

1 **A bio-inspired self-burrowing probe in shallow granular**
2 **materials**

3 **Ningning Zhang ^a; Yuyan Chen ^{b,*}; Alejandro Martinez ^b; Raul Fuentes ^a**

4 ^a*Institute of Geomechanics and Underground Technology, RWTH Aachen University, 52074 Aachen, Germany*

5 ^b*Department of Civil and Environmental Engineering, University of California Davis, Davis, CA 95616, United States*

6 *Corresponding author at: Department of Civil and Environmental Engineering, University of California Davis, Davis, CA 95616, United
7 States. E-mail address: yych@ucdavis.edu (Chen)

8 **ABSTRACT**

9 Bio-inspired strategies have been used in recent years to solve engineering problems in geotechnics.
10 Inspired by the dual-anchor locomotion mechanism of razor clams, researchers are developing a new
11 generation of self-burrowing probes for a wide range of applications such as site exploration and sensor
12 deployment. Due to inherent complexities of the bio-inspired self-burrowing mechanism, the interaction
13 between the probe and soil is not fully understood, hindering the development of physical prototypes.
14 In this study, a model based on the discrete element method (DEM) is used to prove feasibility, study
15 and optimize the self-burrowing process of a probe. The probe burrows in a gravity-settled chamber
16 filled with a scaled discrete analogue of a silica sand. A stepwise methodology including essential
17 anchor expansion, tip penetration and anchor retraction behaviors is proposed to model the self-
18 burrowing process. Tip oscillation is introduced to reduce penetration resistance, which enables
19 efficient burrowing through continuous cycles. However, the reduction strategy of soil resistance
20 consumes more than 50% of the total work done by the entire self-burrowing cycle. Micromechanical
21 observations such as contact force network and particle displacement field are provided to clearly
22 visualize the interaction between the soil and the probe. Whilst the total energy necessary to penetrate
23 is larger than an equivalent constant rate penetration, the feasibility of such probe is numerically proven.

24 **KEYWORDS:** bio-inspiration, self-burrowing probe, discrete element method, granular materials

25 List of Notations

26	D_{50}	particle mean size
27	D_C	chamber diameter
28	D_r	relative density
29	D_S	original shaft diameter
30	D_{SA}	shaft anchor diameter
31	D_{TA}	tip anchor diameter
32	d_c	probe tip cone diameter
33	ER_S	shaft expansion ratio
34	ER_T	tip expansion ratio
35	F_n	normal contact force at particle scale
36	$F_{N,z}$	neck vertical force
37	F_{SA}	shaft anchor capacity
38	$F_{S,bot,z}$	vertical force on shaft bottom surface
39	$F_{S,r}$	actual shaft radial force
40	$F_{S,r,inc}$	shaft radial force increment
41	$F_{S,r,target}$	target shaft radial force achieved during expansion
42	$F_{S,r,tot}^t$	resultant shaft radial force
43	$F_{S,z}$	shaft vertical (anchor) force
44	$F_{S,z,max}$	maximum shaft vertical (anchor) force
45	$F_{Tcone,x}$	tip cone force along x-axis direction
46	$F_{Tcone,z}$	tip cone vertical force
47	$F_{Tcyl,top,z}$	vertical force on tip cylinder top surface
48	$F_{Tcyl,z}$	tip cylinder vertical force
49	$F_{Tcyl,z,max}$	maximum tip cylinder vertical force
50	$F_{Tcyl,r}$	radial force measured on tip cylinder
51	$F_{Tcyl,r,target}$	target radial force on tip cylinder achieved during expansion
52	F_{TA}	tip anchor capacity
53	$F_{top,z}$	vertical force on the probe top
54	g	gravitational acceleration
55	G	shear modulus
56	H_C	Chamber height
57	h	burrowing depth

58	h_E	height of probe embedment
59	h_N	height of probe neck
60	h_S	height of probe shaft
61	h_{TCyl}	height of probe tip cylinder
62	l_p	probe length
63	m_p	probe mass
64	m_S	shaft mass
65	n	number of load increments for shaft expansion
66	n_1, n_2, n_3, n_4 and n_5	scaling factors
67	n_p	probe/particle size ratio
68	N	particle number
69	Q_T	tip resisting force during penetration
70	Q_S	shaft resisting force during shaft retraction
71	r_1, r_2	rough model parameters
72	R_d	chamber/probe diameter ratio
73	S_q	surface roughness
74	t_l	tip oscillation time length
75	$v_{Tcyl,r}$	tip cylinder radial expansion velocity
76	$v_{S,r}$	shaft radial expansion velocity
77	$v_{S,r}^t$	shaft radial expansion velocity at time t
78	$v_{S,r}^{t+\Delta t}$	shaft radial expansion velocity at time $(t+\Delta t)$
79	v_p	tip penetration velocity
80	v_{SC}	shaft contraction velocity
81	v_{SR}	shaft retraction velocity
82	v_{TC}	tip contraction velocity
83	v_{TO}	oscillation velocity of tip point along one single vertical plane
84	W_{CRP}	work done by constant rate penetration
85	W_{SC}	work done by shaft contraction
86	W_{SE}	work done by shaft expansion
87	W_{SR}	work done by shaft retraction
88	W_{TC}	work done by tip contraction
89	W_{TE}	work done by tip expansion
90	W_{TO}	work done by tip oscillation
91	W_{tot}	total self-burrowing work

92	W_{TP}	work done by tip penetration
93	σ_z	vertical stress
94	μ	friction coefficient of soil
95	μ_p	friction coefficient of probe
96	δ	contact overlap
97	δ_1, δ_2	rough model parameters
98	ν	Poisson's ratio
99	Δt	time step
100	$\Delta\rho_{shaft}$	shaft penetration distance in one burrowing cycle
101	$\Delta\rho_{tip}$	tip penetration distance in one burrowing cycle
102		

103 **Abbreviations**

104 CPT cone penetration test
105 CF constant force
106 CR constant radius
107 CV constant velocity
108 DEM discrete element method
109 ILC incremental load control
110 PRM particle refinement method
111 PSD particle size distribution
112 QSP quasi-static penetration
113 REM radius expansion method
114 SC shaft contraction
115 SE shaft expansion
116 SPT standard penetration test
117 SR shaft retraction
118 TC tip contraction
119 TE tip expansion
120 TP tip penetration
121 TO tip oscillation
122

123 **1 Introduction**

124 Strategies inspired by biology are multifunctional, redundant, robust and efficient and thus they have
125 been applied in geotechnics to facilitate engineering advances and solve engineering problems
126 (Martinez et al., 2021). In the last decade, ongoing research in bio-inspired geotechnics has emerged
127 from four main areas: (a) snakeskin-inspired surfaces (O'Hara & Martinez, 2022; Martinez et al., 2019;
128 Zhong et al., 2021); (b) root-inspired anchorage systems and foundations (Bengough & Mullins, 1990;
129 Burrall et al., 2021; Mallett et al., 2018; Mickovski et al., 2011); (c) burrowing probes (Chen et al.,
130 2021; Huang & Tao, 2020; Tao et al., 2020; Winter et al., 2014), and; (d) robotic excavation (Carotenuto
131 et al., 2020; De Macedo et al., 2021; Frost et al., 2017).

132 In particular burrowing robots, strategies inspired by the dual-anchor locomotion of razor clams
133 (Trueman, 1967), the peristaltic locomotion of earthworms (Dorgan, 2015), and the rotational growth
134 mode of seed roots (Taylor et al., 2021) have been employed to develop a new generation of self-
135 burrowing robotic probes (Tao et al., 2020; Winter et al., 2014). Relevant studies of self-burrowing
136 probes include numerical modelling, cavity expansion analyses and laboratory testing (Borela et al.,
137 2021; Chen et al., 2021; Huang & Tao, 2020; Martinez et al., 2020; Tang & Tao, 2022). In the future,
138 self-burrowing robots could be used for site exploration, search and rescue, sensor deployment,
139 inspection, monitoring, surveillance, transport, and construction purposes (Tao, 2021). These
140 applications are expected not only on Earth but also on outer-space bodies such as Mars and the Moon.

