2302.02261v3 [cs.SE] 4 Sep 2023

arxiv

NEuRI: Diversifying DNN Generation via Inductive Rule Inference

Jiawei Liu
University of Illinois
Urbana-Champaign, USA
jlawei6@illinois.edu

Jinjun Peng”
Columbia University
New York, USA

ABSTRACT

Deep Learning (DL) is prevalently used in various industries to
improve decision-making and automate processes, driven by the
ever-evolving DL libraries and compilers. The correctness of DL
systems is crucial for trust in DL applications. As such, the recent
wave of research has been studying the automated synthesis of
test-cases (i.e., DNN models and their inputs) for fuzzing DL sys-
tems. However, existing model generators only subsume a limited
number of operators, for lacking the ability to pervasively model
operator constraints. To address this challenge, we propose NEURI,
a fully automated approach for generating valid and diverse DL
models composed of hundreds of types of operators. NEURI adopts
a three-step process: (i) collecting valid and invalid API traces from
various sources; (ii) applying inductive program synthesis over the
traces to infer the constraints for constructing valid models; and (iii)
using hybrid model generation which incorporates both symbolic
and concrete operators. Our evaluation shows that NEURI improves
branch coverage of TensorFlow and PyTorch by 24% and 15% over
the state-of-the-art model-level fuzzers. NEURI finds 100 new bugs
for PyTorch and TensorFlow in four months, with 81 already fixed
or confirmed. Of these, 9 bugs are labelled as high priority or security
vulnerability, constituting 10% of all high-priority bugs of the period.
Open-source developers regard error-inducing tests reported by us
as “high-quality” and “common in practice”.

CCS CONCEPTS

« Software and its engineering — Software testing and debug-
ging; - Computing methodologies — Neural networks.

KEYWORDS
Fuzzing, Compiler Testing, Deep Learning Compilers

ACM Reference Format:

Jiawei Liu, Jinjun Peng, Yuyao Wang, and Lingming Zhang. 2023. NEURI:
Diversifying DNN Generation via Inductive Rule Inference . In Proceed-
ings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE 23), De-
cember 3-9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3611643.3616337

“The work was performed during a remote internship at University of Illinois.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE °23, December 3-9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACMISBN 979-8-4007-0327-0/23/12...$15.00

https://doi.org/10.1145/3611643.3616337

jinjun.peng@columbia.edu

Yuyao Wang’" Lingming Zhang
Nanjing University University of Illinois
Nanjing, China Urbana-Champaign, USA
yuyao6@outlook.com lingming@illinois.edu

1 INTRODUCTION

The rise of Deep-Learning (DL) libraries and compilers has enabled
emerging Al applications, such as AI chatbots [32], art genera-
tors [33] and autonomous driving, powering hundreds of millions
of users. These complex systems have become increasingly adopted
and ever evolving. For example, PyTorch [34] and TensorFlow [8],
the most popular DL systems with 62k and 171k GitHub stars respec-
tively, are moving toward their next major version (i.e., PyTorch 2 [5]
and TensorFlow 3 [2]), aiming at better model compilation support.
However, taking PyTorch’s new compiler [37] as an example, since
birth (i.e., 17 months) it is insufficiently tested by a test suite in eight
thousand LoC. Consequently, it is crucial to harness the correctness
of DL systems via extensive and automated testing.

The test-case generation problem for DL systems is to synthesize
aDNN model and its computational inputs. Additionally, generating
diverse and valid models is essential for making high-quality tests.

(1) Model diversity: Effective DL system testing asks for model diver-
sity coming from the variety of APIs, as well as the way they are
composed. Additionally, to test the complicated DL compilers,
it is important to generate models with multiple operators of
various types for practicing the compiler passes [25].

Validity: DNN models are programs [42] - for well-formedness
they need to comply with validity constraints. Arbitrarily con-
structing and composing operators, such as creating pooling
operators with negative kernel sizes or “connecting” operators
with unwanted tensor shapes, oftentimes violate the constraints
for constructing a well-defined model. As a result, argument
errors (for DL libraries) or parser errors (for DL compilers) are
raised before deeper system behaviours are tested.

@

~

Motivation. The model diversity ur Goal
primarily depends on the compre-
hensiveness of operators, which
are the building blocks to a model.
Prior work on single-API test-
ing [46, 48] can generate a large
body of API invocations (includ-
ing both operator and utility APIs)
via mutation or generation which
comply with high-level type con-
straints or the plausible value sets.
Can we directly apply such high-
level information to generate valid
DNN models? Unfortunately, it is
impractical. Because constructing
avalid API invocation further requires satisfying fine-grained con-
straints between operator attributes (i.e., non-tensor arguments
such as kernel sizes and strides) and input tensor types! (particularly

ANSIAI([9POIN

{)Strongly constrained

(© Weakly constrained

Single-API A
Operator Diversity

Figure 1: Test-case diversity.

Following prior work [25], a tensor type is a tuple of its shape and data type.

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

shapes). For example, while single-API testers may understand that
conv2d accepts an image and a weight tensor of floating-points (i.e.,
type constraints), their newly created conv2d invocations are not
guaranteed to have the channel dimension of the image matching
that of the weight (i.e., shape constraints). Consequently, such at-
tributes violate the validity properties required by conv2d and lead
to invocation failures. Without understanding such fine-grained
constraints, it is unlikely to correctly compose various APIs for con-
structing well-formed and diverse models. Intuitively, in Figure 1
prior single-API testers A can achieve ideal API diversity when APIs
being validly constructed. However, the diversity hardly extends
at model-wise which requires multiple APIs to be constructed and
“connected” correctly simultaneously.

Meanwhile, there are two categories of proposals for constructing
valid models. Weakly constrained model generation © [15, 27, 45]
limits the use of APIs to those with simple and straight-forward
constraints. For example, LEMON [45] only uses shape-preserving
operators that have no input constraints. Consequently, such op-
erators can be arbitrarily constructed and added to build a model.
More recent work [15, 27] additionally inserts “reshaping” layers
such that reshaped output tensors can stay in compatible shapes.
However, it still may not construct operators with valid attributes
(non-tensor arguments). Even worse, using such “layer wrappers”
compromises the structural diversity of the models, which can over-
look compiler passes activated by specific patterns. To support more
diverse APIs correctly, NNSMITH [25], as a strongly constrained {»
approach, defines a specification for describing input constraints
and shape propagation (elaborated in §2). Nonetheless, it requires
manual efforts for specifying those rules. For example, while a DL
framework, e.g., PyTorch, can define over two thousand APIs, only
about sixty are supported by NNSmiTH after its first-year devel-
opment. Hence, it can take years for NNSmITH [25] to completely
support a framework, i.e., from < to @, which is unscalable.
Insight. Can we scale the diversity of model generation by enabling
more operators (e.g., by hundreds) fully automatically? We start to
answer this question from two insights: (i) Empirically we observed
that most operator rules are simple, e.g., consisting of arithmetic
expressions for shape computation and if-else branches for handling
conditions incurred by some attributes. As a result, it is feasible to
search a program that functions as operator rules, given the size of
the problem is acceptable. Specifically, by instrumenting DL API
invocations, we can obtain a set of input-output examples, with
which the inference of operator rules can be regarded as a induc-
tive program synthesis problem [24, 47]. (ii) Can an operator still
be used for model generation even if its operator rule is not avail-
able? We find it feasible by inserting a “concrete” operator initialized
by recorded invocation traces. To make use of both symbolically
and concretely obtained operators, we can apply a concolic model
generation approach to construct models with both sources.
Summary. This work makes the following contributions:

o Inthiswork, we present the urgency for improving API diversity of
model generation and formally introduce the essential properties
for generating valid DNNs — operator rules. Furthermore, we open
the first proposal of automatically inferring operator rules for
diversifying and scaling valid model generation.

Jiawei Liu, Jinjun Peng, Yuyao Wang, and Lingming Zhang

avg_pool2d(input, (kh=2, kw=2), padh=6, .) > output
Figure 2: The symbolic view of avg_pool2d.

e We build NEURI (NEural Network Synthesis via Rule Inference), a
fuzzer for testing DL systems with three steps: (i) an instrumenter
that collects and augments API invocations from various sources;
(ii) an optimized rule synthesizer that efficiently infers operator
rules with inductive program synthesis; and (iii) a hybrid model
generator that compiles both symbolic and concrete information
for producing valid and diverse DNNs.

e We extensively and rigorously evaluated NEuRI. Within four
months, NEURI finds 100 new bugs for PyTorch and TensorFlow,
with 81 fixed or confirmed. 9 of the PyTorch bugs are labelled as
high priority or security vulnerability, constituting around 10% of
all high-priority bugs in PyTorch’s bug tracker of the period. By
evaluating branch coverage, NEURI improves the state-of-the-art
model-level fuzzer by 15% (PyTorch) / 24% (TensorFlow).

2 OPERATOR RULES

The functionality of a deep-learning model (i.e., DNN) can be rep-
resented as a list of operations, each of which transforms one or
multiple input tensors (i.e., multi-dimensional arrays) to output ten-
sors. Accordingly, a test-case in DL systems constructs a DNN and is
evaluated over some computational inputs, expecting the model can
be successfully executed and produce correct results.

