details 336 
the models with the best performance (highest AUC) using all 51 features before and after statistical 337 
feature selection (SFS). In Table 6, the means and standard deviations of AUC and weighted-F1 scores on 338 
the test set over the five repetitions are listed. Supplementary Table 7 displays the performance of all 339 
models and all algorithms, before and after statistical feature selection (SFS).  340 
 341 
Discussion 342 

Evaluating an at-risk population for PCOS is essential for early diagnosis and initiating multi-343 
disciplinary care with the goal of reducing health risks (endometrial hyperplasia/cancer), infertility and 344 
pregnancy complications, and chronic disease burden including cardiometabolic disorders associated with 345 
PCOS. Retrospective analysis of the at-risk population within an urban health center allows for 346 
assessment of factors predictive of diagnosis. Of note, the study sample represents a population of 347 
patients who had any visit to BMC for primary care, obstetrics and gynecology, endocrinology, family 348 
medicine, or general internal medicine and does not represent a random sample. While this is not a 349 
population level assessment, our model is applicable to patients with high suspicion for PCOS who 350 
interact with the healthcare system.  351 

The ranked list of variables, from the most predictive to the least predictive of the PCOS 352 
outcome, informed the main drivers of the predictive models. For example, non-gravidity, high levels of 353 
LH, low levels of FSH, obesity, and higher BMI increase the likelihood of PCOS. These variables are 354 
consistent with key variables from other models and in the pathophysiology of PCOS. The overall 355 
predictive accuracy was high for all models, suggesting that a predictive model may assist in early 356 
detection of PCOS within those at risk in an electronically interfaced medical record. Furthermore, we 357 
found that non-linear models had superior predictive capacity compared to linear models for all four 358 
model outcomes, potentially allowing for inclusion of non-linear reproductive hormone relationships.  359 

When assessing patients who received a diagnosis of PCOS (Model I), the most predictive factors 360 
related to diagnosis were hormone levels (as captured by the MLP score) and obesity, a clinical factor in 361 
supporting a PCOS diagnosis. Specifically, there is a non-linear relationship between reproductive 362 
hormones such as FSH, LH, and estradiol. Often these hormonal lab tests are obtained randomly in those 363 
with oligomenorrhea, and it is also common to find an elevated FSH to LH ratio. A concern may also be 364 
the misclassification of hypothalamic amenorrhea into the group classified as PCOS where the FSH and 365 
LH levels would be low or suppressed, or in the setting of premature ovarian insufficiency, notable by an 366 
elevated FSH and low estradiol. The MLP score allows for the diversity of relationships of these hormone 367 
levels and was trained using a neural network to appropriately classify PCOS. Additionally, prior 368 
pregnancy (gravidity) and a positive pregnancy test were negatively associated with a diagnosis of PCOS, 369 
consistent with the underlying increased risk of infertility due to oligo-ovulation. Normal BMI and 370 
smoking, a known ovarian toxicant, were negatively associated with the presence of a PCOS diagnosis, 371 
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which may indicate patient characteristics that increase risk of a delayed PCOS diagnosis. These 372 
identified variables demonstrate the robustness of the model towards predicting phenotypic traits of 373 
patients with PCOS, which is aligned with the performance accuracy. While the significant factors such 374 
as hormone levels, gravidity, bHCG, and obesity identified in the model are already known to be 375 
associated with PCOS, the true impact of our model lies within the implementation of such a tool within 376 
the EHR. For example, a real-world application of this model in the clinical setting would entail 377 
integration of our model into the electronic health record system that would provide the probability of 378 
PCOS diagnosis or set a threshold for suspicion for each patient to aid a provider’s evaluation. This 379 
would lead to more timely diagnosis and optimize referrals for downstream follow-up for known clinical 380 
sequelae associated with PCOS.  381 

When assessing patients who met diagnostic criteria without the ICD-9 label of PCOS (Models II 382 
and III), predictive factors both supported the underlying PCOS diagnosis and alluded towards factors 383 
that may contribute to missing the diagnosis despite meeting Rotterdam criteria. Similar to Model I, 384 
gravidity and a positive pregnancy test were negatively associated with Models II and III diagnosis, while 385 
obesity was positively associated with Models II and III diagnosis, consistent with Model I. Interestingly, 386 
distinct positive predictors among Models II and III were normal BMI, normal blood pressure, and 387 
normal HDL. These patients may present as the “lean” phenotype of PCOS or those with mild features, 388 
leading to underdiagnosis of PCOS. Diagnosing “lean” PCOS can be more nuanced, potentially delaying 389 
diagnosis or requiring more specialized consultation (28). Within our cohort, 1,116 individuals were 390 
identified by the model without the ICD-9 code that met Rotterdam PCOS diagnostic criteria (Model III), 391 
suggesting the predictive value of our models to identify at risk groups within a large health system and 392 
reduce delays in diagnosis. Given that women often wait over two years and see numerous health 393 
professionals before receiving a diagnosis of PCOS, the integration of high-quality AI-based diagnostic 394 
tools with the EHR could significantly contribute to more timely diagnosis (8).  395 