141 Figure 1 illustrates the typical burrowing cycle of a razor clam employing a dual-anchor locomotion
142 mechanism (Trueman, 1967), whose simplicity and efficiency have attracted particular attention for the
143 development of self-burrowing probes. This mechanism cyclically alternates expansion and contraction
144 of the back (shell) and front (foot) anchors to achieve forward movement. During a cycle, (i) the shell
145 first expands to form an anchor to provide sufficient reaction force for the foot to (ii) penetrate further
146 into the soil. Then, (iii) the foot expands and the shell contracts. In this stage, (iv) the foot acts as an
147 anchor to drag the shell down into the soil. Inspired by this locomotion strategy, Winter et al. (2014)
148 developed the '*RoboClam*' robot which uses a reduced amount of energy compared to what would be
149 required quasi-statically pushing the probe into the soil. Soil fluidization is also used to aid in the
150 burrowing with the RoboClam; however, field trials were only able to reach a depth of 0.3 m. Tao et al.
151 (2019) and Tao et al. (2020) developed a self-burrow-out soft robot that uses cycles of longitudinal
152 contraction and expansion. Borela et al. (2021) developed an earthworm-inspired robot which was
153 tested in sands. Most of the tests in this study failed to self-burrow due to the limited length of the
154 robot's anchor which resulted in insufficient mobilization of anchorage forces. The above studies
155 highlight the challenges of developing self-burrowing robots or tools.

156 Researchers have performed numerical simulations to further understand the robot-soil interactions. For
157 example, Huang & Tao (2020) used a discrete element method (DEM) model to study the influence

158 zone created by the body expansion of razor clams, but the DEM model simplified the dual-anchor
159 system of razor clams to only one shaft anchor, which created impractical self-burrowing. Chen et al.
160 (2021, 2022a, 2022b) investigated the effects of different soil conditions and probe configurations on
161 the performance of the self-penetration process of a bio-inspired probe using DEM models. However,
162 the probe control strategy was simplified, likely leading to limitations in the modeling of the of soil-
163 probe interactions. Martinez et al. (2020) proposed a cavity-expansion-theory method for modeling a
164 self-penetrating bio-inspired probe. However, this method works only for vertical penetration and does
165 not account for the interactions between periodic radial expansion and tip penetration. Indeed, a more
166 versatile model employing more realistic self-burrowing mechanisms (e.g., dynamic and force-
167 controlled) is still missing to achieve clear understanding of the soil-probe interaction.

168 In the following sections we describe the construction of a three-dimensional chamber filled with a
169 calibrated discrete analogue of a representative silica sand. Then we describe the modeled self-
170 burrowing probe and propose a basic methodology for modeling each step involved in the dual-anchor
171 strategy through different mechanisms. These include oscillation of the tip to reduce penetration
172 resistance and constant-force control of the back anchor to avoid loss of anchorage. The probe is finally
173 able to burrow deeply into the soil after continuous self-burrowing cycles. The results presented cover
174 both macroscale (e.g., penetration distance, mechanical work) and microscale (e.g., contact force chains
175 between soil particles, particle displacement) variables that help explain the different interaction
176 mechanisms occurring during locomotion and penetration.

177 **2 Model construction**

178 **2.1 Chamber-related model details**

179 ***2.1.1 Particle-based numerical model for Fontainebleau sand***

180 Fontainebleau sand is a fine silica sand that has been extensively used in geotechnical research. Table
181 1 lists its physical properties. In this study, we use a discrete analogue of the natural material in a
182 calibrated DEM model consisting of spherical particles in the DEM code PFC3D (Itasca, 2017). Particle
183 rotation was fully restricted by fixing all the rotational degrees of freedom of particles to roughly mimic
184 the effect of non-spherical particle shapes. This simplified approach can be traced back to Ting et al.
185 (1989) and was successfully used in previous penetration work in granular materials (Arroyo et al.,
186 2011; Calvetti et al., 2015; Zhang et al., 2021; Zhang et al., 2019).

187 The contact model developed by Otsubo et al. (2017) for rough particles was chosen. The model was
188 developed based on the standard Hertzian model with the following characteristics: contacts between
189 particles are assumed to be elasto-plastic; the slip behavior at contacts is defined by the friction
190 coefficient μ ; each contact presents non-linear stiffness controlled by the elastic properties of material
191 particles, e.g., shear modulus G , and Poisson's ratio ν . The developed model is able to more completely

192 consider soil characteristics than the standard Hertzian model by incorporating measurable surface
193 roughness S_q . Roughness is particularly relevant at small strain levels where deformation and breakage
194 of asperities occur. This effect is described by a three-stage relationship between the normal force, F_n ,
195 and the normal displacement, δ , originated from the standard Hertzian model (Figure 2). The F_n - δ
196 relationship describes three successive contact regimes (i.e., asperity-dominated, transitional, and
197 Hertzian) separated by two points T1 and T2. δ_1 and δ_2 are model parameters that are a function of the
198 particle roughness S_q :

199
$$\delta_1 = r_1 S_q \quad (1)$$

200 And,

201
$$\delta_2 = r_2 S_q \quad (2)$$

202 where r_1 and r_2 are model parameters. When $S_q = 0$, the standard Hertzian relationship is recovered.

203 The calibrated parameters of the rough contact model for Fontainebleau sand are provided in Table 2
204 (Zhang et al., 2021). Wishing to use realistic material-based values, G was assigned as 32 Gpa and ν as
205 0.19, which are appropriate values for SiO_2 according to industrial databases (Zhang et al., 2021). S_q
206 was set as 0.6 μm , considered as a realistic roughness value for silica sand. The values of r_1 and r_2 were
207 set as 0.05 and 5, respectively after calibration against the results of contact experiments on Leighton
208 Buzzard Sand (LBS) fraction A reported by Nardelli & Coop (2019) as shown in Figure 3a. To further
209 validate this set of parameters, DEM models using uncrushable spheres were run to capture the initial
210 loading behaviour of high-pressure oedometer tests, using a 4 mm sided cube of frictionless rigid walls
211 filled with 10,000 spherical particles (Figure 3b). Particle diameter ranged from 0.1 to 0.4 mm matching
212 the particle size distribution (PSD) of Fontainebleau NE34 sand. Figure 3c shows a close match between
213 the initial non-crushing loading stages measured in both the experiments and DEM models, successfully
214 validating the calibrated parameters.

215 **2.1.2 Chamber construction**

216 A three-dimensional cylindrical chamber was constructed using wall elements. All the chamber walls
217 were set to be frictionless. Geometrical model details can be found in Figure 4 and Table 3. Discrete
218 elements filling up the chamber have the same contact properties and size distribution as those used for
219 the particle assembly calibration shown in Figure 3. The particle sizes were upscaled applying five
220 distinct scaling factors following the particle refinement method (PRM) (Ciantia et al., 2018; Huang &
221 Tao, 2020; McDowell et al., 2012; Sharif et al., 2020). This method allows to achieve sufficient contacts
222 between the particles and the probe whilst reducing the number of particles in the whole system. In
223 detail, a scaling of 35 was used to multiply the particle sizes at the center of the chamber. Particles
224 further away from the center were upscaled using factors with the central scaling multiplied by a

225 uniform set of multipliers (1.5, 2.25, 2.7 and 3.24). That means the five scaling factors used from the
226 center to the boundary are 35, 53, 79, 95 and 113, termed as n_1 , n_2 , n_3 , n_4 and n_5 , respectively. The
227 multipliers (≤ 1.5) can effectively prevent particle migration between adjacent zones (McDowell et al.,
228 2012). A specific dimensional configuration of the five zones was chosen as: the outermost ring and
229 innermost zone have a greater dimension with 14 cm, while the intermediate three rings have smaller
230 thicknesses acting as filter layers. The upscaling of particle sizes does not affect the overall response as
231 the particle mechanical properties remain unchanged (McDowell et al., 2012).

232 The simulations are desired to initiate from the free ground surface to evaluate the self-burrowing
233 performance of the probe at shallow depths. The radius expansion method (REM) was used to fill the
234 chamber at the porosity of 0.40. Then, the top wall was deleted and gravity was applied to settle the soil
235 mass until reaching equilibrium state. During gravity settling, the inter-particle friction was set to a
236 relatively small value of 0.05 to attain a dense uniform sample with a clear vertical stress gradient
237 induced by gravity (Figure 4b). At the bottom of the specimen, the vertical effective stress is 10.9 kPa,
238 matching the stress level of a real soil column. This inter-particle friction to settle the soils was chosen
239 balancing acceptable sample quality and computation time. Figure 4c shows a spatially uniform
240 distribution of D_r , owing to the specimen generation method employed in the simulations, and the
241 average D_r value is 0.86. After equilibrium, the inter-particle friction coefficient was reset to the
242 calibrated value (Table 1). All the chamber walls were fixed throughout simulations. In all simulations,
243 a local damping of 0.05 (Cundall, 1987) was employed and no viscous damping was considered.

