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Abstract— We present a simple and transparent method to
derive the admittance matrices of three-phase banks of single-
phase transformers in an unbalanced setting. The basic idea
is to explicitly separate a transformer model into an internal
model that specifies the characteristics of the constituent single-
phase transformers, and a conversion rule that maps its internal
variables to its terminal variables. Its admittance matrix can
then be derived by eliminating the internal variables from
the set of equations describing the internal model and the
conversion rule. The method is general and provides rigor
and clarity, facilitating extensions. It also reveals a transformer
model that is unified and modular.

I. INTRODUCTION

Motivation. Unbalanced three-phase systems are subtle be-
cause currents and voltages in different phases are coupled;
see, e.g., [1, Chapter 11] for transmission systems and
[2] for distribution systems. Their modeling has become
increasingly important as the need for analyzing low-voltage
network rises. There are often two common sources of
confusion in three-phase systems. First a three-phase device
can be in Y or A configuration. The neutral of a Y-
configured device may or may not have a neutral wire, it
may or may not be grounded, and if grounded, the grounding
impedance may or may not be negligible. As a consequence,
for instance, a simple transformer model in a single-phase
setting proliferates into 9 standard transformers in a three-
phase setting (each of the primary and secondary side can
be in grounded Y, Y, or A configuration); see e.g. [3,
Table 1]. These variants often seem disparate (they are
not). Second, the voltages and currents across single-phase
devices internal to A configuration are observed externally
only through a linear map that is not invertible. In many
applications, we control the internal currents or power flows
of the single-phase devices on the secondary circuit, e.g.,
controlling the charging currents of electric vehicle chargers
in A configuration. Our control decisions interact with other
devices over the network, however, only through ferminal
voltages and currents observable externally of the three-phase
devices. Many models in the literature, however, assume we
control directly the terminal variables e.g. [4]. The interplay
between internal and terminal variables of a three-phase
device sometimes seems confusing, and is the key to the
modeling and analysis of unbalanced systems with both Y
and A-configured devices and transformers.
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We have developed such a modeling approach in [5, 6]
that addresses both issues. It makes transparent the unified
structure of three-phase systems and shows that models and
properties of single-phase networks have direct extensions
to three-phase networks. The basic idea is to explicitly
separate a device/transformer model into an internal model
that specifies the characteristics of a single-phase device or
transformer, and a conversion rule that maps its internal
variables to its terminal variables. An external model of the
device or transformer can then be derived by eliminating
the internal variables from the set of equations describing
the internal model and the conversion rule. The internal
model depends only on the behavior of the constituent single-
phase components (e.g. non-ideal voltage sources, ZIP loads,
different single-phase transformer models) regardless of their
configurations. The conversion rule depends only on their
configurations regardless of the type of components.

This separation provides two benefits. First it facilitates
the modeling of secondary distribution circuits where usually
only the end devices are directly controllable, not the currents
or powers at the transformers. Second it leads to an explicit
and systematic way to exploit common structures across
different device/transformer variants and derive their external
models that are general, unifying, and simple. This approach
is established in detail in [5]. In [6] we introduce the basic
framework, focusing on ideal devices (voltage sources and
ZIP loads) without transformers, and deriving single-phase
analysis for a balanced network. In this paper we apply
the method to the modeling of three-phase banks of single-
phase transformers (as opposed to three-phase common-core
transformers) and re-derive their admittance matrices in the
literature. In a tutorial paper [7] we will present models for
nonideal devices and illustrate our approach by applying it
to solving power flow through backward forward sweep and
formulating three-phase optimal power flow problems.

Literature. Three-phase load flow solvers have been devel-
oped since at least the 1960s, e.g., see [8] for solution in
the sequence coordinate and [9, 10] the phase coordinate. A
three-phase network is equivalent to a single-phase circuit
where each node is indexed by a (bus, phase) pair [10].
Single-phase power flow algorithms such as Newton Raph-
son [11] or Fast Decoupled methods [12] can be directly
applied to the equivalent circuit. The main difference with a
single-phase network is the modeling of three-phase compo-
nents in the equivalent circuit, such as models for three-phase
lines [2,13-15], transformers and co-generators [3, 10,13,



16][2, Ch 8][1, Ch 7.4][17][18-21], constant-power devices
[1, Chapter 11], as well as voltage regulators, and loads [2],
etc.