Consistent with Models I, II, and III, positive pregnancy test and gravidity were both negatively 396 
associated with PCOS diagnosis in Model IV while obesity and presence of hypertension were both 397 
positively associated with the Model IV combined PCOS outcome. Some higher degree of education, 398 
such as college or vocational/technical school, was also positively associated with the outcomes of 399 
undiagnosed PCOS and combined PCOS (Models II, III, and IV), which may suggest that education 400 
status and patient’s self-advocacy for seeking care within a medical system may be implicated specifically 401 
in under-diagnosed individuals. Of note, we dropped insurance status after finding that the null was a 402 
strong predictor of PCOS, though it is interesting to note that 83% of 331 patients in this dataset with 403 
missing insurance have PCOS. Insurance status alludes to socioeconomic barriers such as access to care, 404 
which can result in a delay in timely diagnosis through either inability to seek evaluation or follow 405 
through with testing. While the implications of insurance status and social determinants of health are 406 
beyond the scope of this paper, it is important to note that persistence in seeking treatment within a 407 
fractionated health care system can be challenging financially and psychologically, as patients may need 408 
multiple evaluation or specialist’s consultation to reach the right diagnosis.  409 

A recent systematic review investigated the utility of artificial intelligence and machine learning 410 
in the diagnosis or classification of PCOS (29). Their search ultimately included 31 studies with sample 411 
sizes ranging from 9 to 2,000 patients with PCOS. Methods employed by these models included support 412 
vector machine, K-nearest neighbor, regression models, random forest, and neural networks. Only 19% of 413 
included studies performed all major steps of training, testing, and validating their model. Furthermore, 414 
only 32% of included studies used standardized diagnostic criteria such as the Rotterdam criteria or NIH 415 
criteria. The authors found that the ROC of included studies ranged from 73-100%. Only one study 416 
sourced their data from electronic health records to build their model (30). Despite the lack of 417 
standardized model training and diagnostic criteria used in these studies, the review concluded that 418 
artificial intelligence and machine learning provide promise in detecting PCOS, allowing for an avenue 419 
for early diagnosis.  420 

Outside of the machine learning models included in the systematic review, other predictive 421 
models have been created for earlier detection of PCOS as well as for predicting long-term health 422 
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outcomes among women with a diagnosis of PCOS. One such model was created from 11,720 ovarian 423 
stimulation cycles at Peking University Third Hospital. The model used serum antimullerian hormone 424 
(AMH) and androstenedione levels, BMI, and menstrual cycle length to predict a diagnosis of PCOS. The 425 
algorithm was then developed into an online platform that is able to calculate one’s risk of PCOS given 426 
certain indicators that are inputted into the model, allowing for better screening abilities in the clinic (31). 427 
Another study created a similar model, taking into account AMH and BMI to predict a diagnosis of PCOS 428 
or other ovulatory dysfunction disorders among 2,322 women (10). They found that in women with 429 
higher BMIs and lower AMH levels could be used to predict PCOS compared to normal-weight or 430 
underweight women. Deshmukh et al. created a simple four-variable model which included free androgen 431 
index (FAI), 17-hydroxyprogesterone, AMH, and waist circumference for predicting risk of PCOS in a 432 
cross-sectional study involving 111 women with PCOS and 67 women without PCOS (32). Lastly, Joo et 433 
al. used polygenic and phenotypic risk scores to develop a PCOS risk prediction algorithm (33). They 434 
found high degrees of association between PCOS and various metabolic and endocrine disorders 435 
including obesity, type 2 diabetes, hypercholesterolemia, disorders of lipid metabolism, hypertension, and 436 
sleep apnea (33).  437 

In addition to the goal of improved screening for PCOS, models have been created to predict 438 
long-term clinical outcomes in women with PCOS, such as ovulation, conception, and live birth (11,12). 439 
Given the increased risk of insulin resistance in women with PCOS, Gennarelli et al. created a 440 
mathematical model to predict insulin sensitivity based on variables such as BMI, waist and hip 441 
circumferences, truncal-abdominal skin folds, and serum concentrations of androgens, SHBG, 442 
triglycerides, and cholesterol (13). Models to predict non-alcoholic fatty liver disease risk among young 443 
adults with PCOS have also been generated (34). Combining earlier detection with more accurate risk 444 
stratification of clinical sequalae through predictive modeling can significantly improve the long-term 445 
health outcomes of women with PCOS. Application of our models to predict other downstream health 446 
risks after the diagnosis of PCOS is a future area of research. 447 