244 2.2 Probe-related model details

245 2.2.1 Bio-inspired probe

246 Inspired by the burrowing strategies of the razor clam, here we provide a feasibility study of a dual-
247 anchor self-burrowing probe. Geometrical details of the probe are shown in Figure 5 and Table 4. The
248 probe is composed of three connected segments: shaft, neck and tip. All the segments were created
249 using rigid walls, which don't interact with each other. The tip consists of a cone with the apex angle of
250 60° and a cylinder that can expand to behave as an anchor. The diameter of the tip and neck d_c was
251 selected as 3.56 cm in consistency with conventional cone penetration test (CPT) probe sizes and the
252 height of the tip cylinder h_{Tcyl} was set equal to d_c . The neck height h_N is equal to its diameter and the
253 shaft height is $5d_c$. An embedment extends into the shaft and has a length equal to the shaft length. *The*
254 *shaft diameter D_s was enlarged to 1.05 times d_c to avoid repeated calculation of probe-particle contacts*
255 *at the overlapping of the shaft and the embedment.* The shaft can expand to form another anchor with
256 the soil to facilitate sufficient tip penetration distance during one burrowing cycle. To prevent particles
257 from flowing into the probe, each probe segment was created with end caps whose diameter also
258 changes as the sections are expanded during anchor deployment.

259 The total length of the probe is 24.4 cm, and therefore the ratio of probe length to tip diameter is 6.8.
 260 As reported by Martinez et al. (2020), this ratio falls into the normal range (2-9) of razor clam species.
 261 Also, the shaft anchor has a length of 4 times the tip diameter, fulfilling the requirement that anchor
 262 length should cover 2.0 to 4.5 times tip diameter to generate sufficient anchorage forces as determined
 263 by Martinez et al. (2020) using cavity expansion simulations. The probe mass m_p is 2.23 kg which was
 264 assumed to remain unchanged during the whole self-burrowing simulation including anchor expansion
 265 stages. The probe/particle diameter ratio n_p and chamber/probe diameter ratio R_d are two key factors
 266 influencing soil penetration results. In this study, the n_p in the central portion is 4.8 and the R_d is 20.
 267 Both values are higher than most of the values chosen in previous three-dimensional soil penetration
 268 studies as summarized by Chen et al. (2021). The contact model between probe and particles was also
 269 a simplified Hertz-Mindlin. The parameters for the probe were given in Table 2.

270 **2.2.2 *Methodology for a stepwise self-burrowing cycle***

271 A stepwise self-burrowing methodology is designed following closely the locomotion mechanism of
 272 razor clams. As illustrated in Figure 6, one single self-burrowing cycle of the probe, following an initial
 273 penetration phase in which the probe is fully inserted into the sand material to reach the condition of
 274 mobilizing shaft friction, is completed in six individual steps. It is assumed that during each step,
 275 relevant segments move only with the motions specified in this section of the probe, while other motions
 276 of these segments and all motions of the other segments are restricted. The six steps are:

277 **I. Shaft Expansion (SE)**

278 To form the shaft anchor, the shaft expands radially under incremental load control (ILC) to reach a
 279 target force $F_{S,r,target}$. The expansion aims to provide sufficient reaction force for tip penetration in step
 280 TP. The load control allows gradual increase of the radial force with a relatively small loading increment
 281 $F_{S,r,inc}$. At each increment, the force is held constant until the shaft expansion rate is zero, similar to
 282 typical loading procedures of the pressuremeter test. After stabilization, new increments are applied to
 283 reach the target force. The shaft radial expansion velocity is updated using the following equation:

$$284 \quad v_{S,r}^{t+\Delta t} = v_{S,r}^t + \frac{F_{S,r,tot}^t}{m_S} \Delta t \quad (3)$$

285 where, $v_{S,r}^{t+\Delta t}$ and $v_{S,r}^t$ are the shaft radial velocities in all radial directions at time $(t+\Delta t)$ and t ,
 286 respectively, Δt is the time step, m_S is the shaft mass (1.57 kg), and $F_{S,r,tot}^t$ is the resultant radial force
 287 acting on the shaft:

$$288 \quad F_{S,r,tot}^t = nF_{S,r,inc} - F_{S,r}^t \quad n=1, 2, \dots, [F_{S,r,target} / F_{S,r,inc}] \quad (4)$$

289 Where, n is the number of load increments, and $F_{S,r}$ is the actual shaft radial force.

290 The use of force control algorithm enables the consideration of soil-robot interaction that can lead to a
291 more realistic performance (Barasuol et al., 2018). This loading algorithm corresponds to the criterion
292 *C1* in Figure 6.

293 Similar to the expansion limitations of animals due to muscular capacity, the probe also imposes a limit
294 in shaft expansion ratio ER_S . The expansion magnitude is calculated as a ratio of the shaft anchor
295 diameter D_{SA} and a limit value of 50% (*C2*) is adopted in consistency with that required in the
296 pressurementer tests (Houlsby & Withers, 1988):

$$297 \quad ER_S = \frac{D_{SA} - D_S}{D_S} \leq 50\% \quad (5)$$

298 The expansion terminates in the case that one of the two criteria (*C1* or *C2*) is met. The actual shaft
299 radial force $F_{S,r}$ may be smaller than $F_{S,r,target}$ if the *C2* criterion is triggered.

300 A slight upward movement of the shaft anchor is needed to mobilize its anchorage force to resist tip
301 penetration in the next step. However, due to the motion restriction stated above, during tip penetration
302 the shaft anchor does not displace in any direction. Therefore, we assume to use $F_{S,r}$ and the shaft friction
303 coefficient to determine the anchor capacity (i.e., the maximum vertical anchor force $F_{S,z,max}$), which
304 will be constantly compared with penetration resistance during TP:

$$305 \quad F_{S,z,max} = \mu_p F_{S,r} \quad (6)$$

306 II. Tip Penetration (TP)

307 With the help of the shaft anchor, the probe extends and pushes its neck and tip downwards for a distance
308 of $\Delta\rho_{tip}$ with a constant velocity v_p . The vertical forces resisting penetration include $F_{N,z}$, $F_{Tcyl,z}$ and $F_{Tcone,z}$,
309 which are vertical forces measured along the neck, tip cylinder and tip cone, respectively. To simplify
310 expressions, these three resisting terms can be combined as one single soil resistance term Q_T :

$$311 \quad Q_T = F_{N,z} + F_{Tcyl,z} + F_{Tcone,z} \quad (7)$$

312 To balance resisting forces, the static shaft anchor force $F_{S,z}$, which is smaller than $F_{S,z,max}$, is mobilized
313 as a reaction force. As a potential source of reaction force, the soil weight acting onto the shaft top
314 surface $F_{top,z}$ is, however, not considered due to its negligible magnitude at the shallow depths modeled
315 here.

316 Shaft anchor capacity F_{SA} is composed of the maximum vertical anchor force $F_{S,z,max}$ (Eq. 6) with the
317 assistance of the probe's self-weight $m_p g$:

$$318 \quad F_{SA} = \mu_p F_{S,r} + m_p g \quad (8)$$

319 Where, g is the gravitational acceleration. Note that as stated before, it is assumed that the anchor does
320 not displace to mobilize the anchor capacity, while the maximum anchorage force is mathematically

321 calculated using Eq. 6. In this manner, the balance between the actual vertical anchorage force, which
 322 remains lower than its possible maximum value, and the soil resisting force is satisfied, as defined in
 323 the C3 criterion:

324
$$F_{SA} \geq Q_T \quad (9)$$

325 In addition, to constrain excessive penetration, another limiting condition *C4* is defined so that the
 326 penetration magnitude $\Delta\rho_{tip}$ cannot exceed d_c .

327 During penetration, a simple way to deal with the shaft anchor is to maintain its radius as constant,
 328 which can be described as constant radius (*CR*) condition. However, this strategy may not be able to
 329 provide sufficient anchorage for tip penetration. As demonstrated by Chen et al. (2021) and Chen et al.
 330 (2022), tip penetration causes a continuous reduction on shaft anchor force due to interactive effects
 331 between the tip and the shaft. Therefore, it is necessary to maintain the constant force (*CF*) of the shaft
 332 employing a servo control mechanism to enable tip penetration, which means the shaft continues to
 333 expand. Hence, the criterion *C2* needs to be re-activated to impose an expansion limit on the shaft
 334 anchor.

