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Abstract—This paper formulates an inverse power flow prob-
lem which is to infer a nodal admittance matrix (hence the
network structure of a power system) from voltage and current
phasors measured at a number of buses. We show that the
admittance matrix can be uniquely identified from a sequence
of measurements corresponding to different steady states when
every node in the system is equipped with a measurement device,
and a Kron-reduced admittance matrix can be determined even
if some nodes in the system are not monitored (hidden nodes).
Furthermore, we propose effective algorithms based on graph
theory to uncover the actual admittance matrix of radial systems
with hidden nodes. We provide theoretical guarantees for the
recovered admittance matrix and demonstrate that the actual
admittance matrix can be fully recovered even from the Kron-
reduced admittance matrix under some mild assumptions. Sim-
ulations on standard test systems confirm that these algorithms
are capable of providing accurate estimates of the admittance
matrix from noisy sensor data.

Index Terms—Inverse Power Flow Problem, System Identifi-
cation, Kron Reduction, Phasor Measurement Units.

I. INTRODUCTION

HE power industry has witnessed profound changes in
recent years. These changes are mostly driven by the
widespread adoption of distributed energy resources (DER),
active participation of customers in emerging energy markets,
and rapid deployment of measurement, communication, and
control infrastructure resulting in an unprecedented level of
visibility and controllability, especially for distribution grids.
Despite the increased amount of uncertainty, these changes
offer opportunities for system operators to improve power
system stability and efficiency by leveraging advanced op-
timization and control techniques. Most of these techniques
require the knowledge of the network topology in real time.
The inverse power flow (IPF) problem we define in this
paper concerns the estimation of the nodal admittance matrix
from synchronized measurements of voltage and current pha-
sors (i.e., magnitudes and phase angles) which can be obtained
from phasor measurement units (PMUs) or conventional super-
visory control and data acquisition (SCADA) technology. The
IPF problem underlies several crucial smart grid applications,
affecting real-time system operation and long-term planning,
the most important of which are:
1) State Estimation [1] combines the knowledge of the
admittance matrix with a set of known state-variables to
determine the unknown ones, e.g., voltage magnitude and
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phase angle of unobserved buses, thereby building a real-time
model of the network for control.

2) Optimization & Control [2] techniques determine a
sequence of operations that can transition the power system
from one steady state to another steady state that meets certain
stability and efficiency targets.

3) Event Detection [3] concerns identifying faults, line
outages, and other critical events, such as transformer tap
changes, capacitor and switching operations from changes in
the real-time network model.

4) Cybersecurity [4] is the problem of identifying the
potential vulnerabilities of a power system and designing
strategies to protect it from the potential cyber attacks using
telemetry data along with information about its topology.

In this paper, we lay out a theoretical framework for the IPF
problem. Using the bus injection model (BIM), we propose
efficient algorithms to identify the admittance matrix. In par-
ticular, we show that when the system has no hidden nodes, the
admittance matrix can be uniquely identified from a sequence
of complex voltage and current measurements corresponding
to different steady states. Should there be some hidden nodes
in the network, we show that a reduced admittance matrix
(from Kron reduction [5]) can be determined; we develop a
method based on graph decomposition, maximal clique search-
ing and composition for identifying the admittance matrix of
the original system for radial networks. Power flow simulations
are performed on the IEEE 14-bus system to illustrate the
theoretical results and evaluate their sensitivity to measurement
noise introduced by transducers'.

The paper is outlined as follows: after surveying related
work in Section II, we formulate the IPF problem and propose
a solution for the case that the system is fully observable in
Section III. When the system has hidden nodes, we propose ef-
ficient algorithms to solve the IPF problem for radial networks
with theoretical guarantee in Section IV. We conclude the
paper by presenting directions for future work in Section V.

II. RELATED WORK

The availability of high-precision, high-sample-rate mea-
surements of transmission and distribution networks in recent
years has given impetus to research on topology and admit-
tance identification.

The IPF problem that identifies both topology and admit-
tance matrix has been studied extensively in transmission
networks [7], [8], [9], [10] as well as distribution grids [11],
[12] using single-phase a.c. and d.c. power flow models. For
example, the topology identification problem is cast as a sparse
subspace learning problem in [7] and an efficient algorithm is

I'Simulation results can be found in the arxiv version of this paper due
to page limit [6]: https://arxiv.org/abs/1610.06631.
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proposed to estimate the admittance matrix of the underlying
power system from the measured power injection of different
buses. In [13], the topology of an urban (mesh) distribution
network is inferred from voltage magnitude, and real/reactive
power measurements carried out by smart meters at the end-
nodes. A graphical model is built to describe the probabilistic
relationships between different voltage measurements using
lasso. In [11] a graphical learning based approach is devel-
oped to estimate the radial grid topology from nodal voltage
measurements. The learning algorithm is based on condi-
tional independence tests for continuous variables over chordal
graphs. An efficient algorithm for topology identification of a
power system is also proposed in [9] drawing on ideas from
compressive sensing and graph theory. The authors assume
that power and phase angle measurements are available for all
nodes.

Different algorithms have been developed in the literature to
make this inference, using various techniques such as weighted
least square, maximum-likelihood/maximum-a-posteriori esti-
mation, minimum spanning tree, sparse recovery, Lasso/Group
Lasso, blind identification, quickest change detection theory,
as well as graphical model learning. There are three limitations
in the current literature that we propose overcome. First, most
of the literature focuses on topology identification or change
detection, but there is not much work on joint topology and
parameter identification, with notable exceptions of [7], [14],
[15]. Second, most papers require measurements at every
node in the network, with the exceptions of [16], [15], [17],
[18], [19], [20]. In particular, [15] learns the topology with
parameters from a stochastic perspective, the true topology
can only be found in probability, even when the number of
samples is large; [18], [19] assume that perturbed data are
available (therefore a special inverter is assumed) to identify
the network, which could be strong in practice; [20] proposed
a method based on recursive grouping to estimate the topology
and branch impedance for networks that may have hidden
nodes, however, without guarantee.

III. IPF WITHOUT HIDDEN NODES

In this section we study the IPF problem when voltage
and current phasor measurements are available at every bus
in the system. We formulate the identification problem as a
constrained least squares problem and then convert it to an
equivalent unconstrained least squares problem. We note that
Y has a certain structure that can be exploited when solving
the IPF problem— (a) Y is a symmetric but not Hermitian
complex matrix (i.e., Y € SV) and (b) Y encodes the topology
of a connected graph (or a connected tree for radial networks).

A. Problem formulation

Let C denote the set of complex numbers, R the set of real
numbers, and N the set of integers. For A € C™*", Re(A)
and Im(A) denote matrices with the real and imaginary parts
of A, respectively. Let S* C C™"*™ be the set of all n x n
complex symmetric (not necessarily Hermitian) matrices. The
transpose of a matrix A is denoted A7 and its Hermitian
(complex conjugate) transpose is denoted A7 . A[i, j] denotes
the element of A located at ith row and jth column. We
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define Z as the identity matrix with an appropriate dimension
and define 1 as an all-1 column vector with an appropriate
dimension.

