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Abstract

The goal of causal mediation analysis, often described within the potential outcomes framework, is to decompose the
effect of an exposure on an outcome of interest along different causal pathways. Using the assumption of sequential
ignorability to attain non-parametric identification, Imai et al. (2010) proposed a flexible approach to measuring medi-
ation effects, focusing on parametric and semiparametric normal/Bernoulli models for the outcome and mediator. Less
attention has been paid to the case where the outcome and/or mediator model are mixed-scale, ordinal, or otherwise
fall outside the normal/Bernoulli setting. Ve develop a simple, but flexible, parametric modeling framework to accom-
modate the common situation where the responses are mixed continuous and binary, and, apply it to a zero-one inflated
beta model for the outcome and mediator. Applying our proposed methods to the publicly-available JOBS Il dataset, we
(i) argue for the need for non-normal models, (ii) show how to estimate both average and quantile mediation effects
for boundary-censored data, and (iii) show how to conduct a meaningful sensitivity analysis by introducing unidentified,
scientifically meaningful, sensitivity parameters.
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I Introduction

Mediation analysis is conducted across many scientific fields to understand the underlying mechanisms behind cause
and effect relationships; examples include epidemiology, economics, and social science. Causal mediation analysis, often
couched in the potential outcomes framework,'?> decomposes the effect of an exposure on the outcome along different
causal pathways. A schematic depiction of a standard single-mediator model is given in Figure 1. In this diagram, 4 denotes
the exposure for the observational unit, ¥ denotes the outcome, and M denotes a mediator which may be on the causal path-
way from the exposure to the outcome. When the mediator is accounted for in the relationship between 4 and Y, we measure
a direct effect (¢'), while when the mediator is ignored we measure the fotal effect (¢). The indirect effect of the exposure
through its effect on the mediator uses pathways a and b to affect the outcome.

While most works on mediation analysis have focused on the case where the mediator and outcome are continu-
ous/normal or Bernoulli distributed, in our experience, it is common that one (or both) of the mediator or outcome will
have a mixed-scale support. In this article, we focus on the case where the mediator and outcome are mixed continuous
and discrete random variables; in particular, we assume that they have a continuous distribution on (0, 1) with mass at
the boundary points 0 and 1. We argue that, particularly when taking a parametric Bayesian approach to estimation, it is
important to adequately model the data, both for the purpose of reducing bias and to adequately account for uncertainty in
effect estimation. To meet this challenge, we develop a general framework for performing causal mediation analysis with
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Figure 1. Schematic depiction of a causal structure with a single variable M mediating the effect of the treatment A on the outcome
Y. Top: the causal structure ignoring the existence of the mediator. Bottom: the causal structure with the mediator included.
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Figure 2. Empirical distribution of (left) measured depression level (right) measured job-search self-efficacy at the end of study.

mixed-scale data. In principle, this framework can be used regardless of the model for the observed data, and we use a
zero-one inflated beta regression model to illustrate.

For the sake of reproducibility, we focus on the JOBS II study of Vinokur et al.,? for which a subset of data is available
in the mediation package in R. A description of this dataset is given in Section 2.1. Imai et al.! present several analyses of
this dataset, essentially operating under the assumption that the mediator (a measure of self-efficacy in finding a job) and
the outcome (a measure of depression) are normally distributed. As shown in Figure 2, however, it is apparent that neither
the outcome nor the mediator is well-described by a normal distribution; both exhibit skewness and there is a substantial
mass at the boundary values of 1 for depression and 5 for self-efficacy.

An additional challenge with mixed-scale models is assessing the sensitivity of inferences to untestable assumptions. As
with most estimands in causal inference, it is well-known that the causal mediation effects are not identified on the basis of
the observed data distribution alone, and can only be consistently estimated under additional (unfalsifiable) assumptions.
A useful benchmark assumption is sequential ignorability (SI, Imai et al.!), which essentially rules out the existence of
unmeasured confounders. We found performing sensitivity analysis in the mixed-scale setting to be challenging, as to the
best of our knowledge none of the existing proposals for sensitivity analysis can be applied directly. For example, the
approaches proposed by Imai et al.! are justified by a linear structural equation model (LSEM, Baron and Kenny*), which
is not applicable in this setting. Similarly, the limited work with non-continuous or categorical data>° also does not apply
directly to the mixed-scale setting. We develop a pair of widely-applicable sensitivity analysis strategies that accomplish
the two goals of (i) assessing the extent to which our conclusions are driven by unmeasured confounding and (ii) neither
imposing any additional restrictions on, nor adding information about, the distribution of the observed data. Our second
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goal is part of a recent trend in causal inference and missing data research of proposing sensitivity analyses that clearly
and unambiguously separate the (parametric) assumptions used to model the observed data from the assumptions used to
identify the causal effects of interest.>-7-10

I.I Review of existing methods

The traditional approach to mediation analysis uses structural equation modeling (SEM) to quantify mediation; linear
structural equation models (LSEMs) are particularly popular.'! However, LSEMs do not generalize easily to non-linear
systems.'? Additionally, Imai et al.! make the point that the identification assumptions used in LSEMs are inexorably
tied to the choice of parametric model, stating: “[because] the key identification assumption is stated in the context of a
particular model, [it is] difficult to separate the limitations of research design from those of the specified statistical model.”
Motivated by this argument, Imai et al.! proposed a more general approach to mediation analysis using a potential outcomes
framework, introduced the nonparametric assumption of sequential ignorability to identify the effects, and showed that the
single mediator LSEM is a special case of the potential outcomes framework that is valid as long as the linearity assumption
holds.

There is a rich literature addressing the causal mediation problem from the semiparametric perspective. An emphasis
in this literature is the development of methods that are both statistically efficient and multiply robust in the sense that
they produce consistent estimates even if one of several models required for estimation are misspecified.'>'* An advantage
of these approaches is that one can easily use them with modern machine learning methods via cross-fitting.!> To the
best of our knowledge, however, these methods have not been developed in the context of mixed-scale data. Bayesian
nonparametric and semiparametric models based on infinite mixture models have also been proposed,'® although not for
mixed-scale data.

A variety of models have also extended beyond continuous/binary models for the mediator and outcome. These include
models for the zero-inflated count, survival, and ordinal data, as well as quantile regression models.®!7-1%!

1.2 Contributions

We make the following contributions in this article. First, we describe how to implement the g-formula for computing both
mean and quantile causal effects for generic mixed-scale models under the sequential ignorability assumption. Second, we
illustrate these concepts using a zero-one inflated beta regression model and argue for its appropriateness on the benchmark
JOBS II dataset. Third, we show how to conduct a principled sensitivity analysis to check the sensitivity of our conclusions
to the untestable sequential ignorability assumption; the sensitivity parameters we introduce are designed to be unidentified,
so that varying them does not affect the distribution of the observed data. We show how to introduce sensitivity parameters
that are shifts of the mean on either a linear or logit scale; both of these approaches are very easy to incorporate into our
models by post-processing the model fit. These mean-shift assumptions are weaker than the usual sequential ignorability
assumption in that they only identify the mean of the potential outcomes rather than their whole distribution, but include
the results of sequential ignorability as a special case.