335 **III. Tip Expansion (TE)**

336 Similar to the shaft anchor expansion procedure, the tip cylinder is expanded to form another anchor
 337 using the ILC algorithm. The tip cone is not expanded as that would reduce the anchor effect due to
 338 vertical force generation at the cone. The expansion aims to achieve a target radial force of the tip
 339 anchor of $F_{Tcyl,r,target}$ (*C5*) which must enable successful shaft retraction in step V. Radial velocity
 340 algorithms similar to Eq. (3) & (4) are employed to update the tip radial velocity $v_{Tcyl,r}$. As can be seen
 341 from the criterion *C6*, a limit of 50% is also imposed to the tip expansion ratio ER_T , which is calculated
 342 from the tip anchor diameter D_{TA} :

343
$$ER_T = \frac{D_{TA} - d_c}{d_c} \quad (10)$$

344 The actual tip cylinder radial force $F_{Tcyl,r}$ may be smaller than $F_{Tcyl,r,target}$ if the *C6* criterion is triggered.
 345 $F_{Tcyl,r}$ is used to calculate the maximum vertical force of tip anchor $F_{Tcyl,z,max}$ that can be mobilized to
 346 resist shaft retraction in step V:

347
$$F_{Tcyl,z,max} = \mu_p F_{Tcyl,r} \quad (11)$$

348 **IV. Shaft Contraction (SC)**

349 The shaft is contracted back to its original size with a constant velocity v_{SC} , as defined in the criterion
 350 *C7*. Shaft contraction requires a smaller force compared with shaft expansion, enabling the feasibility
 351 of employing a much faster contraction rate than expansion (Table 5).

352 **V. Shaft Retraction (SR)**

353 The shaft is dragged downwards with a constant velocity v_{SR} until the shaft penetration distance $\Delta\rho_{shaft}$
354 is equal to $\Delta\rho_{tip}$ as defined in the criterion C8. At this point, the original probe length is recovered. The
355 tip anchor capacity F_{TA} is composed of the maximum vertical force of the tip anchor $F_{Tcyl,z,max}$ (Eq. 11),
356 vertical force at the tip anchor top surface $F_{Tcyl,top,z}$, and the probe self-weight $m_p g$. Thus, the expression
357 of F_{TA} is written as:

358
$$F_{TA} = \mu_p F_{Tcyl,r} + F_{Tcyl,top,z} + m_p g \quad (12)$$

359 During retraction, the shaft experiences soil resisting forces at both the shaft body and shaft bottom
360 surface:

361
$$Q_S = F_{S,z} + F_{S,bot,z} \quad (13)$$

362 Where, Q_S is the shaft resisting force, and $F_{S,bot,z}$ is the vertical force at the shaft bottom surface. During
363 retraction, the force criterion C9 (Eq. 14) check for the sufficiency of tip anchor needs to be fulfilled:

364
$$F_{TA} \geq Q_S \quad (14)$$

365 **VI. Tip Contraction (TC)**

366 The tip is contracted with a constant velocity v_{TC} to its original size, as defined in the criterion C10.
367 Similarly, the tip contraction requires a smaller force compared with tip expansion. So, the contraction
368 rate can be faster (Table 5).

369 **3 Efficient configurations for self-burrowing**

370 This section attempts to identify appropriate parameters and configurations to produce efficient self-
371 burrowing behaviours. Particular attention is paid to the shaft expansion, tip penetration, tip expansion
372 and shaft retraction steps, while the shaft and tip contraction steps are not evaluated since they appear
373 to be feasible in a wider range of conditions.

374 **3.1 Preparation actions before self-burrowing**

375 Razor clams can initiate burrowing from ground surface taking advantage of their flexible foot. This
376 initial embedment is modelled by an initial embedment of the probe into the soil with a constant velocity
377 v_p of 40 cm/s until the tip reaches a depth of 34 cm, at which the entire probe is fully embedded. Figure
378 7 shows the evolution of Q_T and Q_S against the penetration depth h . Q_T increases almost linearly with h
379 due to gravitational pressure gradient, and the particle displacements show a shallow failure of the soil.
380 The maximum value of Q_T is 2.19 kN at the depth of 34 cm, which could be used as a reference value
381 for tip penetration. After reaching the target depth, a servo control mechanism was enabled to allow the
382 probe to equilibrate under its own weight by solving Newton's second law. During this stage, Q_T

383 decreases rapidly to almost zero due to very slight upward movement and finally an equilibrium state
384 between the probe self-weight and soil resisting forces was attained. At this point, the model was
385 deemed to be in an appropriate state for launching self-burrowing cycles.

386 **3.2 Shaft expansion: target force determination**

387 After the initial penetration, the shaft is expanded to reach a target radial force $F_{S,r,target}$ that has
388 to be sufficient for subsequent tip penetration. This target force needs to be determined and
389 assigned before shaft expansion. After determining a target force, the ILC algorithm is used for
390 reaching the target force determined based on the initial penetration resistance during shaft
391 expansion. First, this target force strategy, as described in section 3.1, is evaluated. Then,
392 $F_{S,r,target}$ is determined using an alternate strategy based on the maximum normal force that can
393 be mobilized by the anchor.

394 Shaft expansion has been shown to reduce the tip penetration resistance (i.e., Chen et al. 2021);
395 however, a conservative assumption to ensure the sufficiency of radial normal shaft force to
396 enable tip penetration is to use the maximum resisting force Q_T recorded during the initial
397 penetration phase (Figure 7) and the shaft's friction coefficient μ_p to calculate $F_{S,r,target}$. The
398 relevant expression is given as:

399
$$F_{S,r,target} = \frac{Q_T}{\mu_p} \quad (15)$$

400 Taking $Q_T = 2.19$ kN and $\mu_p = 0.35$ into Eq. (15), the value of $F_{S,r,target}$ is 6.25 kN. Following the
401 ILC algorithm, a loading increment $F_{S,r,inc}$ of 200 N was adopted to gradually approach $F_{S,r,target}$,
402 as shown in Figure 8a. While the shaft expansion terminated after meeting the C2 criterion with
403 an $ER_s = 50\%$, only about 2 kN of force was mobilized, which is significantly smaller than the
404 calculated $F_{S,r,target}$ of 6.25 kN. It is also observed from the velocity profile in Figure 8b that
405 the expansion velocity of the anchor outer surface $v_{S,r}$ is relatively large at the termination point.
406 In addition, it takes longer to reach equilibrium ($v_{S,r}=0$) at the loading increments close to the
407 termination point than at initial increments, indicating continuous softening of the soil likely
408 caused by the observed shallow passive failure. Although the strategy is simple, the soil
409 surrounding the anchor cannot mobilize the required resistance.

410 An alternate strategy for determining $F_{S,r,target}$ is to use the maximum normal anchorage force
411 that can be mobilized. To estimate the soil strength around the shaft before expansion, solutions
412 such as cavity expansion theory can be used. Here benefiting from the created DEM model, a
413 loading algorithm with constant velocity (CV) was used as a simple way to determine $F_{S,r,target}$.

414 During CV expansion, the shaft radius increases with a constant rate of 0.02 m/s, interacting
415 quasi-statically with the surrounding particles. As shown in Figure 9, the shaft radial force
416 during CV expansion gradually increases to a peak value. This peak value can thus be used as
417 $F_{S,r,target}$ considering a reduction factor of 0.8 (i.e. factor of safety of 1.25), leading to an $F_{S,r,target}$
418 of 1.6 kN. The ILC algorithm was again used with an increment of 200 N to reach the target
419 force, which was achieved with only 17.6% of ER_s (Figure 9). This target force determination
420 strategy was used for shaft expansion in the self-burrowing simulations presented in section 4
421 due to its satisfactory performance.

422 **3.3 Tip penetration strategies**

423 ***3.3.1 Quasi-static penetration***

424 The SE stage is followed by tip penetration. We first try using Quasi-Static Penetration (QSP) in which
425 the tip is simply pushed with a constant rate of 0.05 m/s. The quasi-static condition of the system was
426 ensured by satisfying the inertial number upper bound ($<10^{-2}$) for quasi-static conditions, and the inertial
427 number in the system was calculated following Ciantia et al. (2019). QSP was conducted under two
428 shaft control strategies (CR and CF) as mentioned in section 2.2.2. Figure 10 shows the force against
429 penetration depth obtained from the two shaft control strategies. Tip resisting force Q_T rapidly rises to
430 meet the C3 criterion after a negligible penetration distance, i.e., 0.05 cm for CR condition and 0.06 cm
431 for CF condition. Therefore, an effective approach to reduce tip resistance is needed to increase the
432 penetration distance.