A power system can be modeled by an undirected connected
graph G = (N, €) where N := {1,2,..., N} represents the
set of buses, and £ C N x N represents the set of lines, each
connecting two distinct buses. A bus j € A can be a load
bus, a generator bus, or a swing bus. Let V; be the complex
voltage at bus j and s; be the net complex power injection
(generation minus load) at that bus. We use s; to denote both
the complex number p; + ig; (i £ \/=1) and the real pair
(pj,q;) depending on the context. For each line (¢, j) € &, we
denote its series admittance by y;;. The bus admittance matrix
of this system is denoted Y, which is an N x N complex-
valued matrix whose off-diagonal elements are Y;; = —y;; and
diagonal elements are Y;; = — > it Y;;, assuming that there
is no shunt element (this assumption can be relaxed). Hence,
the current injection vector can be expressed as [ =Y'V.

The formulated IPF problem is: given voltage and current
measurements of different steady-states, i.e., V;(k) and I;(k)
fork=1,...,K andi € M = {1,..., N}, how to recover
the true admittance matrix Y. Specially, when M is a subset of
N, what part of the true admittance matrix Y can be recovered
under what condition.

B. Identification algorithm

In this section, we consider the case when M = {1,..., N}
and propose a solution to the IPF. We will relax this full
measurement condition, i.e., when M C {1,..., N} in the

next section.

For k € {1,..., K}, the Kirchhoff’s laws for a given time
index yields I(k) = YV (k). Rewriting this formula in vector
form for all time indices yields the following equation for a
bus i:

L] w1 V) Vn(1)] [Ya
L) v %) W | |Ya)
| k) v Vi) v
IX VE Yi

The admittance matrix Y can be obtained from solving the
optimization problem below:

yKil £ argmyinHVKY—IKHF 2)
st: YesV, Yy =-) Y, Vi
J#i
in which I¥ is a K x N matrix, ie, IX =
[ Ix I¥]. Define
vee(Y) = [Yi1 Y Yni Yz Yoo YNN}Ty

and apply the vec operator to the objective function, we obtain:

min  [[(Z®@ V) vec(Y) —vec(I5)||, (3
vec(Y)eCN?x1
st YesV, v ==V, Vi,

J#i
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Fig. 1: An illustrative example of a three-node power system
with two lines connecting bus 1 to buses 2 and 3 respectively.

where ® is the Kronecker product. This holds because
vec(ABC) = (CT ® A)vec(B). Let svec : SNV —
C(N*=N)/2x1 be a mapping from a symmetric complex matrix
to a complex vector defined as:

svec(Y) = [Yar  Ya1 Yni Vi

Yio YNN—l]T

It can be readily seen that svec is a bijection for any matrix
Y that satisfies a) Y € SV and b) 17Y = 0. Based on
this definition, we have vec(Y) = I'svec(Y), where I' €
RN**(N*=N)/2 maps svec(Y) to the vectorized admittance
matrix as illustrated below.

Example 1. For the network depicted in Figure 1, the I matrix
has the following form

Vi
Y31
Yio 1 Yo1
Yoo| = [—1 |:Y3)1:| .
Y32 0 1 Y32

Yis3 0 0 | —~—

Y23 0 1 svec(Y')

| Y33 0

——
vec(Y') r

Based on the definition of I' in the above equation, the
constrained optimization problem can be converted to an
unconstrained one:

min (Z®V5)Tsvec(Y) —vec(I™)| |
svec(Y)ECIN2=N)/2x1 | el
F 2
“)
in which Z denotes an identity matrix and F £ (Z @ VF)I.
We define
=~ |Re(F)
Im(F)

am(E)] = [RetieelT0)

The optimization problem (4) can be written as an uncon-
strained quadratic program in the real domain:

Ff(Y) —BHZ, 5)

min
f(y)eR(N2—N)><1
in which f(Y) £ [svec(Yr)” svec(Y7)"]T, Yz = Re(Y),
and Y7 = Im(Y’). This least square problem yields a solution
provided that M has full column rank:

fv)= (FTE) " E7, ©)

We compute the solution of the original optimization prob-
lem (4) from the solution of the optimization problem (5) by
taking the inverse map of f. A sufficient condition to guarantee
the exactness of the solution is that V¥ has full column rank.
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When V' does not have full column rank, we can characterize
the part of the admittance matrix that is identifiable (see [3]).

Proposition 1 (Exactness). If VX has full column rank, the
optimization problem (5) has a unique solution given by (0).

Proof: Since I' € RN *(N*=N)/2 ynd has full column
rank (this can be checked easily), there exists a matrix T'f such
that I''T" = Z. For the Kronecker product Z&VE ¢ (CKNXNz,
IToVE has full column rank when VX has full column rank;
therefgre, F and F have full column rank given the fact that
rank(F') = 2rank(F). .

Finally, we prove by contradiction that if F has full column
rank, the solution to the optimization problem (5) is unique.
Suppose there exists f(Y1) and f(Y2) (f(Y1) # f(Y2)) such
that Ff(Y;) = b and Ff(Y;) = b, then

F(f0n) - f(v) =0,
which contradicts the full column rank assumption. [ ]

Remark 1. The approach can be easily extended to the case
of nonzero shunt elements where 17Y +# 0 by changing the
definitions of svec(Y'), I and f(-). Specifically if Y includes
shunt elements then svec(Y') will include diagonal elements
(Yi1,...,Yun).

We can add the element-wise positivity constraint to this
problem if the conductance and susceptance of each line are
positive?.

_min HF‘ﬂY) - l;H . (7)
F(¥)=z0 2
The above problem is known as nonnegative least squares,
which is a convex optimization problem and a global mini-
mizer can be solved using different methods, such as the active

set method [21].

IV. 1IPF WITH HIDDEN NODES

In the previous section we solve the IPF problem when
voltage and current measurements are available at all buses.
In this section we consider the case when voltage and current
measurements are available only at a subset of the buses. In
a distribution system, for example, measurements are typi-
cally available at the substation and customer meters but not
throughout the grid.

In Section IV-A, we show that, in the presence of hidden
nodes, the algorithm presented in Section III can identify a
Kron-reduced admittance matrix Y, defined in (11) below, for
the nodes where measurements are available (Corollary 1).
In Section IV-B we show that when the network is a tree
then it is indeed possible to uniquely identify the original
admittance matrix Y from its Kron reduction under reasonable
assumptions.

A. Kron-reduced admittance matrix Y

We call a bus/node a measured bus/node if measurements of
its voltage and current injection are available for identification.