In this paper we focus on the modeling of three-phase
banks of single-phase transformers. There are two types of
transformer models.

The first type models a single-phase transformer as con-
sisting of a leakage admittance and a shunt admittance in
series with an ideal transformer. The circuit model of a three-
phase transformer is then assembled by connecting three
copies of this single-phase model in Y or A configurations.
This is developed in, e.g., [3,10,13,16][2, Ch 8][1, Ch
7.4]. In particular [10] analyzes transformers in Y'Y, AA,
Y A and open AA configurations where a Y configuration
may be solidly grounded or ungrounded, and [3] analyzes
transformers in Y,Y, and in Y, A configurations (but listed
models for all 9 standard transformer variants). Here Y
means solidly grounded Y configuration. Instead of deriving
the transformer admittance matrices in the phase coordinate,
[17] derives them in the sequence coordinate and then
transforms them into the phase coordinate.

The second type models a single-phase transformer as
consisting of two ideal transformers connected by a unitary
voltage network. As for the first type, the circuit model of
a three-phase transformer is again assembled by connecting
three copies of this single-phase model in Y or A config-
urations. The idea of decomposing a nonideal transformer
into two ideal transformers connected by a unitary voltage
network is first mentioned, but not explored, in [10]. It is
developed in detail in [18] where the unitary network is a
I circuit with a leakage (series) admittance and two shunt
admittances. The 3 x 3 leakage and shunt admittance ma-
trices are not necessarily diagonal, thus capturing magnetic
coupling between windings of different phases. The unitary
voltage network that models leakage fluxes and core losses
can be quite general e.g. [19]. Instead of II circuit, the
unitary voltage network in [20] uses a T circuit model. This
method is extended rigorously in [21] for modeling a large
number of transformer variants.

Outline and contribution. In this paper we apply our
general method to re-derive the admittance matrices in the
literature for both types of three-phase transformer models.
The idea of deriving a transformer admittance matrix by
connecting its internal variables and terminal variables has
appeared in various forms in the literature. We formalize and
make explicit the derivation procedure. This provides clarity
and rigor, and facilitates extensions. For example, while the
derivation in [3, 10] analyzes the circuit of each three-phase
transformer variant, our approach applies more uniformly
to all variants and significantly simplifies the derivation.
The models in [3, 10] also assume leakage admittances and
turns ratios to be identical across phases a,b,c and shunt
admittances to be zero. These assumptions are unnecessary
in our approach.

We start in Section II by reviewing both types of trans-
former models in the single-phase setting, which are then

extended to the three-phase setting. We apply our method to
deriving the admittance matrices for the first type of three-
phase transformer models in Section III, and for the second
type of transformer models with unitary voltage networks in
Section IV. We conclude in Section V.

II. REVIEW: SINGLE-PHASE TRANSFORMER

A. Circuit model

A single-phase transformer converts voltage and current
from the primary side to the secondary side according to the
turns ratio of the primary and secondary coils. Our starting
point is the following system of equations that describes its
steady-state behavior.

Nonideal elements:

, di; . X i
v, = rjzj—&—Lljd—tJ—i—vj, b = Lm—dt
. diy,
vp = Tklk‘i‘leE‘f'Uk
Ideal transformer:
. Ni , N; ( - )
0 = — D —ip = — |1 — i,
k Nj VR k Nk J

where v;,v;, are the AC voltages, in the time domain,
across the primary and secondary terminals respectively, and
ij,1; are the currents entering the primary coil and the
secondary coil respectively. The current im is called the
primary magnetizing current and the voltages ©;,7; arise
from the rate of change of mutual flux between the primary
and secondary coils. The number of turns of the primary and
secondary coils are IN; and N}, respectively. Their voltage
gain is n := N, /N}, and turns ratio is a := 1/n (even though
a is used to denote both a phase and a turns ratio its meaning
should be clear from the context). This set of equations in
the phasor domain is the following.