433 ***3.3.2 Implementation of tip oscillation in penetration***

434 To reduce locomotion resistance in the development of a soft robot, Ortiz et al. (2019) employed bi-
435 directional head oscillation strategy inspired by *Polychaeta*, which allowed it to achieve longer
436 locomotion distance. In this study, we adopt a similar oscillation strategy for the tip cone that occurs
437 simultaneously with downward penetration. The oscillation algorithm is illustrated in Figure 11. The
438 cone tip point oscillates horizontally to the right and left in planar movement with the velocity of v_{TO} in
439 each oscillation cycle time t_1 . At $t = 0.25t_1$ and $0.75t_1$ the tip point reaches the far right and the far left,
440 respectively, while at $t = 0.5t_1$ and t_1 the tip point returns to the original middle position. Stress
441 concentration occurs around the tip during oscillation as illustrated by the contact force network in
442 Figure 11. Note that only vertical forces are checked via the criteria described in section 2.2.2, while
443 the real torque balance resulting from tip oscillation is not considered because the probe shaft is fixed.

444 The vertical penetration velocity v_p and the two parameters defining oscillation (v_{TO} and t_1) are
445 controlling parameters that can be adjusted to optimize tip penetration. We explored various sets of
446 parameters combining different values. Eventually, values of $v_p = 0.05$ m/s, $t_1 = 0.1$ s and $v_{TO} = 0.8$ m/s

447 were chosen for this study due to their sufficient performance in enabling tip advance. The oscillation
 448 amplitude ($0.25 \times v_{TO} \times t_l$) is 2 cm, similar to the probe radius 1.78 cm. The CF shaft control was
 449 employed to maintain the shaft normal force. Without violating the $C3$ force criterion, the tip advances
 450 2 cm (Figure 12a) until the $C2$ ER_S limit is triggered (Figure 12b). Then, the probe oscillates back to
 451 the middle position to terminate tip penetration.

452 3.4 Tip expansion strategy

453 The soil around the tip is able to provide more resistance at greater depths than the shaft. Therefore, the
 454 target force of tip expansion $F_{Tcyl,r,target}$ is determined from the recorded shaft friction Q_S and the current
 455 value of Q_T since they both act in an upward direction, as described:

$$456 \quad F_{Tcyl,r,target} = \frac{Q_S + Q_T}{\mu_p} \quad (16)$$

457 Taking Q_S as 0.6 kN which is three times the maximum Q_S recorded in Figure 7 and the value of Q_T as
 458 0.12 kN from the termination point of tip penetration into Eq. (16), the value of $F_{Tcyl,r,target}$ was calculated
 459 as 2.0 kN. The incremental load control algorithm was used to gradually reach the target force. Figure
 460 13 shows the loading stages of tip radial force and tip radial expansion velocity against tip expansion
 461 magnitude (ER_T). The target force was attained at ER_T of 25.7%, indicating a satisfactory performance
 462 of the target force determination strategy.

463 3.5 Shaft retraction strategy

464 The shaft contracts back to its original diameter with $v_{SC} = -0.1$ m/s after tip expansion. Then, the shaft
 465 was dragged down with $v_{SR} = -0.1$ m/s doubling the TP velocity to recover the neck extension attained
 466 in TP. Figure 14 shows the evolution of F_{TA} and Q_S against retraction distance $\Delta\rho_{shaft}$. Without violating
 467 the force criterion $C9$, the retraction distance reaches 2 cm, which is equal to the distance achieved
 468 during TP. This full recovery proves that the tip anchor is able to provide enough reaction force to
 469 overcome the force resisting shaft retraction. The evolution of F_{TA} is relatively stable indicating less
 470 notable influence from the retraction action, while Q_S presents more oscillations due to particle
 471 rearrangements triggered by the shaft retraction. Interestingly, $F_{S,z}$ and $F_{S,bot,z}$, as the two components of
 472 Q_S , appear to be nearly identical during the whole process of retraction. Explanations of this
 473 phenomenon are provided in section 4.1 with contact force visualizations. After retraction, the tip is
 474 contracted with $v_{TC} = -0.1$ m/s to its original diameter, after which a new cycle can initiate.

475 3.6 Summary of simulation configurations

476 Table 5 summarizes the key parameters used in each stage of the self-burrowing simulations and the
 477 corresponding results. According to the trials presented above, an initial self-burrowing cycle can be
 478 completed from where more cycles can be performed to burrow deeper into the soil as is presented later.

479 **4 Self-burrowing with a dual-anchor probe**

480 **4.1 One complete self-burrowing cycle**

481 Significant interactions between the three force variables can be observed throughout the burrowing
482 cycle, as shown in the evolution of three representative force variables Q_T , $F_{S,r}$, and $F_{Tcyl,r}$ presented in
483 Figure 15a. The interactions between the shaft and tip during the SE and TP stages as reported by Chen
484 et al. (2021) and Chen et al. (2022) are not clear in these simulations due to the constant normal force
485 algorithm used to control the shaft expansion. However, the following interactions take place:

- 486 • TE: when the tip expands to a target $F_{Tcyl,r}$, the shaft radial force $F_{S,r}$ decreases dramatically.
- 487 • SC: when the shaft contracts, $F_{S,r}$ drops to near zero, causing $F_{Tcyl,r}$ to also reduce significantly.

488 With the implementation of tip oscillation, the tip could eventually advance 2 cm, which was then fully
489 recovered through shaft retraction. This is shown in the evolution of the shaft and tip displacement
490 measured during one complete self-burrowing cycle presented in Figure 15b.

491 Figure 16 shows the development of both the contact force network and displacement field at the end
492 of steps I-VI. The left and right side of each image presents contact force and particle displacement,
493 respectively. The presented particle displacements are accumulated from the beginning of the first step
494 in the self-burrowing cycle (step I) and only displacements above a certain value of 0.1 mm are shown
495 in the images. These images present important micromechanical observations in each step:

496 I: SE. The contact force is mainly concentrated at the shaft, particularly at the area near the
497 neck. This is due to the concentration of contact forces around the probe induced during initial
498 penetration and to the gravity-induced stress gradient in the specimen. The uniform shaft expansion can
499 be reflected from the relatively uniform distribution of particle displacement along the shaft. The
500 displacement field shows a passive soil wedge that propagates to the free surface due to the shallow
501 embedment.

502 II: TP. During this step, the tip advances into the soil while the tip oscillates horizontally and
503 the normal force is maintained on the shaft. To maintain the shaft force, the shaft expands continuously
504 with a relatively slow rate, leading to a more uniform distribution of contact force and greater particle
505 displacements along the shaft.

506 III: TE. The contact force concentration shifts from locations near the shaft to locations around
507 the tip. The contact forces along the shaft become less notable compared to the previous steps.
508 Correspondingly, the particles around the tip anchor displace radially as the target anchorage force is
509 mobilized.

510 IV: SC. The shaft contraction leads to a decrease of the contact forces around the shaft and the
511 tip. The particle displacement mobilized during shaft expansion is now recovered to a certain extent.

512 V: SR. During shaft retraction, the contact forces around the tip barely change, while contact
513 force concentration appears at the bottom of the shaft with an angle of 45° because of the equal
514 magnitudes of $F_{S,z}$ and $F_{S,bot,z}$ as shown in Figure 14.

515 VI: TC. After tip contraction, the contact force network shows smaller magnitudes along the
516 entire probe length compared with Figure 7c, indicating a relaxation effect of the self-burrowing
517 behaviors on the contacts between surrounding soil particles.

518 4.2 Work done during self-burrowing

519 Comparing the work done during each of the self-burrowing steps can shed light on the soil-probe
520 interactions. Zhang et al. (2021) validated the computation correctness of energy components involved
521 in DEM simulations of the standard penetration test (SPT) in virtual calibration chambers. In this study,
522 we extend this strategy to quantify the work during each simulation stage.

523 The work done by shaft expansion, W_{SE} , can be calculated by time-integrating the product of the
524 absolute magnitude of the shaft radial force with the expansion velocity, as follows:

$$525 \quad W_{SE} = \int |F_{S,r}(t)v_{S,r}(t)|dt \quad (17)$$

526 During TP, both tip penetration and oscillation require work. The work done by tip penetration, W_{TP} ,
527 can be calculated by time-integrating the product of the absolute Q_T magnitude with the penetration
528 velocity:

$$529 \quad W_{TP} = \int |Q_T(t)v_p(t)|dt \quad (18)$$

530 The work done by tip oscillation, W_{TO} , can be computed by time-integrating the product of the absolute
531 magnitude of tip cone force along x-axis, $F_{Tcone,x}$, with the average tip oscillation velocity:

$$532 \quad W_{TO} = \int |F_{Tcone,x}(t)v_{TO}(t)|dt/2 \quad (19)$$

533 The work contributed by the tip cylinder expansion, W_{TE} , is computed by time-integrating the product
534 of the absolute radial force magnitude at the tip cylinder with the expansion velocity:

$$535 \quad W_{TE} = \int |F_{Tcyl,r}(t)v_{Tcyl,r}(t)|dt \quad (20)$$

536 The work done by shaft retraction, W_{SR} , can be computed considering the contribution of both the
537 vertical force components $F_{S,z}$ and $F_{S,bot,z}$, as follows:

$$538 \quad W_{SR} = \int (|F_{S,z}(t)v_p(t)| + |F_{S,bot,z}(t)v_p(t)|)dt \quad (21)$$

539 The work done by shaft contraction W_{SC} and the work done by tip contraction W_{TC} can be calculated
540 using Eq. 17 and Eq. 20, respectively.

