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Abstract 

Three vanadium complexes supported by salophan and salan ligands featuring differences in steric, 

electronic, and oxidation state (IV vs V) of the metal center have been evaluated for their potential 

in catalyzing the oxidative cleavage of a simple lignin model compound. All complexes were 

found to be effective, and under optimized conditions (145 οC, 48 h, in air) produced the cleavage 

products, phenol and benzoic acid, in good yields (62-69%) and selectivity (69-77%); significant 

differences in reactivity were not observed except at a lower temperature (125 οC). Complex 3c 

featuring sterically bulky tert−butyl groups at ortho−/para− positions of the phenol arms, a 

cyclohexyl backbone and a V(V) center resulted in the highest yields and selectivity at 135 οC over 

72 hours (69-78% yield; 78-89% selectivity). Longer reaction times as well as reaction 

temperatures were found to compromise yield and selectivity for both cleavage products. An 

oxidizing atmosphere was found to be crucial for the observed reactivity as reactions attempted 

under an inert atmosphere did not result in significant conversion. Preliminary mechanistic 

investigations suggest that the lignin model compound is oxidized prior to undergoing cleavage, 

and the vanadium(V) complex is more effective at cleaving the oxidized product in comparison to 

the vanadium(IV) counterparts. Quite significantly, the oxidative cleavage was achieved in the 

absence of basic or acidic additives.  
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Introduction. 

Lignocellulose is a byproduct of agricultural and forestry industry globally. It is non-edible 

and composed primarily of cellulose (40-80 %), hemicellulose (15-30 %) and lignin (15-30 %). 

Given the immense potential of lignocellulosic biomass to be a source for sustainable carbon 

(chemicals), the breakdown of its individual components to chemical feedstocks has received 

considerable attention in the recent past.[1–3] Lignin being a complex polymer with irregular 

structure, its utilization has met with limited success although it could be a sustainable source of 

renewable aromatics beyond the petrochemical era. About half of the lignin polymer found in 

biomass such as hardwood and softwood are composed of β-O-4 bonds, providing an ideal target 

for performing catalytic reactions focused on its depolymerization.[4, 5] Using either 

homogeneous or heterogenous catalysts several methods of catalytic depolymerization of lignin 

have been explored. Reaction types such as electrocatalysis,[6–8] photocatalysis,[9–14] 

oxidation,[15] reduction,[16, 17] redox,[18–20] and pyrolysis,[21, 22] etc. have been previously 

explored. Among these methods, oxidative cleavage has shown promise in efficient cleavage of β-

O-4 and Cα-Cβ bonds.  

O
OH

A  

Figure 1. A simple β-O-4 lignin model compound.  

Oxidative cleavage of lignin has been shown to offer multiple advantages over other methods 

as oxidation is the primary method used to break down lignin in nature and maintains much of the 

existing functionality in the polymer.[23] Multiple methods of carrying out oxidative cleavage 

reactions have been explored such as two-step oxidations which involve oxidation of the alcohol 

in lignin models to ketones before Cα-Cβ bond cleavage.[24] Oxidative cleavage is typically 
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achieved using transition metals catalysts such as iron,[17, 25] copper,[26–28] rhenium,[29] 

cobalt,[30] ruthenium,[31] and nickel.[32] Vanadium catalysis has received much interest due to 

its earth abundance compared to other rare and costly transition metals.[33–37] Both V(V) and 

V(IV) complexes have been previously explored in the oxidative cleavage of lignin model 

compounds.[7, 10, 23, 38–42] The identity of the metal center and the supporting ligand as well 

as solvent were found to have influence the selectivity of the cleavage as well as product 

composition. Prior studies involving vanadium complexes often involved the use of either basic 

or acidic additives for achieving effective catalysis.[23, 39, 43, 44] 

The present study is focused on exploration of the effect of ligand structure and metal oxidation 

state on the oxidative cleavage reaction of a simple lignin model compound (A) catalyzed by 

vanadium complexes in the absence of acidic or basic additives (Figure 1).  

 

Results and Discussion: 

A. Synthesis and characterization of vanadium complexes: Ligands used for stabilizing the 

vanadium complexes evaluated in this study were synthesized by the reductive amination reaction 

starting with the corresponding salicylaldehyde and diamine (Scheme 1). The three ligands, 

tBu,tBuLPhH2 (1b), H,HLPhH2 (2b), and tBu,tBuLCyH2 (3b), feature differences in steric demand and 

backbone flexibility. While these ligands are known compounds,[45, 46] we report modified 

procedures that allowed the synthesis of these ligands in moderate to high yields (52−93%), 

especially 1b.[47] All three ligands were satisfactorily characterized using infra-red (IR) and 1H 

NMR spectroscopy (Figures S1-S9). The vanadium complexes, tBu,tBuLPhVO (1c), H,HLPhVO 

(2c),[46] and (tBu,tBuLCyVO)2O (3c),[45] were synthesized in 50−87% yields from the 

corresponding ligands by reacting with the commercially available precursor, VO(acac)2. 
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Although a similar procedure was used for the synthesis of all three complexes, the reaction of 3b 

with VO(acac)2 resulted in the oxidation of the vanadium(IV) center in the precursor and produced 

the µ-oxo dimer vanadium(V) complex 3c, presumably via oxidation of an initial vanadium (IV) 

complex. Complex 3c has been previously reported and was obtained during attempted 

recrystallization of the corresponding V(IV) complex in air.[45] The facile oxidation of the initial 

vanadium(IV) complex in case of 3c under our reaction conditions could be the result of enhanced 

electron density on the vanadium center due to increased basicity of the cyclohexyl diamine 

backbone in 3b as compared to the phenylene diamine backbone in 1b and 2b.  
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Scheme 1. Synthesis and structures of vanadium complexes (1c−3c) used in this study. 