Nonideal elements:

Vi = 2L+ V, L = y"V; (o)
Vi = 2’ I+ Vi (1b)
Ideal transformer:
- Ny - N; -
Vo= Vi b= S (L-1a) a0
i Ni
where the series impedances z? := r; + wl;; and 2° =

7, + wLj;, model the core losses and leakage fluxes in the
primary and secondary circuits respectively, and the shunt
admittance y™ := 1/(wLy,) = R/(wN7) models the finite
permeability of the core. The model (1) can be interpreted
as the circuit in Figure 1. Variables with hats denote internal
variables.

We now derive two popular transformer models from the
circuit model in Figure 1.
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Fig. 1: Circuit model of single-phase nonideal transformer.
The dashed box represents an ideal transformer with a :=
N; /Ny.
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Fig. 2: The T' equivalent circuit and its approximation. The
internal variables (Vj,I;), (Vi,I)) and terminal variables
(‘/ja ‘/jn7 I])7 (Vk7 ana Ik)

B. Simplified model

We can refer the series impedance z° in Figure 1 on
the secondary side to the primary side as a?z® where a
is the turns ratio. The resulting model, shown in Figure
2(a), is called the T' equivalent circuit of the transformer.
It is equivalent in the sense that the admittance matrices
that map the terminal voltages (V},V)) to the terminal
currents (I;, I};) are the same in both models (their internal
variables may take different values). If the shunt admittance
matrix y"" is negligible compared with the series admittance
1/a®2° then the end-to-end behavior will be approximately
the same if we switch the order of these two elements and
combine a’z°® with 2P into the series (leakage) impedance
2t := 2P + a®2° or the series (leakage) admittance 7' :=
1/t = 1/(2P + a%2*), as shown in Figure 2(b). We will call
this the simplified model or the simplified circuit.

Remark 1 (Approximation error). Let 7" and T denote the
transmission matrices of the 7' equivalent circuit in Figure
2(a) and that of the simplified circuit in Figure 2(b) respec-
tively that maps (V, Ix) to (V;,1;). If € := |a?2°y™| < 1

then it can be shown [5] that the relative approximation error
is upper bounded by

1T~ 1|
I

where the matrix norm is [|A[| := 3, ; |A;]. O

<ex 1

To derive the admittance matrix of the simplified model in
Figure 2(b), let the currents entering/leaving and the voltages
across the ideal transformer be denoted by variables with a
hat: (VJ, I j), (Vk, I k). They are the internal variables. The
transformer gains are

Vi = nV;, I, = %I} = al; (2a)
This is an internal model of the single-phase (ideal) trans-
former.

The terminal voltages (V;, V", Vi, V) are defined with
respect to the ground. We emphasize that, while the inter-
nal voltages (TA/]JA/;C) are defined to be the voltage drops
across the ideal transformer windings, the terminal voltages
(V5, V", Vi, Vi) are defined with respect to a common
reference point (the ground); in particular the primary and
secondary windings are not assumed to be grounded. If the
neutral of terminal j is solidly grounded, then V" := 0. The
terminal currents (I;,I;) are defined to be the sending-end
currents from buses j and k respectively to the other side,
as shown in Figure 2(b). The terminal and internal variables

are related by the conversion rule:
yl(Vj—an—Vj)a I; =
Vi — Vi, Iy =

I =
Vi =

YV + I
I

(2b)
(20)

Eliminating the internal variables from (2) yields an external
model that relates the terminal variables:

Ll _ [ —ay’ Vi Vi
|:Ik:| - |:_ayl a2(yl + ym) Vk an (33)
Y
We can also represent (3a) by a two-wire model by adding
current injections from the neutrals, Ij” = —I; and I} =
—1I, yielding
I v
k|l |Y =Y k
Iy Vi’

C. Unitary voltage network

As far as the end-to-end behavior is concerned, the trans-
former model in Figure 1 is equivalent to the model in Figure
3(a) where the ideal transformer with turns ratio N;/Nj
is replaced by two ideal transformers in series with turns
ratios IV; and 1/Nj,. Referring the series impedances (27, z°)
and shunt admittance y™ to the other sides of the ideal
transformers using
Ny Ni

Y = w0 Yr =

Yo = nym7 P
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Fig. 3: Models of nonideal transformer with unitary voltage
network.

this model is equivalent to the one in Figure 3(b). The
network between the two ideal transformers is sometimes
referred to as a unitary voltage network. Note that no
nodes in the transformer models may be grounded. The
main advantage of this approach is that the unitary voltage
network can be generalized and used to model nonstandard
transformers with multiple windings [18-21].