For generating effective test-cases automatically, it is crucial
to generate and diversify valid DNN models. State-of-the-art NN-
SMITH [25] constructs valid DNNs with operator constraints and
shape propagation rules. With SMT solvers, such rules can help stat-
ically construct an operator which can be safely inserted to a given
model. Because in DL frameworks such operator rules are implicit
defined and cannot be exported directly, they are manually specified
in NNSmrtH. However, crafting them from scratch is unscalable. For
example, in the first-year development of NNSMITH, only around
sixty operators are implemented with rules, despite the fact that
many rules are even repetitive. As a result, for diversifying operators
being used and saving manual effort of domain experts, we aim at
inferring those operator rules automatically. We now formalize and
elaborate the operator rules:

Symbolizing operators. As is shown in Figure 2, an operator is a
function which takes input tensors (e.g., input) and configurations
(e.g., kh) as arguments. The configurations, also known as operator
attributes, describe high-level semantics for performing an opera-
tion and can impact the operator rules. For example, kw and kh define
the size for applying the “avg” filter over the input image which
must be no smaller than the kernel size (assume no padding). For
being evaluated statically, operator rules only leverage and symbol-
ize an operator’s compile-time information: (i) operator type (e.g.,
avg_pool2d), (ii) I which is a list of input shape vectors, and (iii)
A as the set of operator attributes. Runtime information such as
the detailed element values inside the input tensors is too costly
to be modelled. Meanwhile, we use O to denote the output shapes
produced by the shape propagation rule.

Rule #1: Input constraints. The input constraints of an operator
are a set of predicate functions C ={cy,cz,---} over AUI. For example,

NEURI: Diversifying DNN Generation via Inductive Rule Inference

constraints in avg_pool2d require the kernel size to be no larger
than the padded image size (e.g., i, +2X apadn), namely:

cik (A={akn.apadn. 1.1 = [[ic,iniwl]) = akh < ip+2apadh

The arguments of ¢ consist of the attributes to avg_pool2d and

the shape list with the shape of the only input tensor (i.e., [I| = 1).
It is worth noting that for clarity we assume the input is a non-
batch image with only three dimensions (i.e., the channel, height
and width); however, in practice, 2d-pooling also accepts batched
inputs with an extra batch dimension. Meanwhile, some operators
could take a variable length of inputs (e.g., concatenate) or outputs
(e.g., split). For being general, a predicate may not assume the tensor
signature, i.e., # of input/output tensors and their ranks, to be fixed.
Thus, operator rules with such patterns may need to be described
with conditional branches (e.g., the syntax of PyTea [21]). We later
in §3.2 introduce how to leverage partial operators to simplify such
branches which are difficult to handle in rule inference.
Rule #2: Shape propagation. Because evaluating Rule 1 requires
knowing the dimensions of operator inputs, which are outputs of
other operators from the DNN under construction, output shapes
of operators also need to be evaluated. The shape propagation rule
for an operator can be described by a function $ over AUI, which
returns a list of propagated output shapes as O. For instance, the
shape propagation for avg_pool2d can be described as:

SD(A= {akhyapadh,”‘},lz [[ic,ih:iw]]) =[loc,0n,0wl]

0c= ¢

_ ip+2Xdpadh — Akh (1)
where {0n= Astride +1
iw+2><apadw_akw
Op= | D2 podn G 4
w Astride

For example, given input shape of [3,3,3], we can tell the corre-
sponding output shape for operator in Figure 2 (assuming astride is
1) is [3,2,2] without invoking it.

3 APPROACH
Figure 3 shows the overview of NEURI’s workflow.

e NEURI improves the search space of model generation by making
use of concrete invocation. To collect those desired invocations of
tensor APIs, we instrument various sources such as developer tests.
Next, we filter out invocations that do not meet properties such as
determinism, to facilitate rule inference and bug detection in later
phases. For the convenience of rule inference, we summarize the
invocation records to a simplified structure and further augment
data diversity via mutation (§3.1).

o These records are discrete data points, with which we can induc-
tively synthesize arithmetic expressions in their corresponding
operator rules. The inductive program synthesis problem is, how-
ever, an NP-hard [20] problem, whose complexity rests with the
grammar under enumeration. For affordability, we split a complete
operator rule into multiple sub-rules, in order to be describable by
a simple arithmetic grammar. Furthermore, we prune the enumer-
ation space over equivalence and rarity, and as a shortcut, reuse
rules when possible. Additionally, redundant input constraints
are removed for runtime efficiency.

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

o Next we apply Hybrid DNN Generation which performs DNN
generation over (i) symbolic operators, i.e., those with operator
rules; and (ii) concrete operators, i.e., those whose rules are not
inferred but with concrete invocation records. To achieve this, we
perform concolic operator insertion where symbolic operators are
inserted with SMT solving while concrete ones are inserted by
searching a compatible tensor type (i.e., shape and data type).

o Lastly the generated model, after materialization, is cross-checked
between the interpreter and compiler via oracles in §3.4.

3.1 Instrumentation

Invocation collection. Following prior work [46], we instrument
the desired APIs to store successful invocations locally. In contrast to
FreeFuzz which comprehensively instruments APIs from both tensor
and high levels, we focus on tensor APIs since high-level APIs can
be decomposed to a series of tensor operations. Additionally, these
tensor APIs must be deterministic and value-independent (detailed
in §4). We perform instrumentation at Python level (e.g., over the
Python test-suite) since Python is commonly used as the front-end
of DL frameworks. Meanwhile, we simplify the disorganized and
superfluous raw invocation (Figure 4) by dropping concrete tensor
values and thereby only preserve the tensor types, functor and other
arguments. For instance of avg_pool2d (Figure 2), the layout of its
simplified record? is illustrated in Figure 4.

Data augmentation via mutation. The robustness of inferred
rules depends on the quantity and quality of records. Unfortunately,
by only using instrumented records, each rule on average only shares
5-7 records, which are insufficient. More importantly, all collected
records are passing examples; however, counter examples are also
required for inferring input constraints (§3.2). Consequently, we fur-
ther diversify the records by mutating existing records, where valid
mutants are used as passing examples (denoted by RY') and invalid
ones are used as counter examples (denoted by R¥). Specifically, we
perform three phases of mutations over input shape dimensions and
attributes of records (i.e., AUI):

(1) Offset-based: The goal of offset-based mutation is to quickly build
alarge set of (preferably) passing examples. To achieve this, we
enumerate subsets over AUI, for each of which we increment
the elements by 1 until a desired number of records (e.g., 100
in our experiments) or time budget runs out. The hypothesis
behind is validity locality: oftentimes validity is preserved after
a light-weight mutation (i.e., increment by 1).

(2) Swapping: Exchanging two values from AUI can quickly verify
simple inequalities. For example, assuming a > b holds in all
collected passing examples, we invalidate the inequality if the
record is still valid after exchanging the values in a and b.

(3) Special values: Lastly, we randomly assign attributes with special
values (e.g., 0/-1) in order to test attributes’ negativity.

Meanwhile if no counter examples are produced after sufficient
mutation, it means probabilistically it has no (or extremely weak)
input constraints. Consequently, for counter-example-free operators,
we directly assign an empty set as its input constraints (i.e., no need
to infer input constraints with inductive synthesis in §3.2).

For clarity, we use “record” to represent “simplified invocation records” from now on.

ESEC/FSE *23, December 3-9, 2023, San Francisco, CA, USA

§3.1 Instrumentation

Jiawei Liu, Jinjun Peng, Yuyao Wang, and Lingming Zhang

§3.3 Hybrid DNN Generation
-

Unit Tests — | i
Invocations| | i / \ LI Int:Roenssu:EI.sttsen.t
Model Hub 1Backward
Shape Input R i . Runtime
Propagation || Constraints EFOPWWC{/ \ / Compiler Error
Trace Tensor Af’Is | T Sanitizer
.| Expr Prune e i Error
Invocations - -
Concolic Op Insertion
Fitter Rule Inference
Simplify o Bug
eports
) \ = G, e
TSR] GraphIR Models |OF §3.4 Oracles
Records

Figure 3: Overview of NEURI

Raw
API Arguments Outputs
av 001l2d |input: 1111 , kh:2, kw:2, . 313
9_p Pot: B \ ik
Input . Output
API Shapes Attributes Shapes
avg_pool2d |input:[3,3,3]| kh:2, kw:2, . | [3,2,2]
Simplified i : A : O ’

Figure 4: Layout of records before and after simplification.

3.2 Rule Inference

We now explain how to perform rule inference via inductive program
synthesis and make it affordable with a line of optimizations.
Inductive synthesis of operator rules. Input constraints and
shape propagation rules can be described by functions (over AUI)
whose bodies are oftentimes arithmetic expressions (§2). Specifically,
we can define such an arithmetic grammar G as follows:

(expr) == (op) (expr){expr) | (item)
(op) == +|-|x|+|min|max |mod
(item) == (symbol) | (constant)
(symbol) == Symbols fromI and A
(constant) == Constant integers

With the grammar, we can infer an operator rule via inductive
program synthesis, i.e., by enumerating G to find an expression that
matches inputs/outputs of the records, in certain time budget and
program size. Because expressions in operator rules tend to be short,
we perform bottom-up enumerative search [9, 44] which first con-
structs small terms (e.g., (item)) and compose them gradually for
generating larger ones. For clarity we denote the set of enumerated
expressions to be &. Meanwhile, there are a few hypotheses to con-
sider, e.g., |Al, |I| and |O| are assumed be fixed. We will detail them
later in the “partial operator” paragraph.