>The conductance of a line is always positive, the susceptance can be
negative or positive depending on whether the line is inductive or capacitive.
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We call it a hidden bus/node otherwise. Let M and H
represent the set of measured and hidden nodes respectively.

Assumption 1. We make the following assumptions:

1.1 The underlying graph G is connected.
1.2 Hidden nodes have zero injection I;(k) = 0 for all i € H.

Note that the second assumption, i.e., the injected current is
zero at every hidden node, is reasonable because if generators
or loads are connected to a node, then the current they inject
or draw is typically measured.

Let H be the number of hidden nodes. Without loss of
generality we label the buses so that the first N — H buses
are measured and the last H buses are hidden, i.e., M :=
{1,.... M N —~H}and H:={N - H+1,...,N}. We
partition the bus admittance matrix Y into four sub-matrices:

v — [Yu le} {Gn G12:| i{Bu 312}
Yor Yoo Ga1 Ga Bay  Bao
= G +iB.
(®)

Here Y;; € SN describes the connectivity among the
measured nodes, Yio = Y;i € CW—H)XH the connectivity
between the measured and the hidden nodes, and Y3y € S#
the connectivity among the hidden nodes. For ¢ € M,
(L;(k),Vi(k),k = 1,...,K) denote the current and voltage
measurements at bus ¢ at time k. To simplify notation, we
index the entries of Ysy, not by 2,5 = 1,...,H, but by
i, = N —H +1,...,N. We index the entries of Yjo by
i=1,....,N—Hand j =N —H+1,...,N and similarly
for Yo = Yg, as well as submatrices G, Bj; in (8).

For i € H, I;(k) = 0, Vk, and V;(k) is the voltage at bus
7 but is not available for identification. To simplify notation,
We abuse V;(k) to denote both the voltage at bus 1 at time
k and the vector of all voltages at measured buses at time k,
depending on the context; similarly for V5 (k) and I; (k). Then

Rl ]

If Yoo is invertible then eliminating Vo from (9) yields a
relation
Li(k) =

YVi(k), Vk (10)

between currents and voltages at measured nodes through the
Kron-reduced admittance matrix Y € S™ defined as:

y £ Y11—Y12Y2§1Y1€ (11)

for the set of measured nodes. In the rest of this subsection
we first justify the invertibility of Y55 and hence the definition
of Y. Proposition 1 then implies that Y can be identified from
voltage and current measurements. Moreover Y is the best we
can identify for general networks because multiple admittance
matrices Y may reduce to the same Y.

Assumption 2. The admittance matrix Y £ G + iB defined

in (8) satisfies:

2.1 Series impedances of the lines are resistive and inductive:
Gli, j] <0 and Bli, j] > 0 for any i # j;

2.2 Diagonal dominance: Gasli,i] > —3 . ,; Gaoli, j] and
—Basli,i] > 37, Basli, j] hold for any i.
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Lemma 1. Under Assumption 1 and 2, Gos = 0, —Bgy = 0
and Goo — Boos = 0, when H < N.

Proof: From the Gershgorin Theorem and Assump-
tion 2.2, all eigenvalues of the submatrix GG95 lie in the right-
half plane including the origin and all eigenvalues of Bos lie
in the left-half plane including the origin. Together with the
fact that Goo and Bgy are symmetric, we have Gao > 0 and
—Bas = 0.

This implies that G5 — Bos = 0. We now show that indeed
Gy — By = 0. Suppose for the sake of contradiction that
there exists a nonzero € R such that 27 (Gay — Bag )z = 0.

Denote by A22 = G22 — BQQ and A21 = Ggl — B21 so that
Apliyi] = > (—Anlid) + > (—Auli )
i,jEH:jF#i i€H,jEM
Then
T .. . .1 9
2" (Goa = Bya)r = Y (Anli,jliz; — Anali, jlay)
i,jEH AT
+ Z (—A2]i, 7))
1€EH,JEM
= > (—Awnli,j) (@ — ;)
i,JEH <]
+ Z A21 Z j (12)
i€EH,JEM

By definition Ags[i,j] = Aoi[i, 5] = 0if ¢ £ j (ie., i and
j are not adjacent). For i, € M U®H, if ¢ ~ j (i.e., ¢ and
j are adjacent), then Y;; = Gy; + iB;; # 0, ie., at least

one of Gj; = —g;j < 0 or B;; = —b;; > 0 is nonzero.
This implies that —Agg[i,j] = —ng[i,j} + Bgz[i,j] > 0
and —Az[i,j] = —Gali, j] + Baili,j] > 0 for all i ~ j.

Therefore, for 27 (Gay — Bas)z = 0 in (12), we must have:

1. x; = x; if i ~ j is a connection between hidden nodes
in H;

2. x; = 0 for any hidden node 7 € H connected to at least
one observed node j € M.

Since the network is connected, for every hidden node ¢ € H,
there is a path that connects the hidden node to an observed
node k£ € M. For all nodes j on this path from i to k, the above
properties implies that 2; = 0. Since this is true for all hidden
nodes, we have © = 0, a contradiction. Hence G99 — Bay > 0.
|
Recall that the network is connected and has N nodes of
which H are hidden.

Proposition 2. Under Assumptions | and 2, if H < N then
Yoo is invertible.

Proof: We prove that 0 is not an eigenvalue of Yss.
Suppose for the sake of contradiction that there exists a
nonzero vector (v + iw) such that (Gag + 1Ba2) (v +iw) = 0,
i.e.,

Goov — Boow = 0  and Gosw + Boov = 0,

This implies

(Ga2 + Baz)v + (G2 — Bag)w = 0,

13
(G22 + Ba2)w — (Gaz — Baz)v = 0. (1)
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Since G5 — Bgs = 0 by Lemma 1, we can eliminate v from
(13) to get

((G22 — Baz) + (G2 + Ba2)(Ga2 — Ba2) " (G2 + Ba2)) w = 0.
Multiplying w” on the left we have
wT (Goy — Bag)w + W (Gay — Boz) M0 = 0,

where @ = (Gaa + Baa)w. This contradicts Gaa — Bas = 0
unless w = 0. But w = 0 implies that (G22 — Bas)v = 0 from
(13), meaning v = 0. This is a contradiction and hence Ys, is
invertible. [ |
Proposition 2 guarantees that Y55 is invertible and hence
the Kron-reduced admittance Y in (11) is well defined under
Assumption 2. Moreover, because of (10), the algorithm in
Section III can identify the Kron-reduced admittance matrix
Y from voltage and current measurements (Proposition 1).

Corollary 1. Suppose Assumptions 1 and 2 and the condition
in Proposition 1 hold. If H < N, then the Kron-reduced
admittance matrix Y can be identified from voltage VX and
current I measurements at the measured nodes.

