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Abstract—Deep reinforcement learning has been recognized
as a promising tool to address the challenges in real-time
control of power systems. However, its deployment in real-
world power systems has been hindered by a lack of explicit
stability and safety guarantees. In this paper, we propose a
stability-constrained reinforcement learning (RL) method for
real-time implementation of voltage control, that guarantees
system stability both during policy learning and deployment
of the learned policy. The key idea underlying our approach
is an explicitly constructed Lyapunov function that leads to
a sufficient structural condition for stabilizing policies, i.e.,
monotonically decreasing policies guarantee stability. We incor-
porate this structural constraint with RL, by parameterizing
each local voltage controller using a monotone neural network,
thus ensuring the stability constraint is satisfied by design. We
demonstrate the effectiveness of our approach in both single-
phase and three-phase IEEE test feeders, where the proposed
method can reduce the transient control cost by more than
26.7% and shorten the voltage recovery time by 23.6% on
average compared to the widely used linear policy, while always
achieving voltage stability. In contrast, standard RL methods
often fail to achieve voltage stability.

Index Terms—Voltage control, Reinforcement learning, Lya-
punov stability

I. Introduction

The voltage control problem is one of the most critical
problems in the control of power network. The primary
purpose of voltage control is to maintain the voltage
magnitude within an acceptable range under all possible
working conditions. Due to the recent proliferation of
distributed energy resources (DERs) such as solar and
electric vehicles, voltage deviations are becoming increas-
ingly complex and unpredictable. As a result, conventional
voltage regulation methods based on on-load tap changing
transformers, capacitor banks, and voltage regulators [1],
[2] may fail to respond to the rapid and possibly large
fluctuations. DERs can adjust the reactive power output
based on the real-time voltage measurement to achieve
fast and flexible voltage stabilization [3].

To coordinate the inverter-connected resources for real-
time voltage control, one key challenge is to design control
rules that can stabilize the system at scale with limited
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information. Despite the progress, most of the existing
work has only been able to optimize the steady-state
cost, i.e. the cost of the operating point after the voltage
converges (see [4]-[7] and references within). However, as
the system is subject to more frequent load and gener-
ation fluctuations, optimizing the transient performance
becomes of equal importance. Once a voltage violation
happens, an important goal is to bring the voltage profile
back to the safety region as soon as possible, at the
minimum control costs.

Optimizing or even analyzing the transient cost of
voltage control has long been challenging as this is a
nonlinear control problem [8]. The challenge is further
complicated by the fact that exact model of a distribution
system is often unknown due to frequent system recon-
figurations [9] and limited communication infrastructure.
Reinforcement Learning (RL) has emerged as a promising
tool to address this challenge. One intriguing benefit of RL
methods is their model-free characteristic, which means no
prior knowledge of the system models is required. Further,
with the introduction of neural networks to RL, deep
reinforcement learning has great expressive power and has
shown impressive results in learning nonlinear controllers
with good transient performance.

Despite the promising attempts, one difficulty in ap-
plying RL for voltage control is the lack of stability
guarantee [10], [11]. Even if the learned policy may appear
“stable” on a training data set, it is not guaranteed to be
stable in unseen test cases and stability requires explicit
characterization. Motivated by this challenge, the question
we address in this paper is:

Can RL be applied for voltage control with a provable
stability guarantee?

The key idea underlying our approach is that, with a ju-
diciously chosen Lyapunov function, strict monotonicity of
the policy is sufficient to guarantee voltage stability (Theo-
rem 1). Given that monotonicity is a model-free constraint,
it is practical to design a stabilizing RL controller without
model knowledge. To enforce this structural constraint, we
propose a decentralized controller (Stable-DDPG, Algo-
rithm 1) which integrates the stability constraint with a
popular RL framework deep deterministic policy gradient
(DDPG) [12] through monotone policy network design.
The proposed method enables us to leverage the power
of deep RL to improve the transient performance of
voltage control without knowing the underlying model
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parameters. We conduct extensive numerical case studies
in both single-phase and three-phase IEEE test feeders
to demonstrate the effectiveness of the proposed Stable-
DDPG with both simulated voltage disturbances and
real-world data. The trained Stable-DDPG can compute
control actions efficiently (within 1 ms), which facilitates
real-time implementation of neural network-based voltage
controllers. This paper extends the result of our previous
conference version [8] in the following aspects:

o We extend the stability analysis from continuous-time
to discrete-time systems to better accommodate the
discrete-time nature of inverter-based controllers.

o We construct a new discrete-time Lyapunov function
and derive the structural constraints for stabilizing
controller in Theorem 1. The discrete-time stability
constraint requires the policy to be monotonically
decreasing, and lower bounded by a value related to
the sampling time. The clear relationship between
stability and sampling time can assist the practical
implementation of the proposed voltage controller
with a finite sampling time. As the sampling time
AT oo 0, the stability condition reduces to the
continuous-time stability condition.

o We test the proposed approach through extensive
numerical studies in IEEE single-phase and three-
phase systems with simulated and real-world data.

A. Related work

a) Steady-state cost optimization: Existing literature
in optimizing the steady-state cost of voltage control can
be roughly classified into two categories based on [6]:
feed-forward optimization methods and feedback control
methods. A typical example of feed-forward optimization
methods is Optimal Power Flow (OPF) based methods [4],
[13]-[16], where control actions are calculated by solving
an optimization problem to minimize the power loss
subject to voltage constraints. These algorithms assume
knowledge of both the system models and the disturbance
(e.g., load or renewable generations). Additionally, the
computational cost of solving the OPF problem makes it
difficult to respond to rapidly varying voltage profiles. On
the other hand, feedback control methods do not assume
to know the system model or the disturbance explicitly
but take measurements of voltage magnitudes to decide
the reactive power setpoints. In terms of time scale, the
feedback controllers could work on a faster time scale as
it does not require solving an optimization problem at
each time step to decide the control actions. A popular
feedback controller is the droop control, which is adopted
by the IEEE 1547 standard [3]. However, as shown in [17],
basic droop control can lead to instability if the controller
gains are selected improperly. With more sophisticated
structures, feedback controllers could achieve promising
performance [6]. Regardless of the progress, optimizing
the transient cost using feedback control methods remains
challenging as the power flow equations are nonlinear, and
the transient performance cost function can also be non-
convex. The difficulty will be further exacerbated when the
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controllers are required to be optimized in a decentralized
manner.