To derive the admittance matrix that maps (V}, V%) to
(I;,Ir), we start with the unitary voltage network. Referring
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Fig. 4: Unitary voltage network of the model in Figure 3(b).

to the internal variables defined in Figure 3(b), the voltage
drops is mapped to the current injections into the unitary
voltage network by an admittance matrix:

lio Yo+ ¥ Ty —Yi —Yk ‘:/0
Il = —Yj yi 0|V
Iy —Yk 0 Yk Vie

Since Io = 0 we can eliminate VO and derive the Kron-
reduced admittance matrix Yy, that maps Vo= (Vj,Vk) to
I: (I Ik) This yields the internal model I= YuvnV
where

L 1yi(vo + k)
Sy L Yk
Let the terminal current and voltage be I := (I;,I;) and
V = (V;, V). The conversion rule that relates the internal

—YiYk

Y, =
o yr(yo + ;)

(4a)

variables QV I) and the terminal variables (V,I) is V =
MYV and [ = M1 where

Mo {1/1\@ 0 }

0 1/Ni (4b)

Substituting into the internal model I = YuvnV we obtain
the admittance matrix MYy, M (external model) of the
transformer that relates the terminal variables (V,I):

I = (MYyaM)V (4¢c)

Since the model (4) based on unitary voltage network is
equivalent to the 7" equivalent circuit, the simplified model
(3) is also an approximation of (4). If the shunt admittance
matrix y™ = 0 then all these models are equivalent.

We now extend the simplified model (3) and the unitary
voltage network model (4) to three-phase transformers in an
unbalanced setting.

III. THREE-PHASE TRANSFORMERS: SIMPLIFIED CIRCUIT

The notations and derivation of the simplified model (3)
extend directly to the three-phase setting.

The external model of a three-phase transformer depends
on the models of its constituent single-phase transformers
and their configuration. In particular each of the primary and
secondary sides can be in Y or A configuration, giving four
configurations for a standard three-phase transformer. The
external model can be derived in four simple steps, similar
to the derivation of (3):

1) For the primary side, define the internal variables

(Vj,1;) and external variables (V;, V', 1) (defined
precisely below) and relate them through a conversion

rule.

2) For the secondary side, define the internal variables
(Vi, I) and external variables (V, V;*, I;;) and relate
them through a conversion rule.

3) Couple these relations through an internal model (the
transformer gains) on (V;, fj), (Vi, I1,) for each of the
single-phase transformers.

4) Derive the external model, a relation between external
variables (V;,1;) and (Vj,I), by eliminating the
internal variables.

We now describe these steps in detail. Define conversion

matrices I')I"" that maps between internal and external
variables in a A configuration:

1 -1 0 1 0 -1
r =10 1 -1, I'':==|-1 1 o0
-1 0 1 0 -1 1

It turns out that the spectral properties of I',I'T underlie
much of the behavior of three-phase systems, balanced or
unbalanced [5].

1) Primary side: Consider the primary circuit of a three-
phase transformer in Y or A configuration in Figure 5.
The internal voltages and currents associated with the ideal
(‘/jan7 ‘/jbn7 ‘/Jcn) ,
IA]Y = (I‘m Ibn IC”) for Y configuration and Vf =

transformer are denoted by VjY =

Ean B



Fig. 5: Primary side of a three-phase transformer in Y (left)
or A (right) configuration.

(f/jab’ ‘A/'jb(:"A/jca)’ fJA = (f](_zb7f]bc’f;:a
tion. The ferminal voltages and currents are denoted by
(without hat) V; := (Vja,ij, Vjc), I; = (I]@,IJ’?,I;) regard-
less of the configuration. For Y configuration the (terminal)
neutral voltage and current are denoted by (VJ”,IJ”) in
the direction shown in Figure 5. As for the single-phase
model, the terminal voltages (V}, Vj”7Vk7Vk") are defined
with respect to a common reference point (the ground); in
particular the neutrals are not assumed to be grounded. If the
neutral is solidly grounded, then V;* = 0.