We also present a flexible zero-one inflated beta (ZOIB) model'® for mediation analysis with boundary-censored data
and show how to perform inference with this model. The ZOIB models we use here are conceptually related to other
zero-inflated models, such as the zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), zero-inflated gamma
(ZIG), and zero-inflated log-normal (ZILN). See Zuur et al.?’ for a review of zero-inflated models for count data and Liu
et al.?! for semicontinuous zero-inflated models. Like the ZIG and ZILN (and unlike the ZIP and ZINB) models, the ZOIB
model is semicontinuous, as the boundary points 0 and 1 occur with probability 0 in a standard beta regression model.
These models are cast as a covariate-dependent mixture model, with the ZOIB being a mixture of a beta distribution
and a Bernoulli distribution (where the parameters of the beta and Bernoulli distributions themselves are also covariate
dependent).

A Bayesian implementation of this model is given at www.github.com/theodds/ZOIBMediation. Our model is imple-
mented in Stan, with both the average and quantile causal mediation effects computed using a Monte Carlo implementation
of the g-formula. The Bayesian framework provides a straightforward approach to incorporating uncertainty in the sensi-
tivity parameters through the use of informative priors, which can be elicited from subject-matter experts.?? In principle,
however, one could also apply Frequentist inference using the nonparametric bootstrap.>?

1.3 Outline

In Section 2 we review the potential outcomes framework for mediation analysis and argue for the use of mixed-scale
models on the JOBS II dataset. In Sections 3 and 4 we present our framework for causal mediation analysis, show how
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to compute the mean and quantile mediation effects, and develop our zero-one inflated beta regression model. In Section
5, we present two alternative assumptions to sequential ignorability which allow for a sensitivity analysis, and show that
these assumptions identify the average causal mediation effects. In Section 6, we illustrate our methodology on synthetic
data and real data. We conclude in Section 7 with a discussion. Proofs are in the Appendix. Some additional algorithms,
additional sensitivity analyses, and Markov chain Monte Carlo diagnostics are given in the Supplemental Material.

2 Notation and definitions of causal effects
2.1 JOBS Il dataset

For the sake of reproducibility, we motivate concepts and illustrate our methods on a subset of the JOBS II dataset® which is
available publicly in the mediation package in R. The JOBS II data was used to evaluate the potential benefits of participa-
tion in a job-search skills seminar in southeastern Michigan. Subjects were recently unemployed adults during 1991-1993.
Participants were pre-screened and classified according to their risk of depression and anxiety. High-risk participants, along
with a random sample of low-risk participants, were invited to participate in the study. Prior to the seminar, questionnaires
were sent out to the respondents. The questionnaires covered a range of topics about the respondent, including their loss of
employment, the quality of work-life at their previous job, their health problems, and their history of substance abuse. The
primary baseline covariates, which we denote as X;, include measures of depression at baseline, education, income, race,
marital status, age, sex, previous occupation, and level of economic hardship. The participants were randomly assigned
to treatment and control groups. The treatment group, 4, = 1 was assigned to attend a seminar that taught participants
job search skills and coping strategies for dealing with setbacks in the job hunt. The control group, 4, = 0, received
a booklet of job search tips. Prior to measuring the outcome, but post-intervention, researchers measured an underlying
mechanism in the relationship between the intervention and outcome. This mediator was a continuous measure of job
search self-efficacy, M;. In this study, two outcomes were measured: a continuous measure of depression using the Hopkins
Symptom Checklist** and a binary variable for employment at the follow-up time. We will focus on the continuous measure
of depression, Y.

Even for a benchmark dataset like the JOBS II data, which has been analyzed using LSEMs,! there is overwhelming
evidence that neither the outcome nor the mediator are normally distributed. The observed values of the outcome and
mediator, which are supported on [1, 5] and highly skewed, are displayed in Figure 2, and it is apparent from the figure that
the assumption of (say) a normally distributed error is untenable.

2.2 The potential outcomes framework

Using the potential outcomes framework, the causal effect of the job training program can be defined as the difference
between two potential outcomes. One potential outcome is realized if the subject participates in the training program and
the other is realized if the subject does not.

Associated with the outcome and the mediator are potential outcomes that would have been observed had the treatment
assignment has been different. A potential outcome is defined as the outcome which would have been observed under an
exposure a participant did not actually receive. We let M,(a) denote the value of the mediator had the treatment has been
assigned to the value a; in terms of the JOBS II study, this is the self-efficacy which would have been realized had the
treatment for individual i had been fixed at either receiving the treatment (a = 1) or not (¢ = 0). Similarly, we let Y;(a, m)
denote the value of the outcome that would have been realized had the treatment for individual i been fixed at a and the
mediator fixed at m; in terms of the JOBS 11 study, this is the depression level which would have been observed at a given
level of self-efficacy under the two treatments.

We link the potential outcomes to the observed data through the comsistency assumption that M; = M;(4,) and ¥; =
Y {4,,M(4;)}. The primary challenge in estimation of the mediation effects, that is, the effects of changes of M; and 4; on
Y,, lies in the fact that we cannot observe the counterfactual outcomes Y,{4;, M,(1 — 4,)}, as this would require observing
what would have happened under both 4; = 1 and 4; = 0.

Throughout, we assume that the distribution of the potential outcomes, the mediator, and the exposure is distributed
according to a distribution f, in some parametric family {f, : & € ©}. Abusing notation, we use f, as the conditional and
marginal density/mass functions as needed, with its meaning inferred from context; for example, fp(4;, = a | X; = x) =
fo(a | x) denotes the probability of 4; = a given X; = x.

2.2.1 Sequential ignorability
As a starting point for identifying the causal effects of interest we will use the sequential ignorability assumption of Imai et
al.! For subject 7, let 2 be the support of the distribution of X; and let . be the support of M,. The SI assumption imposes



Rene et al. 1253

the following restrictions on the model parameterized by an unknown 9:

(Y@ m), M(@) L4, X, =x,8 and (SI1)
Yid',m) L Mia) | 4, = a,X; =x,0 (SI2)

for all a,a’ = 0,1 and x € 2, where the expression [U L V' | W = w] means that U is conditionally independent of V'
given W = w. Additionally, we require the overlap condition (SI3) that Pry(4; = a | X; = x) > 0 and fy{M;(a) = m |
A;=a,X; =x} >0, forall m € /. In words, SI1 states that, given the observed confounders, the treatment assignment is
independent of the potential outcomes Y;(a’, m) and M,(a); this will hold whenever the treatment assignment is randomized.
On the other hand, SI2 states that the assignment of the mediator does not affect the outcome, given the observed treatment
and pre-treatment covariates. Of the two assumptions, SI2 is generally the more problematic; for example, in the JOBS II
study, the job-search self-efficacy is not randomized by study design, so that SI2 makes the unfalsifiable assertion that all
common causes of M;(a) and Y;(a, m) have been measured.