Formula 2 describes a shape propagation rule with a set of expres-
sions for computing corresponding output dimensions. To infer the
propagation expression for the i-th output dimension (i.e., 0;), we
enumerate & until expry. € & is found to match all records (Formula 3).
Otherwise, we say the rules are not inferred and will not be used for
inserting symbolic operators during model generation.

P = {01 =expri(L,A),-,0n=exprp(LA) | expri€E} (2)
Jexpr € E,V(A* I*,0%) e RY ,expr[A*UI* JAUI =0;[0* /O] (3)

Similarly, input constraints C are predicates of equalities and
inequalities, which can be normalized to 0 = expr and 0 < expr
respectively. Algorithm 1 illustrates how C, starting with an empty
set (Line 2), is inferred. By enumerating predicates oriented from &
within the time limit (Line 3-4), we find predicates that are satisfied
by all passing examples (Line 5). Specifically, if any passing example
does not match the predicate under enumeration (i.e., ¢) (Line 6), ¢ is
then undesired, and consequently we restart the loop for the next
predicate (Line 7). Otherwise, we include ¢ in C (Line 8). Meanwhile,
for soundness input constraints should reject invalid inputs (if any).
Consequently, C should reject all (if any) counter examples (Line 9-
10). Otherwise, the rule is not inferred (Line 11).

Algorithm 1: Inference of input constraints C

1 Function InferInputConstraints(&, RV, R¥):

2 Ce—0

3 LABEL: for c € {0=expr,0 <expr;Yexpre &} do

4 if timeout then break

5 for (A*.1*) — R’ do

6 if evaluate(c[A*UI*/AUI)) is false then
7 |_ continue L ABEL // Go to next ¢ at Line 3
8 | C<Cu {c}

9 for (A*,I*) —R¥ do
10 if evaluate(/\C[A*UI*/AUI]) is true then
1 |_ raise Inference failure
12 | returnC

Partial operator. In NNSMITH, operator rules are directly written in
Python, whose grammar is much more complicated than G. Running

NEURI: Diversifying DNN Generation via Inductive Rule Inference

Symbolic Other
Attributes Arguments

@ imax_pool2di(f32[4], (ksize, pad, iceil=True) - if32[4]

APIs Input

© avg_pool2d(if32[4];, ‘ksize, pad, iceil=True) = if32[4]

&
&

N

© iavg_pool2di(f32[3]}, |ksize, pad, iceil=True) > f32[3]

(4) avg_pool2di(f32[3], |ksize, pad, iceil=False) - if32[3]

Figure 5: Examples of similar but distinct partial operators.
“f32[3]” stands for a float32 tensor variable whose rank is 3.

inductive program synthesis over such a complex grammar, though
being more capable, is impractical. To preserve a grammar as simple
as G, we split an operator into multiple partial operators, by “fixing”
components whose variation incurs a more complicated grammar.
We can empirically summarize such components for defining partial
operators. For example, branches in operator rules are used for han-
dling variable lengths of inputs or input ranks. Additionally, rules
of operators with dimension-sensitive attributes, e.g., dimin max (x,
dim), often requires array operations. With Figure 5, in addition to
API names (e.g., @ and @), we identify a partial operator with the
following properties:

(1) Tensor signature: Recall §2 that an operator could take and return
a variable length of tensors in various ranks. Because incorpo-
rating such variability is costly, we let each partial operator have
a fixed tensor signature (and thus a fixed form of I and O). For
example, @ and © have the same API name but are different
partial operators for having different input/output ranks (i.e., 3
versus 4). It is also worth noting that we do not distinguish partial
operator over the data types of input/output tensors which are
often orthogonal to the operator rules.

(2) Symbolic attributes: Besides input tensors, we regard other argu-
ments that can be symbolized to symbolic integers as symbolic
attributes, which are the free variables in operator rules (i.e., A
in §2). Therefore, invocations with different sets of symbolic
attributes are associated with different partial operators.

(3) Other arguments: We further classify the rest of arguments (i.e.,
non-tensor and non-symbolic-integer) into two categories: (i)
rule-orthogonal arguments (e.g., float-point scalars such as “bias”)
and (ii) (likely-)rule-dependent arguments (e.g., image layout
in “NCHW” or “NHWC”). Only (ii) will be used for identifying
partial operators for its potential impact on operator rules. In
general, the sub-category of an other argument is determined by
its type and value. For instance, in Figure 5, the ceil argument,
as a boolean, falls into the (ii) category, which makes ® and @
different partial operators. In fact, ceil impacts the shape prop-
agation rule of avg_pool2d, where being true makes the output
height and width rounded by ceil instead of floor (see Formula 1).
Further details will be elaborated in §4.

Pruning. & can be too large to enumerate. For efficiency, we prune
semantic-equivalent duplicates (i.e., equivalence), as well as those
that are uncommon in operator rules (i.e., rarity). Specifically, we
list the pruning methods in their order of being applied:

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

(1) Bound: Without constraints, & is infinite. Therefore, we bound &
by limiting the number of (op) and the set of constant literals. For
example, in our default experimental setting the maximum num-
ber of (op) being used is 5 and we use (constant) «{1,2}. Addi-
tionally, expressions describing inequality are further limited to
have at most one (op) because (i) inequalities are oftentimes sim-
ple; and (ii) a larger upper limit will lead to many false-positives
as inequalities are more flexible than equalities.

(2) Rarity: We empirically prune expressions with the same symbols
occurring more than once, which are uncommon. Those with
constant sub-expression (i.e., (op) {constant) (constant)) are
also pruned for being constant foldable.

(3) Equivalence: We find semantically equivalent expressions in &
and only keep the simplest one. Specifically, we leverage a two-
pass approach inspired by Ruler [30]: First, for the expressions
with the same free variables, we quickly evaluate them over a
number of randomly generated assignments and group them
according to the outputs (i.e., often known as characteristic vec-
tors or finger-prints). For each group, we then rigorously find
equivalents by applying an SMT prover.

& may vary for different AUI. While pruning & for each partial
operator is costly, we make it one-time effort by: (i) pruning &g
with “holes” (i.e., symbol placeholders); and (ii) extending Ep to & by
replacing the holes with actual symbols of each partial operators. For
example, assume that &g is the pruned set of expressions with holes
of {O1,02,03}, ie., (symbol) == O; | Oz | O3. To infer an operator
rule with AUT « {s1,--,s4}, we get the actual & by extending
&En, by mappings {s1,---,s4} to {01,02,03} in various ways. More
specifically, for each expr with h holes (symbols), we select h symbols
from AUI to “fill” the holes (i.e., substitution). Because of the one-
time-occurrence hypothesis, each symbol in AUT will not be selected
to fill multiple holes (i.e., injective). In addition, the mapping from
the selected symbols (in AUI) to holes is determined according to
the relative order of indices. For example, for O +0y, by selecting
{s1,s2} we only get s; + so. Why not consider permutation over
the mappings? Consider if we allow sz +s1 as an extension, when
extending Op + O; (indices swapped) we get the same duplicated
expression. As a result, for each expr with h holes, we can extend
(‘A;EJ Il) expressions. Meanwhile, when |A U I| is smaller than the
maximum number of holes, we only consider extending expr where
h<|AUIJ.

Rule reusing. Partial operators can share equivalent rules. Before
running inference from scratch, we can first test if the records can be
matched by already inferred rules (if they share the same form of A,
I'and O). If an existing rule can be matched, we can simply “copy and
paste” it for the new Partial operator as a short-cut; otherwise, we can
still run inference from scratch. Furthermore, since this optimization
is orthogonal to the grammar, we can also reuse those expert-crafted
rules from NNSmrTH (Python grammar).

Deduplication. The inferred input constraints could have many
redundant predicates, which slows down SMT solving when fuzzing
online and makes it less readable. Therefore, Algorithm 2 dedupli-
cates the predicates obtained from Algorithm 1. We each time remove
apredicate ¢ if C is equivalent to that without ¢ (Line 4-5). We run the
algorithm until a fixed point when no predicates from C are removed
after an iteration.