An admittance matrix Y € SV specifies a unique weighted
undirected graph G(Y) = (NM(Y),E(Y)) with N =
{1,...,N} and £ C N x N such that there is an edge (¢, J)
if and only if Y[i,j] # 0. Its Kron reduction Y specifies a
unique weighted graph G := G(Y) = (M,&) that can be
obtained from G through Algorithm 1.

Algorithm 1 Graph Condensation Algorithm

1: Input: a graph G = (N,&) with N nodes and a set
of measured nodes M = {1,2,..., M} and admittance
matrix Y

2. forv=M+1:N do

3: Remove hidden node v from N = N — {v} and all
edges from & that are incident on v;

4: For all node pairs w and [ that are neighbors of v, add
an edge between w and [ to &;

5: Update the admittance matrix ¥ = Y/Y[4,] using
eq. (15).

6: end for

7. return G=Gand Y =Y.

Each iterative step in the algorithm removes a hidden node
1 € H and connects all its neighbors to each other. This
step can be represented algebraically as an update on the
admittance matrix to compute its Schur complement of Y'[7, 7].
Specifically we can partition possibly after permutation an
admittance matrix Y of an appropriate dimension into the

form:
o [YGi) v
S YGEAT Y
where Y[i,i] € C is the ith diagonal elements of Y, and
Y (,4),Y (i,i] are shown in Eq. (14). Then each iterative step

of Algorithm 1 updates the admittance matrix by (Y[i,4] is

always invertible due to Proposition 2):
Y/Yi i) = Y (i,4) — Y (i,4]Y " [i,4]Y (i,4]". (15)

This step is repeated until all the hidden nodes are removed
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from the original graph, producing the Kron-reduced graph
G = {M,E} [5] and its admittance matrix Y (shown in
Fig. 2).

Given an admittance matrix Y, each partition (Y71, Y12, Ya2)
in (8) defines uniquely a Kron-reduced matrix Y :=
Y (Y11, Y1z, Yao) given by (11). This mapping is clearly not
injective in general, i.e., given an M x M symmetric matrix
Y € SM (possibly with Y1 = 0) there are generally multiple
N x N symmetric matrices Y that can be partitioned into (non-
unique) (Y71, Y72, Ys2) whose Kron reductions are the given
Y, as long as N > M.

Example 2. Consider a (Kron-reduced) admittance matrix for
a two-node network (0 #£ 0):

- 0 —0

v = {_ A } |
The following 3 x 3 admittance matrice Y with the given
partition has Y as its Kron reduction:

0+6¢ —6| -0
vyl 7T
Y = = o6 o o0 |,
Y12 Y22 79/ 0 ‘ 9/

for arbitrary nonzero 0'. The underlying network is shown in
Fig. 1 with Node 3 as the hidden node, so thatY corresponds
to the Kron-reduced admittance matrix for Nodes 1 and 2 in
Fig. 1. In this case the hidden node has degree 1. Another 3x 3
admittance matrices Y that also has Y as its Kron reduction
is:

o 6, 0 | -6
v o— [YH YH} o 6| -0
= YT % = 2 2 )
12 | Yoo B

as long as (01, 02) satisfies
0105
01 + 0

The network underlying Y is isomorphic to that in Fig. 1 with
Node 1 being the hidden node, so that Y is the Kron-reduced
admittance matrix for Nodes 2 and 3 in Fig. 1. In this case
the hidden node has degree 2.

Example 2 shows that in general only the Kron-reduced
admittance matrix Y is identifiable from measurements at
the measured nodes. For arbitrary networks it is impossible
to identify the original admittance matrix Y whose Kron
reduction yields Y. We next show the surprising result that,
when the underlying network is a tree and every hidden nodes
has a degree > 3, then the original admittance matrix Y can
indeed be discovered even in the presence of hidden nodes.

B. Radial networks: exact identification

Consider a radial network and suppose we have identified a
Kron-reduced admittance matrix Y from partial voltage and
current measurements. In this section we develop a novel
algorithm to compute the original admittance matrix Y from
Y under the following additional assumptions.

Assumption 3. The admittance matrix Y satisfies:
3.1 The underlying graph G(Y') is a tree.
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6
C YL Y{l,i—1] Y[L,i+1] Y1, N] Y{Li
. Yi—:1,1 Yi—lz,i—l Yi—lz,i—i—l Yii :l,N . o
Y(i9) = Y{ZH,& Y{H—l,i—l} Y{H—l,ﬂ-l} Y& 1,1\% , Y51 = gz;}ﬂ (14)
Y[]éf, 1] Y[N,:ifl] Y[N,:z'Jrl] Y[]\},N] ] YIN,i]

Kron Reduction with respect to M

I
Y
|—> Y/Y[1,1] > ...

Graph Condensation Algorithm 1

—>'~< |

Fig. 2: Two equivalent schemes to compute the Kron reduced
Y.

3.2 Every hidden node has a degree > 3.
3.3 There is no shunt element in 'Y, i.e., Y1 = 0.

Remark 2. Assumption 3.2 is a necessary condition for
identification as shown in Example 2 where the hidden node
has a degree 1 or 2.

Remark 3. Assumption 3.3 can be further relaxed as demon-
strated in the full version [6].

We start with some definitions. Consider an undirected
graph G = (N, E) where N := {1,..., N} is the set of nodes
and £ C N x N is the set of edges. A complete graph is one
in which all nodes are adjacent. A subgraph of G is a graph
G'= (N, &) with N C N and & C €. A clique of G is a
complete subgraph of G. A maximal clique of G is a clique
that is not a subgraph of another clique of G. We say G is a
tree if there is exactly one path between every two nodes. A
forest is a disjoint union of trees.

For our purposes, an admittance matrix Y is a complex
symmetric matrix (we usually assume Y satisfies Assumption
3.3). We sometimes refer to G(Y') as the underlying graph of
Y and write G := (N, &) when Y is clear from the context.
Consider two [N x [N admittance matrices Y; and Y>. We define
two functions of (Y7,Y3) and their underlying graphs. First
Y5 := Y] +Y5 is also an admittance matrix and its underlying
graph G(Y3) = (WV(Y3),E(Y3)) is the graph with the same
set of nodes and edges in both graphs, i.e., £(Y3) := E(Y7)U
E(Y3). When the matrices are clear from the context, we also
denote the function Y3 = Y1+ Y5 by G3 = G1 &G. Note that if
Y7 and Y5 satisfy Assumption 3.3, so does Y3. Second define
the N x N matrix Y, := Y7\Y> as a function of (Y7, Y5) by:

Yi i, j) if i ~j and (i, j) € &
Ya[i,j] = =2 Yali,j] ifi=j
0 otherwise

The underlying graph G(Y}) is a subgraph of G(Y7) where
edges in G(Y2) have been removed. When the matrices are
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clear from the context, we also denote the function Y; =
Y1\Y2 by G4 = G1/Gs. Note that Y, satisfies Assumption
3.3 by definition.