2.2.2 Causal mediation effects
We define the following causal mediation effects>®?> using the JOBS II study for context. The natural indirect effect (NIE),
also called the causal mediation effect, is defined fora = 0, 1 as

6i(a) = Yi{a, Mi(1)} = Y;{a, M,(0)}

For example, in the JOBS 1II study, 6,(0) is the effect of increasing/decreasing a subject’s self-efficacy from their baseline
level to the level we would have observed had they attended the seminar, holding fixed that the subject did not attend the
seminar. The natural direct effect (NDE) is defined fora = 0, 1 as

¢i(@) = Yi{1,M(a)} = Y;{0, M(a)}

For example, in the JOBS II study, {;(1) is the difference between the two potential depression levels for sub-
ject i according to whether they participated in the job training seminar or not, under the assumption that their
job search self-efficacy is held constant at the level which would have been observed if they had attended the
seminar.

Because we cannot observe Y;{a, M;(a’)} when a # d’, we cannot directly observe either 6;(a) or ¢;(a). Nevertheless,
under sequential ignorability we can estimate the average mediation effects

6(a) = Ey[Y{a, M;(1)} — Y{a, M;(0)}] and

(1
C(a) = BylYi{1,M(a)} - Y;{0, M (a)}]

The mediation effects 6(a) and {(a) decompose the average total effect v = E,[Y,{1,M,(1)} — Y;{0,;(0)}] in the sense
that 6(1) + £(0) = 6(0) + £(1) = 7. The total effect is analogous to the usual average causal treatment effect (ATE) of the
treatment assignment.

Under sequential ignorability, Imai et al.! showed that the distribution of the potential outcomes Y;{a, M;(a’)} for any
a,d’ is nonparametrically identified as

Jo (Yila,M(d)} =y | X; = x)

@
= [ 0= 1M, =ty = 0. X, =01, = | = X =) d
M

for all x € 2. The marginal distribution of Y,{a, M,(a’)} is then ffe(Yi{a,Mi(a’)} =y | X; = x) Fy(dx) so that it (along
with the average direct and indirect effects) is also identified. While there usually will not be a simple analytical expression
for (2), it is nevertheless easy to approximate (2) using Monte Carlo integration; this approach was popularized by Robins?’
as a tool to implement the g-formula in causal inference.

While the average causal mediation effects are the most commonly studied, one may also be interested in causal effects
on other aspects of the distribution of the outcome. Let O, (Z) denote the g™ quantile of a random variable Z. Then the
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Figure 3. Kernel density estimate (gray) and fitted beta distribution (solid black) of the distribution of Y; and M; conditional on
Y& {0,1}and M; & {0, | }.
quantile mediation effects at the quantile g are

5,(@) = Q1Y {a, M()}] - Q,[¥{a,M,(0)}]  and

£,(@) = O,[Y,{1, M{(@)}] - O,[¥,{0, M(a)}].

)

Because (2) fully identifies the distribution of Y;{a, M,(a’)}, the quantile mediation effects are also identified under SI. We
note that, rather than the difference in the quantiles, one might be tempted to define 5,(a) = O,[Yi{a, M(1)} =Y, {a, M;(0)}]
(and similarly for ¢, (a)), which represents the causal mediation effect as a quantile of the differences. There are two issues
which arise from doing this. First, SI is not sufficient to identify J,(a), as SI does not identify the joint distribution of
the potential outcomes. Second, we lose the decomposition property 7, = §,(a) + ¢ (a’) so that the mediation effects no
longer serve as a decomposition of the total effect. The terms 6,(a) and ¢ (a) as defined in (3) do have a compelling causal
interpretation: rather than representing a causal effect on the individual level, they capture the causal effect on the quantiles
from shifting the entire population from untreated to treated.

3 Observed data models for zero-one inflated data

Estimating the causal mediation effects under SI requires only that we estimate the distribution of the observed data. Without
loss of generality, we assume that Y; and M, can be rescaled to lie in the interval [0, 1]; for the JOBS II dataset, this can be
done with the transformations ¥; « (¥; —1)/4 and M, < (M, — 1)/4, as the measures of depression and self-efficacy were
measured on a scale from 1 to 5.

A flexible distribution for zero-one inflated data on [0, 1] is the zero-one inflated beta (ZOIB) distribution, which we
denote by ZOIB(«, y, u, ¢). If Z ~ ZOIB(a, v, u, ¢) then Z is a mixed discrete-continuous random variable such that

Pr(Z=0)=a
Pr(Z=1|Z+#0)=y  and 4)
[Z | Z & {0,1}] ~ Beta{ug, (1 — p)p}

The parameterization of the beta distribution in (4) is chosen so that y is the mean of the beta distribution, that is, E,(Z |
Z ¢ {0,1}) = u. The mean of the ZOIB(a, v, u, ¢) distribution is given by

Ee @D =0-a)y+1-a)d-y)u ®)

Figure 3 shows that the beta distribution is effective at modeling the shape of the data for the continuous part of the JOBS
1I data, while the parameters « and y allow for an increased chance of observing the boundary values Z; = 1 and Z; = 0.
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Our ZOIB model assumes that [Y; | M; = m,4; = a,X; = x] ~ ZOIB(a!,y}, u},¢}) and [M; | 4, = a,X; = x] ~

ZOIB(aM, yM, uM, ¢M). We model the parameters of these ZOIB distributions with generalized linear models of the form

logit(a]) = (X, M)TAy (A4, logit(y)) =X, M)"B)(4))

6
logit(y;) = (X, M)T B, (4), log(d)) = (X, M) By (4) ©
The dependence of the f’s on 4; is included to allow for heterogeneous effects of the covariates and mediator; the homo-
geneous model is included as a special case where only the intercept varies with 4,. Similar models are specified for
(@M, yM, uM, M), As a default, all of the regression coefficients are given flat Normal(0, 72) priors, where 72 is taken to
be large after centering and scaling the covariates .X; (except for the intercept) to have mean 0 and standard deviation 1.

To estimate the mediation effects we also require a model for the distribution Fy of the covariates. As a default, we
assume that Fy is discretely supported on the observed values of the X;’s, that is, Pry(X; = x;) = w; where (x,, ..., xy) are
the observed values of the covariates. We then specify an improper Bayesian bootstrap® prior for w = (®,, ... ,wy), that is,
z(w) =[], wi‘l . After observing the data, the posterior distribution of w is Dirichlet(1, ..., 1), and can be sampled exactly.

Specifying a Bayesian bootstrap prior for F, avoids the notoriously difficult task of estimating F'y via density estimation,
and has been shown in other settings to result in improved theoretical properties of Bayesian causal inference methods.?’