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

Algorithm 2: Predicate deduplication for C

1 Function Deduplicate(C):

2 repeat

3 force Cdo

4 if Prove(A[C] e AIC—{c}]) then
5 |_ C—C—{c}

6 until C unchanged

3.3 Hybrid DNN Generation

Following the Algorithm 1 in NNSmITH [25], the generation of a
DNN can be regarded as a problem of how to insert a valid operator
correctly to an already valid DNN model. In NNSMrITH, since all
operators has their corresponding rules (implemented by domain
experts), a DNN model is synthesized symbolically, i.e., all shape
dimensions and attributes are viewed as symbols at construction time
and later materialized with a set of assignments offered by the SMT
solver. For NEURI, we adopt a concolic [39] style of DNN generation
in order incorporate both symbolic and concrete operators>.
Specifically, the hybrid DNN generator inserts operators con-
colicly such that each operator, after insertion, is immediately con-
cretized by the model from the solver, instead of deferring it when a
full DNN is built. Therefore, the DNN under construction is always
concrete, i.e., all shape dimensions, data types and attributes are
concrete at construction time, which makes it applicable to insert a
concrete operator. There are a few benefits with a concrete DNN: (i)
the insertion of concrete operators can be efficiently implemented
by looking up compatible tensor types between traced records and
the model under construction; and (ii) theoretically SMT solving is
incurred less intensively (thus faster) with less symbols. In NNSmITH,
an operator can be inserted in two directions: 1) forward insertion
that inserts an operator which consumes existing values; and 2)
backward insertion that lets an operator be a producer by occupying
existing placeholders. Next, we elaborate how symbolic and concrete
operators are forward inserted and for clarity omit the details for
backward insertion, which can be regarded as a reversed version
over the placeholders (instead of arbitrary tensors).
Inserting a symbolic operator. Both the manually written operator
rules (i.e., NNSmiTH) and inferred ones (i.e., NEURI) can be used to
insert symbolic operators. Operators in both groups are selected
separately in equal amount of probability. Each time, to insert a
selected operator ¢, we first enumerate arity-sized combinations of
tensor variables as the input candidates to ¢, where each of them
must respect the data type and rank requirements of ¢. Taking the
batched 2D-convolution as an example, whose input tensor must
have four dimensions, any other tensors whose rank is not four will
not be taken into the enumeration. Next, each of the input candidate
tuples is checked by the input constraints Cy until one satisfies Cy
and thus becomes the tensor inputs I to ¢. Furthermore, we ask the
SMT solver to provide a model from the input constraints and use the
assignments of operator attributes A* to initialize ¢* « p[A*/A].
We then insert ¢*, taking 7 as inputs, to the DNN under construction.
We also propagate its output tensor types with the shape propagation

3A symbolic operator is an operator with inferred rules; while a concrete operator does
not have rules successfully inferred but still has its corresponding validated records.

Jiawei Liu, Jinjun Peng, Yuyao Wang, and Lingming Zhang

rule (Formula 2) for making future insertion feasible (§2). Of course,
if none of the candidates can make the rule satisfiable, the insertion
of ¢ will be discarded and the algorithm will re-try another operator.
Inserting a concrete operator. The feasibility of inserting a con-
crete operator is as simple as finding an intersection of tensor types
between inputs (i.e., I) in records and visible variables in the working
DNN. For example, given a avg_pool which has input tensor type of
float32[1,3,224,224] in the records, if there is a tensor variable
with a shape of [1,3,224,244] and a data type of float32 in the
DNN under construction, we can safely insert it to the target place.
However, because of the large volume of records, checking the sat-
isfiability operator by operator and record by record is inefficient.
Instead, we can build a mapping from tensor type (i.e., shape plus
data type) to a set of partial operators, any of which has an input
tensor of such a type. Then, by accumulating the set of partial opera-
tors mapped from tensor types available in the working DNN, we
get a reduced set of operator candidates which exclude those with
unsatisfiable input types. Consequently, we only need to enumerate
records of reduced sets of partial operators. Once a record if found
to be matchable, we initialize the partial operators with the record
and insert it to the DNN under construction.

3.4 TestOracle

In this section, we list three test oracles for manifesting bugs.
Result inconsistency. In addition to running the DNNs eagerly
with the pre-compiled library functions (i.e., interpreter), TensorFlow
and PyTorch can further optimize the models via compilation for
better performance. Hence, we cross-check the results obtained by
running the same model and inputs from the interpreter and compiler,
where a subtle floating-point error is allowed.

Runtime error. We identify a runtime-error bug if the compilation
or execution of a model aborts unexpectedly. The corresponding
symptoms include a crash or an unexpected Python exceptions not
incurred by incompatibility (e.g., “Not-implemented” error). Further-
more, interpreter exceptions are not considered as bugs as it could
be caused the use of an incorrect operator rule.

Sanitizer error. We also enrich the test oracles with sanitizers, such
as ASan [40] (memory error), UBSan [7] (use of compiler’s undefined
behavior), and CSan [3] (CUDA error). Sanitizer errors are reported
by sanitizer-injected checkers at runtime. Without sanitizers, bugs
may not manifest themselves via a crash (e.g., buffer overflow) or
occur at a late stage, making debugging challenging.

4 IMPLEMENTATION

NEeURI implements three components including an instrumentation
tool and rule synthesizer (i.e., offline), as well as a fuzzer (i.e., online),
through an effort of 14.9k LoC in total.

API instrumentation. The instrumentation tool is implemented
with 1.8k LoC in Python. The instrumentation is performed by in-
serting an API-hijacking code snippet in the __init__ files of DL
framework packages. Specifically, we run the instrumentation over
the developer tests from the open-source repositories of PyTorch
and TensorFlow. As soon as the DL packages are imported, the API-
hijacking code adds a function wrapper to all functions within the
package. During execution (i.e., running the regression tests of DL
frameworks), the invocation snapshots to desired APIs are serialized

NEURI: Diversifying DNN Generation via Inductive Rule Inference

for reproduction. In post-processing, a filter is applied to remove
invocations that do not comply with determinism and value indepen-
dence. To detect determinism, each invocation is replayed for three
times for checking output consistency. For testing value indepen-
dence, i.e., the operator rules are independent to the values/elements
in the input tensor, each API is tested by three groups of random
inputs (initialized from —10° to 10°) and is expected to output the
same tensor types without runtime failure. This component also
includes utilities for parsing and composing/replaying a DL API, in
order to construct new invocation.

Rule synthesizer. We implemented the synthesizer in 1.5k LoC in
Python. Before the actual rule synthesis, we first apply data augmen-
tation for enriching the records on demand (i.e., until 100 records for
each partial operator). In §3.2 it is found that not all arguments im-
pact the rules, consequently we identify rule-orthogonal arguments
in a partial operator through the argument type: for a floating-point
argument (e.g., bias) we assume it does not impact operator rules.
Furthermore, the arithmetic expressions are represented as binary
trees and for memory efficiency smaller trees are re-used to com-
pose larger trees via pointers in the bottom-up enumerative search.
We constrain the maximum number of (op) to 5 (i.e., 6 symbols at
most). As a result, as a one-time effort we first enumerate G by re-
garding the symbols as 6 “holes” and prune it on the fly to get .
Meanwhile, we also leverage commutativity of {+,X,min,max} to
skip the enumeration of operand swapping and associativity over
{+,—,%,+, min,max}, in order to accelerate the equivalence-based
pruning. With &g obtained as a one-time effort, for any new operator
rule under inference, we can quickly extend &Ep to & by filling its
actual symbols into the “holes” as discussed in §3.2. Specifically, for
each partial operator we set a timeout of 1000 seconds to infer the
shape propagation or input constraints.

Fuzzer. The fuzzing engine of NEURI is built by extending the NN-
SMmITH prototype [1] with 11.6k new LoC (and removing 7.9k old LoC).
Major efforts are spent to improve the extensibility and debuggibil-
ity of the original NNSmITH for benefiting algorithm prototyping
and bug finding. Previously NNSmITH uses directed multi-graphs
in networkx [17] for describing DL models internally. However, the
graph data structure is not suitable for manipulating model struc-
tures and being translated to real-world model formats. Additionally,
DL models are fundamentally programs [42] which is not necessar-
ily always pure data-flow graphs. For example, in-place operators
for reproducibility require a total order during execution whereas
traversing a graph cannot guarantee. As a result, we build an SSA-
based intermediate representation, namely GraphlR, to describe
DNN structures. Following the LLVM [23] interface style, DNN
manipulation is made safe and convenient via three fundamental
APIs of insert, remove_unused, and replace_alluse. Thanks to
the extensibility, five graph generation strategies used in this pa-
per, including three NEURI variants and two NNSMITH variants, are
implemented in merely 1.1k LoC.

5 EVALUATION
We evaluate NEURI by asking following research questions:

e RQ1 (§5.2): How does NEURI compare against state of the art in
DL compiler fuzzing in terms of code coverage?

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

e RQ2 (§5.3): How many APIs, partial operators and records are
collected and eventually inferred with operator rules? How effi-
cient and effective is our rule synthesizer compared with general-
purpose program synthesis tools such as Rosette [43]?

e RQ3 (§5.4): How effective is NEURI when detecting previously
unknown bugs for real-world DL compilers?

5.1 Experimental Setup

Systems under test. We test the emerging compilers of the most
popular DL frameworks, i.e., TensorFlow [8] and PyTorch [34], which
for clarity are denoted by “TF” and “PT” respectively.

(1) TensorFlow XLA compiler converts a TensorFlow model (e.g.,
SavedModel) to its graph-level IR (i.e., HLO) for running various
optimization passes. TensorFlow defines over 1500 operators.
Of these, around 450 are supported by XLA. This is because DL
compilers often focus on a small set of primitive operators, from
which other high-level operators can be composed.

(2) PyTorch JIT, the PyTorch’s equivalent of XLA, supports around
1310 APIs (including alias, e.g., torch.max(a) and a.max()) out
of a total of over 2000 PyTorch operators.