 

The synthesized vanadium complexes were successfully characterized using NMR 

spectroscopy (3c), IR spectroscopy, mass spectrometry, and elemental analysis. The IR spectrum 

of these complexes exhibited the characteristic V=O stretch at 973 cm-1 (1c), 974 cm-1 (2c), and 

906 cm-1 (3c) which agree with literature ranges for the V=O bond in related compounds (Figures 

S10-S12).[48] The observed lower V=O stretch at 906 cm-1 for 3c is in good agreement with the 
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previous report.[45] The diamagnetic V(V) complex 3c was also characterized by 1H and 13C{1H} 

NMR spectroscopy; both spectra suggest an asymmetric coordination of the ligand to the metal 

center (Figures S13-S14). While successful mass spectrometry data (ESI+) could be obtained on 

complexes 2c and 3c, the molecular ion peak could not be detected for complex 1c; only a probable 

fragment peak could be observed (Figures S15-S18). The oxidation state of the vanadium center 

in 1c−3c was further confirmed using magnetic susceptibility measurements, electron 

paramagnetic resonance (EPR) spectroscopy, and UV-Vis spectrophotometry.[45, 49] Magnetic 

susceptibility measurements using Evan’s method resulted in magnetic moments (µeff) typical for 

V(IV) centers (S=1/2) for complexes 1c (1.72 B.M.) and 2c (1.76 B.M.), while complex 3c was 

determined to be diamagnetic in nature. Magnetic moment data were further corroborated by room 

temperature X-band EPR spectroscopy (Figure S19). Both 1c and 2c exhibited EPR spectra typical 

for S = ½ V(IV) systems while the spectra for the V(V) complex 3c did not show a similar feature. 

Solution characterization of 1c−3c using UV-Vis spectroscopy in CH2Cl2 displayed features 

relevant to a V(IV) center for 1c & 2c, while those expected for a V(V) center were observed for 

3c. Specifically, both 1c and 2c exhibited two weak absorptions characteristic of d−d transition (ε 

< 1000 M-1 cm-1) at 885 nm (dxy → dxz, dyz) and ~550 nm (dxy → dx
2-y

2). Spectrum of complex 3c 

on the other showed a strong ligand-to-metal charge transfer (LMCT) absorption (ε = ~6300 M-1 

cm-1) at ~525 nm which can be attributed to a charge transfer from a phenolate ‘O’ pπ-orbital to 

empty 3d orbitals on the vanadium(V) center. Cyclic voltammetry studies were attempted on 1mM 

solutions of 1c−3c in CH2Cl2 using a glassy carbon electrode and Ag/AgCl reference electrode, 

and complex 2c showed a reversible redox process with E1/2 of 0.15 V which is attributed to a 

V(IV)/V(III) couple (Figures S21-S22). However, 1c was found to be electrochemically inactive 

under the conditions used and only a weak oxidation or reduction peak was detected for 3c. The 
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peak-peak separation (anodic to cathodic peaks) was ~0.2V, which also suggests that the oxidation 

or reduction of 3c is a slow process (reaction rate is small).  

 

B. Catalysis Studies: Catalytic testing involving 1c, 2c, and 3c (10 mol%) were undertaken using 

the simple lignin model compound 2-phenoxy-1-phenylethanol (A) [39] in DMSO-d6 as solvent 

in a pressure tube (under air) while monitoring conversion (of model compound) and product 

yields (of benzoic acid and phenol) by 1H NMR spectroscopy using 1,3,5-tri-tert-butylbenzene as 

an internal standard (Scheme 2 and Table 1). The generation of formic acid, which is also a product 

of the oxidative cleavage, was not tracked since it could not be reproducibly and quantitatively 

monitored. We began our studies by attempting trials under various conditions to find the optimal 

balance between reaction length, reaction temperature, conversion of the model compound, and 

product yields.  
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Scheme 2. Oxidative Cleavage of A catalyzed by complexes 1c−3c.  
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Table 1.  Oxidative Cleavage of a simple lignin model compound (A) catalyzed by vanadium 
complexes 1c, 2c, and 3c.a 

entry catalyst T  
(οC) 

time  
(h) 

conversion  
(%) 
(A) 