4 Posterior computation and inference

We divide inference into two steps:

1. Draw a set of approximate samples 6, ..., 8 from the posterior distribution of 6.
2. For each 6,, compute 6(a), {(a), and 7, yielding approximate samples from the posterior distribution for these mediation
effects.

For the first step, we use the probabilistic programming language Stan, which implements an adaptive version of
Hamiltonian Monte Carlo (HMC) to sample 6,’s.>" The sole exception to this sampling scheme is that we sample
@ ~ Dirichlet(1, ..., 1) directly from the posterior distribution.

4.1 Average mediation effects

Due to the nonlinearities of the ZOIB model, the mediation effects 6(a), {(a), and = are not available in closed form and
must be approximated. To compute the mediation effects, we use a Monte Carlo implementation of the g-formula. The
idea is to note that, because (2) identifies the distribution of ¥;{a, Mi*(a’ )} for all a, a’, we can simulate K new realizations
Y*{a,M*(d")} fori=1,...,N from the model, in which case

5a@) ~ K™Y oV {a, ME()} = Yi{a, ME(O)}]  and
ik

-1 * * * * (7)
(@)~ K7 Y oYL M @) = Y10, M}(@)}]
ik

are unbiased estimators of 6(a) and {(a). The approximations in (7) are less efficient than using the true values 6(a) and {(a)
because they contain Monte Carlo error, but are conservative in the sense that using them results in valid inference. The
approximations can be improved by using various tricks to eliminate the Monte Carlo error. One improvement is to notice
that we can decrease the variance of (7) by replacing Yl’,: {a,Mi’,: (')} with the conditional expectation [EH[YiZ {a,Ml.’I: (@)} |
M*(d'), X;]; for the ZOIB model, this is given by (1 — &)y} + (1 — a))(1 = y})u) where a),y} and p} are given by (6)
with 4; evaluated at @ and M; evaluated at M (a").

The Monte Carlo integration strategy is summarized in Algorithm 1, and it applies to any model. In Algorithm 2, we
give the special case of our ZOIB regression models. In these algorithms, F (u | 4; = a,X; = x) = inf{m : Fy,(m | 4, =
a,X; = x) > u} denotes the generalized inverse of the cumulative distribution function of [M; | 4; = a,X; = x].

4.2 Quantile mediation effects

Equation (2) can also be used to form a Monte Carlo estimate of the quantile mediation effects, although the implementation
is somewhat more subtle. If we have a sample of Yl’]: {a,M*(a’)}’s from the marginal density f,(Y;{a, M;(a’)} = y) then we
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Algorithm 1 Monte Carlo g-formula estimate of average causal effects.
Input: 6,K, {X;}¥
: Sample w ~ Dirichlet(1,...,1)
fork=1,...,Kandi=1,...,Ndo
Sample U;; ~ Uniform(0, 1)
Set M (a) = F,,(Uy | 4=a,X =X,,0) fora=0,1.
Set Yi:{a,MiZ(a’)} =E{Y; | M; = M} (d'),4; = a,X;} fora,a’ =0, 1.
end for A
Approximate 6(a), {(a), T with 6(a), {(a), T, respectively, where

NS R R e

8la) =K' Y oY} {a, M} (1)} = Y} {a, M} (0)}]
ik

L) =K' Y oY {1, M} (@)} - Y {0, M} (@)}]
ik

2=K' Y oY1, M (D)} = Y0, M} (0)}]
ik

fora = 9, 1 A
8: return {5(0), 6(1),£(0),¢(1),7}

can approximate its ¢ quantile as 0,(F,»), where F,, is the empirical distribution of the Yl: {a,M(d")}’s and O,(F)is
the ¢™ quantile of F. We can then calculate (3) using the approximation

5q(a) ~ Qq(l]:a]) - Qq(ﬂ:ao) and Cq(a) ~ Qq(”:la) - Qq([FOa) (3)

Note that for this to be valid we must sample the covariates Xl.’]:’s used to generate M7 (a’) and Yl.:{a, M (a")} according to
w;, rather than averaging over w as in (7). This results in higher Monte Carlo error in (8) than in (7).

Reducing Monte Carlo error in (8) can also be done, although it requires different strategies; for example, it is no
longer valid to replace Yl: {a, M;(a’ )} with its mean. One may take K very large, but this can substantially increase com-
putation time. Another trick is to construct the joint distribution of {¥{a,M(a")} : a,a’ € {0,1}} in a way which
makes the potential outcomes highly correlated. Interestingly, because (3) depends only on the marginal distributions of
the potential outcomes, it is invariant to our choice of joint distribution; hence, this does not actually imply any addi-
tional restrictions on the model. To ensure a strong dependence between the Yi*{a,Mi*(a’ )}’s, we simulate M[*(a) and
Y*(a,m) to be comonotone,’! that is, we simulate U,V ~ Uniform(0, 1) and apply the probability integral transform to
get M*(a) = F,(U | 4; = a,X;) and Y {a,M}(d")} = F;(V | M; = M(d'),4; = a,X,) (note that the same U and V/
are used for different values of @ and @’). This, combined with taking K to be modestly large (say, K = 10) is sufficient to
effectively eliminate the Monte Carlo error.

Our general algorithm for approximating the quantile mediation effects is given in Algorithm 3, with the extension to
the specific setting of the ZOIB model being derived in the same way Algorithm 2 was derived from Algorithm 1.

4.3 Assessing the Monte Carlo error

Linero® introduced a method for computing and (in the case where the effects are approximately normal) correct-
ing for the Monte Carlo error in the types of estimators we have proposed; code for implementing this is available at
www.github.com/theodds/AGC. This approach requires K > 1 and, in all cases we have considered, the Monte Carlo error
is negligible for K = 2. Linero?? also shows that naive estimators that are not designed to eliminate Monte Carlo error can
be very inefficient unless K is taken rather large (say, K > 10).