The leakage admittances of the transformer are denoted by
the diagonal matrix ' := diag (yl“,ylb,ylc) and the shunt
admittances are denoted by y™ := diag (y™*,y™?, y™*).
From (2b) for each single-phase transformer, the terminal
variables are related to the internal variables according to

the conversion rule:

) for A configura-

Y configuration: I; = %' (VJ -V - V]Y) (52)
= y'TV; = (' +y"VP (50

I =17 (ff + ymf/f) (5d)

A configuration: I jA

where 1 € R? denotes the column vector with three ls. Here
(5¢) follows from Ohm’s law on each branch, e.g., Ij(-”’ +
ymaf/jab — ysa (‘/ja _ ‘/jb _ ‘A/jab).

2) Secondary side: Consider the secondary side of a
three-phase transformer in Y or A configuration in Figure
6. The internal voltages and currents are similarly denoted
by V= (Ve Vg Ve ) 1= (T 0 )
for Y configuration and VA := (V,gb,vkbc, V,f“), Ip =
(f,‘jb,f,gc,fga) for A configuration. The terminal voltages
and currents are denoted by Vi, = (V& V2, V), I =
(Ift, I}, If) regardless of the configuration. For Y configura-

tion the neutral voltage and current are denoted by (V;*, I}});
see Figure 6. If the neutral is solidly grounded, then V;* = 0.

Fig. 6: Secondary side of a three-phase transformer in Y
(left) or A (right) configuration.

From (2c¢) for each single-phase transformer, the terminal
variables are related to the internal variables according to the
conversion rule:

Y configuration: Vi = ka + Vi1 (6a)
I, = IY, 17 = 1" (6b)
A configuration: VkA = IV (6¢)
I, = ' (6d)

3) Internal model: The voltage and current gains across
the ideal transformer define an internal model whcih couples
the internal variables in the primary and secondary circuits
and connects the relations (5) and (6). These gains are
determined by the turns ratios of the constituent single-
phase ideal transformers according to (2a), but tailored for
different configurations. Denote the voltage gain of the ideal
three-phase transformer by a real diagonal matrix n :=
diag (n®, n®,n¢) € R**3 and its turns ratio by a :=n~! €
R3*3. Then

Yy: VY =naVy, I =alf (7a)
AA: VA = VR, -1 = alf (7b)
Ay . VY o= aVA, 1Y = alf (7c)
YA: V& =aVv), - =alf (7d)

These are internal models of a three-phase (ideal) trans-
former.

4) External model: The external model of a three-phase
transformer relates the terminal variables (V;, V], ;) and
(Vi, Vi, Ii;) on both sides of the transformer in terms of
the leakage admittance y®, the shunt admittance y™, and
the turns ratio a. It can be derived by eliminating the
internal variables ij/ A,f;// 2) and ka/ Aj:/ A2 from
the conversion rules (5) (6) and the internal model (7).

Let V := (V;, Vi) € C®and I := (I;,I;) € CO denote the
terminal voltages and currents of a three-phase transformer.



Define a 6 x 6 admittance matrix Yyy and a column vector
v € CS:
l

l

y —ay
Y3 = m 8a
YY —ayt @2 +y™) (8a)
v = (V'LV) (8b)

where 1 is the 3-dimensional vectors of all 1s. As we will see
below Yy vy is the admittance matrix of a transformer in Y'Y
configuration. It is the same as that in (3a) for a single-phase
transformer, except that a,y', ™ are now 3 x 3 diagonal
matrices rather than scalars. The vector v is the neutral
voltages of a transformer in Y'Y configuration. We present
a unified representation of standard transformer models as a
theorem.

Theorem 1. The external models of three-phase transformers
inYY, AA, AY and Y A configurations take the form

I = D"YyyD(V —7) (8c)
where
[T 0
YY: D = 0 ]J (8d)
[ 0
AA : D = 0 F} (8e)
[ 0
AY - o [0 (8
[T 0
YA o=y g (80
where [ is the identity matrix of size 3. O

For AA configuration, Dy = 0 € C° in (8c), reflecting
that a A configuration contains no neutral voltage; similarly
for AY and Y A configurations. The result in Theorem 2
agrees with those in [10]. The 6 x 6 block diagonal matrix
D is called a connection matrix in the literature, e.g. [13, 18].