b) Transient cost optimization: There has been
tremendous interest in using RL for transient performance
optimization in voltage control [18]-[30]. Given different
communication conditions, existing RL methods fall into
three categories, centralized, distributed, and decentral-
ized controllers. Centralized controllers mean that the
agent has access to global operating conditions, which
leads to a powerful controller [21]. However, sophisticated
communication networks are demanded and the agent
has to deal with high-dimensional information. In the
distributed setting, the network is first partitioned into
small regions, and each region is assigned with an RL
agent [19], [22], [26]. The agent has full observation of
nodes located within the region. Decentralized controllers
[8], [18], [31] are trained only with local measurements,
and thus require no communication among peers, reducing
the local computational burden. Please refer to a recent
review [32] for more comprehensive overview. Despite the
promise of RL for optimizing the transient performance,
a widely-recognized issue is that RL lacks a provable
stability guarantee, which is the main problem we want
to tackle in this paper.

¢) Lyapunov approaches in RL: Using Lyapunov
functions in RL was first introduced by [33], where an
agent learns to control the system by switching among
the base controllers. These controllers are designed by
using a specific Lyapunov function such that any switching
policy is stable for the system. However, this work does
not discuss how to find a candidate Lyapunov function in
general, except for a case-by-case construction. A set of
recent works including [34], [35] have attempted to address
this challenge by jointly learning a Lyapunov function
and a stabilizing policy. [34] uses linear programming
to find the Lyapunov function, and [35] parameterizes
the Lyapunov function as a neural network. To find a
valid Lyapunov function and the corresponding controller,
stability conditions are incorporated as a soft penalty
during training and verified after training. In the context
of these works, our contribution can be viewed as explicitly
constructing a Lyapunov function for the voltage control
problem to guide policy learning, rather than learning
Lyapunov functions. Closest in spirit to our paper is [31],
which proposes a stable RL approach for frequency control.
However, their approach only applies to the frequency
control problem, while our method works for voltage
control which requires a different Lyapunov function
design. Interestingly, both our work and prior work [31]
arrive at a similar stability condition, that is strict policy
monotonicity guarantees system stability.

II. Model & Preliminaries

In this section, we review distribution system power flow
models for both single-phase and three-phase grids.
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A. Branch Flow Model for Single-phase Grids

We consider the branch flow model [1] in a radial distri-
bution network. Consider a distribution grid N'= (P, G),
consisting of a set of Pg = }0,1,...,n| nodes and an edge
set G. In the graph, node 0 is known as the substation,
and all the other nodes are buses that correspond to
residential areas. We also use P = Py/}0| to denote the
set of nodes excluding the substation node. Each node
i / P is associated with an active power injection p;
and a reactive power injection ¢;. Let V; be the complex
voltage and v; = |V;|P is the squared voltage magnitude.
We use notation p,q and v to denote the p;, ¢;, v; stacked
into a vector. p,q and v satisfy the following equations,
Dj /P i = parent(j),

p; =Py rijli; Z Pik, (1a)
k:(j,k)eE

a4 =Qij  wizliy > Qs (1b)
k:(j,k)eE

vy =i 2ri Py + 2i;Qiy) + (7 + 2l (i,5) / G
(1c)
2 2
where [;; = P%QJ is the squared current, P;; and @Q;;

represent the active power and reactive power flow on line
(4,7), and 7;; and x;; are the line resistance and reactance.
Equation (la) and (1b) represent the real and reactive
power conservation at node j, and (lc) represents the
voltage drop from node i to node j.

Following [36], if the higher order power loss term can
be ignored by setting [;; = 0, we obtain the following
linear approximation model,

pi==Pi+ Y Px, =-Qu+ D, Qu, (2a)
k:(5,k)T k:(4,k)T

vj = v — 2(ri; Py + 25Qij) , (i, §) € € (2b)

We can rearrange the above equations into the vector
form,
v=Rp+ Xq+vl=Xq+v".
where matrix R = [Ryl, . ..X = [Xy]
given as follows, R;; := QZ(h,k)ePinPj Thi, Xij =
2Z(h,k)e7>m7>j Tpr where X; < FE is the set of lines on
the unique path from bus 0 to bus i. Here we follow [17]
to separate the voltage magnitude v into two parts: the
controllable part Xq that can be adjusted via adjusting
reactive power injection q through the inverter-based con-
trol devices, and the non-controllable part v¢"Y = Rp+uvgl
that is decided by the load and PV active power p. Matrix
X and R satisfy the following property, which is crucial
for the stable control design.

3)

nxn are

Proposition 1 ( [17] Lemma 1). Suppose z;j,7;; > 0 for
all (¢,7). Then, X and R are positive definite matrices.

B. Multi-phase Grid Modeling

We now introduce an abridged version of the branch flow
model in three-phase distribution systems. For simplicity,
it is first assumed that all buses are served by all three
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phases, so we can use 3-dimensional vectors to represent
system variables. With slight abuse of notation, Pj; is a
3-dimensional vector such that Py; = [P3, P, PE]T. Sy,
Qi; are defined in the same way. The vectors of power
injections and complex voltages are denoted by s; and vj,
respectively. Zi; / S® is the phase impedance matrix for
line (’i,j), where Zij = Rij +inj.