5 Sensitivity analysis

Because SI is an untestable assumption, it is essential to assess the extent to which the conclusions of an SI-based anal-
ysis are sensitive to the existence of unmeasured confounders, that is, SI2. Accordingly, we now present a framework for
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Algorithm 2 Monte Carlo g-formula for ZOIB model.
Input: 6,K, (X}

1: Sample w ~ Dirichlet(1, ..., 1)

2. fork=1,...,Kandi=1,...,Ndo

3: Sample U ~ Uniform(0, 1)

4 fora=0,1do

5 Compute logit a” « X7 (a), logit y™ « X;ﬂ;"[ (a),
logit uM « XiTﬁﬁ”(a), log ¥ « X;ﬂ;’[(a).

6: Set
0 ifU < a,
Mi(@) <41 iU > 1—(1—ayM,
FRl AU | uM M, (1 — ™M} otherwise

where U’ = (U — a)/[(1 — a™)(1 — y™)].
7: fora’ =0,1do

8 Compute logit a” « (X;, M} (a))" Y (a),
logit y¥ « (X, M} (a))" ) (d),
logit ¥« (X, M(a)T B2 (@),
log ¢« (X, My:(@)" p3 ().
9: Set Yl.’;(a’,MiZ(a)) (0 =-ayl+1-aHd -yHpu.
10: end for
11: end for
12: end for

13: Approximate 6(a), {(a), T with g(a), Z? (a), T, respectively, where
5la) = K™ Y oyl ¥ {a, M (D)} = Y {a, M (0)}]
ik
@ =K Y oV {1, M} @) = V{0, My (@)}]
ik

F=K"' Y o Vi{1LMi(D)} - V{0, M;(0)}]
ik

for a :9, 1 A
14: return {5(0), 6(1), £(0), (1), 7)

performing sensitivity analysis using the mixed-scale models we have developed. Without loss of generality, we assume
that the data has been scaled so that both Y;(a, m) and M;(a) take values in [0, 1]. As a guiding principle, we require that
any sensitivity parameters be pure in the sense that varying them does not alter the fit of the model to the data. This allows
us to independently assess (i) goodness-of-fit for the observed data model and (ii) the impact of SI2 failing.

5.1 Sensitivity on the logit scale

We propose an approach to sensitivity analysis that allows for dependence between Y;(a, m) and M,(a) even after accounting
for X; and 4,. We replace assumption SI2 with the following two assumptions:

SI2A Conditional on X;, the potential outcomes A;(0) and M,(1) are jointly distributed according to a Gaussian copula
with correlation p € [0, 1]. More precisely, we have M;(a) = F; {®(Z,,) | 4; = a, X; = x} where F (u | 4; = a, X; = x)
denotes the generalized inverse cdf of M; given 4, = a and X; = x, and (Z, Z;) is jointly standard normal with
correlation p.
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Algorithm 3 Monte Carlo g-formula estimate of quantile causal effects.
Input: 6,K, {X;}¥

1: Sample w ~ Dirichlet(1,...,1)

2. fork=1,...,Kandi=1,...,Ndo

3 Sample X} = X; with probability w;

4 Sample Uy, V;, ~ Uniform(0, 1)

5: Set M (a) = F,,(Uy | A=a,X =X},0) fora=0,1.

6 Set Yi’]:{a,]\/[i:(a’)} =F,(Vy |M= Ml,:(a’),A =a,X =Xl,’,:,6’) fora,a’ =0,1.
7: end for R R

8: Approximate 5,(a), 8, (a), 7, with ,(a), ¢, (a), ?q, respectively, where

5,(a) = 0,(F,) — O,(Fy)
E(@ =0,F,) - 0,F,)
:Eq = Qq(ﬂ:ll) - Qq(U:OO)

fora = 0,1, where F,,, is the empirical distribution of the ¥ {a,MiZ (a)}’s.
9: return {3,(0),5,(1),£,(0),5,(1),7,}

SI2B Conditional on X}, M;(0), and M,(1), the mean of Y;(a, m) is given by
Eo{Yi(a,m) | Mi(a), M(d'),X;} = expit[logit r,(m,a,x) + A{My(a) — m}]
where ry(m,a,x) = Ey(Y; | M, =m,A4; = a,X; =x).

SI2B has been chosen specifically so that it reproduces the inferences under SI2 when A = 0 while leaving the sensitivity
parameters A and p unidentified so that they can be varied freely without changing the fit of the model to the data. The
most closely related sensitivity analysis framework which we are aware of is the “hybrid” approach of Albert and Wang,’
although this approach differs importantly in that the hybrid approach replaces the term A{M;(a) — m} with a term of the
form A(a — @’), which is similarly designed to drop out of the distribution of the observed data.

To motivate the choice of SI2B (in particular, the term M;(a) — m), we note that a natural way to induce correlation
between the potential mediators and outcomes is to add an additional linear term to the regression model; that is, if we (for
the sake of simplicity) replace our ZOIB model with a logistic regression model for the mean, we could incorporate M,(a)
into the linear predictor as ] + X, B} + a B + m B!, + A M,(a), with the term A M,(a) capturing any association due to
unmeasured confounding between Y;(a, m) and M,(a). The issue with using this expression directly is that 4 is confounded
with ﬁ/\Y4; adding and subtracting A m, however, gives

By + X By +apy +m (Bl + 1)+ A{M(a)—m}

Because M;(4;) — M;(4;) = 0, the term A {M,(a) — m} disappears from the distribution of the observed data; consequently,
only the term ﬂ;; + A is identified. Our decision to write our assumption as in SI2B (with A m subtracted off explicitly) only
has the effect of reparameterizing the above model in terms of the identified parameter ,BVZ + A. While this argument only
holds exactly for the logistic regression mean model, the intuition is the same for generic models: subtracting A m allows
us to parameterize the distribution of the observed data with identifiable parameters.

The following proposition establishes that E,[Y;{a, M;(a’)}] is identified for all a, a’ so that the average causal mediation
effects are also identified. A proofis given in Appendix 7.

Proposition 1. Suppose that SI1, SI2A, SI2B, and SI3 hold. Then we have

EplY;{a, M(d)}] = /// expit {7,(m’, a,x) + A(m —m")}
x Normal{(z,z,)" | (0,0)7,X} dz, dz, Fy(dx)
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where7y(m,a,x) = logitr,(m, a,x), £ = (ll, 'f) and we define m' = F, (®(z,) | 4; = d',X; = x) and m = F, (®(z,) | 4; =
a,X; = x} in the integral.

As in Section 4, there is no analytical expression for E,[Y;{a, M;(a’)}], and hence we must resort to Monte Carlo
integration. Fortunately, by noting that the approximation

EolY {a, Ma)) % K™Y o, expit[F, (M} (a), 0, X;) + A{M} (@) ~ M (@)}]
ik

is unbiased, it is straight-forward to modify Algorithm 1 to compute E,[Y;{a, M;(a’)}] under this assumption as well.
A procedure for computing the mediation effects under SI2A and SI2B is given in Algorithm S.1 of the Supplemental
Material.

As there is no information in the data about the sensitivity parameters p and 4, it is essential that we are able to elicit
plausible ranges for their values. To gain better intuition about the role of A, suppose that we had instead posited the logistic
regression model logit r,(m, a,x) = f} +x'fy +a p} +m ). In this case, we can rewrite

logit Eg{Y,(a,m) | Mja), M), X;} = B +x" By +afy +m (B}, — 1)+ Ma) 4

In words, 4 = 0 (which produces the same inferences as SI2) attributes the entirety of the association between M; and Y;
to a causal effect ﬂAY4 from shifting the value of m in the potential outcome Y;(a, m). When A # 0 this association is instead
parsed into an effect of size (ﬂj; — A) for shifting m in Y,(a,m) and a residual association of size A between Y;(a, m) and
M,(a), above-and-beyond the causal effect of shifting m due to unmeasured confounding. In the absence of subject-matter
expertize about the likely values of 4, one can use weak prior knowledge about the magnitude of the mediation effect to
narrow down the range of plausible values. In the JOBS II study, we do this by constructing a pilot estimate of r,(m, a, x)

of the form logit ?y(m, a,x) = //ig +xT //3}’ +a ﬁ}; +m /}; In most cases, we feel that it is reasonable to assume that the effect

of unmeasured confounding will not dominate the causal effect associated to m, so that 4 € [—ﬁ};, //3}4] is a conservative
collection of plausible values of A.