Fix an (unknown) admittance matrix Y and assume its un-
derlying graph G := G(Y') is a tree. Suppose its Kron-reduced
admittance matrix Y and its underlying graph G := G(Y) are
given. For example Y is obtained according to Corollary 1
from partial voltage and current measurements at measured
nodes in M.

Next, we will propose a recursive algorithm to recover Y
from Y. Specifically, We can decompose G to two graphs G;
and G, (Y7 and Y5 correspondingly) with distinct properties in
Section IV-B1. Secondly, we further introduce a partition of Y
in Section IV-B2 and a corresponding parameterization of Y in
Section IV-B3. Thirdly, we can compute these parameters from
known quantity in Y in Section IV-B4. Finally, the overall
recursive algorithm to recover Y is proposed in IV-B5.

1) Decomposition of G: Let & denote the subset of all
edges of G that are between measured nodes in the original
graph G, and &, denote the subset of all edges of G that have
been added by Step 4 of the graph condensation Algorithm
1 when hidden nodes are removed from G. By definition of
gl,gg, we have g_ = (M,gl Ugg).

Lemma 2. Under Assumption | and 3, £ N Ey = 0.

Proof: If there exists an edge (i,j) € & N &, then (i, j)
must be an edge in the original graph G and nodes ¢ and
J must also be connected through a path consisting of only
hidden nodes. This creates a loop and contradicts that G is a
tree. Hence & N&; = 0. [ ]

Since G = (M, & U 52), Lemma 2 motivates decomposing
G into two subgraphs, G; = (M,&;) and Gy := (M, &),
both defined on M of measured nodes but with disjoint edge
sets. While the graph G := G(Y) is defined by the Kron-
reduced admittance matrix Y, at this point the graphs Gi, Go
are only defined in terms of the graph G (in fact in terms of G)
and are not associated with any admittance matrices. Define
the matrices:

) =
Yy =

Y11 — diag{lTYn}
diag{17Y11} — Yi2Y5,'Y/h.

(16a)
(16b)

The key observation, stated in the next result, is that G, Go
have simple structures, that the matrices defined in (16) are
indeed admittance matrices, and that Gy, G5 are the underlying
graphs of these admittance matrices. Even though we do
not know the submatrices Y71, Yi2, Yoo of Y, the simple
structures of G;, Go allow us to compute Yy, Yo as we will
see.
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Theorem 1 (Separability). Suppose the admittance matrix Y
satisfies Assumptions 1, 2 and 3. Then

1. G is a forest.
2. Gy = @®;C; for some C; are edge-disjoint maximal cliques
each with more than 2 nodes.

3. G1 =G(Y1) and Go = G(Y3) so that G = G1 & Go.

Proof: For the first assertion, G; is a forest since it is
a subgraph of the tree §. For the second assertion Gs is a
collection of maximal cliques C; due to Step 4 of the graph
condensation Algorithm 1. To show that the maximal clique
(in each) C; is of size at least 3, suppose C; consists of m;
(measured) nodes and, in the original graph G, these m, mea-
sured nodes “surround” h; hidden nodes, i.e., the neighbors of
each of these hidden nodes are either hidden nodes or nodes in
C;. Let d; denote the degrees of hidden nodes j = 1,...,h;.
These m; + h; nodes form a (connected) subtree of G with
exactly m;+h; —1 edges. Since m; of these edges are between
measured and hidden nodes and h; — 1 edges are between
hidden nodes, we must have 2?21 dj =m;+2(h; — 1) and
hence m; = 2 + Z?:l(dl —2). Since h; > 1 and d; > 3
(Assumption 3.2), we have m; > 3. To show that C; and C;
are edge-disjoint, suppose for the sake of contradiction that
there is an edge (k,!) in both C; and C;. By the definition
of Go, (k,1) is not an edge in the original graph G. Since
nodes k, [ are both in C;, there is a path from k to [ in G that
consists of only hidden nodes connected to measured nodes in
the maximal clique C;. Since nodes k, [ are both in Cj, there is
disjoint path from k to [ in G that consists of a set of hidden
nodes connected to nodes in C;. These two paths form a loop
in G, a contradiction. Hence C; and C; do not share any edge
in gg.

For the third assertion, note that the matrix Y; defined
in (16a) is symmetric and hence an admittance matrix. The
diagonal entry Y71[é,4] of Y1, is the negative sum of the
off-diagonal entries of the ith row/column of the original
admittance matrix Y (plus any shunt element at bus 2), so that
the ith entry of 17Yy, is equal to the ith row sum of Y75 (plus
any shunt element at bus 7). Hence Y; satisfies Assumption 3.3
if Y does. Moreover, by the definition of Gy, the edges in &
correspond exactly to the off-diagonal entries of Y}; that are
nonzero. This implies that the graph G(Y7) that underlies the
admittance matrix in (16a) is indeed G;.

The matrix Y5 defined in (16b) is also symmetric and hence
is an admittance matrix. If Y satisfies Assumption 3.3, then

1TY11 == —1TY1€7 1TY12 = —1TY22.
This implies
diag{17Vy;} = diag{17 Y12V, Y51,

i.e., Yy defined in (16b) satisﬁes_Assumption 3.3 when Y does.
Next we show that Go = G(Y2). From (16)

Yii — Y12Y251Y1€ = Y + Y,

Y =

3Strictly speaking, each C; is a subgraph of Go with M as its node set.
It consists of a single maximal clique and the remaining isolated nodes in
M. We will abuse notation and use C; to both refer to this subgraph of Go
and to the maximal clique in C;.
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and hence G = G(Y) = G & Gy with G(Y1) = Gi.
Therefore we have G(Y2) = Go. This concludes the proof. W

Remark 4. From the third assertion, we have_shown that,
once G and Gy are obtained from G, Y1 and Ys defined in
(16) can be obtained.

There are many algorithms for solving the clique problem,
such as the Bron-Kerbosch algorithm, which we adopt in
Algorithm 2.

Algorithm 2 Graph Decoupling Algorithm

1: Input: a condensed graph G

2 SetG' =G, i=1.

3: while G’ has a clique with more than two nodes do

4 Use Bron-Kerbosch Algorithm to find a clique (> 3

nodes, together with other isolating nodes) C; in G’,
Let G'=G'/Ci,i =i+ 1,

: end while

7: return Go = @;C;, G1 = G/Go and the corresponding Y;
and Ys.

AN

2) Partition of Y: Next we propose an algorithm to obtain
Y11, Yoo and Yo, and therefore the original admittance matrix
Y.