Metrics. We evaluate NEURI over various metrics. Specifically, we
explain the most important two here and defer the others.

o #Found bugs: We count the bugs at the basis of bug reports, which
are classified to four statuses: 1) fixed: A patch has been effectively
applied to fix the bug; 2) confirmed: In addition to fixed bugs, we
conservatively (i.e., lower bound) identify a confirmed bug iff it
has been reproduced/diagnosed as a fault or directly assigned to
developers for fixing it; 3) won ’t fix: Developers claim the potential
of not fixing it (i.e., upper bound); and 4) the rest of bugs are all
triaged but require further investigation.

e Branch coverage: Following [25, 26], we evaluate fuzzers with
branch coverage, a stronger criterion (than line coverage) for test
adequacy [51], over DL frameworks’ C++ source code.

Baselines. In end-to-end benchmarks, we compare NEuRI with
the state-of-the-art model-level fuzzers (namely NNSmiTH [25] and
Muffin [15]) and the state-of-the-art operator-level fuzzer (i.e., Deep-
REL [12]). For ablation study we also evaluate NEURI’s variants.

o NNSmITH performs model generation with over 60 operators
whose rules are manually crafted by domain experts. Specifically,
the official NNSm1TH performs pure symbolic generation where
the all symbols are materialized together when all operators in
the graph are symbolically inserted. In this paper we also propose
concolic generation (§3.3), consequently we also implemented a
concolic version of NNSMITH which immediately materializes
the symbols per insertion. Because the concolic variant performs
similarly as the pure-symbolic version, for clarity we omitted the
results in evaluation. One reason can be that concolic insertion
does not bring more operator supports in NNSmITH as NEURIL.

e Muffin based on 11 seed models including DenseNet [19] and
LSTM [18], performs mutation-based model generation. Similar
to NNSMITH, it supports over 60 operators by hand-crafting the
shape inference rules. However, Muffin-created models are not
guaranteed to be valid for the lack of input constraints. Notably,
Muffin is only implemented on TensorFlow. As a result, we only
compare Muffin against others on TensorFlow:.

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

e DeepREL is an operator-level mutation-based fuzzer similar to
FreeFuzz. As an improvement to FreeFuzz whose seeds purely
come from instrumentation, DeepREL extends the seed invoca-
tions by matching similar APIs and exchanging their arguments.

e NEURI" is a variant of NEURI where the use of inferred operator
rules is disabled. In other words, NEURI" constructs DNNs by
either using concrete operators determined by collected records or
symbolic operators from the original NNSmrta and both methods
share equal probability for being selected.

e The NEURI variant disables concrete operators and only uses
symbolic operators from automated inference or NNSMITH.

In addition, in RQ3 we also compare our rule synthesizer with

Rosette, a solver-aided programming system, which supports in-
ductive program synthesis. Specifically, we give Rosette G as the
grammar under a bit vector theory. The number of bits for the data
and operations is 32 given that the maximum number in records
is 232 — 1 (i.e., INT_MAX). Next, for each partial operator we let its
records be the constraints and run Rosette with a 1000-second time
budget. More specifically, we only compare with Rosette over the
inference of shape propagation, e.g., given an partial operator with k
output dimensions, both Rosette and NEURI will run k times each of
which trying to search expr;. that matches records of 0. We did not
infer input constraints for Rosette since multiple matched predicates
can be returned in one pass while Rosette directly terminates when
the first matched predicate is found.
Configuration. We run all experiments on Ubuntu 22.04 pow-
ered by a 64-thread AMD Threadripper CPU, 256 GB of memory,
and 4 TB of PCle-4 SSD. Our approach is evaluated over the up-
to-date frameworks and versions: TensorFlow v2.12-nightly (git:
5a6fc@6bf8) and PyTorch v2.1-nightly (git: f7520cb51e). Due to
the different tool-chain flavours, we compiled TensorFlow with GCC-
12.2 and GCOV [4], while PyTorch is compiled with Clang-14 and
its source-code based coverage tool [6]. To precisely measure the
test adequacy of compilation, for TensorFlow we instrument files
in tensorflow/compiler (over 800k LoCs), and for PyTorch, non-
kernel-function files under pytorch/csrc and aten/ are conserva-
tively instrumented since PyTorch’s passes are “everywhere”. Fol-
lowing prior work [25, 26] we by default run fuzzing for four hours
and generate models with five operators to balance between efficacy
and debuggability (Figure 6¢). For detecting result inconsistency, our
oracle uses absolute error of 103 and relative error of 1%. With mod-
els generated as small as five nodes, we did not see false-positives
brought by propagated floating-point errors.

5.2 RQ1: Evaluating Coverage

Overall coverage. Figure 6a and 6b show the coverage growth (y-
axis) in four hours (x-axis). Among all model-level fuzzers, NEURI
improves the prior SOTA (i.e., NNSmITH) by 24% on TensorFlow
and 15% on PyTorch. The results indicate that NEURI can synthesize
more diverse model structures to exercise various compiler passes.
In addition, NEURI also outperforms the SOTA operator-level fuzzer
DeepREL by 7% on TensorFlow and 2% on PyTorch. Though ex-
isting operator-level fuzzers [12, 46, 48] is known for constructing
invocations for thousands of APIs, NEURI shows that by only support-
ing a smaller but essential set of operators, similar and even better

Jiawei Liu, Jinjun Peng, Yuyao Wang, and Lingming Zhang

code coverage can be achieved through model-level generation. De-
spite the marginal coverage improvement over DeepREL, NEURI, via
model-level fuzzing, can explore various system behaviors that are
not covered by DeepREL. Specifically, 62.9% of the PyTorch bugs and
35.7% of TensorFlow bugs found by NEURI are manifested by models
of multiple operators which cannot be covered by single-operator
fuzzers like DeepREL. Overall, in four hours NEURI automatically
covered 10.8% and 17.4% of the compiler code branches in Tensor-
Flow and PyTorch respectively. It is worth noting that achieving
10-18% of total branch coverage is non-trivial, given the complexity
of DL frameworks. As a reference, fuzzers [22] for Linux (i.e., also a
million-LoC project) commonly achieve around 10% of block cover-
age. The missing branches can come from passes designed for other
hardware targets (e.g., GPU whereas CPU is used in our experiments)
and unused experimental compilation pipelines (e.g., MLIR).
Ablation study. By comparing NNSmITH with NEURI” and NEURT,
we show that both symbolic and concrete operators are effective for
improving coverage (18.8 ~20.9% for TensorFlow and 12.8 ~13.5%
for PyTorch). By combining both of them together (i.e., NEURI),
NeURI” and NEURI? can be further improved to cover 2.2% / 1.3%
more branches for TF / PT. Though this improvement might look
marginal, we argue that the additionally covered branches are harder-
to-reach ones, as we later show that a certain number of bugs are
exclusively contributed by inferred rules. Table 1 shows that NEURI
has a slightly lower validity rate (< 5.2%) and runs 17.6% (TF) / 67.7%
(PT) slower than NNSmrTH. The validity rate is lower as some inferred
rules are partially correct. The speed of NEURI is of course slower
as its model generation tackles over 75X more symbolic operators
than NNSm1TH and even much more concrete operators. However,
NeuURI still achieves better coverage as it generates test-case of higher
quality over quantity. Note that an non-prefect validity rate does not
introduce false-positives, as we identify and immediately discard an
invalid test-case if it raises exceptions in eager mode.

Speed. The time cost for generating, evaluating, and storing a test-
case is presented in Table 2. It indicates that constrain-based model
generation is efficient, taking an average of 88ms (TF) / 69ms (PT)
for creating and running a test-case, despite the single-thread nature
of our model generator. Specifically, test-case generation on average
takes 53% (TF) / 86% (PT) of the time, with constraint solving account-
ing for about half of it. Notably, the SMT solving time is long-tailed:
the P99 shows that in 1% of the cases, the solver time deteriorates by
over 12.5X (TF) / 15.5% (PT) compared to the average.

Impact of model size. NEURI and NNSMmITH by default generate
models with 5 nodes. How about other sizes? Figure 6¢ shows that
the model size used in NEURI impacts the coverage on PyTorch (Ten-
sorFlow is omitted for clarity but shares similar trends). For example,
only generating one-operator models (i.e., single-API) gets worse
coverage, since compiler passes look for multiple-operator patterns
(e.g., operator fusion). On the contrary, the benefits converges when
model size gets larger and larger (e.g., 0.1% coverage difference in
node 5-13). Consequently, because smaller models are easier to
diagnose, we by default use a model size of 5 in NEURIL.

