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Abstract—Deep reinforcement learning has been recognized
as a promising tool to address the challenges in real-time
control of power systems. However, its deployment in real-
world power systems has been hindered by a lack of explicit
stability and safety guarantees. In this paper, we propose a
stability-constrained reinforcement learning (RL) method for
real-time implementation of voltage control, that guarantees
system stability both during policy learning and deployment
of the learned policy. The key idea underlying our approach
is an explicitly constructed Lyapunov function that leads to
a sufficient structural condition for stabilizing policies, i.e.,
monotonically decreasing policies guarantee stability. We incor-
porate this structural constraint with RL, by parameterizing
each local voltage controller using a monotone neural network,
thus ensuring the stability constraint is satisfied by design. We
demonstrate the effectiveness of our approach in both single-
phase and three-phase IEEE test feeders, where the proposed
method can reduce the transient control cost by more than
26.7% and shorten the voltage recovery time by 23.6% on
average compared to the widely used linear policy, while always
achieving voltage stability. In contrast, standard RL methods
often fail to achieve voltage stability.

Index Terms—Voltage control, Reinforcement learning, Lya-
punov stability

I. Introduction
The voltage control problem is one of the most critical

problems in the control of power network. The primary
purpose of voltage control is to maintain the voltage
magnitude within an acceptable range under all possible
working conditions. Due to the recent proliferation of
distributed energy resources (DERs) such as solar and
electric vehicles, voltage deviations are becoming increas-
ingly complex and unpredictable. As a result, conventional
voltage regulation methods based on on-load tap changing
transformers, capacitor banks, and voltage regulators [1],
[2] may fail to respond to the rapid and possibly large
fluctuations. DERs can adjust the reactive power output
based on the real-time voltage measurement to achieve
fast and flexible voltage stabilization [3].

To coordinate the inverter-connected resources for real-
time voltage control, one key challenge is to design control
rules that can stabilize the system at scale with limited
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information. Despite the progress, most of the existing
work has only been able to optimize the steady-state
cost, i.e. the cost of the operating point after the voltage
converges (see [4]–[7] and references within). However, as
the system is subject to more frequent load and gener-
ation fluctuations, optimizing the transient performance
becomes of equal importance. Once a voltage violation
happens, an important goal is to bring the voltage profile
back to the safety region as soon as possible, at the
minimum control costs.
Optimizing or even analyzing the transient cost of

voltage control has long been challenging as this is a
nonlinear control problem [8]. The challenge is further
complicated by the fact that exact model of a distribution
system is often unknown due to frequent system recon-
figurations [9] and limited communication infrastructure.
Reinforcement Learning (RL) has emerged as a promising
tool to address this challenge. One intriguing benefit of RL
methods is their model-free characteristic, which means no
prior knowledge of the system models is required. Further,
with the introduction of neural networks to RL, deep
reinforcement learning has great expressive power and has
shown impressive results in learning nonlinear controllers
with good transient performance.

Despite the promising attempts, one difficulty in ap-
plying RL for voltage control is the lack of stability
guarantee [10], [11]. Even if the learned policy may appear
“stable” on a training data set, it is not guaranteed to be
stable in unseen test cases and stability requires explicit
characterization. Motivated by this challenge, the question
we address in this paper is:

Can RL be applied for voltage control with a provable
stability guarantee?

The key idea underlying our approach is that, with a ju-
diciously chosen Lyapunov function, strict monotonicity of
the policy is sufficient to guarantee voltage stability (Theo-
rem 1). Given that monotonicity is a model-free constraint,
it is practical to design a stabilizing RL controller without
model knowledge. To enforce this structural constraint, we
propose a decentralized controller (Stable-DDPG, Algo-
rithm 1) which integrates the stability constraint with a
popular RL framework deep deterministic policy gradient
(DDPG) [12] through monotone policy network design.
The proposed method enables us to leverage the power
of deep RL to improve the transient performance of
voltage control without knowing the underlying model
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parameters. We conduct extensive numerical case studies
in both single-phase and three-phase IEEE test feeders
to demonstrate the effectiveness of the proposed Stable-
DDPG with both simulated voltage disturbances and
real-world data. The trained Stable-DDPG can compute
control actions efficiently (within 1 ms), which facilitates
real-time implementation of neural network-based voltage
controllers. This paper extends the result of our previous
conference version [8] in the following aspects:

• We extend the stability analysis from continuous-time
to discrete-time systems to better accommodate the
discrete-time nature of inverter-based controllers.

• We construct a new discrete-time Lyapunov function
and derive the structural constraints for stabilizing
controller in Theorem 1. The discrete-time stability
constraint requires the policy to be monotonically
decreasing, and lower bounded by a value related to
the sampling time. The clear relationship between
stability and sampling time can assist the practical
implementation of the proposed voltage controller
with a finite sampling time. As the sampling time
∆T ∞ 0, the stability condition reduces to the
continuous-time stability condition.