% yield (selectivity)b  

phenol  benzoic acid 

1  125 48 50 39 (78) 29 (58) 
2  135 24 52 25 (48) 15 (29) 
3   48 61 61 (100) 49 (80) 
4 1c  72 95 69 (73) 53 (56) 
5  145 24 83 52 (63) 40 (48) 
6   48 90 64 (71) 69 (77) 
7   72 >99 68 (68) 64 (64) 
8  125 48 80 67 (84) 52 (65) 
9  135 24 73 42 (57) 22 (30) 
10   48 95 68 (71) 52 (55) 
11 2c  72 96 51 (53) 49 (51) 
12  145 24 84 59 (70) 51 (61)  
13   48 90 62 (69) 69 (77) 
14   72 91 36 (39) 44 (48) 
15  125 48 81 59 (73) 57 (70) 
16   72 94 64 (68) 56 (59) 
17  135 24 66 37 (56) 33 (50) 
18   48 90 67 (74) 60 (66) 
19 3c  72 88 78 (89) 69 (78) 
20  145 24 84 49 (58) 42 (50) 
21   48 89 65 (73) 66 (74) 
22   72 93 30 (32) 57 (61) 
23c  145 48 86 46 (53) 76 (88) 
24 VO(acac)2 145 48 63 43 (68) 25 (40) 
25 VO(SO4) 145 48 81 42 (52) 39 (48) 
26 V2O4(acac)2 145 48 100 68 (68) 54 (54) 

aReaction conditions: 0.12 mmol of A and 10 mol% catalyst in DMSO-d6 (0.5 mL) in a sealed 
pressure reactor (under air) at varying temperatures using a heating block; reactions were run in 
duplicate (Table S1). bYields were determined by 1H NMR spectroscopy using 1,3,5-tri-tert-
butylbenzene as an internal standard. cUsing 5 mol% of 3c.  
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Effect of reaction temperature: Catalytic runs at 125 οC for 48 hours (Table 1: entries 1, 8, and 

15) yielded varying conversions across the three catalysts (1c: 50%, 2c: 80%, 3c: 81%). Complexes 

2c and 3c produced higher yields of benzoic acid (2c: 52%, 3c: 57%) than 1c (29%). A similar 

trend was observed for phenol yields (1c: 39%, 2c: 67%, 3c: 59%) suggesting that 2c and 3c are 

more active at 125 οC. Increasing the temperature to 135 οC for 48 hours (Table 1: entries 3, 10, 

and 18) improved conversions for all three catalysts (1c: 61%, 2c: 95%, 3c: 90%). For 1c, 

improvements in benzoic acid (49%) and phenol (61%) yields were also observed compared to the 

run at 125 οC, while yields stagnated or showed marginal improvements for 2c and 3c {benzoic 

acid (2c: 52%, 3c: 60%) and phenol (2c: 68%, 3c: 67%)}. Increasing the temperature to 145 οC 

(Table 1: entries 6, 13, and 21) further improved conversion of A for 1c (90%) but showed 

marginal changes in conversion for 2c (90%) and 3c (89%). While these reactions at 145 οC all 

exhibited an improvement in the yield of benzoic acid (1c: 69%, 2c: 69%, 3c: 66%), the yield of 

phenol showed marginal improvement or even dropped (1c: 64%, 2c: 62%, 3c: 65%) when 

compared to the runs at 135 οC for 48 hours. The observed drop in phenol yields could be attributed 

to probable oxidation of phenol under the reaction conditions at elevated temperatures.  

 

Effect of reaction time: Different reaction times across the same set of temperatures were 

evaluated next. Since low conversions were observed at 125 οC over 48 hours, a 24-hour reaction 

time was not explored at this temperature. Catalytic reactions were performed for 24 hours at 135 

οC (Table 1: entries 2, 9, and 17) resulting in conversions of 52% for 1c, 73% for 2c, and 66% for 

3c. The lowest yields and selectivity for benzoic acid (1c: 15%, 2c: 22%, 3c: 33%) and phenol (1c: 

25%, 2c: 42%, 3c: 37%) among all trials were obtained from the three catalysts under these 

conditions. Catalysis over 24 hours carried out at 145 ℃ (Table 1: entries 5, 12, and 20) however 
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resulted in improved conversions (1c: 83%, 2c: 84%, 3c: 84%), benzoic acid (1c: 40%, 2c: 51%, 

3c: 42%), and phenol (1c: 52%, 2c: 59%, 3c: 49%) yields for all catalysts in comparison to the run 

at 135 οC. A 72-hour reaction time was also explored at 135 οC and 145 οC. After the 72-hour 

period at 135 ℃ (Table 1: entries 4, 11, and 19), high conversions (1c: 95%, 2c: 96%, 3c: 88%) 

were observed for all three catalysts. However, benzoic acid (1c: 53%, 2c: 49%, 3c: 69%) and 

phenol yields (1c: 69%, 2c: 51%, 3c: 78%) did not show significant increases and in some cases 

showed a drop from trials at shorter time periods (48h). Catalyst 3c based on a V(V) center showed 

the most consistent increase in yields for both products as the reaction time was increased from 

24−72 hours at 135 οC [Figure 2(a)]. The most extreme conditions explored consisted of a 72-hour 

reaction time at 145 οC (Table 1: entries 7, 14, and 22 and Figure S23) where conversions 

marginally increased for all catalysts (1c: >99%, 2c: 91%; 3c: 93%) with marginal changes in 

yields of the products for all catalysts. All catalysts showed improvement in both benzoic acid and 

phenol yields when increasing reaction times from 24 hours to 48 hours at 145 ℃, with 3c showing 

the greatest improvement in yields for both products. Further increase in the reaction time to 72 

hours resulted in significant loss in product yields for both 2c [Figure 2(b)] and 3c, while 1c 

maintained yields like those observed at 48 hours. The observed decrease in product yield may be 

attributable to either decomposition or secondary reactions that may be occurring under the 

reaction conditions.[50, 51] For example, phenol could undergo oxidation or polymerization while 

benzoic acid can undergo decarboxylation.  
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(a) Yields at 135 οC (24h vs 48h vs 72h) using 

3c. 