The decomposition of G into G; and G guaranteed by
Theorem 1 allows us to partition the set M into a subset
of internal measured nodes that are not connected to any
hidden nodes and a disjoint subset of boundary measured
nodes that connect to some hidden nodes. We can similarly
partition # into a subset of internal hidden nodes that are
not connected to any measured nodes and the disjoint subset
of boundary hidden nodes that connect to some measured
nodes. The decomposition of G into G; and G, identifies only
the types of measured nodes, but not those of hidden nodes.
We can hence arrange the original admittance matrix Y into
the following structure (only the upper triangular submatrix is
shown as Y is symmetric):

Yito1 Yiiie 0 0

Yy — Yin | Yiz | . Y1122 | Y1221 0
- Yoo | Ya2,11 Yo2,12
Y92 22

Here, for Y7, the submatrix Y71 11 corresponds to connectivity
among the internal measured nodes, Y7122 corresponds to
connectivity among the boundary measured nodes, and Y71 12
corresponds to connectivity between the internal and boundary
measured nodes. Similarly, for Y5, the submatrix Y53 11
corresponds to connectivity among the boundary hidden nodes,
Y5292 to that among the internal hidden nodes, and Y52 12
to that between the internal and boundary hidden nodes. The
submatrix Y75 21 corresponds to connectivity between the set
of boundary measured nodes and the set of boundary hidden
nodes. Denote the inverse Y,' by:

Xoo 11 X22,12}

X22 = Y_l =: T
2 X22,12 X22,22

(17a)
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We have
Y=Y — YYy,'Yh
_ Y Y| |0 0 (17b)
Vil Yiiee 0 Yi221X0011Y7h 01|

where X22711 = (}/22,11 — }/22,12Y25}22Y2€712)_1 from (]73)
and the Woodbury formula. Specifically, given the definition
of Schur complement

det(Ya2,11 — Y22,12Y§E}223/2€,12) det Yo 22 = det Yoo,

and from the invertibility of Y55 (shown in Proposition 2), the
right-hand side of the above equation is nonzero. Therefore
det (Y2211 —Y22712Y25122Y2T2712) cannot be zero, and as a result,
the invertibility of X272711 can be guaranteed.

Since we can compute Y from partial voltage and current
measurements, we can identify submatrices Y7 11 and Y71 12
for internal measured nodes from Y according to (17b).
The edges in & correspond to the off-diagonal entries of
[Y11,11 Yi1,12] as well as YITMQ, and they form a forest (Theo-
rem 1). The edges in & correspond to the off-diagonal entries
of Y1100 — Y12’21X22’11Y1T2’21, and they form a collection of
cliques. Recall that both G; and G have M as their node set;
see the example in Fig. 3.

In the rest of this subsection we focus on identifying
the remaining submatrices Y71 22, Y1221 as well as Yas (or
specifically, Y2211, Y2212, Ya222) of Y. For this purpose
we assume without loss of generality that all measured nodes
are boundary measured nodes, i.e., the rows and columns
corresponding to submatrices Y711 and Yii 12 as well as
their contributions to the diagonal entries of Y71 22 have been
removed from Y. Then

v | e

Our goal is to identify Y in (18) given its Kron-reduction:

> T
Y = Yiioe —Yie 21X 11Y1591-

Yi1,22 ‘ Yi2.21 0
Yoo 11

Yio

Voo (18)

Y52 12
Y22 90

Theorem 1.2 implies that the underlying Kron-reduce graph
G(Y) is a disjoint collection of maximal cliques C; among
boundary measured nodes. By hidden nodes in a maximal
clique C; of the Kron-reduced graph G, we mean the nonempty
set of hidden nodes in the original graph G that are connected
either to the measured nodes in C; or other hidden nodes in
C;. A measured node can be in multiple cliques C; though C;

are edge-disjoint (Theorem 1.2).

Lemma 3. Suppose the admittance matrix Y satisfies Assump-
tions 1, 2 and 3. A measured node can connect to only one
hidden node in any cliques C; of which it is a member.

Proof: If a measured node connects to more than one
hidden node in a maximal cliques C;, there exists a loop since
there is a path between any two hidden nodes in C;, hence a
contradiction. [ ]

We further assume, without loss of generality, that G(Y)
consists of a single clique; otherwise, we can repeatedly apply
Algorithm 3 below to each clique separately to determine the
corresponding submatrices and then combine them to obtain
Y22 and Ylg.
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Remark 5. With this further assumption, Lemma 3 guarantees
that Y12 has exactly one nonzero element in each row.

3) Parameterization of Y : Recall that there are M (bound-
ary) measured nodes, indexed by 1,..., M, so that Y71 22 in
(18) is M x M. Suppose there are H; boundary hidden nodes,
indexed by M +1,..., M + Hy, and H; := H — H,, internal
hidden nodes, indexed by M + Hy + 1,..., M + H. Then
Y5011 in (18) is Hy x Hy and Yo 90 is H; X H;. Suppose
each measured node ¢ € {1,...,M} is connected to the
hidden node h(i) € {M + 1,...,M + H,} by a line with
series admittance y;y(;). From Remark 5 we know there is a
unique h(i) for each i, but voltage and current measurements
only identify the identity of each measured node 7, but not
the hidden node h(i) it is connected to (nor the values of
H, Hy, H;). The next result suggests a method to identify
all measured nodes that are connected to the same boundary
hidden node.

Proposition 3. Suppose the admittance matrix Y satisfies
Assumptions 1, 2 and 3. Two measured nodes i and j are
connected to the same hidden node if and only if the off-
diagonal entries of rows i and j of Yo are proportional, i.e.,
there exists (i, 7) # 0 such that

Ya[i, k]
YZU? k}

v(i,5),  k#i,5, k=1,...,M.

Proof: Application of Theorem 1 to the admittance matrix
Y in (18) implies that
Yy = diag{1"Vi; 9} — Y12,21X22,11Y1T2721- (19)

Remark 5 implies row ¢ of Yiz9; can be written as
—Yin(s) uf(i) where u; is the Hj-dimensional column vector
with “1” in its jth position and “0” elsewhere. Hence

K2,21X22711Y1€721
T
“Y1h(1)Up(1)
= [X22,11]

—YMh(M) uf(M)

—Y1n(1) “2(1)

“YMh(M) uf(M)
Denote by f;; the (¢,7) entry of X9911. Then row ¢ of

T .
Y12,21X22,11Y12721 18

Yin(i) - [Briyn) Yin)  Brih(2) Y2n(2) Br(iyh(a) YM()] -

Consider two measured nodes i,j € {1,...,M}. If they are
connected to the same hidden node, then h(i) = h(j) and
hence row ¢ and row j of Yi2 01 X22711Y1721721 are proportional:
(Yiz21Xo211Y1501) [ k] winga)
(Y12,21X22,11Y1€721) Ukl Yine)

The necessity of the proposition then follows from (19).

= (i, ), Vk # i, j.