We further assume that the phase voltages of arbitrary
bus ¢ are approximately balanced with absolute value v;,
then v; can be estimated by ©;a, where a = [1 a a2,
a = e 727/3 Define Zs; = diag(a')Zszdiag(a), following
(2), the linear approximate three-phase model is,

sj= Sj+ Z S;k (4a)
k:(j,k)EE
Vi Vi = 2R€[Z§Slﬂ (4b)

Notice that the vector variables can be arranged either
by bus or by phase. For example, the voltage magnitude
can be rearranged by phase as Vv = [Va, Vp, V|, where
Va = [0, 05, ...,0%], ¥y and V. share the similar definition.
Recall that v = [vy,4 / P, which is ordered by bus. With
a permutation matrix T, the transformation between two
formats can be represented by v = T,,¥v. The three-phase
branch flow model can then be arranged to a compact

form, the same as the single-phase model,

v =Rp+ Xq+uvlsy = Xq+ v, (5)
For a detailed mathematical derivation, please refer to
[37]. Notice that the single-phase and three-phase system
dynamics share the same linear approximation model (3),
v = Xq + v, allowing us to derive the Lyapunov
equation and stability conditions based on the same
analytical model.

Assumption 1. Assume every matrix X =
2afe ol age

3| 23:%5 x| is strictly diagonally dominant
xfj“ xijc» Qxf;

with positive diagonal entries for all edges (i,7) / G.

It is denoted in [37], due to the structure of distribution
lines, the diagonal dominance conditions in Assumption 1
are generally satisfied for multi-phase grids. According to
Corollary 1 in [37], if Assumption 1 holds, X is positive
definite for three-phase distribution system.

III. Voltage Control Problem Formulation

The voltage control problem can be modeled as a control
problem in a quasi-dynamical system with state v and
controller q. Given the current voltage measurement v(t)
and other available information, the controller determines
a new reactive power injection q(t+ 1). The new q(t + 1)
will result in a new voltage profile v(¢ + 1). We envision
that the reactive power loop is embedded in an inverter
control loop and operates at very fast timescales [21],
and denote the change rate of reactive power injection
as, ¢;(t) := u;(t). Using the zero-order hold on the inputs
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and a sample time of AT, we get the closed-loop voltage
control dynamics as,

vit+1)=Xq(t+1)+v", (6a)
where u = (u1,HHu,) is the decentralized voltage

controller. Note that (6b) represents the class of incremen-
tal voltage controller. As shown in [17], a decentralized
controller only depends on the current time step infor-
mation, i.e., ¢;(t) = wu;(v;(t)) is not possible to stabilize
the voltage v under arbitrary disturbance, while the
incremental voltage controller guarantees the existence
of stabilizing controllers. This motivates our focus on
incremental voltage controllers.

A. Voltage Stability

Voltage stability is defined as the ability of the system
voltage trajectory to return to an acceptable range after
arbitrary disturbance. See Definition 1 below.

Definition 1 (Voltage stability). The closed loop system
is stable if for any v¢"* and v(0), v(¢) converges to the
set S, = }v / R™ 1 v; > v; > 4] in the sense that
lim;_, oo dist(v (%), S,) = 0 and the distance is defined as

dist(v(t), Sy) = minyes, [IV(t) V[l
vilt) Voltage Stability O Unstable
0. Vi
Sy
v, |——
Y, f—
t t

Fig. 1: Voltage stability of bus i.

With high penetration of DERs, rapid changes of load
and renewable generation often happen in a fast time scale,
thus it is important to ensure the designed controller
meets the stability condition. With the requirement for
voltage stability, the optimal voltage control problem can
be formulated as,

(7a)

=0 =1
st. v(t+1)=Xq(t+1)+ v, (7b)
qi(t +1) = qi(t) + AT u;(t) (7c)
ui(t) = go, (vi(t)) (7d)
Voltage stability holds. (7e)

The goal of the voltage control problem is to reduce the
total cost (7a) for time steps ¢t from 0 to T, which consists
of two parts: the cost of voltage deviation and the cost
of control actions. One can choose different cost functions
(e.g., one-norm, two-norm, or infinity-norm), depending
on the system performance metrics and control devices.
Our stability-constrained RL framework can accommodate
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Fig. 2: Control System Architecture.

different types of cost functions mentioned above. In
particular, in our experiment, we use c¢;(v;(t),u;(t)) =
m\max(v;(t)  0;,0) + min(vi(t) v, 0)\3 + n2\ui(t)\1-
Here 11,12 are coefficients that balance the cost of action
with respect to the voltage deviation. Voltage dynamics
are represented by equations (7b)-(7c). (7d) specifies the
decentralized policy structure u;(t) =  go,(vi(t)) only
depends on local voltage measurement v;(t). Here 6; is
the policy parameter for the local policy at node 7, and
0 = (0;)iecn is the collection of the local policy parameters.

Transient cost vs. stationary cost. Our problem formula-
tion in (7) is different from some of those in the literature,
e.g., [5], [6], [38], [39], in the sense that the existing
works typically consider the cost in steady-state, meaning
the cost is evaluated at the fixed point or stationary
point of the system. In contrast, our work considers
the transient cost after a voltage disturbance, which is
also an important metric for the performance of voltage
control. An important future direction is to unify these
two perspectives and design policies that can optimize
both the transient and stationary costs.