541 The evolution of the work components during one self-burrowing cycle is presented in Figure 17. Shaft
542 contraction, shaft retraction and tip contraction result in a negligible amount of work, so these three
543 components are not included in Figure 17. The total work summing up all the work items is termed as
544 W_{tot} and its evolution to the final value of 60 J is also plotted. Surprisingly, the most work is done by
545 tip oscillation with more than 50% of the total work, while tip penetration only does a relatively small
546 amount of work of 5%. To maintain constant shaft force, the shaft does more work during the TP stage
547 than during the SE stage. Tip expansion does 12.3 % of the total work, which is also more than the
548 initial shaft expansion.

549 **4.3 Assessment of multiple cycles**

550 The self-burrowing cycle was repeated three times to achieve a deeper penetration into the soil. The
551 parameters listed in Table 5 for each self-burrowing step remain unchanged except for the shaft
552 retraction velocity v_{SR} which was doubled in the second and third cycle to speed up contraction. The
553 burrowing depth and mechanical work recorded in each of the three cycles are listed in Table 6. Figure
554 18a shows the displacement of the tip and shaft during the three cycles. The burrowing distance
555 increases with the cycle number due to the increase of soil stress at greater depths which requires less
556 shaft radial deformation to maintain the target force level. Figure 18b shows the evolution of the three
557 representative forces during the self-burrowing cycles.

558 To compare the work done by constant rate penetration over the same distance, a separate simulation
559 was carried out where the initial penetration in section 3.1 was continued to a depth of 43 cm. Figure
560 19 shows that the work during self-burrowing (i.e., W_{tot}) is greater than the work done during constant
561 rate penetration, $W_{crPenet}$. The work done during the constant rate penetration increases linearly with
562 depth, while there are energy oscillations in W_{tot} due to the tip oscillations and the expansion of the shaft
563 and tip. The self-burrowing curve departs from the constant-rate one more and more with the cycles,
564 due to the shaft expansions that caused three rises on the curve and tip oscillations that influenced the
565 curve's slope.

566 **5 Conclusions**

567 In this study, we present the results of DEM simulations of a bio-inspired self-burrowing probe in a
568 chamber filled with a coarse-grained soil. A rough contact model has been selected to consider the
569 micromechanical behavior of a silica sand in a realistic way. The contact model parameters for the sand
570 have been calibrated to element tests on silica sand. The simulated self-burrowing cycle consists of six
571 individual steps including shaft expansion, tip penetration, tip expansion, shaft contraction, shaft
572 retraction, and tip contraction. During tip penetration, the tip oscillation strategy has been successfully

573 employed to reduce penetration resistance and thus has significantly increased penetration efficiency.
574 The simulation of the self-burrowing probe cycles reveals the following main findings:

- 575 • Force control algorithms employed in both shaft and tip expansion behaviors enable realistic
576 soil-probe interaction.
- 577 • Quasi-static tip penetration can hardly achieve tip advancement due to exceeding soil resistance,
578 with a maximum advancement of 0.06m. The tip oscillation strategy can increase the
579 advancement in each burrowing cycle to minimally 2 cm.
- 580 • During tip expansion and shaft contraction, the radial force at the shaft and tip interacts
581 significantly with each other.
- 582 • Microscale variables including particle displacement field and contact forces provide insightful
583 particle-scale observations during one self-burrowing cycle. A passive failure wedge
584 propagating from the shaft to ground free surface is caused by shaft expansion. The self-
585 burrowing behavior produces a relaxation effect on contacts between surrounding soils.
- 586 • Through work computation, it is interesting to find that tip oscillation contributes more than
587 50% of the total work done by the entire self-burrowing stages.
- 588 • The probe can burrow deeper into the soil through continuous cycles. The burrowing distance
589 increases with cycles due to soil pressure increase with depth. The work done through cycles is
590 slightly greater than constant rate penetration resulted from shaft expansions and tip oscillations.

591 The results of the simulations can guide the construction of self-burrowing probe prototypes.
592 A sophisticated device would still need a broad investigation to gain further understanding of
593 the probe-soil interaction and open more possibilities in application. For example, the tip
594 penetration with oscillations strategy can be optimized to balance the reduction of penetration
595 resistances with limiting soil disturbance. Additionally, additional studies on the effects of soil
596 type, density, confining stress, degree of saturation, depth and gravity magnitude on the self-
597 burrowing performance are required for a broad understanding of the probe's self-burrowing
598 ability.

599 ~~Particularly, it is interesting to discuss the self burrowing behavior in saturated sands because razor~~
600 ~~elams burrow there. In self burrowing, the two main steps controlling the probe performance are SE~~
601 ~~and TP. In SE, there are two factors that are contradictiously affecting the expansion: the saturated unit~~
602 ~~weight of the sand is slightly greater than its dry unit weight, which then would require less expansion~~
603 ~~to reach a target expansion force; however, water as a low viscosity material could significantly~~
604 ~~lubricate contacts of the sand grains at shallow depth, which then would require more expansion to~~
605 ~~reach the target force. Referring to a quasi static penetration study where lower penetration resistances~~
606 ~~were observed in saturated sand than dry sand at comparably low stress levels (Kluger et al., 2021), we~~

607 would suppose that the later factor was dominating for shallow soils, so more expansion was required
608 to reach the target force. In TP, the fast tip oscillation could increase pore water pressure and thus reduce
609 effective stress, causing a reduction to tip penetration resistance; however, due to the fact that the 50%
610 shaft expansion ratio was always triggered to terminate TP in the current study and more expansion
611 during SE was necessary, less shaft expansion remains for TP, meaning that the final penetration
612 distance would be smaller. In future studies, efforts are required to simulate self burrowing in saturated
613 sands using multi phase pore fluid discrete particulate modelling tools to evaluate the self burrowing
614 performance of the proposed probe.

615 Acknowledgements

616 The first author thanks the financial support of the Theodore von Kármán Fellowship - outgoings 2023
617 (GSO082) from RWTH Aachen University for promoting collaborations between the authors. This
618 material is based upon work supported in part by the Engineering Research Center Program of the
619 National Science Foundation under NSF Cooperative Agreement No. EEC-1449501. The second and
620 third authors were supported by the National Science Foundation (NSF) under Award No. 1942369.
621 Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
622 author(s) and do not necessarily reflect those of the National Science Foundation.

623 References

624 Arroyo, M., Butlanska, J., Gens, A., Calvetti, F., & Jamiolkowski, M. (2011). Cone penetration tests in
625 a virtual calibration chamber. *Géotechnique*, 61(6), 525–531. <https://doi.org/10.1680/geot.9.P.067>

626 Barasuol, V., Villarreal-Magaña, O. A., Sangiah, D., Frigerio, M., Baker, M., Morgan, R., ... Semini,
627 C. (2018). Highly-integrated hydraulic smart actuators and smart manifolds for high-bandwidth
628 force control. *Frontiers Robotics AI*, 5(JUN). <https://doi.org/10.3389/frobt.2018.00051>

629 Bengough, A. G., & Mullins, C. E. (1990). Mechanical impedance to root growth: a review of
630 experimental techniques and root growth responses. *Journal of Soil Science*, 41(3), 341–358.
631 <https://doi.org/10.1111/j.1365-2389.1990.tb00070.x>

632 Borela, R., Frost, J. D., Viggiani, G., & Anselmucci, F. (2021). Earthworm-inspired robotic locomotion
633 in sand: An experimental study with X-ray tomography. *Geotechnique Letters*, 11(1), 66–73.
634 <https://doi.org/10.1680/jgele.20.00085>

635 Burrall, M., DeJong, J. T., Martinez, A., & Wilson, D. W. (2021). Vertical pullout tests of orchard trees
636 for bio-inspired engineering of anchorage and foundation systems. *Bioinspiration and
637 Biomimetics*, 16(1). <https://doi.org/10.1088/1748-3190/abb414>