The parameter p measures dependence in the mediator process M;(:). Since |p| < 1 and is typically believed to be
positive, we recommend repeating the sensitivity analysis for a small number of p’s in [0, 1]. For the JOBS II data, we
consider p € {0,0.5,0.95}, with the results for p € {0, 0.5} given in the Supplemental Material.

Remark 1. The use of copulas in SI2A bears a passing resemblance to our use of comonotone random variables to reduce
Monte Carlo error in Section 4. In this case, however, the choice of p does impact the model, and so we can no longer
reduce the Monte Carlo error by making Ml,:(a) and Mi:(a’ ) comonotone.

Remark 2. In the Supplemental Material, we provide a scheme for performing sensitivity analysis on a linear, rather than
logit, scale. The linear scale sensitivity analysis has the advantage of not requiring the specification of p.

6 lllustrations
6.1 Application to JOBS II

We apply our methodology to the JOBS II dataset using SI as a benchmark. As potential confounders we include numeric
variables measuring economic hardship (econ_hard), baseline depression (depress1), and age (age), as well as the
categorical variables measuring (sex), race (nonwhite), income bracket (income), occupation (occp), marital status
(marital), and education level (educ).

We posit generalized linear models for each component of the ZOIB models with a homogeneous effect for the treatment
and mediator. That is, we use linear predictors of the form Xl.T M +6M 4, for the mediator and linear predictors of the form
XiT BY + 0¥ 4, + n M, for the outcome (with separate coefficients for each model component). Note that the homogeneity
assumption implies neither that §(0) = 6(1) nor that {(0) = {(1) due to the nonlinearity of the link functions in (6).

The observed data models for M; and Y; are fit using Markov chain Monte Carlo (MCMC) in Stan, with a total of 8000
samples collected over four parallel chains and 4000 samples discarded to burn-in. There is no evidence of failure of the
chains to mix: all traceplots indicate rapid mixing (see Figures S.4 and S.5 in the Supplemental Material), all values of
the Gelman-Rubin diagnostic’? R are effectively 1 (minimum of 0.9991, maximum of 1.003), and the minimal effective
sample size across all of the monitored parameters is 1807.
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Figure 4. Kernel density estimates of the non-boundary proportion of the original data (black) and 100 replicated datasets (red).

Table |. Effect estimates for the JOBS Il data using the zero-one inflated beta (ZOIB) formulation for the outcome (depression)
and mediator (efficacy) assuming sequential ignorability.

Effect Est. SD Lower Upper Z-score P-value
5(0) —-0.0110 0.0108 —0.0330 0.0098 —1.0131 0.3110
s(1) —-0.0102 o.0101 —0.0308 0.0089 —1.0144 0.3104
£(0) —0.0282 0.0403 —0.1065 0.0491 —0.7000 0.4839
40 —-0.0275 0.0400 —0.1058 0.0490 —0.6880 04915
T —0.0385 0.0416 —-0.1202 0.0415 —0.9244 0.3553

We now perform posterior predictive checks to compare the observed data Y; and M, to replicate datasets simulated from
the fitted model. The goal of these checks is to assess how well the fitted model aligns with the observed data. In Figure 4, we
check the fit of the beta distribution to the continuous part of the observed mediator/outcome distributions by comparing a
kernel density estimate of the observed-data distribution of ¥; and M; to 100 replicated datasets sampled from the posterior
predictive distribution; the top row shows density estimates for the depression level under each treatment level for the
continuous part of the data, while the bottom row shows the same for job-search self-efficacy. The posterior predictive
distribution produces datasets that closely match the observed data, suggesting that the beta model for the continuous part
of the data is adequate.

In Figure 5, we check the fit of the logistic regression models to the boundary points 0 and 1 by comparing the observed
proportion of Os and 1s for the outcome and mediator to what is observed in replicated datasets. Again, there is close
agreement between the model and simulated data.

Since the outcomes in the analysis were scaled by the transformation y — %, the causal estimates can be brought back
to their original scale by multiplying the estimates by 4. The results for the average causal mediation effects on the original
scale are given in Table 1.

Although the average causal mediation effect estimates are small (less than a tenth of a point for all effects) and not
statistically significant, all treatment effect estimates are negative, which would imply that participation in the job training
seminar decreased the depression of subjects both directly through their participation in the seminar and indirectly through
the effect of the training seminar on the self-efficacy of participants in finding a job. Of particular interest for us is the
decomposition 7 = 6(0) + {(1), which captures (i) the benefit of increasing self-efficacy generally for those who do not



Rene et al. 1261

Treated Untreated

100

751

50 -

uoissaidaq

25+

“ l‘.l | Value

Frequency
=
o o

754

50+

Aoeoyg

251

000 005 010 045 020 000 005 040 015  0.20
Proportion of Observations

Figure 5. Histograms of the proportions of individuals taking the boundary values 0 (in dark blue) and | (in light yellow) across 100
replicated datasets for the outcome (depression, first row) and mediator (efficacy, second row), separately for the treated and
untreated groups. The proportions of the observed data taking boundary values are given by the pink vertical dashed lines.

receive treatment and (ii) the additional benefit of the seminar above and beyond its effect on increasing a subject’s self-
efficacy. However, there is little evidence for either a direct or indirect effect of the treatment on the outcome; in particular,
the signs of the mediation effects are uncertain. Similar results are obtained for the quantile mediation effects.

6.2 Sensitivity analysis

While there is no evidence for either a direct or indirect treatment effect under SI, we may be concerned that the effects
are being masked by unobserved confounding. We now apply the sensitivity analysis techniques introduced in Section 5 to
assess the impact of unmeasured confounding.

Setting p = 0.95, Figure 6 shows how inferences about the mediation effects change as A is varied across a range of
plausible values. To calibrate A, we fit a linear model to the conditional mean logit E(Y; | M,, 4;, X;) using quasi-likelihood
and then considered values of A no more than twice as large in magnitude than the estimated effect of M, in this model; this
corresponds to the belief that most of the association of Y; with M; should be attributable to a causal effect of the mediator
rather than confounding between the outcome and mediator processes.

From Figure 6, inferences for the direct effects {(a) are robust to unmeasured confounding between Y;(a, m) and M;(a),
while inferences for the indirect effects 6(a) are less robust. When 4 is negative, there is less uncertainty in 6(a), although
the estimates are also pulled towards zero. For larger values of A, the estimates of 6(a) are larger (in magnitude), but also
more uncertain. The substantive conclusion remains the same: there is little evidence regarding the sign of either the direct
or indirect effects.