5.3 RQ2:Evaluating Rule Inference

Statistics. Table 3 displays the statistics of APIs, partial operators
and records at different phases. The “Collected” row indicates that

NEURI: Diversifying DNN Generation via Inductive Rule Inference

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

------------------------------- [e EEEE: ZEEEEE - ShEEEn ﬁﬁ
3 e L & g é P & é é é et o B 4
fi R o E 5 paafiil 46 :_ § g 6 70 Q R f
g : IR R: o 8
2309 ¢ 5 37
g I o £ SN SRR ST S S S ol o 4657 PP S
% : g O O O oo oo ol ¢ Qe [SRR PR Qo "
gx1 i 0 [30Fvest 5358, = 10.8% | (Thest 17 = 17.4% | : (Thvos 721 = 17.4% |
> : P -
S i -4 NEURI @ NeuRI' -4 NNSwrrn 5 i -# NEURI @ NEvRI' - NNswrw | 4557 Q- #Node13 @ #Node5
#2091 . A- NeuRI O DeepREL O Muffin 364 ¢ A NEURI O DeepREL 3_: A #Node 9 e #Node 1
h 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
Time (Minute) Time (Minute) Time (Minute)
(a) TensorFlow (b) PyTorch (c) Impact of model size.

Figure 6: 4-hour coverage trend of fuzzing.

Table 1: Number of valid tests generated in 4 hours.

TensorFlow PyTorch
%Validity ~ # Tests %Validity # Tests
NEURI 94.8% 108,572 98.9% 206,486
NEuRI! 94.2% 78,083 98.6% 134,912
NEeuRI" 98.1% 125,059 99.8% 409,872
NNSMITH 100% 131,799 100% 639,434
Muffin 95.9% 302 - -

Table 2: Testing time breakdown (millisecond).

Gen. (SMT) Eval. Save Total
Avgerage 67(33) 21 38 126
TF P90 74 (37) 29 42 145
P99 673 (411) 58 59 733
Percentage 53%(26%) 17% 30% 100%
Avgerage 60 (38) 9 0 70
PT P90 45 (26) 11 0 56
P99 930(631) 16 1 942
Percentage 87%(55%) 13% 0% 100%

the developer tests (i.e., the instrumented code) incorporate 758 (out
of 1310) APIs supported by PyTorch JIT and 248 (out of 450) for XLA
respectively. 42-45% APIs are not collected due to the lack of tests
(e.g., untested aliased APIs) or being non-tensor APIs (e.g., image
encoder and decoder APIs). By focusing on these, around 63k / 34k
records can be collected for PyTorch / TensorFlow. After filtering out
unwanted records (§4), 47% (PT) / 38% (TF) of the records remained
for 90% (PT) / 86% (TF) of the APIs. Furthermore, data augmentation
improves the unique records by 15x (PT) / 7.7x (TF), out of which
57% (PT) / 67% (TF) are counter examples.

Within the 1000-second budget per rule, NEURI can infer 76% (PT)
/ 84% (TF) of rules at the partial operator level and 91% (PT) / 90%
(TF) of rules at the APIlevel (Table 3). To estimate the usefulness of
rules, we use “fuzzing " ” to denote the number for APIs that are used
during fuzzing (i.e., NEURI in one node). To indicate correctness,
“fuzzing®” denotes those in “fuzzing T~ that always construct valid
usages. It turns out 97% (PT) / 90% (TF) APIs out of the inferred ones
can be used and 96% (both) tend to be used validly, showing the
overall effectiveness of rule inference.

4The data points of input constraints are fewer because some partial operator have an
empty set of input constraints and are not visualized.

Table 3: # API/partial operator/record at different stages.

#API #Partial Op. #Record
PT TF PT TF PT TF
Collected 758 248 — — 63,136 33,973
Filtering 29,589 12,908
681 214 5875 1,799 ’ ’
Augment. 1,041,459 303,314
Inference 620 192 4,475 1,507 — —
Fuzzing™ 604 185 4,186 1,434 — —
FuzzingL 582 176 4,144 1415 — —
PyTorch Shape Propagation Input Constraints TensorFlow
103 4
% 10" 4
S
& 01
£
= 103

10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 45
Symbols (i.e., [AUT|)
Figure 7: Inference time and #symbols of inferred rules®.

T T
0 5

Table 4: Number of inferred shape propagation rules in 1000s.

Inferred Timeout Unsat.

<1s <10s <100s <1000s
NeuRl 4,660 4,700 4,716 4,758 994 123
Rosette 0 83 2,832 4,461 1,414 0

Scalability. Figure 7 depicts the distribution of inferred rules in
terms of the inference time and symbol size. It shows 95% of inferred
partial operators have less than 10 (PT) / 11 (TF) symbols, indicat-
ing the problem size is small overall. Additionally, inferring shape
propagation rules is highly affordable (i.e., 95% of them can be solved
within 17ms). However, input constraint inference tends to be more
costly, since predicate candidates are thoroughly enumerated in Al-
gorithm 1 while shape propagation terminates when the first feasible
solution is found. Meanwhile, the inference time of input constraints
grows with # symbols because partial operators with more symbols
incur more expressions to validate (Table 5).

Table 4 compares NEURI and Rosette in inferring shape propaga-
tion for partial operator in PyTorch. It shows that 79% of partial oper-
ators are inferred by NEURI within one second, while Rosette takes
over 10 seconds for 99% of cases. Specifically, the “unsat” presents

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

Table 5: Sizes of expressions after pruning,.

Jiawei Liu, Jinjun Peng, Yuyao Wang, and Lingming Zhang

Table 6: Overview of reported bugs in four months.

|AUI| | None Equiv. Rarity Both Symptom (§3.4) | Total Confirmed (Fixed) Won’t Fix
1 4.77x108 535x10° 3.54x10° 78 Inconsistency 19 19 (17) 0
2 2.88x10° 9.04x107 5.90x10° 1.25x10° PT Runtime error 43 32(25) 2
3 1.11x101 5.18x10% 5.22x107 2.28x10° Sanitizer error 20 13(7) 0
4 3.32x1010 1.91x10° 3.13x10% 1.94x107 Inconsistency 7 6 (0) 1
5 8.36x1010 549x10° 1.40x10° 1.06x108 TF Runtime error 7 7(0) 0
6 1.86x1011 1.33x1010 4.66x10° 3.89x10% Sanitizer error 1 1(0) 0
Percent. | 100% 7.15% 2.51% 0.21% Total 100 81(51) 3

the number of cases where no expression is applicable after the full
enumeration. Rosette has zero “unsat” rules because it fails to finish
the enumeration within 1000s.

Impact of pruning. Table 5 shows the number of expressions after
being pruned by different methods. For example, for an partial oper-
ator with six symbols (i.e., JAUI| =6), without any pruning there are
hundreds of billions of expressions to verify (i.e., 1.86x10!!, recall
that we have at most 5 operations). Our pruning method (i.e., the
“both”) is able to prune the search space smaller by 478%. The abla-
tion study shows that both equivalence and rarity can sufficiently
contribute to shrinking the search space even if applied indepen-
dently. Interestingly, we found that our method prunes even better
pruning ratio for fewer symbols, e.g., 1.64X107% unpruned for one
symbol and 0.21% unpruned for six symbols. This is a good news
since from Figure 7 we see the number of symbols tend to be small,
i.e., approximately clustered within 1 to 10.

Examples. We found most partial operators have very simple rules
being inferred, e.g., 70% (PT) / 51% (TF) of which only have ex-
pressions with at most one symbol. Nevertheless, we show some
complicated representatives to indicate the capability of NEURI’s
rule synthesizer. Given an arbitrary input tensor X, say its shape
is [i1,i,i3,i4], both x. flatten() and torch.ravel(x) flatten the
tensor into a 1-D array whose shape is [i1 Xi2 Xi3Xi4], which can be
inferred by us. For more complicated cases such as x.unfold(dim,
(idin—size)

step

also be correctly learnt®. There are also cases where partially correct
rules are learnt. Consider avg_pool3d(x, ksize=[kT, kH, kW],
pad=[pT, pH, pW]) where both the input and output have five

dimensions (i.e., [in,ic,iT,ig,iw] — [oN,00,0T,0H,0w]). While

NEeURI correctly inferred that o = %, it overfits the H and W

size, step), the shape propagation of ogip =1+ can

dimension with oy = L—fé + min(1,pH), due to the lack of records
where %H +min(1,pH) # %. However, in our 4-hour fuzzing
the corresponding partial operators were used and did not lead to
any invalid models. This is because this incorrect expression still
gets a good chance of being valid. For example, NNSmITH [25] re-
veals that SMT solvers like Z3 [29] tend to return boundary models,
e.g., pH = 0 which makes the two equations equivalent. There are of
course uninferred operator rules. For example, one partial opera-
tor of torch. stack takes hundreds of input tensors, where NEURI
cannot handle hundreds of oriented symbols in 1000s.