638 Calvetti, F., Prisco, C., & Nova, R. (2015). Experimental and Numerical Analysis of Soil – Pipe

639 Interaction. *Journal of Geotechnical and Geoenvironmental Engineering*, 130(12), 1292–1299.
640 [https://doi.org/10.1061/\(ASCE\)1090-0241\(2004\)130](https://doi.org/10.1061/(ASCE)1090-0241(2004)130)

641 Carotenuto, A. R., Guerracino, F., Šumbera, R., & Fraldi, M. (2020). Burrowing below ground:
642 Interaction between soil mechanics and evolution of subterranean mammals. *Journal of the Royal
643 Society Interface*, 17(162). <https://doi.org/10.1098/rsif.2019.0521>

644 Chen, Y., Khosravi, A., Martinez, A., & DeJong, J. (2021). Modeling the self-penetration process of a
645 bio-inspired probe in granular soils. *Bioinspiration and Biomimetics*, 16(4), 46012.
646 <https://doi.org/10.1088/1748-3190/abf46e>

647 Chen, Y., Martinez, A., & DeJong, J. (2022). DEM simulations of a bio-inspired site characterization
648 probe with two anchors. *Acta Geotechnica*, 5. <https://doi.org/10.1007/s11440-022-01684-5>

649 Chen, Y., Martinez, A., & DeJong, J. (2022). DEM study of the alteration of the stress state in granular
650 media around a bio-inspired probe. *Canadian Geotechnical Journal*, 59(10).
651 <https://doi.org/https://doi.org/10.1139/cgj-2021-0260>

652 Ciantia, M., Arroyo, M., O’Sullivan, C., Gens, A., & Liu, T. (2019). Grading evolution and critical state
653 in a discrete numerical model of Fontainebleau sand. *Géotechnique*, 69(1), 1–15.

654 Ciantia, M. O., Boschi, K., Shire, T., & Emam, S. (2018). Numerical techniques for fast DEM large-
655 scale model generation. *Engineering and Computational Mechanics*.
656 <https://doi.org/10.1680/jencm.18.00025>

657 Ciantia, M. O., O’Sullivan, C., & Jardine, R. J. (2019). Pile penetration in crushable soils : Insights from
658 micromechanical modelling. In *Proceedings of the XVII ECSMGE-2019* (pp. 298–317).
659 <https://doi.org/10.32075/17ECSMGE-2019-1111>

660 Cundall, P. A. (1987). Distinct element models of rock and soil structure. In *Analytical and
661 computational methods in engineering rock mechanics (ed. E. T. Brown)* (pp. 129–163). London,
662 UK: Allen and Unwin.

663 De Macedo, R. B., Andò, E., Joy, S., Viggiani, G., Pal, R. K., Parker, J., & Andrade, J. E. (2021).
664 Unearthing real-time 3D ant tunneling mechanics. *Proceedings of the National Academy of
665 Sciences of the United States of America*, 118(36), 1–7. <https://doi.org/10.1073/pnas.2102267118>

666 Dorgan, K. M. (2015). The biomechanics of burrowing and boring. *Journal of Experimental Biology*,
667 218(2), 176–183. <https://doi.org/10.1242/jeb.086983>

668 Frost, J. D., Martinez, A., Mallett, S. D., Roozbahani, M. M., & DeJong, J. T. (2017). Intersection of
669 Modern Soil Mechanics with Ants and Roots. In *Geotechnical Frontiers* (pp. 900–909).

670 Houlsby, G. T., & Withers, N. J. (1988). Analysis of the cone pressuremeter test in clay. *Géotechnique*,

671 38(4), 575–587. <https://doi.org/10.1680/geot.1988.38.4.575>

672 Huang, S., & Tao, J. (2020). Modeling Clam-inspired Burrowing in Dry Sand using Cavity Expansion
673 Theory and DEM. *Acta Geotechnica*. <https://doi.org/10.1007/s11440-020-00918-8>

674 Itasca, C. G. I. (2017). PFC — Particle Flow Code, Ver. 5.0. Minneapolis.

675 Kluger, M. O., Kreiter, S., Stähler, F. T., Goodarzi, M., Stanski, T., & Mörz, T. (2021). Cone penetration
676 tests in dry and saturated Ticino sand. *Bulletin of Engineering Geology and the Environment*,
677 80(5), 4079–4088. <https://doi.org/10.1007/s10064-021-02156-y>

678 Mallett, S. D., Matsumura, S., & David Frost, J. (2018). Additive manufacturing and computed
679 tomography of bio-inspired anchorage systems. *Geotechnique Letters*, 8(3), 219–225.
680 <https://doi.org/10.1680/jgele.18.00090>

681 Martinez, A., Dejong, J. T., Jaeger, R. A., & Khosravi, A. (2020). Evaluation of self-penetration
682 potential of a bio-inspired site characterization probe by cavity expansion analysis. *Canadian
683 Geotechnical Journal*, 57(5), 706–716. <https://doi.org/10.1139/cgj-2018-0864>

684 Martinez, Alejandro, DeJong, J., Akin, I., Aleali, A., Arson, C., Atkinson, J., ... Zheng, J. (2021). Bio-
685 inspired Geotechnical Engineering: Principles, Current Work, Opportunities and Challenges.
686 *Géotechnique*, 1–48. <https://doi.org/10.1680/jgeot.20.p.170>

687 Martinez, Alejandro, Palumbo, S., & Todd, B. D. (2019). Bioinspiration for Anisotropic Load Transfer
688 at Soil–Structure Interfaces. *Journal of Geotechnical and Geoenvironmental Engineering*,
689 145(10), 1–14. [https://doi.org/10.1061/\(asce\)gt.1943-5606.0002138](https://doi.org/10.1061/(asce)gt.1943-5606.0002138)

690 McDowell, G. R., Falagush, O., & Yu, H. S. (2012). A particle refinement method for simulating DEM
691 of cone penetration testing in granular materials. *Geotechnique Letters*, 2(7–9), 141–147.
692 <https://doi.org/10.1680/geolett.12.00036>

693 Mickovski, S. B., Stokes, A., van Beek, R., Ghested, M., & Fourcaud, T. (2011). Simulation of direct
694 shear tests on rooted and non-rooted soil using finite element analysis. *Ecological Engineering*,
695 37(10), 1523–1532. <https://doi.org/10.1016/j.ecoleng.2011.06.001>

696 Nardelli, V., & Coop, M. R. (2019). The experimental contact behaviour of natural sands : normal and
697 tangential loading. *Géotechnique*, 69(8), 672–686.
698 <https://doi.org/https://doi.org/10.1680/jgeot.17.P.167>

699 O’Hara, K. B., & Martinez, A. (2022). Load transfer directionality of snakeskin-inspired piles during
700 installation and pullout in sands. *Journal of Geotechnical and Geoenvironmental Engineering*.
701 [https://doi.org/10.1061/\(ASCE\)GT.1943-5606.0002929](https://doi.org/10.1061/(ASCE)GT.1943-5606.0002929)

702 Ortiz, D., Gravish, N., & Tolley, M. T. (2019). Soft Robot Actuation Strategies for Locomotion in

703 Granular Substrates. *IEEE Robotics and Automation Letters*, 4(3), 2630–2636.
704 <https://doi.org/10.1109/LRA.2019.2911844>

705 Otsubo, M., O’Sullivan, C., Hanley, K. J., & Sim, W. W. (2017). The influence of particle surface
706 roughness on elastic stiffness and dynamic response. *Géotechnique*, 67(5), 452–459.
707 <https://doi.org/10.1680/jgeot.16.P.050>

708 Sharif, Y., Brown, M., Cerfontaine, B., Davidson, C., Ciantia, M., Knappett, J., ... Ottolini, M. (2020).
709 Effects of screw pile installation on installation requirements and in-service performance using
710 the Discrete Element Method. *Canadian Geotechnical Journal*.