Conversely, suppose

(Y12,21X22,11Y1T2,21) [i, k]
(Y12A,21X22,11Y1721,21) [j, k]
for some (i, j) # 0. Then

=7(,5),  Vk#i,j

yih(z’)ﬁh(i)h(k)ykh(k) _ yih(i)ﬂh(i)h(k)
Yin)Prii)n k) Ykn k)

=7(i, ), Vk #1,j
Yin(i) Brii)h(k)
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g(y) Y

1 2 3 4 5 6 7
1) X X
2 X X
3 X X
4| X X X
5 X X X
7 X

G:=6(Y) Y =Yy, — V1oV, Vi

1
2 | iy Yine
3
3 -
5 Yir22 X
6

Yir1 | Yinaz2

Y

Vo i 7
Yoo 1= Yiro2 = Yiz1 Xoo 11 Yio o

g1 = g(Yl) Vi =Yy — diag{17v3,}

i i Yinu | Vi
X
X

Gy :=G(Y2)
(1] 2]

Vy = diag{1" Y11} — Yi2V'Y)h

Yoo — diag{17 Vay}

o

Fig. 3: Illustration of admittance matrices and their underlying graphs: (Y, G(Y)), (Y,G), (Y1,G1), and (Y2, G>).

and therefore
Br(iyh(k) _
Bhi)n(r)
Next we show that (h(k),Vk # 4,j) span all columns of
X911, which is equivalent to showing
Briyn)y Bt c {ﬁh(z)k
Br(inG) Briint

A(6,9), VE#ij

,k_l,...,Hb}.

Br(j)k

We prove the sufficiency by contradiction and consider the
following three scenarios:

o If every hidden boundary node connects to at least two
measured nodes. Therefore, there exist two indices 71, j1
such that h(iy) = h(i) and h(j1) = h(j). We can let
k = i1 and k = jo respectively and conclude the proof
by combining the definition of hidden boundary nodes.
This contradicts the invertibility of Xo5 11.

« Secondly, we consider the case that h () connects to exact
one measured node ¢ and h(j) connects to at least two
measured nodes. Without loss of generality, assume that
h(j) connects to two measured nodes j and j;. Following
the derivation above and noticing h(j) = h(j1), we have

Bh(iyn(k)

Vk # .
Bk

(i, 4),
Note that X5,'; = Ya,11 — Y22,12Y55 5, Y55 15. Consider
the (h(i) — M)th row of matrix X272%11’ all the elements
should be 0 except the edge between h (i) and A(j). This
can be shown by computing the adjugate of X5 11. This
means /(i) only connects h(j) directly or through a path,
implying A(7) can maximally connect to one hidden node.
On the other side, h(i) only connects to one measured
node and therefore this violates Assumption 3.2.

o Finally, if both node h() and h(j) only connect to one
measured node. We can rearrange the matrix Xo5 11 by
combining the 4 (i)th and h(j)th rows and the h(i)th and
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h(j)th columns in a submatrix as

A1 A

Xo211 = |:A21 Azz]
Bh(iyh(i) Br(iyn(j) ‘ Bh(iy Bh(iyHy—2
Bh(i)niy Brii)nts) Bni Bhs)y, —2

B1,n(i) B1,n5) B11 B1,H, -2

Bry,—2,n()  BHy—2.nG) | BH,—21 Bry—2,mH, -2

A;; must be invertible, otherwise it will contradict
the invertibility of Xoo1,. Note that rank(A;y) = 1.
Consider the submatrix (X3';)12 = Ap'Aa(Agn —
A21Af11A12)_1. Its rank is less or equal to 1. If
rank((XQ_Q}n)lz) = 0, this means h(i) only connects
to one hidden node h(j). Also, h(i) only connects to
one measured node and therefore this violates Assump-
tion 3.2. If rank((X{z%n)lg) = 1, then h(i) and h(j)
connect to at least two identical hidden nodes. Yet it
is not hard to see that the graph, in this case, must
have a loop, and therefore violates the tree assumption
(Assumption 3.1).

Combining all these cases, we have shown, by contradiction,
sufficiency. [ ]

Note that if there are only M = 3 measured nodes then
Assumptions 3.1 and 3.2 imply that all of them must be
connected to the same boundary hidden node.

Given the Kron-reduced admittance matrix Y5, Proposition
3 allows us to group together the (boundary) measured nodes
that are connected to the same (boundary) hidden node. This
also identifies the number of boundary hidden nodes, even
though we do not know (yet) the number or identity of internal
hidden nodes nor the connectivity among the nodes. We can
re-arrange the submatrix matrix Y72 21 into a form easier for
identification.

Specifically let measured nodes 1,...,k; be connected to
hidden node M + 1, measured nodes ki +1,..., ko to hidden
node M +2, ..., measured nodes kg, —1+1,...,ky, := M to
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hidden node M + H}. Note that Proposition 3 yields the values
for Hy and (k1, k2, ..., km, = M) even though it provides no
information about the value of H, the total number of hidden
nodes. To simplify notation, denote the series admittance y;p, ;)
of line (¢, h(i)) by y;. Then Y15 = [Ylg’gl 0] where Y7 21 is
M x Hy and can be arranged into the following simple form:

—Y1 O 0 T

Y, 0 0
0 —Yky+1 0

Yioo1 = .

0 —Yko 0

| O 0 ~Yk, |

0 0
0 —gs 0
0 0 —9m,

where for ¢ = 1,..., Hy, ¢; is a (k; — k;—1)-dimensional

column vector corresponding to k; — k; 1 measured nodes that
are connected to the hidden node M ++. Since Y has zero row
sum by Assumption 3.3, the diagonal matrix diag{17Y7;} =
diag{17Y11 22} = diag(y; = Yin(s), = 1,..., M). We have

Y12Yy, ' Yih
=diag(§);) X22,11 diag(9; )
Bi1 G197 Bio G193 Brr, i,
Bor G201 PazGis Bom, 120,

B 9m91 B2 9m, 93 B, m, U, U,

Then the admittance matrix corresponding to the graph G in
Theorem 1 is:

diag(fy) 0 - 0
_ diag(g2) - 0
)/2:

diag(ng)

B, 19,
Bam, QQZQI];Q

B gt B2 gy
Ba2 9203

BHth gHb g};{b

(20)
Recall that we have already identified the Kron-reduced admit-
tance matrix Y5, i.e., we know every entry of Y, on the left-
hand side of (20). We now explain how to identify (8;;,4,j =
1,...,Hy) and (y; = yin@),@ = 1,..., M) on the right-hand
side of (20). In particular, (y; = yin@y,7 = 1,..., M) yields
Y7o of the original admittance matrix Y.

4) Computation of parameters in Y: Let }727;€1 be the
diagonal submatrix consisting of the first k1 rows and columns
of Y5 corresponding to the first £y measured nodes connected
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10
to the first hidden node M + 1:
Yoy, i=diag(§1) — B i
Y1 e 0 Y1
= ot =Bu| | [m Yha ) -
Yk Yk
(20

We first explain how to identify (S11, §1) on the right-hand
side of (21) from the knowledge of }72 k, on the left-hand side
of (21). The identification of other 53;;, §; corresponding to k; —
k;_1 measured nodes connected to the hidden node M +i from
the diagonal blocks Ya i, := diag(yr, ,—1,-- - Yk;) — Bii 9i07
can be done similarly.