B. Solving Voltage Control Problem via RL

In order to solve the optimal voltage control problem in
(7), one needs the exact system dynamics, i.e., X. However,
for distribution systems, the exact network parameters are
often unknown or hard to estimate in real systems [7]. RL
provides a powerful paradigm for solving (7), by training
a policy that maps the state to action via interacting
with the environment, so as to minimize the loss function
defined as (7a). There are many RL algorithms to solve
the policy minimization problem (7), and in this paper,
we focus on the class of RL algorithms called policy
optimization. We define the state space of each local
controller as the nodal voltage deviation, represented by
v; / R (single-phase) or v; / R? (three-phase). The action
space is defined as the range of potential reactive power
changes, represented by u; / R (single-phase) or u; / R3
(three-phase).
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Generally speaking, we parameterize each of the con-
trollers, i.e., w;(t) = gp,(vi(t)) as a neural network
with weights ;. The procedure is to run gradient meth-
ods on the policy parameter #; with learning rate «;,
0; — 0; «; J(0;). As we are dealing with deterministic
policies and continuous state space, one of the most
popular choices is the Deep Deterministic Policy Gradi-
ent (DDPG) [12], where the policy gradient J(6;) is
approximated by

% Z U Q¢i (vi7 ui)

jeB

bi=vi [l ui=—go; (vils))  6:96: (Vi) lbis] »

(8)
where gg, (v;) is the actor network, and }v;[j], u;[j]| jen
are a batch of samples with batch size ||B||= N sampled
from the replay buffer which stores historical state-action
transition tuples of bus 7. Here an (vi,u;) is the value
network (a.k.a critic network) that can be learned via
temporal difference learning,

quﬁiin L(¢l) = E(vi,uz‘,ci,vg)[thi (’Ui’ui) (Ci+’}/Q¢i (U’g?gei (’U;))}

(9)
where v} is system voltage after taking action w; and
realization of v§{"”. For more details of DDPG, readers
may refer to [12].

In standard DDPG, stability is not an explicit re-
quirement, it plays the role of implicit regularization
since instability leads to high costs. However, the lack
of an explicit stability requirement can lead to several
issues. During the training phase, the policy may become
unstable, causing the training process to terminate. Even
after a policy is trained, there is no formal guarantee
that the closed loop system is stable, which hinders the
learned policy’s deployment in real-world power systems
where there is a very strong emphasis on stability. Next,
we will introduce our framework that guarantees stability
in policy learning.

IV. Main Results

We now introduce our stability-constrained RL frame-
work for voltage control. We demonstrate that the voltage
stability constraint can be translated into a monotonicity
constraint on the policy, that can be satisfied by a careful
design of monotone neural networks.

A. Voltage Stability Condition

In order to explicitly constrain stability for RL, we con-
strain the search space of policy in a subset of stabilizing
controllers from Lyapunov stability theory. In particular,
we use a generalization of Lyapunov’s direct method,
known as LaSalle’s Invariance theorem for deriving the
stability condition.

Proposition 2 (LaSalle’s theorem for discrete-time sys-
tem [40]). For dynamical system z(t + 1) = f(z(t)),
suppose V' : R™ oo R is a continuously differentiable
function satisfying V(z) C 0 and V(f(z)) V(x) >
0,D2c / R™. Let E be the set of all points in R"™ where
V(f(z)) V(z) =0, and let M be the largest invariant
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set in E. If there exists a / RT such that the level set
L, :=}x:V(x) > al| is bounded, then for any z(0) / L,
we have dist(z(t), M) oo 0 as t co € . Further, if V is
radially unbounded, i.e. V(z) co € as \z\ oo €, then,
for any x(0) / R™, we have dist(x(t), M) co 0 as t 0o € .

The key to ensure stability is to find a controller u =

go(v) and a Lyapunov function V', such that the stability
conditions in Proposition 2 can be satisfied. For the voltage
control problem defined by (7), v(t+1) = v(t)+Iar Xu(t),
where Iar is a diagonal matrix with diagonal entries equal
to AT. Since the control input u = gg(v) depends on
state v, the closed-loop system dynamics can be written
as v(t+1)=v(t) IarXge(v):= fu(v(t)). We consider
the following Lyapunov function,

V) = fuv) XMV fu(v) (10)
where X is the network reactance matrix defined in (3),
that is a positive definite matrix for both single-phase and
three-phase distribution grids. V' is positive definite and
is radially unbounded if \gp(v)\ co € as \v\ co € . From
LaSalle’s theorem in Proposition 2, if V(f,(v)) V(v) >0
and V(f.(v)) V(v) =0 only when v / S, where S,
is the voltage safety set defined as S, = }v /R" : v, >
v; > ¥;| . Then we have for every initial voltage profile
v(0) / R™, v(t) converges to the largest invariant set in .S,,.
Furthermore, suppose for all 4, the control action satisfies
u; = 0 for v; / [v;,7;]. Then S, itself is an invariant set.
The key question now reduces to how can we design the
controller u = gp(v) such that the closed-loop system

satisfying these two properties:

) V(fu(v) V(V) <0, /S,
2) V(fulv)) V(v)=0forv /5,

Theorem 1 presents a sufficient structural condition for
the above properties to hold, thus guaranteeing voltage
stability.

Theorem 1 (Voltage stability condition). Suppose for
all bus 7, go,(d is a continuously differentiable function
satisfying u; =  go, (v;) = 0 for v; / [v;,7;]. Further, each
%gvai satisfies equation (11) on ( € ,v,] and [7;, € )

i

2
X! <—@ 0

(11)

and limj,, |00 g, (vi)|| = € . Then, the voltage stability
defined in Definition 1 holds.

Equation (11) shows that when the sampling time
AT oo 0, the stability condition reduces to the continuous
time stability condition 92 <0 as first shown in [8]. As
the length of the sampling time increases, g—:" also needs to
be lower bounded by %X ~! and upper bounded by 0.
As the typical sampling frequency of real-world inverters
is in kHz scale [41], the left-hand side of (11) is naturally

satisfied in most cases. Therefore, we focus on the right-
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Algorithm 1 Stable-DDPG Learning Process

Initialization: Initial Q network Qg,(v;,u;), monotone
policy network gy, (v;) with parameters ¢;,0;; empty
replay buffers & ; for all buses i = 1,...,n.