Beyond the long-term health impacts of PCOS, the condition also carries a significant economic 448 
cost for our healthcare system. A study by Riestenberg et al (2022) recently estimated the total economic 449 
burden of PCOS, as well as the cost specifically for pregnancy-related complications and long-term health 450 
morbidities (2). The authors estimated the annual economic burden of PCOS to be $8 billion as of 2020 in 451 
the United States. Furthermore, the excess cost of pregnancy-related comorbidities such as gestational 452 
hypertension, gestational diabetes, and preeclampsia attributable to PCOS totals $375 million USD 453 
annually. Outside of pregnancy, the cost of long-term comorbidities associated with PCOS including 454 
stroke and type 2 diabetes mellitus was estimated at $3.9 billion USD. Meanwhile, the cost for diagnostic 455 
evaluation of PCOS was less than 2% of the total economic burden. This estimated financial burden 456 
suggests that predictive models aiding earlier diagnosis could not only reduce long-term health 457 
consequences of PCOS but also alleviate significant healthcare costs associated with the condition.    458 

Given the high prevalence, significant healthcare burden, and heterogeneity in clinical 459 
presentation of PCOS, AI-based tools are well suited for earlier diagnosis of PCOS. Our study had many 460 
strengths. First, our machine learning models, which were highly accurate and robust in PCOS diagnosis 461 
prediction, were created using the largest sample size to date (29). Second, our model was tested and 462 
trained on a diverse Safety-Net hospital-sourced population not restricted to the context of fertility care. 463 
Third, it is the only model that incorporated three data streams (ICD-9 codes, clinical laboratory findings, 464 
and radiologic findings) and an MLP score. Fourth, the parsimonious and interpretable models were very 465 
close in achieving full model predictive accuracy, performing relatively closely to the best-performing 466 
non-linear models. Essentially, our parsimonious models “isolate” nonlinearities in hormone levels 467 
(captured by the MLP score) and linearly combine that score with other variables. Most models evaluate 468 
reproductive hormones (FSH, estradiol, LH, and SHBG) as individual variables within linear models, 469 
which does not account for the high inter- and intra-patient variability. By using non-linear mapping of 470 
the hormone values, we were able to generate a composite variable allowing for a linear function that 471 
correlates with the likelihood of an accurate prediction. Last, our variables are easily accessible in an 472 
electronic health dataset, rendering the models helpful for clinical prediction. Our study did not evaluate 473 
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AMH as a predictive variable because it was not widely utilized during the time window of this data 474 
extraction corresponding with ICD-9 codes. 475 

Despite these strengths, our model is not without limitations. First, it is only directly applicable to 476 
those who interact with the medical system and those deemed “at-risk” for a PCOS diagnosis, which 477 
would not facilitate population-based prediction. Additional studies need to be conducted in other patient 478 
populations or unselected community-based populations to validate the use of these models, especially 479 
expanding to the entire population within a health system to evaluate the accuracy of our models (35). 480 
Second, we must interpret our data within the limitations of informative presence in EHR data. 481 
Informative presence is defined as data that is present and informed with respect to the health outcome, in 482 
this case PCOS, as well as behavioral patterns of interaction with healthcare institutions which may be 483 
additionally impacted by marginalization (36). This is an important consideration for interpreting 484 
predictive models using EHR data (36,37). Nevertheless, we were able to extract over 1000 patients who 485 
were undiagnosed with PCOS among the population, suggesting the predictive value of the modelling in 486 
identifying diagnosis gaps among specific populations within a large health system. Third, it is possible 487 
that additional examination of the medical record beyond ICD-9 diagnosis may allow for more 488 
clarification of risk in the presumed PCOS group. Last, our exclusion of concurrent endocrinopathies was 489 
chosen to avoid incorrectly including ovulation disorders caused by other endocrinopathies, but it is 490 
possible that this was an overly strict exclusion criterion.  491 

In conclusion, this novel machine learning algorithm incorporates three data streams from a large 492 
EHR dataset to assess PCOS risk. This model can be integrated into the EHR to aid clinicians in earlier 493 
diagnosis of PCOS and connect patients to interventions and healthcare providers across their 494 
reproductive lifespan with the goal of health optimization and risk reduction.   495 
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