Remark 2. 1) Neither the voltage gains (n“, n?, nc) nor
the admittances (y°®,y**,y*¢) and (y™?,y™",y™°)
may be equal across phases a, b, c.

2) The admittance matrices of AA, AY, YA configu-
rations can be obtained by pre-multiplying the admit-
tance matrix Yyy by I'" and post-multiplying it by
I" for a (primary or secondary) circuit that is in A
configuration and setting its neutral voltage to zero.

3) When neutrals are solidly earthed for Y'Y configura-
tion so that VJ” = V' = 0, three-phase transformers
in YY and AA configurations have a three-phase
II circuit representation because DYy y D is block-
symmetric. Transformers in AY and YA configura-
tions do not.

4) The derivation method is modular and general. For
instance, the neutrals of Y configurations may or
may not be connected to the other side, may or may
not be grounded, with zero or nonzero grounding
impedances. It can be extended to non-standard trans-
formers such as open transformers. For example an
open AA transformer with an open ca leg has the

same model (8c) (8e) as a (closed) AA transformer,
except that the diagonal admittance matrices ¢!, y™ in
Yyy in (8b) are modified to 7' := diag (y'*,4",0)
and g™ := diag (yma,ymb,O) respectively, i.e., with
zero admittances for the missing third leg; see [5] for
details.

IV. THREE-PHASE TRANSFORMERS: UNITARY VOLTAGE
NETWORK

In this section we extend the single-phase model in
Section II-C with unitary voltage network to three-phase
transformers. Multiple copies of the single-phase circuit in
Figure 3(b) can be connected in A or Y configuration on
each side of the unitary voltage network, per phase, to create
three-phase transformers. The derivation of their external
models follows a similar method as that in Section III: (i)
define internal variables for the unitary voltage network in
each phase; (ii) derive the internal model that relate these
internal variables; (iii) the transformer gains across the two
ideal transformers define the conversion between the internal
and terminal variables; and finally (iv) eliminate the internal
variables to arrive at the external model.

A. Internal model: unitary voltage network per phase

The internal variables on the unitary voltage network in
each phase ¢ € {a b,c} are defined in Figure 4. Note
that the voltages (V; ,Vd’ Vk ) are defined to be the voltage
drops, whether the un1tary voltage network is grounded or
not. Define the internal variables:

I (B 00 0g), Vo= (VO VR VE), =0,k
and admittance matrices:

yi = diag (v, 97, 95) , i=0,74.k

Then the internal currents fl are related to the internal
voltages V; through a 9 x 9 admittance matrix:

2ivi v —uk| (Vo
=y Yy 0|V

—Yk 0 Yk Vi

?'T\ob’_\w 54)
|

where > . vy = yo + y; + yx is a diagonal matrix of all
admittances. Since Io = 0 € C® we can eliminate VO and
derive the 6 x 6 Kron- reduced admittance matrix Yy, that

maps V := (V;, Vi) € CS to I := (I}, I},) € CS:
I = YoV (9a)
-1
— yi (Yo + Yr) —YiYk
Yoo = [ L® i
! ? (Z Y > [ —YiYk Y (Yo + yj)
(9b)

where I is the identity matrix of size 2 and ® denotes
the Kronecker product. This defines the internal model that
relates  and V. Note that the phases of these internal
variables are decoupled in (9) since the admittance matrices
y; € C3*3 are diagonal. The phases will be coupled in the
external model that relates the terminal variables (V;, V4,) and
(I;,Ix) through Y or A configuration, as we now explain.



B. Conversion rules

Let the terminal currents and terminal voltages of the
three-phase transformer be respectively

I = (I8, 10,18), V; =

iotio 4y (Via’Vibvvic), i=J.k
and the terminal neutral voltages of Y configurations
be V;”, i = j,k. The primary side is illustrated in
Figure 7. These voltages are defined respect to an ar-
bitrary and common reference point, e.g., the ground.
Let M; := diag(1/N{,1/NP,1/N¢) and My :=
diag (1/Ng,1/Np,1/Nf) be the transformer gain matrices
of the ideal transformers on each side of the unitary voltage
network.