: for j =0 to N, do

Randomly generate initial states v(0) with voltage
violation for all nodes

3: for t =0 to Ngtep do

Observe state v;(t), compute action based on
current policy u; =  gg, (vi(t)), D
5: Execute the joint action q(t + 1) =
ATu(t), transit to next state v(t+ 1)

N =

q(t) +

6: Store (vi(t),u;(t), ci(t),vi(t+1)) in £, D
7 end for
8: if len(€;) > batch size then
9: fori=1,...,n do
10: Randomly sample N state-transition data
pairs from replay buffer D;, B; = }(v;, us, ¢i, v0)| g
11: Update the policy network by Eq (8)
12: Update the Q-function network Eq (9)
13: end for
14: end if
15: end for
ou

hand side condition, 32 <-0. Because of the decentralized

characteristic, % is a diagonal matrix.
9+ g
ou !
g = °. . (12)
9ge,,
0 H=

Thus, if each gy, is strictly monotonically increasing, i.e.,
69%5” > 0,7, the voltage stability condition % ~0
will be met. We note that a similar stability condition for
the discrete-time voltage dynamics has been shown in [42],
while our condition ensures globally asymptotic stability

rather than the local stability guarantee in [42].

B. Stability-Constrained RL Algorithm

Combining the structural constraints for stabilizing
controllers in Theorem 1 and the DDPG algorithm for
solving voltage control in Section I1I-B, we now present the
design of Stable-DDPG algorithm. The proposed stability-
constrained policy learning algorithm is summarized in
Algorithm 1.

As we notice in Algorithm 1, the general algorithm
flow of Stable-DDPG is the same as DDPG, and the only
difference is in the policy network parameterization. Since
Theorem 1 restricts the class of stabilizing decentralized
controllers to be strictly monotonically decreasing. Thus,
we need to incorporate this structural condition into the
policy design. Essentially, any monotone functions can
be used for parameterizing the policy function, e.g., a
linear policy w; = kv, Dv; < v; or v; > v; with k; is
positive; and w; = 0 for v, > v; > v;. To leverage the
superior expressiveness of neural networks, we represent
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Fig. 3: Three-phase Monotone Voltage Controller, where
each policy is parameterized as a Stacked ReLLU Monotone
Network.

u; = gp,(v;) as a monotone neural network. There are
several existing designs for the monotone neural networks
in literature, e.g. [31], [43], [44]. In this paper, we follow
the monotonic neural network design in [31, Lemma 3],
which guarantees universal approximation of all single-
input-single-output monotonic increasing functions [31,
Theorem 2]. This design uses a single hidden layer neural
network with d hidden units and ReLU activation, which
is defined below.

Corollary 1. (Stacked ReLU Monotone Network [31,
Lemma 3]) The stacked ReLU function constructed by
Eq (13) is monotonic increasing for > 0 and zero when
x> 0.

(@0, b7) = (wT)¥ ReLU(1z 4 b™)
d/

> ow >0,¥d =1,...d,bf =0,b <b |, VI=2,..d
=1

(13a)

(13b)

The stacked ReLU function constructed by Eq (14) is
monotonic increasing for x < 0 and zero when = C 0.

€ (w ,b )= (w )*ReLU(-1z+b ) (14a)
d/
dw, <0,¥d =1,...d,b, =0,b, <b ,\VI=2,...d
=1

(14b)

1) Single-phase Monotone Voltage Controller: Follow-
ing the stability constraint (11), we set the single-phase
voltage controller to be monotonically increasing with
Corollary 1. To incorporate the dead-band within range
v; / [v;,7;], we parameterize the controller at bus i as
go.(vi) = (&, (i Ti) + & (v v,)], where & (v Ty) :
R oo R is monotonically increasing for v; > 7; and
zero when v; > 7;, and fe_i(vi v;) R oo R is
monotonically increasing for v; < v; and zero otherwise.
Because u;(t) =  gg, (vi(t)), % +0 is satisfied.

2) Three-phase Monotone Voltage Controller: For the
three-phase voltage controller, we generalize the single-in-
single-out monotone policy network to three-dimensional
input and output by deploying a single-phase controller
for each phase. As demonstrated in Figure 3, we disen-
tangle the AC voltage observations per phase and treat

each phase as a single-phase input. In this way, gjj’
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ouy
Do 0 0
b
0 gzh 0 is a diagonal matrix with negative
0o o0 ou

ovg
entries, thus the stability condition 2—3 «0 is satisfied.
We conclude this section with two remarks.

Remark 1. The simplified Distflow models in (3) and (5)
are introduced for theoretic analysis only. The original
nonlinear dynamics are deployed in numerical experiments,
and our proposed method stabilizes the systems in all test
scenarios.

Remark 2. The stability criteria defined by Theorem 1 is
a sufficient condition for asymptotic stability, which does
not give any explicit guarantee to stabilize the systems in
finite steps. To achieve exponential stability, the Lyapunov
condition should be strengthened as V(viy1) V(vy) >

cV(ve), 0 < ¢ < 1 [40]. In this case, the stability
condition is given by HT‘/FX’l < % < 17A7‘/%TCX71.
Given that AT is small, we can often find a constant c
such that the trained policy satisfies the above inequality.
As a result, the system can be input-to-state stable [45]
with the proposed controller.

V. Case Study

We demonstrate the effectiveness of the proposed Stable-
DDPG approach (Algorithm 1) on both single-phase and
three-phase IEEE distribution test systems. Source code
and data are available at https://github.com/JieFeng-
cse/Stable-DDPG-for-voltage-control.

A. Experimental Setup

For single-phase test feeders, we use the IEEE 13-bus
feeder and IEEE 123-bus feeder as the test cases, which are
modified from three-phase models in [46]. For three-phase
test feeders, we test on the unbalanced IEEE 13-bus feeder
and IEEE 123-bus feeder [46]. Simulations for single-phase
systems are implemented with pandapower [47], and the
three-phase system is obtained by OpenDSS. We simulate
different voltage disturbance scenarios: 1) High voltages:
the PV generators are generating a large amount of power,
this corresponds to the daytime scenario in California
where there is abundant sunshine that can result in high
voltage issues. 2) Low voltages: the system is serving
heavy loads without PV generation. It corresponds to late
afternoon or night when there is low/no solar generation
but still a significant load. For each scenario, we randomly
vary the active power injections thus obtaining different
degrees of voltage violations, i.e., 5% to 15% of the nominal
value. We set AT = 1s for all numerical experiments and
verify the stability condition for all the trained policies.
All experiments are conducted with an AMD 5800X CPU
and an Nvidia 1080Ti GPU.