5.4 RQ3:BugFinding
Overview and impact. In four months, NEURI has found 100 new
bugs, with 51 fixed and 81 confirmed (Table 6). Links to all bug reports

®Division demonstrated in this paragraph is floor division, i.e., for integers.

inthis work are included in our artifact®. Of these, 76 are found during
fuzzing and 24 are byproducts (e.g., crashes by counter examples in
argumentation). Among the 85 PyTorch bugs, 8 have been labelled
with high priority, constituting 10% (8 / 83) of all high-priority bugs
for the entire PyTorch issue tracker in four months. Besides, one
PyTorch bug has been tagged with a CVE number when there was
only one other CVE published in PyTorch. PyTorch developers say:

...the bugs you’ve reported are high quality, and ...
don’t look like specially fuzzed set that’s impossible to see
in practice. They did reveal a few common themes that are
easy to encounter in practice... ’ ,

Meanwhile, to report bugs responsibly [38], we discontinued
bug reporting to TensorFlow when none of our first 15 reports (14
confirmed) were fixed in a month. Hence, the “15” bugs should be
regarded as a lower bound for bug finding efficacy in TensorFlow.
Unique bugs. We illustrate the patterns of exclusive PyTorch bugs
(since we discontinued TensorFlow bug finding) found by NEURI dur-
ing fuzzing (i.e., byproducts not included). Among these 62 fuzzing
bugs in PyTorch, 39 bugs (62.9%) are only manifested by models with
multiple operators — these are not able to be detected by prior single
API fuzzers [12, 46, 48]. Meanwhile, 41 (66.1%) of the bugs would not
be covered by NNSmrTH for its limited API supports’. For example,
torch.reciprocal (torch.dstack([1, 1, 11)) “concatenates”
the only input and gets the reciprocal, which should have returned
[1, 1, 1]. However, after compilation the third output element
becomes non-deterministic. This is confirmed to be a miscompila-
tion bug® (now fixed) where the C kernel function generated by
PyTorch has erroneous pointer aliases for input and output buffers.
This inconsistency bug is neither detectable by single-API testers
nor NNSmITH (unsupported APIs).

In addition, 17 bugs (27.4%) are exclusive to NEURL, i.e., the shapes
and attributes of the bug-inducing models are not directly obtained
from the records, but by solving constraints from inferred rules. It
shows that enabling rule inference, though not bringing surprising
coverage improvement (§5.2), does help find more bugs. For instance,
a high-priority bug detected by NEURI? (now fixed) requires the
input shape of torch.histogramdd to be specifically [5, 6] for
triggering a compiler failure. The input shape, i.e., [5, 6], comes
from the solver-provided model and none of the six collected records
of torch.histogramdd can trigger the bug. As another example,
the x-unfold-abs_model pattern (“*” means any operators and the

Chttps://github.com/ise- uiuc/neuri-artifact/blob/main/docs/rq3-bug-reports.md
"Muffin shares similar limitations as NNSmrTH in terms of limited API supports, and is
not directly comparable here because it only supports TensorFlow.
Shttps://github.com/pytorch/pytorch/issues/93078
“https://github.com/pytorch/pytorch/issues/93274

NEURI: Diversifying DNN Generation via Inductive Rule Inference

@

”1in abs means it is an in-place operation) can manifest a result
inconsistency bug!® (now fixed) since the graph functionalization
in the PyTorch compiler was not able to identify certain operator
patterns that have memory overlapping. Specifically, it is detected by
using a set of solver-provided arguments, i.e., tensor.unfold(1, 3,
2). Notably, both examples here require operators that are unavail-
able in NNSmiITH, showing that operator diversity further powers
model diversity to detect more bugs.

Furthermore, one heap-overflow bug is assigned by PyTorch with
a CVE identification number (GHSA-6655-44g2-4gc8) due to its se-
curity impact. This bug is induced by searchsorted(arr, val,
sorted_idx), which aims to binary search val in arr (e.g., an ar-
ray) where sorted_idx are the sorted indices of val. Specifically,
boundary checks for sorted_idx were absent in the previous imple-
mentation. Therefore, a large enough index, if “lucky”, can lead to a
segmentation fault, terminating the program without further impact.
However, a carefully designed index allows attackers to access and
steal data from other memory addresses besides the array range
when performing the binary search.
“Won’t-fix” bugs. Three of our reports are rejected or deprioritized.
For example, both an inconsistency bug in tf.cast!! and a crash
bugin torch.linalg.eigvals [36] were rejected for using NaNs
as input, incurring undefined behaviours. Another PyTorch JIT bug
was deprioritized because developers suggested us to use and test
the new compiler [37] (and consequently we did).

6 RELATED WORK

In recent years, fuzzing [28] has been extensively studied for testing
DL libraries and DL compilers, which can be mainly categorized into
operator and model levels. Operator-level techniques [12, 46, 48]
aim to test each DL APIin isolation. FreeFuzz [46], a fully automated
operator-level fuzzer for testing DL libraries (such as TensorFlow
and PyTorch), collects DL API traces from sources such as developer
tests and model zoo, and further mutates the traced inputs to gen-
erate additional valid/invalid test-cases for fuzzing each operator.
Similarly, DocTer [48] also aims to test each DL operator individ-
ually, by extracting their input constraints from documentation,
incurring manual inspection of the mined rules for 30% of the API
arguments. Nonetheless, the input constraints for each argument
are defined by DocTer as a potential set of types and values, which
cannot model fine-grained shape constraints. Additionally, recent
work has also been improving the oracles of DL system testing via
API relation [12] and gradient checking [49]. Though effective in
bug finding, operator-level fuzzing hardly uncover bugs induced by
multiple operators together, e.g., bugs in DL compilers.

Model-level fuzzing techniques generate DL models with multiple
operators. The pioneer Cradle [35] directly runs pre-built DL models
programmed in Keras [14] and cross-check results from various
backends. Built on Cradle, LEMON [45] and Audee [16] generate
models via pre-defined mutation rules. Furthermore, Muffin [15]
performs layer-by-layer model generation for testing both training
and inference. Recently, NNSmrTH [25] annotates each operator with
input constraints and shape transformation, and generates valid

Ohttps://github.com/pytorch/pytorch/issues/98143
https://www.tensorflow.org/api_docs/python/tf/cast

ESEC/FSE ’23, December 3-9, 2023, San Francisco, CA, USA

models aided by SMT solving. While they complement operator-
level fuzzing, the model mutation/generation rules are restrictive,
e.g., they typically only target naive shape-preserving operators [15,
27, 45], or require certain manual annotations [25], leading to a
limited set of operators being used. This work proposes to infer such
operator rules, and then apply them to generate valid models with
all possible operators. Our work can cover as many operators as
operator-level fuzzing while generating valid models with covered
operators fully automatically, i.e., a step forward for bridging the
gap between operator- and model-level fuzzing for DL systems.

More recently, there has been concurrent work [10, 11] on directly
leveraging large language models (LLMs) to synthesize Python pro-
grams to construct valid DL models. Such techniques aim to implicitly
solve the validity constraints via directly learning from valid samples.
Compared with LLM-based model generation, despite the technical
complexity, by explicitly solving the constraints, NEURI provides
stronger validity guarantee within the covered model space and is
more affordable (i.e., <100ms per model on CPU). Meanwhile, LLMs,
trained over billions of lines of codes, can be used to easily test be-
yond the model space carefully crafted and exhaustively explored
by NEURL. Therefore, these two approaches can be further combined
for maximized fuzzing in the future.

Lastly, program synthesis has been used by related areas such as
synthesizing user-facing tensor-manipulation programs [31, 41, 50].
Similar to NNSmiITH, they also require manual operator specifica-
tions. This paper applies inductive program synthesis [24, 47] to infer
such specifications, and can potentially improve all methods target-
ing model generation, e.g., DL system fuzzing, tensor-manipulation
program synthesis and neural architecture search [13].

7 CONCLUSION

In this paper, we present NEURI, the first approach to automatically
infer operator rules for diversifying model generation in order to
test DL systems. NEURI generates test-cases from structurally valid
models composed by diverse operators for exercising deeper system
behaviours. The primary source of the diversity comes from our
automated rule inference engine and concolic model generator. The
rule inference engine inductively and efficiently discovers opera-
tor rules for generating valid models symbolically. Meanwhile, our
concolic model generator can further make use of concrete operator
invocations in combination with the symbolic operators to maxi-
mize the model diversity. As a result, NEURI finds many high-priority
and -quality bugs appreciated by DL-framework developers. Addi-
tionally, NEURI is practical and promising for long-term fuzzing —
high-quality test-cases can be generated in milliseconds on a single
CPU thread and new operators can always be automatically inte-
grated. To date, NEURT has already detected 100 new bugs for PyTorch
and TensorFlow, with 81 fixed or confirmed.

DATA AVAILABILITY

The artifact is available at https://github.com/ise-uiuc/neuri-artifact.

ACKNOWLEDGMENTS

This work was partially supported by NSF grants CCF-2131943 and
CCF-2141474, as well as research awards from Google and Meta. We
thank Jun Yang for providing valuable proofreading assistance.

ESEC/FSE *23, December 3-9, 2023, San Francisco, CA, USA

REFERENCES

[1] 2022. ASPLOS2023 Artifact for "NNSmith: Generating Diverse and Valid Test Cases

for Deep Learning Compilers". Zenodo. https://doi.org/10.5281/zenodo.7222132
2022. Building the Future of TensorFlow — The TensorFlow Blog. https://blog.
tensorflow.org/2022/10/building- the- future-of-tensorflow.html.

2022. "Compute Sanitizer :: CUDA Toolkit Documentation”. https://docs.nvidia.
com/cuda/compute-sanitizer/index.html.

2022. GCOV. https://gcc.gnu.org/onlinedocs/gec/Geov.html.

2022. PyTorch 2.0 | PyTorch. https://pytorch.org/get-started/pytorch-2.0/.

2022. Source-based Code Coverage — Clang 15.0.0 documentation. https://releases.
Ilvm.org/15.0.0/tools/clang/docs/SourceBasedCodeCoverage.html.