Case 1: k1 > 2. In this case, hidden node M +1 is connected
to two or more measured nodes indexed by i = 1,... k.
Consider the first two measured nodes and the corresponding
2 x 2 principal submatrix of Y5, : for 4,5 =1,2

A yi —Buy; if i=
Y: = L. TR 22
2,k1 [Z?J] { _ﬁll iy if g 7& j (22)
This leads to the following equations in (511, ¥1, y2):
Y1 — 511y% = Yo, [1,1] = a1
—Buyiye = Yoy, [1,2] = ao
Yo — Buys = Yor,[2,2] = a3
yielding:
araz — a3 ajaz — a3
n=——/——"">5 Y2=—"1""
az +as a1 + az (23)
_ag(a1 +ag)(az + as)
P =— S
(a1a3 - (12)
To identify other (y;,j > 2), note that
—Buyny; = Yo [l ], j=3,..., ki
yielding
’ B11 Y1
where 311 and y; are given by (23). Once §1,...,Jx; are

found, we can calculate from off-diagonal entries of Y5 all
Bi; from (20).

Case 2: Once we have recovered the coefficients for hidden
boundary nodes with at least two connections to measured
nodes in Case 1, next, we can treat these recovered hidden
nodes as measured nodes and repeat the above procedure until
no hidden node is left. A key step is to construct a new Kron
reduced matrix once parts of the admittance matrix have been
found. Let the original Y have the following partition as in
(18):

Yii22 | Yizo 0
Y50 11

Y = Y52 12
Y292,22

The Kron reduced admittance matrix can be decomposed to
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Y, and Y;. Specifically, Y5 has the following form:
Y, :diag{lTYngg} - Y12,21X22,11Y1T2,21

. Yoo 11
=diag{17Y; — Y] 0 ’
g{ 11,22} [ 12,21 ] {ng,m }/22)22
Based on the results in Case 1, one can recover
diag{lTYH,gg}, Y201 and X9 11. Since Y3 is known from
Algorithm 2, diag{17Y7; 22} allows us to compute Y;; from
the equality (16a) and the partition in (18):

Y1, = Y1 + diag{17Y1; 20} (24)

Hence the entire rows and columns of Y corresponding to the
boundary measured nodes are known after (24). We can then
focus on the submatrices Y22 11, Y2212, Y2220 corresponding
to only the boundary and internal hidden nodes, i.e., we
can reduce the unknown admittance matrix Y to the new
smaller admittance matrix below, which amounts to restricting
attention to the subgraph without the boundary measured

nodes.
[ Yoo 11 | Ya2,12 }

Y p—
Y5200

The Kron reduced admittance matrix of this new (unknown)
admittance matrix Y can then be obtained from the knowledge
of X. 22,11+

VA —1 T _ —1
Y = Ya211 — Y22,12Y55 95 Y50 10 = X550 11-

Moreover, we have identified the set of boundary hidden
nodes. Applying Theorem 1, Algorithm 2 and Proposition 3 to
this new Y allows us to identify a set of internal hidden nodes
to which this set of boundary hidden nodes are connected.
Moreover, we can treat the set of boundary hidden nodes as
boundary measured nodes and the newly identified internal
hidden nodes as boundary hidden nodes. Therefore, even
though we do not know the number or the identity of the
remaining internal hidden nodes, we can partition the new
(unknown) admittance matrix Y into the form at the beginning
of Case 2 and therefore repeat the computation on this new
(smaller) admittance matrix recursively, strictly reducing the
number of internal hidden nodes in each iteration until the set
of internal hidden nodes becomes null.

Case 3: For any hidden node that connects to one or zero
measured node, these hidden nodes will eventually have more
than one connection to measured nodes once the other hidden
nodes have been recovered and therefore can be recovered. It
is easy to show that there will never exist a scenario that all
the hidden nodes have at most 1 connection to measured nodes
for a tree graph. To see this, note that for any clique, H > M
as every hidden node connects to a different measured node.
On one hand, the sum of all hidden nodes’ degrees is greater
than 3H under Assumption 3. On the other hand, it is at most
2(H — 1) + M, which is twice the sum of all edges between
hidden nodes and the number of connections between hidden
nodes and measured nodes. However, 2(H — 1) + M < 3H,
a contradiction.

Case 4: If all hidden nodes are hidden boundary nodes,
ie., Yoo = Yoo 11, then Yoy = X2_2111 and hence the entire
admittance matrix Y can be identified. If there are hidden
nodes that are not hidden boundary nodes, we can treat hidden
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Y22,12} o {YFQ’H}

boundary nodes as measured nodes now and repeat the above
procedure based on Case 2.

5) Overall recursive algorithm: The overall identification
procedure is summarized in Algorithm 3*.

Algorithm 3 Recover Y from Y

. Input: Y] and Y5

: for each pair of nodes (j, k) do

Compute [, k] from Y.

: end for

: Solve for diag{lTYll)gg}, Y712721 and X22’11 from (21),

. [Y1+ diag{17Y1; 20} Y12,21] o [5}11 ?12]
set Y = T 7y = | -
Yi201 Xoa11 YL Yoo

and set Yo = X5,

6: if the graph corresponding to Y3, i.e., G(Y3) is not radial

then

for each pair of nodes (j, k) do

Compute ~[j, k] from Y5.

: end for
10 Solve for diz}g{lTYlmgA}, Y7921 and Xos 11 from (21)
X Y1, Yio 0
and set Y = |V diag{17Vi12} Yioo
0 Yih o1 Xoom
11: Set

Vi = Vi Vio Voo = |V
Y, diag{17Y11,2:}]’ Yiooi|"

12: Set Y = X272%11 and apply Algorithm 2 to obtain Y;
and Ys. '

13: end if

14: return Y =Y

V. CONCLUSIONS

This paper presents a framework for the inverse power flow
problem which identifies the admittance matrix of a power
system from synchronized voltage and current measurements
pertaining to a subset of its buses. The algorithms proposed
in this work can identify the graph topology together with
its associated admittance matrix with guarantee for radial
networks; and it can further jointly address state estimation and
topology identification problems with theoretical guarantees,
if certain conditions are met. These findings are supported by
high-fidelity power flow simulations performed on standard
test systems.

In future work, we plan to extend our framework to three
phase power flow models, which takes the mutual coupling
between phases into account, develop efficient algorithms for
identifying the admittance matrix of radial distribution systems
with few measurement nodes, and analyze the sensitivity of the
identification results to non-stationary measurement errors.
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