Baselines: We test the proposed stable-DDPG approach
(Algorithm 1), against the following baseline algorithms.
Details about the algorithm implementations are provided
in Appendix B.
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Fig. 4: Schematic diagram of the IEEE 13-bus system and
IEEE 123-bus system.

TABLE I: Performance of linear, DDPG, and Stable-
DDPG on 500 voltage violation scenarios for IEEE 13-bus
system.

Voltage recovery steps  Reactive power (Mvar)

Method Mean Std Mean Std
MPC 4.55 8.90 7.62 16.40
Linear 5.31 3.19 8.22 10.72
Stable-DDPG 4.47 2.43 6.75 8.08
DDPG 6.61 20.67 30.20 120.24
DDPG* 2.31 1.18 3.65 3.21

Note: DDPG¥ denotes the performance of the DDPG policy in the
subset of testing cases when it was able to stabilize the voltage.

a) Linear policy with deadband: w;(v;) = €;([v;
wi]T v, vi]T) (where [z]T = max(z,0)), and the new
reactive power injection is ¢; (t) = ¢;(t 1)+ATu;(v;). This
linear controller has been widely used in the power system
control community [17]. With each 0 < ¢; > 2;2’”7"(;((), lin-
ear policy guarantees stability but may lead to suboptimal
control cost. We optimize the linear controller in an RL
framework, where ¢; is the learnable parameter to obtain
the best-performing linear policy for comparison.

b) Standard DDPG algorithm: is suggested for volt-
age control in [23], [26]. Standard DDPG minimizes the
control cost without an explicit stability guarantee.

¢) DDPG*: We denote the subset of results where
the standard DDPG policy is able to maintain voltage
stability as DDPG*.

B. Single-phase Simulation Results

1) 13-bus system: The nominal voltage magnitude at
each bus except substation is 4.16 kV. The safe operation
range S, is defined as <5% of the nominal value, that
is [3.952kV,4.368kV]. The overall training time for the
Stable-DDPG algorithm is 71s, and the DDPG algorithm
can be trained around 85s. Stable-DDPG can quickly learn
to stabilize the system with relatively low cost. It also has
smaller variance compared to standard DDPG.

Model Predict Control. We assume perfect knowledge
of matrix X for the IEEE 13-bus system. Considering a
finite look-ahead time window H = 30, which equals the
episodic length of the RL training, the centralized Model
Predict Control (MPC) algorithm can be formulated as
follows.
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Method | MPC
Time (ms) | 449.83

Stable-DDPG  DDPG
0.37 0.17

Linear

0.16

TABLE II: Computational time comparison.

H 1 n
argmin ci(0i(t + k), 0 (t + k)) (15a)
a(t),nr,a(t+H 1), b—0 i=1
(t), 1V (t+H 1)
subject to q(t+k+1)=q(t+ k) + ATa(t+ k), (15b)
k=0,...,H 1
VEt+k+1)=Xqt+E+1)+v", (15c)
V(t) = v(t),4(t) = a(t) (15d)
v<V(t+H)<v (15e)

For a fair comparison, the cost function ¢;(0;(¢t+ k), 4 (t +
k)) of MPC is chosen to be the same as the cost
function used in RL training. At each time step, the
finite-horizon optimal control problem (15) is solved to
obtain the control sequence. We write @*(t), = a* (¢t +
H 1),v*(t), £ v*(t + H 1) as the optimal control
sequence and the corresponding voltage trajectory. The
control action is later selected as u(t) = a*(t). We use
this centralized MPC algorithm as a baseline for the IEEE
13-bus system.

Control Performance. We compare the performance of
the proposed Stable-DDPG method against linear policy,
standard DDPG, and MPC policies on 500 different
voltage violation scenarios. Table I shows the results.
Notably, Stable-DDPG outperforms the centralized MPC
algorithm even when the exact linearized system dynamics
model is known for the MPC. In this case, the linearized
model provides a reasonable approximation with some
approximation error. As a result, our proposed Stable-
DDPG algorithm, which interacts with the nonlinear
power flow simulator for policy training can outperform
the centralized MPC method. It is also worth mentioning
that the computational time of the proposed Stable-
DDPG (0.37ms) is on the same scale as the Linear
controller (0.16ms) while significantly smaller than the
MPC (449.83ms) as shown in Table II. Stable-DDPG can
support a control frequency of up to 2 kHz, which enables
real-time decentralized voltage control.

Figure 5 demonstrates the percentage of voltage insta-
bility cases in the 500 testing scenarios. If the controller
is able to bring back the voltage of all controlled buses to
[3.952kV, 4.368kV], the trajectory will be marked as “sta-
ble”. Otherwise, we record the final voltage magnitudes of
the controlled buses and categorized based on the violation
magnitude. Our method achieves voltage stability in all
scenarios, whereas DDPG may lead to voltage instability
even in this simple setting, with the final voltage beyond
the <5% range for about 4% of the test scenarios.

Test with Real-world Data. Finally, we test the pro-
posed method using real-world data from DOE [6]. We
compare the voltage dynamics without voltage control and
when Stable-DDPG is used. We simulate a massive solar
penetration scenario where all buses are associated with
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Fig. 5: Voltage stability for single-phase 13 bus test system.
The left plot is the voltage violation for each bus, the right
plot is the largest violation bus.

PV and voltage controllers. The voltage control results
are given in Figure 6. There are severe voltage violations
without control, due to the high volatility in load and
PV generation. In contrast, Stable-DDPG quickly brings
the voltage into the stable operation range, which further
demonstrates its applicability in power system voltage
control. For the 13-bus network in Fig 4, with a control
frequency larger than 0.82 Hz, both sides of the stability
constraint ﬁX -1 <—g—3 +0 will hold.