 

(b) Yields at 145 οC (24h vs 48h vs 72h) using 2c. 

Figure 2. Effect of reaction time and temperature on product yield. 

 

These optimization results indicate that the ideal balance for reaction conditions falls 

within the parameters of the conditions tested; 48-hour reaction time provided significant increases 

in catalytic yields across all tested temperatures. When temperatures were increased from 135 ℃ 

to 145 ℃, 1c and 2c showed improved catalytic activity, with 3c yields remained within error. A 

loss of product was observed for both 2c and 3c when reaction times were further increased to 72 

hours, while 1c remained unaffected. Overall, these time and temperature variations demonstrate 

that longer reaction times as well as high temperatures result in reduced selectivity for the cleavage 

products, and a combination of both was detrimental for the efficacy of the reaction. As a result of 

these studies, a 48-hour reaction time at 145 ℃ was identified as the optimal condition providing 

the best balance of reaction times and product yields with good selectivity. The effect of catalyst 

loading was tested using the V(V) complex 3c (5 mol%) at 145 οC over 48 h (Table 1: entry 23); 

while a high yield (76%) and selectivity (88%) for benzoic acid are observed under these 

conditions, phenol yield (46%) and selectivity (53%) are lower for reasons that remain unclear. 

Readily accessible V(IV) and V(V) precursors, VO(acac)2, VOSO4 and V2O4(acac)2, when tested 
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for the oxidative cleavage of A under optimized conditions (Table 1: entries 24-26 and Figure 

S24), exhibited lower yields (25-68%) and selectivity (40-68%) for the cleavage products 

highlighting the superiority of complexes 1c−3c in effecting the reaction. The V(V) precursor, 

V2O4(acac)2, was found to be superior to its V(IV) precursor counterparts like the complex 3c in 

comparison to 1c and 2c.  

 

C. Mechanistic Studies: Having identified optimal conditions for the oxidative cleavage, further 

studies were subsequently undertaken to gain preliminary mechanistic insights into the oxidative 

cleavage catalyzed by these vanadium complexes (Table 2). A control run for 48 h with no added 

catalyst at 145 οC under air, produced the cleavage products phenol and benzoic acid in 8% and 

4% yields respectively, although the conversion of A was 34% (Table 2: entry 1 and Figure S24). 

The low yields recorded in the control experiment suggest that the observed oxidative cleavage 

(Table 1) is indeed catalyzed by the vanadium complexes (1c−3c) used in this study, and thermal 

degradation of the model compound to the cleavage products is also possible although at a much 

slower rate and lower selectivity [phenol (23%) and benzoic acid (12%)]. Control reactions were 

next carried out using 1c−3c (10 mol%) at 145 ℃ for 48 hours in a nitrogen flushed environment 

to understand the role of air (oxygen). Reactions carried out using V(IV) complexes, 1c and 2c, 

produced phenol [17% (1c); 19% (2c)] and benzoic acid [4% (1c); 8% (2c)] in significantly lower 

yields (Table 2: entries 2 and 3) compared to catalytic reactions carried out under air (Table 1: 

entries 6 and 13). A similar reaction carried out using the V(V) complex 3c showed incomplete 

conversion of the model compound (58%) and the oxidation product (ketone B) was observed 

(12%) in addition to phenol (22%) and benzoic acid (8%) (Table 2: entry 4 and Figure S25). The 

ketone B was not detected using 1c and 2c. These results (Table 2: entries 1-4) are suggestive of 
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the ketone being an intermediate prior to cleavage under the reaction conditions and the need for 

an oxidant (such as oxygen in air) for efficient turnover. This observation is supported by previous 

studies which note that oxygen is not required for achieving turnover but catalytic activity is 

significantly reduced under anaerobic conditions.[52]  

To validate the intermediacy of the ketone B in the reaction, we performed additional 

studies using B as the substrate (Table 2: entries 5-10). When B was used as substrate in a catalytic 

reaction (10 mol% 2c or 3c, 145 οC, 48h) under N2 atmosphere, a partial conversion (2c: 76%; 3c: 

68%)  to phenol (2c: 40%; 3c: 39%) and benzoic acid (2c: 29%; 3c: 52%) was observed (Table 2: 

entries 5 and 6). A reaction under air resulted in 52% conversion of the ketone within 4 hours using 

2c producing phenol and benzoic acid in 41% and 23% yields respectively (Table 2: entry 7). 