• We test the proposed approach through extensive
numerical studies in IEEE single-phase and three-
phase systems with simulated and real-world data.

A. Related work
a) Steady-state cost optimization: Existing literature

in optimizing the steady-state cost of voltage control can
be roughly classified into two categories based on [6]:
feed-forward optimization methods and feedback control
methods. A typical example of feed-forward optimization
methods is Optimal Power Flow (OPF) based methods [4],
[13]–[16], where control actions are calculated by solving
an optimization problem to minimize the power loss
subject to voltage constraints. These algorithms assume
knowledge of both the system models and the disturbance
(e.g., load or renewable generations). Additionally, the
computational cost of solving the OPF problem makes it
difficult to respond to rapidly varying voltage profiles. On
the other hand, feedback control methods do not assume
to know the system model or the disturbance explicitly
but take measurements of voltage magnitudes to decide
the reactive power setpoints. In terms of time scale, the
feedback controllers could work on a faster time scale as
it does not require solving an optimization problem at
each time step to decide the control actions. A popular
feedback controller is the droop control, which is adopted
by the IEEE 1547 standard [3]. However, as shown in [17],
basic droop control can lead to instability if the controller
gains are selected improperly. With more sophisticated
structures, feedback controllers could achieve promising
performance [6]. Regardless of the progress, optimizing
the transient cost using feedback control methods remains
challenging as the power flow equations are nonlinear, and
the transient performance cost function can also be non-
convex. The difficulty will be further exacerbated when the

controllers are required to be optimized in a decentralized
manner.

b) Transient cost optimization: There has been
tremendous interest in using RL for transient performance
optimization in voltage control [18]–[30]. Given different
communication conditions, existing RL methods fall into
three categories, centralized, distributed, and decentral-
ized controllers. Centralized controllers mean that the
agent has access to global operating conditions, which
leads to a powerful controller [21]. However, sophisticated
communication networks are demanded and the agent
has to deal with high-dimensional information. In the
distributed setting, the network is first partitioned into
small regions, and each region is assigned with an RL
agent [19], [22], [26]. The agent has full observation of
nodes located within the region. Decentralized controllers
[8], [18], [31] are trained only with local measurements,
and thus require no communication among peers, reducing
the local computational burden. Please refer to a recent
review [32] for more comprehensive overview. Despite the
promise of RL for optimizing the transient performance,
a widely-recognized issue is that RL lacks a provable
stability guarantee, which is the main problem we want
to tackle in this paper.

c) Lyapunov approaches in RL: Using Lyapunov
functions in RL was first introduced by [33], where an
agent learns to control the system by switching among
the base controllers. These controllers are designed by
using a specific Lyapunov function such that any switching
policy is stable for the system. However, this work does
not discuss how to find a candidate Lyapunov function in
general, except for a case-by-case construction. A set of
recent works including [34], [35] have attempted to address
this challenge by jointly learning a Lyapunov function
and a stabilizing policy. [34] uses linear programming
to find the Lyapunov function, and [35] parameterizes
the Lyapunov function as a neural network. To find a
valid Lyapunov function and the corresponding controller,
stability conditions are incorporated as a soft penalty
during training and verified after training. In the context
of these works, our contribution can be viewed as explicitly
constructing a Lyapunov function for the voltage control
problem to guide policy learning, rather than learning
Lyapunov functions. Closest in spirit to our paper is [31],
which proposes a stable RL approach for frequency control.
However, their approach only applies to the frequency
control problem, while our method works for voltage
control which requires a different Lyapunov function
design. Interestingly, both our work and prior work [31]
arrive at a similar stability condition, that is strict policy
monotonicity guarantees system stability.

II. Model & Preliminaries

In this section, we review distribution system power flow
models for both single-phase and three-phase grids.
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û(t),′′′ ,û(t+H 1),
v̂(t),′′′ ,v̂(t+H 1)

H 1∑

k=0

n∑

i=1

ci(v̂i(t+ k), ûi(t+ k))
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TABLE III: Performance of linear, DDPG, and Stable-
DDPG on 500 voltage violation scenarios with IEEE 123-
bus case.

Voltage recovery steps Reactive power (Mvar)
Method Mean Std Mean Std
Linear 41.30 20.30 1529.62 1302.60
Stable-DDPG 32.35 15.40 1178.77 992.70
DDPG 73.91 36.72 4515.33 2822.96
DDPG* 29.11 22.10 1148.24 1357.08

Note: DDPG* denotes the performance of the DDPG policy in the
subset of testing cases when it was able to stabilize the voltage.

Fig. 7: Stable-DDPG and DDPG were tested on a low
voltage scenario simulation. The left plot is the voltage
trajectories, and the right plot is the reactive power
injection.

shows good performance for the same test scenario. Figure
8 shows that our proposed Stable-DDPG stabilizes the
system voltage in all test scenarios within 100 steps. In
contrast, for DDPG, about 10% of buses’ voltages are still
beyond the ≤5% range after a maximal control period
(Fig. 8 Left), which accounts for approximately 63% of
test scenarios (Fig. 8 Right). This further highlights the
necessity of explicitly considering stability in learning-
based controllers.