[
|
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Fig. 6: Stable-DDPG test with real-world load and PV
dataset. The left plot is the PV and aggregated load.
The right two plots are the voltage without control and
with Stable-DDPG, where colored curves show voltage at
different buses.

2) 123-bus system: We further test the controller per-
formance in the IEEE 123-bus test feeder, which has 14 PV
generators and controllers randomly selected to be placed
at Buses 10, 11, 16, 20, 33, 36, 48, 59, 61, 66, 75, 83, 92, and
104. The system diagram is shown in Figure 4 (right). The
nominal voltage magnitude at each bus except substation
is 4.16 kV, and the acceptable range of operation is <5%
of the nominal value which is [3.952kV, 4.368kV].

Control Performance. Compared with IEEE 13-bus
system, the ITEEE 123-bus system is more sophisticated.
As a result, the computation cost for simulation is higher.
The policy training time for the Stable-DDPG is 1450.08s
and 1300.14s for the DDPG. Table III compares the
voltage recovery time and reactive power consumption
of the trained controllers. Although DDPG performs
slightly better when it can successfully stabilize the system
(denoted as DDPG*), the lack of stability guarantee can
lead to oscillations and instability, thus resulting higher
overall costs. As shown in Figure 7, the DDPG voltage
controller without considering stability can lead to voltage
instability, while the proposed Stable-DDPG controller
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TABLE III: Performance of linear, DDPG, and Stable-
DDPG on 500 voltage violation scenarios with IEEE 123-
bus case.

TABLE 1V: Performance of linear, DDPG, and Stable-
DDPG on 500 voltage violation scenarios with three-phase
IEEE 13-bus test case.

Voltage recovery steps  Reactive power (Mvar)

Voltage recovery steps  Reactive power (Mvar)

Method Mean Std Mean Std Method Mean Std Mean Std

Linear 41.30 20.30 1529.62 1302.60 Linear 19.75 9.10 46.55 37.76
Stable-DDPG  32.35 15.40 1178.77 992.70 Stable-DDPG  14.61 3.74 29.94 16.07
DDPG 73.91 36.72 4515.33 2822.96 DDPG 73.32 42.58 118.44 74.01
DDPG* 29.11 22.10 1148.24 1357.08 DDPG* 5.39 1.99 18.42 11.05

Note: DDPG¥ denotes the performance of the DDPG policy in the
subset of testing cases when it was able to stabilize the voltage.

— 1.000 ey
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Fig. 7: Stable-DDPG and DDPG were tested on a low
voltage scenario simulation. The left plot is the voltage
trajectories, and the right plot is the reactive power
injection.

Iteretion Steps

shows good performance for the same test scenario. Figure
8 shows that our proposed Stable-DDPG stabilizes the
system voltage in all test scenarios within 100 steps. In
contrast, for DDPG, about 10% of buses’ voltages are still
beyond the <5% range after a maximal control period
(Fig. 8 Left), which accounts for approximately 63% of
test scenarios (Fig. 8 Right). This further highlights the
necessity of explicitly considering stability in learning-
based controllers.

C. Three-phase Simulation Results

We now evaluate Stable-DDPG in three-phase systems.
All simulations are built with the OpenDSS public models
[48].

1) 13-bus system: To stabilize all the nodes of the
network, we installed a PV generator and controller in
every node except the substation node. The nominal
voltage magnitude and the acceptable range are the same
as in the single-phase experiment. Table IV summarizes
the performance of different controllers. Our proposed

I Stable-DDPG
= DDPG

B Stable-DDPG
= DDPG

Frequency
Frequency

0
Stable 5-7%

7-9% 9-10% >10%
Voltage Violation (per bus)

Stable 5-7%
Voltage Violation (per test scenario)

7-9% 9-10% >10%

Fig. 8: Voltage stability for single-phase 123 bus test
system. The left plot is the voltage violation for each bus,
the right plot is the largest violation bus.
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Note: DDPG¥ denotes the performance of the DDPG policy in the
subset of testing cases when it was able to stabilize the voltage.

TABLE V: Performance of linear, DDPG, and Stable-
DDPG on 500 scenarios with three-phase IEEE 123-bus
test case.

Voltage recovery steps  Reactive power (Mvar)

Method Mean Std Mean Std
Linear 18.18 4.54 439.99 310.23
Stable-DDPG 12.70 4.99 318.31 273.22
DDPG 59.82 46.46 4715.57 3993.85
DDPG* 6.12 0.96 126.77 35.68

Note: DDPG¥* denotes the performance of the DDPG policy in the
subset of testing cases when it was able to stabilize the voltage.

method achieves the best overall performance with a fast
response and less reactive power consumption compared
to the baseline linear policy and DDPG policy. While the
DDPG algorithm has an impressive voltage recovery time
and control cost if it successfully stabilizes the system
(DDPG¥*), the percentage of stabilizing test cases is only
around 34%. About 16.5% of buses’ voltages fail to recover
to the nominal range that spans 66% of 500 test scenarios,
whereas Stable-DDPG achieves voltage stability in all
scenarios. Furthermore, compared to the optimized linear
policy, our method can save about 26.0% in time and
35.7% in reactive power consumption.

2) 123-bus system: Finally, we evaluate the proposed
model with the unbalanced three-phase IEEE 123-bus
system. The PV generator and controllers are installed in
the same location as the single-phase IEEE 123-bus system.
We summarize the control performance of different meth-
ods with the three-phase IEEE 123-bus system in Table
V. According to the results, the average recovery time
of the Stable-DDPG controller is 30% quicker compared
to the optimal linear controller. Moreover, the reactive
power consumption of the Stable-DDPG is 27.7% less
than the optimal linear controller. Due to the absence
of a stability guarantee, with the DDPG controller, 57.2%
of the 500 test scenarios have at least one bus that fails to
recover within 100 steps, leading to a significantly longer
response time and a considerable increase in reactive power
consumption.