Extending the reaction time to 16 hours under these conditions yielded phenol and benzoic acid in 

73% and 43% yields respectively at complete conversion (Table 2: entry 8). Similar studies using 

the V(V) complex 3c resulted in complete conversion of B within 4 hours, producing phenol (84%) 

and benzoic acid (54%) while extending the reaction time to 24 hours resulted in a drastic drop in 

phenol yield (28%) while benzoic acid yield was practically unchanged (57%); presumably due to 

further oxidation of phenol to unidentified oxidation products under these conditions (Table 2: 

entries 9 and 10). Cumulatively, these studies highlight the need for a terminal oxidant, presumably 

oxygen from ambient air, to facilitate the cleavage reaction, and the intermediacy of the ketone 

during the catalytic process (oxidation followed by cleavage). Furthermore, the V(V) complex 3c 

was found to be more effective than the V(IV) complex 2c is cleaving the ketone intermediate 

(Table 2: entries 7 and 9).  
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Table 2.  Oxidative Cleavage of model compound (A) and ketone (B)catalyzed by vanadium 
complexes.a 

entry substrate catalyst time 
(h) 

conversion 
(%) 

 

% yield (selectivity)b  

 phenol  benzoic 
acid 

1c 

A 

- 48 34 8 (23) 4 (12) 
2d 1c 48 28 17 (61) 4 (14) 
3d 2c 48 40 19 (47) 8 (20) 
4d,e 3c 48 58 22 (38) 8 (14) 

5d  2c 48 76 40 (53) 29 (38) 
6d 

B 

3c 48 68 39 (57) 52 (76) 
7c 2c 4 52 41 (79) 23 (44) 
8c 2c 16 100 73 (73) 43 (43) 
9c 3c 4 100 84 (84) 54 (54) 
10c 3c 24 100 28 (28) 57 (57) 

aReaction conditions: 0.12 mmol of A and 10 mol% catalyst in DMSO-d6 (0.5 mL) in a sealed 
pressure reactor at 145 οC using a heating block. bYield and selectivity were determined by 1H 
NMR spectroscopy using 1,3,5-tri-tert-butylbenzene as an internal standard. cReaction under air. 
dReaction under N2 atmosphere. eKetone B was formed in 12% yield in addition to phenol (22%) 
and benzoic acid (8%).  

 

To ascertain the intermediacy of the ketone B in the oxidative cleavage reaction, a time 

dependence study was attempted in an NMR tube at 135 οC using 2c (10 mol%). Very little 

conversion of the model compound A was observed in the first 12 hours (time dependence) of the 

reaction, with a 24-hour analysis showing similar results. We hypothesized that this could be due 

to limited amount of headspace as well as solution interface that was in contact with the headspace 

in the NMR tube as opposed to our regular catalytic reactions (in 0.5 mL solvent) carried out in 

pressure tubes (ca. 35 mL). Hence, we conducted the time dependence study using our regular 

setup by analyzing the sample at regular intervals using 1H NMR spectroscopy (Figure 3). The 

acquired spectra were compared to those of standard samples (benzoic acid, phenol, ketone B, and 

model compound A) to track the progress of the reaction. This study clearly demonstrates that the 

O
OH
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lignin model compound is initially oxidized to the ketone (1−4 hours) without any significant 

amount of cleavage products. However, at the 24-hour mark, a significant amount of the cleavage 

products is observed with a concomitant decrease in the amount of the ketone B. The model 

compound and the ketone are almost completely converted within 48 hours. This time dependence 

experiment corroborates our findings from earlier that the lignin model is first oxidized to the 

ketone before undergoing cleavage to form benzoic acid and phenol. 

 

Figure 3. Time dependence of the oxidative cleavage of lignin model using 2c.  

 

 The catalytic activity of 1c−3c in the oxidative cleavage of A cannot be directly compared 

to previous studies involving vanadium catalysts since the use of acidic and/or basic additives or 

solvent usually allows the catalysis to be performed under milder conditions. For example, Xu et 

al demonstrated that oxidative cleavage of A using 10 mol% V(IV) precursors such as VO(acac)2 
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and VO(OAc)2 (80 οC, 8 h, 1 atm O2) resulted in an improved conversion of A from <2% to 76% 

in presence of CH3COOH (AcOH) as solvent.[39] The conversion of the model compound was 

just 16% using DMSO as a solvent while it increased to >90% when acids were used as solvents. 

Additionally, the use of AcOH as a solvent instead of CH3CN switched the selectivity of reaction 

from C−H oxidation to C−C cleavage. High conversions were maintained (89%) even when 10% 

AcOH in CH3CN was used as solvent; benzoic acid and phenol were formed in 29% and 44% 

yields respectively under these conditions. Thorn and coworkers demonstrated that a V(V) 

complex (dipic)VO(OiPr) could catalyze the cleavage of A to benzoic acid (81%), phenol (77%), 

and formic acid (46%) in DMSO-d6 at 100 οC but required 7 days to reach 95% conversion.[42] 

Similarly, Jones and coworkers studied a series of V(V) complexes supported by tridentate Schiff-

base ligands to elucidate ligand effects in the oxidative cleavage of A (DMSO, 100 οC, 4 days). 

Ligands featuring electron-withdrawing halogen substituents favored oxidation while those 

featuring alkyl substituents resulted in enhanced selectivity for C-O cleavage.[52] Similar studies 

at lower temperatures (80-100 οC) usually need longer reaction times to reach high conversions 

while using 1c−3c high conversions and selectivity can be achieved in 48 hours although at a 

higher temperature (145 οC).  