C. Three-phase Simulation Results
We now evaluate Stable-DDPG in three-phase systems.

All simulations are built with the OpenDSS public models
[48].

1) 13-bus system: To stabilize all the nodes of the
network, we installed a PV generator and controller in
every node except the substation node. The nominal
voltage magnitude and the acceptable range are the same
as in the single-phase experiment. Table IV summarizes
the performance of different controllers. Our proposed

Fig. 8: Voltage stability for single-phase 123 bus test
system. The left plot is the voltage violation for each bus,
the right plot is the largest violation bus.

TABLE IV: Performance of linear, DDPG, and Stable-
DDPG on 500 voltage violation scenarios with three-phase
IEEE 13-bus test case.

Voltage recovery steps Reactive power (Mvar)
Method Mean Std Mean Std
Linear 19.75 9.10 46.55 37.76
Stable-DDPG 14.61 3.74 29.94 16.07
DDPG 73.32 42.58 118.44 74.01
DDPG* 5.39 1.99 18.42 11.05

Note: DDPG* denotes the performance of the DDPG policy in the
subset of testing cases when it was able to stabilize the voltage.

TABLE V: Performance of linear, DDPG, and Stable-
DDPG on 500 scenarios with three-phase IEEE 123-bus
test case.

Voltage recovery steps Reactive power (Mvar)
Method Mean Std Mean Std
Linear 18.18 4.54 439.99 310.23
Stable-DDPG 12.70 4.99 318.31 273.22
DDPG 59.82 46.46 4715.57 3993.85
DDPG* 6.12 0.96 126.77 35.68

Note: DDPG* denotes the performance of the DDPG policy in the
subset of testing cases when it was able to stabilize the voltage.

method achieves the best overall performance with a fast
response and less reactive power consumption compared
to the baseline linear policy and DDPG policy. While the
DDPG algorithm has an impressive voltage recovery time
and control cost if it successfully stabilizes the system
(DDPG*), the percentage of stabilizing test cases is only
around 34%. About 16.5% of buses’ voltages fail to recover
to the nominal range that spans 66% of 500 test scenarios,
whereas Stable-DDPG achieves voltage stability in all
scenarios. Furthermore, compared to the optimized linear
policy, our method can save about 26.0% in time and
35.7% in reactive power consumption.
2) 123-bus system: Finally, we evaluate the proposed

model with the unbalanced three-phase IEEE 123-bus
system. The PV generator and controllers are installed in
the same location as the single-phase IEEE 123-bus system.
We summarize the control performance of different meth-
ods with the three-phase IEEE 123-bus system in Table
V. According to the results, the average recovery time
of the Stable-DDPG controller is 30% quicker compared
to the optimal linear controller. Moreover, the reactive
power consumption of the Stable-DDPG is 27.7% less
than the optimal linear controller. Due to the absence
of a stability guarantee, with the DDPG controller, 57.2%
of the 500 test scenarios have at least one bus that fails to
recover within 100 steps, leading to a significantly longer
response time and a considerable increase in reactive power
consumption.

D. Further Discussion
The above results also reveal an important trade-off

between stability and the expressiveness of neural net-
works. DDPG algorithm with standard neural network
policy obtains the best transient performance if it was
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able to stabilize the system (see the performance of
DDPG*). However, without a stability guarantee, the
DDPG controller can lead to unstable working condi-
tions, thus incurring overall high costs compared to both
optimized linear policy and Stable-DDPG policy. With
the monotone policy network, Stable-DDPG maintains
the voltage magnitude in all test scenarios at the cost
of a less flexible neural network parameterization. The
linear policy can be regarded as an extreme example of a
restricted neural net with only one learnable parameter,
its slope, and thus might get sub-optimal performance
compared to the monotone neural network with more
learnable parameters.

VI. Conclusion and Future Works
In this work, we propose a stability-constrained rein-

forcement learning framework that formally guarantees
the stability of RL for distribution system voltage control.
The key technique that underpins the proposed approach
is to use the Lyapunov stability theory and enforce the
stability condition via monotone policy network design.
We demonstrate the performance of the proposed method
in IEEE single-phase and three-phase test systems. In
terms of future work directions, one limitation of the
proposed decentralized Stable-DDPG controller is that
it can only guarantee voltage stability for the controlled
buses. It is an interesting future direction to consider
communications between neighboring nodes and design
distributed controllers to ensure stability guarantees for
buses without control. It is also a valuable future direction
to unify the proposed approach in optimizing the transient
cost of voltage control with steady-state cost optimization
to obtain the best of both worlds. Additionally, a challeng-
ing and important task is to extend the monotone neural
network design to multi-input multi-out monotone neural
networks for the three-phase voltage controllers.
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