D. Further Discussion

The above results also reveal an important trade-off
between stability and the expressiveness of neural net-
works. DDPG algorithm with standard neural network
policy obtains the best transient performance if it was



This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2023.3338240

10

able to stabilize the system (see the performance of
DDPG*). However, without a stability guarantee, the
DDPG controller can lead to unstable working condi-
tions, thus incurring overall high costs compared to both
optimized linear policy and Stable-DDPG policy. With
the monotone policy network, Stable-DDPG maintains
the voltage magnitude in all test scenarios at the cost
of a less flexible neural network parameterization. The
linear policy can be regarded as an extreme example of a
restricted neural net with only one learnable parameter,
its slope, and thus might get sub-optimal performance
compared to the monotone neural network with more
learnable parameters.

VI. Conclusion and Future Works

In this work, we propose a stability-constrained rein-
forcement learning framework that formally guarantees
the stability of RL for distribution system voltage control.
The key technique that underpins the proposed approach
is to use the Lyapunov stability theory and enforce the
stability condition via monotone policy network design.
We demonstrate the performance of the proposed method
in IEEE single-phase and three-phase test systems. In
terms of future work directions, one limitation of the
proposed decentralized Stable-DDPG controller is that
it can only guarantee voltage stability for the controlled
buses. It is an interesting future direction to consider
communications between neighboring nodes and design
distributed controllers to ensure stability guarantees for
buses without control. It is also a valuable future direction
to unify the proposed approach in optimizing the transient
cost of voltage control with steady-state cost optimization
to obtain the best of both worlds. Additionally, a challeng-
ing and important task is to extend the monotone neural
network design to multi-input multi-out monotone neural
networks for the three-phase voltage controllers.
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Appendix
Appendix A: Proof of Theorem 1

Proof of Theorem 1. Recall the closed-loop voltage dy-
namics v(t + 1) = f,(v(t)) with u(t) = g(v(¢t)). Let
define h(v(t)) = v(t) fu(v(t)). The Lyapunov function
could be expressed compactly as follows,

V(v(t) = h(v(t))" X~ h(v(t)) (16)
We further write h(v;11)! in terms of h(v;) as follows,

Lon
h(viy1) = h(Vt)+/ g(vt+t(vt+1 Vi) (Vi1 ve)dt
0

From Kowalewski’s Mean Value Theorem (Theorem 1 in

[49]), we have h(viy1) = h(ve) + Ju(vig1  ve), where
Jn = Z?:l /\i%(vt +ki(vier  vy)) for k; / [0, 1], A CO
for alliand > ; A; = 1. Note that, vi11 vy = fu(vy)
v = h(vy), Thus, we get

h(vig) = (I Jp)h(ve) (17)
Therefore,

V(vis1) = h(vigr) ' X h(vigs)
h

Therefore, with G(v,0)" X 1G(v,0) X '«+0,D /{,
we have V(vir1) V(vy) < 0 as long as h(vy) ¥ 0,
which means the Lyapunov function is decreasing along
the system trajectory. Lastly, recall that g¢; g, (v;) = 0 for
v; / [, 0], so V(vep1)  V(vi) =0 implies that v / S,.
Given that G(v,0) = I + Ia7 X 9%, the stability condi-
tion becomes
(IJFIATXafu)TXil(IJrIATXafu) X 1+«0
ov ov ’
Because of the decentralized characteristic, g—g is a diag-
onal matrix. Expanding the multiplication terms, we get
the stability condition as

2
(21)
By LaSalle’s Invariance Principle and the fact that
limy 00 \go(v)\ = €, the stability constraint is summa-
rized in Theorem 1. O

Appendix B: Experimental Details

We use Pytorch to build all RL models. Table VI show
the hyperparameters for of the methods. The linear policy
only has one parameter which is the slope, and it is op-
timized with the same RL framework. The Stable-DDPG
requires monotonicity of the policy network, which leads
to a specially designed one-layer monotone neural network.
The Q network of all three baselines and the policy
network of the DDPG are designed as three-layer fully
connected neural networks, the numbers of hidden units
are listed in the following table. More details about the
simulation setup and model hyperparameters for all the
testing cases can be found in https://github.com/JieFeng-
cse/Stable-DDPG-for-voltage-control.

Hyper-parameters DDPG Stable-DDPG Linear
T Ty —1
=h(ve) (I Jn)" X7 (I Jn)h(ve)  (18) :
Policy network 100-100 100 1
_ Ofu Ofu Ou : Q network 100-100 100-100 100-100

We denote G(v,0) = S + B oy a8 the Jacobian of the Discount factor (A) 0.99 0.99 0.99
closed—loop voltage dynamics. and we then define Jg = Q network learning rate 2¢ 4 % 4 2 4
Doiti MG (Ve + ki(viegr Vi), 0), where k; and \; follow Maximum replay buffer size 1000000 1000000 1000000

ape s 5 2 2 2
the definition of .J,. From the definition of .J, and h(v,),  Target Q I};t:vfk-update ratio 12656 12656 12656

atch size

we have Jg =1 Jy. Thus we get Activation function ReLU ReLU ReLU

V(Vt+1) V(Vt) = h(Vt)T(JgXilJG Xﬁl)h(vt) (19)
With Jensen’s inequality, Dr / R"™, we further have
2T JEX " Vgr =\X 12 Jqx\?

TABLE VI: Algorithm Hyperparameters

=\ NXTV2G((vi + Ki(Visr ve),0)a\?

=1

ZZ/\i\X_l/QG(Vt =+ ki(vt+1 Vt),e)l‘\Q
=1

= Z Nal G(vi +ki(vigr  ve),0)TV
=1

X'G(ve+ ki(vegr Vi), 0), (20)

1We use shorthand v;1 instead of v(t+41) to simplify the notation
throughout the proof.
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