 

Conclusion 

In summary, we have investigated the oxidative cleavage of a simple lignin model compound using 

vanadium complexes of salan and salophan ligands. Catalytic reactions were optimized to produce 

the cleavage products in good yields (60-70%) at 145 οC in 48 hours in the absence of basic or 

acidic additives. Significant differences in catalytic activity were not observed between the three 

complexes except at longer reaction times (72h) at high temperatures (135 or 145 οC) when catalyst 
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1c was found to maintain high selectivity. The phenol product was found to undergo secondary 

reactions that resulted in decreased yield and selectivity at prolonged times and high reaction 

temperatures. Preliminary mechanistic studies show that the lignin model compound is oxidized 

prior to undergoing cleavage and the vanadium(V) complex 3c is superior at effecting the cleavage 

of the ketone intermediate. Further mechanistic investigations involving vanadium(IV/V) 

complexes displaying steric and electronic modulation are currently underway in our laboratory.  
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Experimental Section 

General Procedures: All air and water sensitive manipulations were carried out under a nitrogen 

atmosphere by using standard pressure reactors. All 1H NMR spectra were collected on a Varian 

400-MR spectrometer. Chemical shifts (δ) for 1H NMR spectra were referenced to the residual 

protons on deuterated chloroform (7.26 ppm) and deuterated dimethyl sulfoxide (2.5 ppm). 

Infrared spectra were recorded on a Thermo Scientific NICOLET iS10 Spectrophotometer 

equipped with a SMART iTR. Elemental analysis was performed at Robertson Microlit 

Laboratories (New Jersey, USA). Precursors for ligand and complex synthesis were used as 

received. CDCl3 was used as received from Sigma. Solvents (ethanol, toluene, dichloromethane, 

and hexanes) were purchased from Fisher Scientific and used as received. All starting materials 

were procured from commercial sources and used without further purification. EPR data were 

measured using a Magnettech MS 5000 benchtop EPR/ESR spectrometer. Sample solutions were 

transferred to capillaries and sealed with Cryoseal for measurements. Magnetic moment data were 

collected using a Sherwood Scientific Magnetic Susceptibility Balance model MK1. ESI-MS data 

were collected on a Waters LCT Premier by flow injection analysis (FIA) in methanol and data 

analyzed with MassLynx v. 4.1 software. In ESI+ mode, analyte m/z ions (M+H)+ or (M+Na)+ 

were validated to less than ± 5 ppm relative to the nearest sodiated polyethylene glycol (CAS: 

25322-68-3, av. Mwt 400)) or sodiated methoxypolyethyleneglycol (CAS: 990-74-4, av. Mwt 350) 

calibrant peak lockmass. UV-Vis spectra were collected using an Agilent Cary 60 UV-Vis 

spectrophotometer in CH2Cl2.  

 

Synthesis of Ligands 
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Synthesis of 1a: A round bottom flask was charged with 3,5-di-tert-butyl-salicilaldehyde (2.00g, 

8.58 mmol) and (0.466g, 4.32 mmol) of 1,2-phenylenediamine were added into ethanol (ca. 30 

mL). The solution was refluxed 48 hours, turning from an initial pale-yellow color to a bright 

orange color at the completion of the reaction. The resulting solution was allowed to cool, and the 

precipitate was filtered out of the solvent via gravity filtration. The precipitate was then allowed 

to air dry, and the dry, yellow product was weighed. (2.04g, 87%): 1H NMR (CDCl3, 400 MHz, 

28 °C) 𝛿𝛿 = 8.66 (s, 2H), 7.44 (d, 2H, 4JHH = 2Hz), 7.32-7.22 (m, 6H), 7.20 (d, 2H, 4JHH = 3Hz), 

1.44 (s, 18H), 1.32 (s, 18H). 

 

Synthesis of 2a: To a round bottom flask was added 1,2-phenylenediamine (0.234g, 2.16 mmol), 

salicylaldehyde (0.444mL, 4.25 mmol), and ethanol (ca. 10 mL). The mixture was stirred, and the 

solution will initially be a yellow-green color and will turn to a yellow-orange color in a few 

minutes. The solution was then placed on a moderate reflux for 24 hours and a yellow precipitate 

formed. The precipitate was gravity filtered and obtained as a yellow powder after drying on a 

high vacuum. (0.58g, 83%): 1H NMR (CDCl3, 400 MHz, 29°C) 𝛿𝛿 = 8.64 (s, 2H), 7.40-7.33 (m, 

6H), 7.27-7.23 (m, 2H), 7.06 (d, 2H, 3JHH = 8Hz), 6.92 (t, 2H, 3JHH = 8Hz). 

 

Synthesis of 3a: To a round bottom flask was added 3,5-di-tert-butyl-salicylaldehyde (1.99g, 8.49 

mmol), 1,2-cyclohexanediamine (0.51mL, 4.25 mmol), and ethanol (ca. 15 mL). The mixture was 

placed on a reflux and within 5 minutes, the yellow solution started to thicken. Additional ethanol 

(ca. 15 mL) was added, and the reaction was refluxed for 24 hours to form a yellow precipitate. 