2022. "UndefinedBehaviorSanitizer — Clang 16.0.0git documentation".
//clang llvm.org/docs/UndefinedBehaviorSanitizer.html.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th USENIX
symposium on operating systems design and implementation (OSDI 16). 265—283.
Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling enumerative
program synthesis via divide and conquer. In International conference on tools and
algorithms for the construction and analysis of systems. Springer, 319-336.

Yinlin Deng, Chungiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming
Zhang. 2023. Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-
Learning Libraries via Large Language Models. In ISSTA. 423-435.

Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing
Yang, and Lingming Zhang. 2023. Large language models are edge-case fuzzers:
Testing deep learning libraries via fuzzgpt. arXiv preprint arXiv:2304.02014 (2023).
Yinlin Deng, Chenyuan Yang, Anjiang Wei, and Lingming Zhang. 2022. Fuzzing
deep-learning libraries via automated relational api inference. In Proceedings of
the 30th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 44-56.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural architecture
search: A survey. The Journal of Machine Learning Research 20,1(2019), 1997-2017.
Google. 2015. Keras. https://keras.io.

https:

[15] Jiazhen Gu, Xuchuan Luo, Yangfan Zhou, and Xin Wang. 2022. Muffin: Testing

deep learning libraries via neural architecture fuzzing. In Proceedings of the 44th
International Conference on Software Engineering. 1418-1430.

Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Xiaohong Li, and Chao
Shen. 2020. Audee: Automated testing for deep learning frameworks. In 2020
35th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 486-498.

Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,
dynamics, and function using NetworkX. Technical Report. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. 2017.
Densely connected convolutional networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition. 4700-4708.

Susmit Jha and Sanjit A Seshia. 2017. A theory of formal synthesis via inductive
learning. Acta Informatica 54,7 (2017), 693-726.

Ho Young Jhoo, Sehoon Kim, Woosung Song, Kyuyeon Park, DongKwon Lee, and
Kwangkeun Yi. 2022. A static analyzer for detecting tensor shape errors in deep
neural network training code. In Proceedings of the ACM/IEEE 44th International
Conference on Software Engineering: Companion Proceedings. 337-338.

Kyungtae Kim, Dae R Jeong, Chung Hwan Kim, Yeongjin Jang, Insik Shin, and
Byoungyoung Lee. 2020. HFL: Hybrid Fuzzing on the Linux Kernel.. In NDSS.
Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75-86.

Tessa A. Lau and Daniel S. Weld. 1999. Programming by Demonstration: An
Inductive Learning Formulation. In Proceedings of the 4th International Conference
on Intelligent User Interfaces (Los Angeles, California, USA) (IUI *99). ACM, New
York, NY, USA, 145-152. https://doi.org/10.1145/291080.291104

[25] Jiawei Liu, Jinkun Lin, Fabian Rufty, Cheng Tan, Jinyang Li, Aurojit Panda, and

Lingming Zhang. 2023. NNSmith: Generating Diverse and Valid Test Cases for Deep
Learning Compilers. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Machinery,
New York, NY, USA, 530-543. https://doi.org/10.1145/3575693.3575707

[26] Jiawei Liu, Yuxiang Wei, Sen Yang, Yinlin Deng, and Lingming Zhang. 2022.

Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation. Proc.
ACM Program. Lang. 6, OOPSLA1, Article 73 (apr 2022), 26 pages. https:
//doi.org/10.1145/3527317

Weisi Luo, Dong Chai, Xiaoyue Ruan, Jiang Wang, Chunrong Fang, and Zhenyu
Chen. 2021. Graph-based fuzz testing for deep learning inference engines. In
2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
288-299.

(28

[29

[30

[31

[32]

[33
[34

[35

[36

[37

[38]

[39

[40

[41

[42

43

[44

[45]

[46

[47

[48]

[49

[50

[51]

Jiawei Liu, Jinjun Peng, Yuyao Wang, and Lingming Zhang

Barton P Miller, Louis Fredriksen, and Bryan So. 1990. An empirical study of the
reliability of UNIX utilities. Commun. ACM 33, 12 (1990), 32-44.

Leonardo de Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337-340.

Chandrakana Nandi, Max Willsey, Amy Zhu, Yisu Remy Wang, Brett Saiki, Adam
Anderson, Adriana Schulz, Dan Grossman, and Zachary Tatlock. 2021. Rewrite
Rule Inference Using Equality Saturation. Proc. ACM Program. Lang. 5, OOPSLA,
Article 119 (oct 2021), 28 pages. https://doi.org/10.1145/3485496

Ansong Ni, Daniel Ramos, Aidan ZH Yang, Inés Lynce, Vasco Manquinho, Ruben
Martins, and Claire Le Goues. 2021. SOAR: A Synthesis Approach for Data Science
API Refactoring. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE). IEEE, 112-124.

OpenAl 2022. ChatGPT: Optimizing Language Models for Dialogue. https:
//openai.com/blog/chatgpt/.

OpenAl 2022. DALL-E 2. https://openai.com/dall-e-2/.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019), 8026-8037.

Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE:
Cross-Backend Validation to Detect and Localize Bugs in Deep Learning Libraries.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
1027-1038. https://doi.org/10.1109/ICSE.2019.00107

PyTorch. 2022. Numerical accuracy — PyTorch master documenta-
tion. https://pytorch.org/docs/master/notes/numerical_accuracy.html#linear-
algebra-torch-linalg

PyTorch. 2022. TorchDynamo and TorchInductor Tutorial. https://pytorch.org/
tutorials/intermediate/dynamo_tutorial. html.

John Regehr. 2020. Responsible and Effective Bugfinding. https://blog.regehr.org/
archives/2037.

Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A concolic unit testing
engine for C. ACM SIGSOFT Software Engineering Notes 30, 5 (2005), 263-272.
Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. 2012. { AddressSanitizer }: A Fast Address Sanity Checker. In 2012 USENIX
Annual Technical Conference (USENIX ATC 12). 309-318.

Kensen Shi, David Bieber, and Rishabh Singh. 2022. TF-Coder: Program synthesis
for tensor manipulations. ACM Transactions on Programming Languages and
Systems (TOPLAS) 44, 2 (2022), 1-36.

TensorFlow Contributors. 2023. Using TensorFlow Securely — TensorFlow mod-
els are programs. https://github.com/tensorflow/tensorflow/security/policy#
tensorflow-models-are-programs [Online; accessed 3-Jan-2023].

Emina Torlak and Rastislav Bodik. 2013. Growing solver-aided languages with
Rosette. In Proceedings of the 2013 ACM international symposium on New ideas,
new paradigms, and reflections on programming & software (Indianapolis, Indiana,
USA). Association for Computing Machinery, New York, NY, USA, 135-152. https:
//doi.org/10.1145/2509578.2509586

Abhishek Udupa, Arun Raghavan, Jyotirmoy V Deshmukh, Sela Mador-Haim,
Milo MK Martin, and Rajeev Alur. 2013. TRANSIT: specifying protocols with
concolic snippets. ACM SIGPLAN Notices 48, 6 (2013), 287-296.

Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020. Deep
learning library testing via effective model generation. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 788-799.

Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang. 2022. Free lunch
for testing: Fuzzing deep-learning libraries from open source. In Proceedings of the
44th International Conference on Software Engineering. 995-1007.

Patrick H. Winston. 1970. Learning Structural Descriptions From Examples. Techni-
cal Report. Cambridge, MA, USA.

Danning Xie, Yitong Li, Mijung Kim, Hung Viet Pham, Lin Tan, Xiangyu Zhang,
and Michael W Godfrey. 2022. DocTer: documentation-guided fuzzing for testing
deep learning API functions. In Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis. 176—188.

Chenyuan Yang, Yinlin Deng, Jiayi Yao, Yuxing Tu, Hanchi Li, and Lingming Zhang.
2023. Fuzzing Automatic Differentiation in Deep-Learning Libraries. In Proceedings
of the 45th International Conference on Software Engineering (Melbourne, Victoria,
Australia) (ICSE 23). IEEE Press, 1174-1186. https://doi.org/10.1109/ICSE48619.
2023.00105

Zhanhui Zhou, Man To Tang, Qiping Pan, Shangyin Tan, Xinyu Wang, and Tianyi
Zhang. 2022. INTENT: Interactive Tensor Transformation Synthesis. In Proceedings
of the 35th Annual ACM Symposium on User Interface Software and Technology.
1-16.

Hong Zhu, Patrick A. V. Hall, and John H. R. May. 1997. Software Unit Test
Coverage and Adequacy. ACM Comput. Surv. 29, 4 (dec 1997), 366-427. https:
//doi.org/10.1145/267580.267590

Received 2023-02-02; accepted 2023-07-27

	Abstract
	1 Introduction
	2 Operator Rules
	3 Approach
	3.1 Instrumentation
	3.2 Rule Inference
	3.3 Hybrid DNN Generation
	3.4 Test Oracle

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1: Evaluating Coverage
	5.3 RQ2: Evaluating Rule Inference
	5.4 RQ3: Bug Finding

	6 Related Work
	7 Conclusion
	References