We provide a more in-depth sensitivity analysis in the Supplemental Material. In particular, we consider both varying p
and a /inear variant of assumption SI2B. While the substantive conclusions don’t change from varying p, we do see that p
interacts strongly with A, with the trends for p = 0, 0.5 being markedly nonlinear.

6.3 Simulation example

We evaluate Algorithm 2 under a variety of different data generating mechanisms based on the JOBS II data. To devise
relevant simulation settings, we first fit our model to the JOBS II data and then modified the estimated coefficients of the
fitted beta-regression model. We consider homogeneous effects for both the mediator and outcome, and write &7 and &7
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Figure 6. Sensitivity of inferences about 6(a) and {(a) to changes in the sensitivity parameter A under assumptions SI2A and SI2B.
The dashed line is the posterior mean, and the bands delimit a pointwise 95% credible interval.

for the estimated coefficient for the effect of 4; on M, and Y, respectively. The following features of the data generating
mechanism were varied.

Sample Size We consider N € {899, 1798}, which is equal to the size of the JOBS II dataset and twice the size of the
JOBS II dataset. R .

Treatment Effect on Mediator We consider ¥ € {0,&M,10&}; the first setting corresponds to no indirect effect of
treatment, the second to a realistic indirect effect of the treatment, and the last to a very large indirect effect on the
treatment. R R

Direct Treatment Effect on the Outcome We consider &' € {0, &7, 10&Y }, the choices of which are analogous to the ones
for the treatment effect on the mediator.

We consider five data generating mechanisms: (1) no mediation, where (£, &M) = (EY, 0); (2) complete mediation,
where (£Y, M) = (0,EM); (3) strong no mediation, where (£¥, M) = (10&7,0); (4) strong complete mediation, where
(&Y, M) = (0,108M); and (5) no modifications, where (&7, &) = (&, EM). For each scenario, we used simulated 200
datasets to compute the bias of the effect estimates, the root-mean-squared error (RMSE), coverage of nominal 95% credible
intervals, and the average length of a nominal 95% interval.

Table 2 summarizes the results for each scenario. For readability, all entries of the table are multiplied by 100. Prior to the
simulation experiment, we computed the true direct, indirect, and total effects using Monte Carlo integration with 90, 799
samples (101 times the size of the original data). For each simulated dataset, we collected a total of 2000 samples across
eight parallel chains, with 250 burn-in samples per chain. Our method performs well in terms of bias for both sample sizes
and, as expected, we observe lower RMSEs for the larger sample size. The 95% credible intervals are slightly conservative,
particularly for the indirect effect; across all scenarios and effects, the smallest coverage probability was 94%. Ultimately,
the results show that our approach to computing the mediation effects, while tending to be conservative, appears to work
well.

6.4 Robustness to model misspecification

We now consider two simulation experiments designed to answer the following questions: (i) is the ZOIB model robust to
model misspecification when the data is semi-continuous but the continuous part is not a beta regression? and (ii) does the
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Table 2. JOBS Il simulation results for average mediation effects using Algorithm 2.

n =899 n=1798
Scenario Effect Truth Bias RMSE Coverage Length Bias RMSE Coverage Length
6(0) —0.26 0.01 0.31 99.00 1.53 0.03 0.22 99.00 1.07
&() -0.26 0.02 0.29 100.00 |.45 0.03 0.21 99.50 1.02
| ¢(0) —-0.98 0.00 1.06 97.50 4.26 0.06 0.72 95.50 3.02
¢ -0.97 0.01 1.05 97.00 4.23 0.07 0.72 95.50 3.01
T —1.23 0.02 I.11 96.50 441 0.09 0.74 95.50 3.13
6(0) —0.41 0.10 0.33 97.50 1.55 0.02 0.22 98.50 1.08
é(1) —-0.40 0.09 0.32 98.00 1.53 0.01 0.22 98.50 1.06
2 £(0) 0.22 0.01 I.11 95.00 4.33 0.01 0.73 95.50 3.06
¢l 0.24 0.00 1.10 95.00 4.30 0.00 0.73 95.00 3.03
T —-0.17 0.10 1.18 94.50 4.49 0.02 0.80 95.00 3.17
6(0) —=0.11 —0.11 0.30 98.50 1.49 -0.13 0.26 96.50 1.05
&(1) —-0.10 —0.02 0.16 99.50 0.93 —-0.04 0.12 99.00 0.65
3 £(0) -9.75 0.06 1.03 95.50 3.98 —-0.12 0.74 94.50 2.8l
¢l -9.73 0.14 1.03 94.00 3.96 —-0.02 0.73 95.50 2.79
T -9.84 0.03 1.04 94.50 4.08 —0.15 0.75 94.00 2.88
6(0) —1.34 0.05 0.38 96.00 1.64 0.06 0.28 97.50 1.14
é(1) —1.37 0.09 0.38 94.00 1.64 0.11 0.29 97.00 1.14
4 £(0) 0.29 0.02 I.11 95.00 4.37 —-0.07 0.72 97.00 3.09
14Q)) 0.26 0.06 1.08 94.50 4.25 —-0.02 0.70 97.50 3.01
T —1.08 0.11 .13 94.50 443 0.04 0.74 96.50 3.14
6(0) -0.33 0.02 0.33 98.50 1.53 0.02 0.22 99.50 1.08
&() —-0.34 0.06 0.31 98.50 |.44 0.05 0.21 99.00 1.0l
5 ¢(0) —-0.99 —-0.07 0.95 96.50 4.28 —-0.07 0.74 95.00 3.03
s —1.00 —0.04 0.94 96.50 4.24 —-0.03 0.73 95.00 3.01
T -1.33 —-0.01 1.05 96.50 442 —-0.02 0.78 96.50 3.13

Each value in the table is multiplied by 100. The columns correspond to bias, the true values of the effect, the root-mean-squared error (RMSE), the
coverage of nominal 95% credible intervals, and the average length of a nominal 95% credible interval. Scenarios 1-5 correspond to the following: (1)
EM =0and &' = ?; (2) complete mediation, where (£7, M) = (0, EM); (3) EM = 0 and £" = 10; (4) complete mediation, where (£7, M) = (0, IOEM);
(5) no modifications, that is, (£, M) = (EY,EM), where EM and &7 are the estimated coefficients for the effect of A; on M; and Y;, respectively.

commonly-used linear structural equation modeling (LSEM) framework perform well with semi-continuous data despite
assuming that the underlying distribution is continuous?

To assess the robustness of the ZOIB model to model misspecification, we generate data under a censored regression
model, where latent variables M, "(a) and Yl.’(a, m) are modeled using normal linear models such that we observe (say)
My(a) = 0if M, (@) < 0 and M,(a) = 1 if M; '(a) > 1. We generated plausible linear models by fitting unconstrained linear
models to the JOBS II data.