The precipitate was gravity filtered and washed with cold methanol. The product was obtained as 

a bright, yellow powder after drying on a high vacuum. (2.07g, 89%): 1H NMR (CDCl3, 400 MHz, 
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29°C) 𝛿𝛿 =8.29 (s, 2H), 7.29 (d, 2H, 4JHH = 2Hz), 6.98 (d, 2H, 4JHH = 3Hz), 3.31 (d, 2H, 4JHH = 

3Hz), 1.96-1.86 (m, 4H), 1.75-1.72 (m, 2H), 1.52-1.45 (m, 4H), 1.41 (s, 18H), 1.23 (s, 18H).  

Synthesis of 1b: To a round bottom flask, ligand 1a (1.00g, 1.85 mmol) and NaBH4 (1.05 g, 2.79 

mmol) were added to a solution of diethyl ether (ca. 30 mL) and methanol (ca. 10 mL). The 

reaction was allowed to stir for 1 hour, starting as a yellow color. Over the course of the hour, the 

diethyl ether evaporated out of the solution, depositing a white precipitate on the walls of the flask. 

The remaining contents were purified by an aqueous workup (ca. 10 mL) where the organic 

compound was insoluble. The precipitate was collected via gravity filtration and dried on a high 

vacuum to obtain 1b as a white powder. (0.95g, 93%): 1H NMR (CDCl3, 400 MHz, 28°C) 𝛿𝛿 = 7.28 

(s, 2H), 7.05 (s, 2H), 6.99 (s, 4H), 4.37 (s, 4H), 1.39 (s, 18H), 1.30 (s, 18H). IR (thin film, cm-1) 

υ(N-H) = 3279, υ(Csp3-H) = 2952, 2865, and υ(C-O) = 1230. 

Synthesis of 2b: To a round bottom flask, ligand 2a (0.500g, 1.58 mmol) and NaBH4 (0.717g, 

18.96 mmol) were added to a solution of diethyl ether (ca. 30 mL) and methanol (ca. 10 mL). The 

reaction mixture was stirred at room temperature until the yellow solution changed to colorless. 

The solution was transferred into a separatory funnel. DI H2O (ca. 10 mL) was added, and the 

mixture was extracted along with ethyl acetate (ca. 7 mL), diethyl ether (ca. 7 mL), and 

dichloromethane (ca. 7 mL). The organic layer was dried using Na2SO4 and filtered. The filtrate 

was concentrated on the rotary evaporator as a light-brown oil and dried under high vacuum as a 

tan powder. (0.44g, 86%): 1H NMR (DMSO-d6, 400 MHz, 27°C) 𝛿𝛿 = 9.48 (s, 2H), 7.18 (d, 2H, 

3JHH = 8Hz), 7.03 (t, 2H, 3JHH = 8Hz), 6.80 (d, 2H, 3JHH = 8Hz), 6.71 (t, 2H, 3JHH = 8Hz), 6.45-

6.37 (m, 4H), 5.01 (t, 2H, 3JHH = 8Hz), 4.21 (d, 4H, 3JHH = 8Hz). IR (thin film, cm-1) υ(N-H) = 

3286 and υ(C-O) = 1235.  
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Synthesis of 3b: To a round bottom flask, ligand 3a (1.00g, 1.87 mmol) and NaBH4 (1.03g, 27.2 

mmol) were added to a solution of diethyl ether (ca. 20 mL). The reaction mixture was stirred at 

room temperature for 0.5 hours. After 0.5 hours, methanol (ca. 20 mL) was added to the solution 

and the mixture was stirred for an additional 1.5 hours, until the yellow solution turned colorless. 

The solution was transferred into a separatory funnel. DI H2O (ca. 10 mL) was added, and the 

mixture was extracted along with ethyl acetate (ca. 7 mL), diethyl ether (ca. 7 mL), and 

dichloromethane (ca. 7 mL). The organic layer was dried using Na2SO4 and filtered. The filtrate 

was concentrated on the rotary evaporator and dried under high vacuum as a white powder. (0.53g, 

52%): 1H NMR (DMSO-d6, 400 MHz, 27°C) 𝛿𝛿 = 7.03 (d, 2H, 4JHH = 2Hz), 6.87 (d, 2H, 4JHH = 

3Hz), 3.93-3.78 (m, 4H), 2.44 (s, 2H), 1.98 (d, 2H, 4JHH = 3Hz), 1.61 (s, 2H), 1.31 (s, 18H), 1.21 

(s, 18H), 1.18-1.14 (m, 2H). IR (thin film, cm-1) υ(Csp3-H) = 2950, 2865 and υ(C-O) = 1235.  

Synthesis of 1c: To a round bottom flask, ligand 1b (0.300g, 0.547 mmol), sodium acetate (0.133g, 

0.979 mmol), and VO(acac)2 (0.149g, 0.563 mmol) was added to a toluene solution (ca. 7 mL). 