To derive the conversion rule between internal and ter-
minal variables, consider first the primary side where three
single-phase ideal transformers are connected to the left end
of the unitary voltage network. Figure 7(a) shows the pri-
mary side in Y configuration. The conversion rule between

(b) A configuration

Fig. 7: Primary side of a three-phase transformer with unitary
voltage networks.

the internal variables (V;,I;) and the terminal variables

(Vj,Ij,Vj") is:
Y config.: = M; (VJ — V}”l)

-1
= Mj I;

(10a)
(10b)

[l b.<>

where 1 := (1, 1, 1). Figure 7(b) shows the primary side in A
configuration. Let [# := (I¢%, %, [¢%) denote the internal
currents entering the primary side of the ideal transformer as
indicated in Figure 7(b). The internal variables (V], fj, I JA)
are related to the terminal variables (V}, I;) according to the
conversion rule:

A config.: V, = M,I'V, (10c)
I = Mg (10d)
I = ' (10e)

where I', I'T are conversion matrices. Similarly on the sec-
ondary side we have the conversion rule (see Figure 8):

Y config.: Vi = My (Vi — V") (10f)
I = M 'I, (10g)
A config.: Vi = M,I'V (10h)
I = Mg (10i)
I, = '@ (10j)

C. External model

Let V := (V;,Vj) € C5 and I := (I;,1;) € C° denote
the vectors of terminal voltages and currents respectively.
Let M := diag(M;, M) € C®*6 be the transformer gain
matrices. Eliminating the internal variables (V1) from the
internal model (9) and the conversion rules (10) yields the
following external model of three-phase transformers:

I = DY (MYyuuM)D (V —~)

where Yy, is defined in (9), and D € C%% and v € C® in
(8).

We often do not know the numbers N, f , N ,f of turns of
the primary and secondary windings respectively and hence
cannot determine the matrices M, My, but we can always
determine the turns ratio matrix a := Mj’le from the
specified rated voltages. Then the matrix Yyvy := MYyM
in (12) can also be written in terms of the 3 x 3 turns ratio
and admittance matrices a, yP,y°,y™ (see [5] for details):

s m s -1
Yyy = 3Py’ (a®y™ + a*y? +4°)
H+a2ym(ys)71 —a
—a a® (I+y™(y")~")

where y? := diag (l/zp¢), y® = diag (l/zsd’), ym o=
diag (ym¢’). Here (2P?,2°%) are the series impedances per
phase ¢ in the primary and secondary circuits respectively
and y™? are the shunt admittances per phase ¢; see Figure
1. We hence have the following.

Y
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Fig. 8: Three-phase transformer models.

Theorem 2. The external models of three-phase transformers
inYY, AA, AY and Y A configurations are

I = D"YyyD(V —7) (12)

where Yyy is defined in (11), and D € C6%6 and v € CS
are defined in (8). O

Theorem 2 has been verified numerically to agree with
the model in [20] for a AY; transformer with zero shunt
admittance.

Remark 3. 1) This model is generally different from the
simplified model of Section III. From (12) and (8),
these models however have the same structure. They
differ only in the admittance matrix Yyy for the YY
configuration and the difference is due to different
models for single-phase nonideal transformers.

2) When the shunt admittances are assumed zero in both
models, i.e., yg) = y™® = 0 for ¢ € {a,b,c}, these
two models are equivalent, as in the single-phase case.

V. CONCLUSION

We have presented a simple and transparent method to de-
rive the admittance matrices of three-phase banks of single-
phase transformers in an unbalanced setting. The basic idea
is to explicitly separate a transformer model into an internal

model that specifies the relation between internal variables
of each single-phase transformer, and a conversion rule
that maps its internal variables to its terminal variables. Its
admittance matrix is then derived by eliminating the internal
variables from this set of equations. The method is general
and provides rigor and clarity, facilitating extensions. It also
reveals a transformer model that is unified and modular.
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