Results for the censored regression simulation are given in Table 3, with the estimands being the median causal mediation
effects. For comparison, results for fitting an unconstrained LSEM are also given. Both LSEM and the ZOIB models have
performance that does not reach the nominal coverage level, with the ZOIB performing slightly worse overall in terms of
RMSE, interval length, and coverage and slightly better in terms of bias. Interestingly, LSEM seems to perform well when
the ground-truth is the censored linear model despite the fact that it does not respect the semicontinuous nature of the data;
considering that LSEM is correctly specified except for the fact that it does not capture the boundary behavior correctly,
this is not entirely unexpected.

While LSEM performs reasonably well when the underlying data-generating process is a censored linear regres-
sion, our next simulation shows that the LSEM can perform poorly when the underlying data-generating process is
a ZOIB model. This simulation setting is also based on the JOBS II data, but with stronger treatment effects in the
beta part of the regression (é¥ = 2 and &Y = —0.5) and with a constant precision. Results are given in Table
4. For this setting, we find that the LSEM is heavily biased and inefficient, with coverage probabilities as low as
16%. The ZOIB model, while not perfect, is more efficient, less biased, and is much closer to the nominal coverage
levels.
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Table 3. Results for the censored regression simulation. All quantities in the table (except for coverage) are multiplied by 100. CI
length denotes the average length of a 95% credible interval while coverage denotes the coverage probability of a nominal 95%
credible interval.

Method Parameter Bias RMSE Standard error Cl length Coverage

LM 8o 0.016 0.194 0.203 0.795 0.960
Y 0.016 0.194 0.203 0.795 0.960
o 0.260 0.994 0.935 3.669 0.950
4 0.260 0.994 0.935 3.669 0.950
T 0.276 1.049 0.952 3.736 0910

ZOIB o —-0.028 0.220 0.234 0919 0.980
Y —0.024 0.215 0.232 0.909 0.970
o 0.179 1.188 1.042 4.091 0910
¢ 0.183 1.191 1.039 4.077 0910
T 0.155 1.241 1.063 4.172 0.890

ZOIB: zero-one inflated beta; Cl: credible interval; RMSE: root-mean-squared error; LM: linear model.

Table 4. Results for the ZOIB simulation comparing the LSEM and ZOIB approaches. All quantities in the table (except for
coverage) are multiplied by 100. Cl length denotes the average length of a 95% credible interval while coverage denotes the coverage
probability of a nominal 95% credible interval.

Method Parameter Bias RMSE Standard error Cl length Coverage

LM o —0.402 0.683 0.521 2.044 0910
Y —1.454 1.556 0.521 2.044 0.170
o 1.839 1.951 0.638 2.504 0.160
4 0.786 1.022 0.638 2.504 0.790
T 0.384 0.518 0.382 1.499 0.820

ZOIB 8o 0.088 0.415 0.373 |.485 0.905
Y 0.173 0.242 0.188 0.752 0.905
o —0.051 0.219 0.235 0.938 0.981
4 0.034 0.394 0.396 1.575 0.933
T 0.122 0.257 0.221 0.887 0.905

ZOIB: zero-one inflated beta; Cl: credible interval; LSEM: linear structural equation modeling; RMSE: root-mean-squared error; LM: linear model.

Summarizing, this simulation study shows that the ZOIB model performs reasonably well when the data-generating
process is either a censored linear regression or ZOIB, while we found that LSEM performed well only when the data-
generating process was a censored linear regression.

7 Discussion

In many practical situations, either the mediator or outcome (or both) will have a mixed-scale distribution, necessitating
the use of models beyond the usual linear and generalized linear models. We proposed a zero-one inflated beta distribution
after scaling the data to lie in [0, 1]. This family of distributions includes many distributional shapes.

The framework proposed here is flexible enough for users to adapt Algorithm 1 and Algorithm 3 to fit essentially
arbitrary zero-one inflated models; for example, it is straight-forward to adapt this approach to handle censored regression
models.?? It is also straight-forward to extend our approach to a Bayesian nonparametric setting using Dirichlet process
mixture models'® and nonparametric Bayesian additive regression tree models.*

Just as important as the model we have proposed is our description of how to perform a sensitivity analysis with this
type of data. The framework for sensitivity analysis we presented is simple, interpretable, and also extends easily to other
model specifications such as the censored linear regression model.

While we have taken a Bayesian approach in this paper, there is nothing in principle which stops us from applying our
approach in the Frequentist framework. Taking a Frequentist approach using the bootstrap helps ensure that the estimated
standard errors of the parameters remain honest even when the model is misspecified; on the other hand, the estimands
may no longer correspond to the de-jure causal effects of interest resulting in a tradeoff that is not worthwhile. Bayesian
approaches are also well-suited to settings with hierarchical structures, where software tools such as Stan make it very
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easy to consider many different models, and also allows for researchers to incorporate subject-matter expertize via the
prior distribution. A potential downside is that, depending on the number of parameters, the Bayesian approach may result
in high computational costs. As shown by Linero,?? the g-computation framework we used here can be used with the
nonparametric bootstrap as well; hence, we could have performed maximum likelihood estimation and used the bootstrap
to perform uncertainty quantification rather than using Bayesian inference.

In this work, we assumed that all relevant causal effects are defined with respect to the population Fy that the covariates
were sampled from. However, it can easily be modified to accommodate a stratified sample from a target population G.
For example, in Algorithm 3, given a population defined by G, we simply replace sampling XIZ from Fy (which is sampled
from the Bayesian bootstrap) with sampling Xlz from Gy. In the case of stratified sampling on a binary covariate V;, with
Pry(V; = 1) = w known, we might model the distribution of [X; | V; = 1] and [X; | ¥; = 0] with independent Bayesian
bootstraps G)l( and G?( and then sample X7 ~ @ G)l( +(1-w) G?(.

Code and a package which replicates our analysis is available online at www.github.com/theodds/ZOIBMediation.
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Appendix. Proof of Proposition |

By iterated expectation and SI2B, we have

EolY,{a, M(a)}] = EgEylY;{a, Ma)} | M), M), X;]
= Ey expit[7, {M(@), 0, X} + A{M,(@) — M(a)}]

By SI2A, we have that M(a) = F, {®(Z,) | 4, = a,X; = x} and Mi(d') = F, {®(Z,,) | 4; = d', X; = x}, where (Z,y,Z;)
is jointly standard normal with correlation matrix X. Therefore

E, expit[7, {M,(d), a, X;} + A{M (@) — Mi(d')}]

= _/,,// expit {7, (m’, a,x) + A(m —m")}

x Normal{(zy,z,)" | (0,0)", %} dz, dz, Fy(dx)

where m = F (z, | 4; = a,X; =x) and m’ = F; (z, | 4; = a’, X; = x), completing the proof.
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