The mixture was refluxed for 24 hours, initially turning into a dark-green color. The dark solution 

was concentrated on a rotary evaporator until a suspension formed and was filtered. The precipitate 

was washed with cold dichloromethane and dried under high vacuum to obtain a yellow-green 

powder. (0.205g, 62%): IR (thin film, cm-1) υ(Csp3-H) = 2948, 2862, υ(C-O) = 1250, and υ(V=O) 

= 973. Anal. Calcd. for C37H53N2O3V•3CH2Cl2: C, 54.62 %; H, 6.76 %; N, 3.18 %. Found: C, 

55.15 %; H, 5.91 %; N, 2.51 %. µeff = 1.72 B.M. ESI-MS+: 628.5 [(LVO)+CH3OH-28]+. UV-Vis 

(CH2Cl2; λmax (nm), ε (M-1 cm-1)): 885, 116; 590, 220.  

Synthesis of 2c: To a round bottom flask, ligand 2b (0.314g, 0.981 mmol), sodium acetate (0.143g, 

1.75 mmol), and VO(acac)2 (0.267g, 1.01 mmol) was added to a toluene solution (ca. 7 mL). The 
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dark-green mixture was refluxed for 6 hours. The dark solution was concentrated on a rotary 

evaporator until a suspension formed and was filtered. The precipitate was washed with cold 

dichloromethane and dried under high vacuum to obtain a dark green solid. (0.329g, 87%): IR 

(thin film, cm-1) υ(C-O) = 1258, and υ(V=O) = 973. Anal. Calcd. for C20H18N2O3V•CH2Cl2•H2O: 

C, 51.66 %; H, 4.54 %; N, 5.74 %. Found: C, 51.18 %; H, 4.12 %; N, 3.56 %. µeff = 1.76 B.M. 

HRMS (ESI/Q-TOF) m/z: [M+CH3OH]+ Calcd. for [C20H18N2O3V•CH3OH]+ 417.1019; Found 

417.0002. UV-Vis (CH2Cl2; λmax (nm), ε (M-1 cm-1)): 885, 83; 540, 950.  

Synthesis of 3c: To a round bottom flask, ligand 3b (0.249g, 0.453 mmol), sodium acetate (0.067g, 

0.811 mmol), and VO(acac)2 (0.124g, 0.467 mmol) was added to an ethanol solution (ca. 7 mL). 

The mixture was refluxed for 24 hours as a dark-purple color. The solution was concentrated on a 

rotary evaporator and was filtered. The precipitate was washed with cold dichloromethane and 

dried under high vacuum to obtain a dark purple powder. (0.141g, 50%): 1H NMR (CDCl3, 400 

MHz, 28°C) 𝛿𝛿 = 7.21 (d, 1H, 4JHH = 2 Hz), 7.19 (d, 1H, 4JHH = 2 Hz), 6.90 (d, 1H, 4JHH = 4 Hz), 

6.64 (d, 1H, 3JHH = 8 Hz), 6.52 (d, 1H, 4JHH = 2 Hz), 5.99 (d, 1H, 2JHH = 16 Hz), 4.37 (d, 1H, 2JHH 

= 12 Hz), 3.74 (t, 1H, 2JHH = 12 Hz), 3.42 (d, 1H, 2JHH = 12 Hz), 3.16-3.08 (m, 1H), 2.48-2.41 (m, 

1H), 2.30-2.20 (m, 2H), 1.70-1.59 (m, 4H), 1.54 (s, 9H), 1.28 (s, 9H), 1.27 (s, 9H), 1.21 (s, 9H), 

1.16-1.05 (m, 2H), 0.75-0.73 (m, 1H). 13C{1H} NMR (CDCl3, 100 MHz, 28°C) 𝛿𝛿 = 162.1, 160.1, 

143.0, 139.3, 135.2, 134.7, 125.4, 123.8, 123.7, 122.6, 122.4, 119.0, 61.1, 61.0, 54.0, 49.2, 35.4, 

35.3, 34.3, 34.1, 31.7, 31.5, 31.0, 30.9, 30.7, 29.2, 24.3, 24.1. IR (thin film, cm-1) υ(Csp
3-H) = 2950, 

2865, υ(C-O) = 1235, υ(V=O) = 906. Anal. Calcd. for C74H118N4O7V2•2CH2Cl2•2H2O: C, 61.53 

%; H, 8.56 %; N, 3.78 %. Found: C, 61.75 %; H, 8.30 %; N, 3.79 %. µeff = 0.17 B.M. HRMS 
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(ESI/Q-TOF) m/z: [M+K]+ Calcd. for [C37H59N2O3V•K]+ 669.3602; Found 669.3602. UV-Vis 

(CH2Cl2; λmax (nm), ε (M-1 cm-1)): 525, 6284.  

Representative procedure for catalysis reactions. 

Lignin model compound (0.12 mmol) and 10 mol% catalyst (1c, 2c or 3c) along with DMSO-d6 

(0.5 mL) were loaded  into a sealed pressure reactor (under air) and heated in a heating block for 

the requisite amount of time. At the end of run, 1,3,5-tri-tert-butylbenzene (internal standard) 

dissolved in CDCl3 (ca. 0.5 mL) was added into the reaction mixture. The mixture was then 

analyzed by 1H NMR spectroscopy to quantify conversion and yield. It was necessary to use a 

mixture of DMSO-d6 and CDCl3 for the analysis since the internal standard has poor solubility in 

DMSO-d6.  
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