711 Tang, Y., & Tao, J. (2022). Multiscale analysis of rotational penetration in shallow dry sand and
712 implications for self-burrowing robot design. *Acta Geotechnica*, 0123456789.
713 <https://doi.org/10.1007/s11440-022-01492-x>

714 Tao, J. (2021). Burrowing soft robots break new ground. *Science Robotics*, 6(55), 1–3.
715 <https://doi.org/10.1126/scirobotics.eabj3615>

716 Tao, J., Huang, S., & Tang, Y. (2020). SBOR: a minimalistic soft self-burrowing-out robot inspired by
717 razor clams. *Bioinspiration & Biomimetics*, 15(5). <https://doi.org/10.1088/1748-3190/ab8754>

718 Tao, J. J., Huang, S., & Tang, Y. (2019). Bioinspired Self-Burrowing-Out Robot in Dry Sand. *Journal
719 of Geotechnical and Geoenvironmental Engineering*, 145(12), 2819002.
720 [https://doi.org/10.1061/\(ASCE\)GT.1943-5606.0002177](https://doi.org/10.1061/(ASCE)GT.1943-5606.0002177)

721 Taylor, I., Lehner, K., McCaskey, E., Nirmal, N., Ozkan-Aydin, Y., Murray-Cooper, M., ... Benfey, P.
722 N. (2021). Mechanism and function of root circumnutation. *Proceedings of the National Academy
723 of Sciences of the United States of America*, 118(8), 1–10.
724 <https://doi.org/10.1073/pnas.2018940118>

725 Ting, J. M., Corkum, B. T., Kauffman, C. R., & Greco, C. (1989). Discrete numerical model for soil
726 mechanics. *Journal of Geotechnical Engineering*, 115(3), 769–787.
727 [https://doi.org/10.1061/\(ASCE\)0733-9410\(1989\)115](https://doi.org/10.1061/(ASCE)0733-9410(1989)115)

728 Trueman, E. R. (1967). The dynamics of burrowing in *Ensis* (Bivalvia). In *Proceedings of the Royal
729 Society of London. Series B, Containing papers of a Biological character. Royal Society (Great
730 Britain)* (Vol. 166, pp. 459–476). <https://doi.org/10.1098/rspb.1967.0007>

731 Winter, V., Deits, R. L. H., Dorsch, D. S., Slocum, A. H., & Hosoi, A. E. (2014). Razor clam to
732 RoboClam: Burrowing drag reduction mechanisms and their robotic adaptation. *Bioinspiration
733 and Biomimetics*, 9(3). <https://doi.org/10.1088/1748-3182/9/3/036009>

734 Zhang, N., Arroyo, M., Ciantia, M., & Gens, A. (2021). Energy balance analyses during Standard

735 Penetration Tests in a virtual calibration chamber. *Computers and Geotechnics*, 133.
736 <https://doi.org/10.1016/j.compgeo.2021.104040>

737 Zhang, N., Arroyo, M., Ciantia, M. O., Gens, A., & Butlanska, J. (2019). Standard penetration testing
738 in a virtual calibration chamber. *Computers and Geotechnics*, 111(3), 277–289.
739 <https://doi.org/10.1016/j.compgeo.2019.03.021>

740 Zhang, N., Ciantia, M. O., Arroyo, M., & Gens, A. (2021). A contact model for rough crushable sand.
741 *Soils and Foundations*, 61(3), 798–814. <https://doi.org/10.1016/j.sandf.2021.03.002>

742 Zhong, W., Liu, H., Wang, Q., Zhang, W., Li, Y., Ding, X., & Chen, L. (2021). Investigation of the
743 penetration characteristics of snake skin-inspired pile using DEM. *Acta Geotechnica*, 16(6), 1849–
744 1865. <https://doi.org/10.1007/s11440-020-01132-2>

745

746

747 **Tables**

748

749

Table 1 Physical properties of Fontainebleau sand (Ciantia et al., 2019).

Variable (unit)	Symbol	Value
Mean size (mm)	D_{50}	0.21
Maximum void ratio	e_{max}	0.9
Minimum void ratio	e_{min}	0.51
Specific gravity (kN/m ³)	ρ_s	2.65

750

751

752

Table 2 DEM contact model parameters (Zhang et al., 2021).

Element	G /GPa	ν	μ	$S_q / \mu m$	r_1	r_2
F-sand	32	0.19	0.275	0.6	0.05	5
Probe	74	0.265	0.35	-	-	-

753

754

755

756

Table 3 Geometrical properties of the chamber.

Variable (unit)	Symbol	Value
Height (cm)	H_C	70
Diameter (cm)	D_C	70
Particle size scaling factors	n_1, n_2, n_3, n_4 and n_5	35, 53, 79, 95, 113
Number of particles	N	104,320

757

758

759

760

Table 4 Key geometrical and physical properties of the probe.

Variable (unit)	Symbol	Value
Probe total length (cm)	l_p	24.4
Cone diameter (cm)	d_c	3.56
Probe material density (kg/m ³)	ρ_p	8,050
Probe mass (kg)	m_p	2.23
Chamber / probe diameter ratio	$D_C / D_T = R_d$	20
Probe / particle ratio in the core	$D_T / n_p D_{50} = n_p$	4.8

761

762

763

764

765
766
767
768
769

Table 5 Key parameters used in self-burrowing steps and corresponding results.

Step	Parameters	Results
I: SE	$F_{S,r,target} = 1.6 \text{ kN}$, $F_{S,r,inc} = 200 \text{ N}$	$F_{S,r,target} = 1.6 \text{ kN}$, $ER_S = 17.6\%$
	$v_p = 0.05 \text{ m/s}$ (Tip penetration)	
II: TP	$t_I = 0.1 \text{ s}$, $v_{TO} = 0.8 \text{ m/s}$, amplitude = $0.25 \times v_{TO} \times t_I = 2 \text{ cm}$ (Tip oscillation)	$\Delta\rho_{tip} = 2 \text{ cm}$
III: TE	$F_{Tcyl,r,target} = 2 \text{ kN}$	$F_{Tcyl,r,target} = 2 \text{ kN}$, $ER_T = 25.7\%$
IV: SC	$v_{SC} = -0.1 \text{ m/s}$	$D_{SA} = D_S$
V: SR	$v_{SR} = -0.1 \text{ m/s}$	$\Delta\rho_{shaft} = \Delta\rho_{tip} = 2 \text{ cm}$
VI: TC	$v_{TC} = -0.1 \text{ m/s}$	$D_{TA} = d_c$

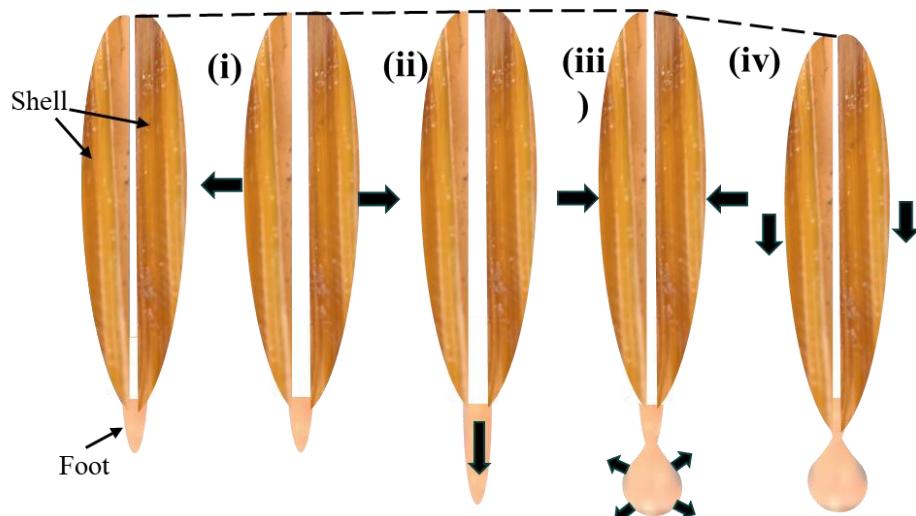
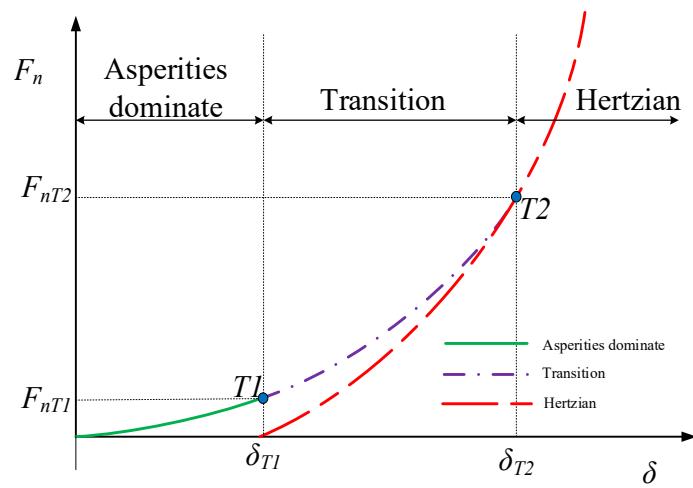

770
771
772
773
774
775
776

Table 6 Measured data from multiple self-burrowing cycles

	1 st cycle	2 nd cycle	3 rd cycle
Self-burrowing distance, $\Delta p / \text{cm}$	2	3.5	4
Work, W / J	60	84	107

777 **Figures**

778

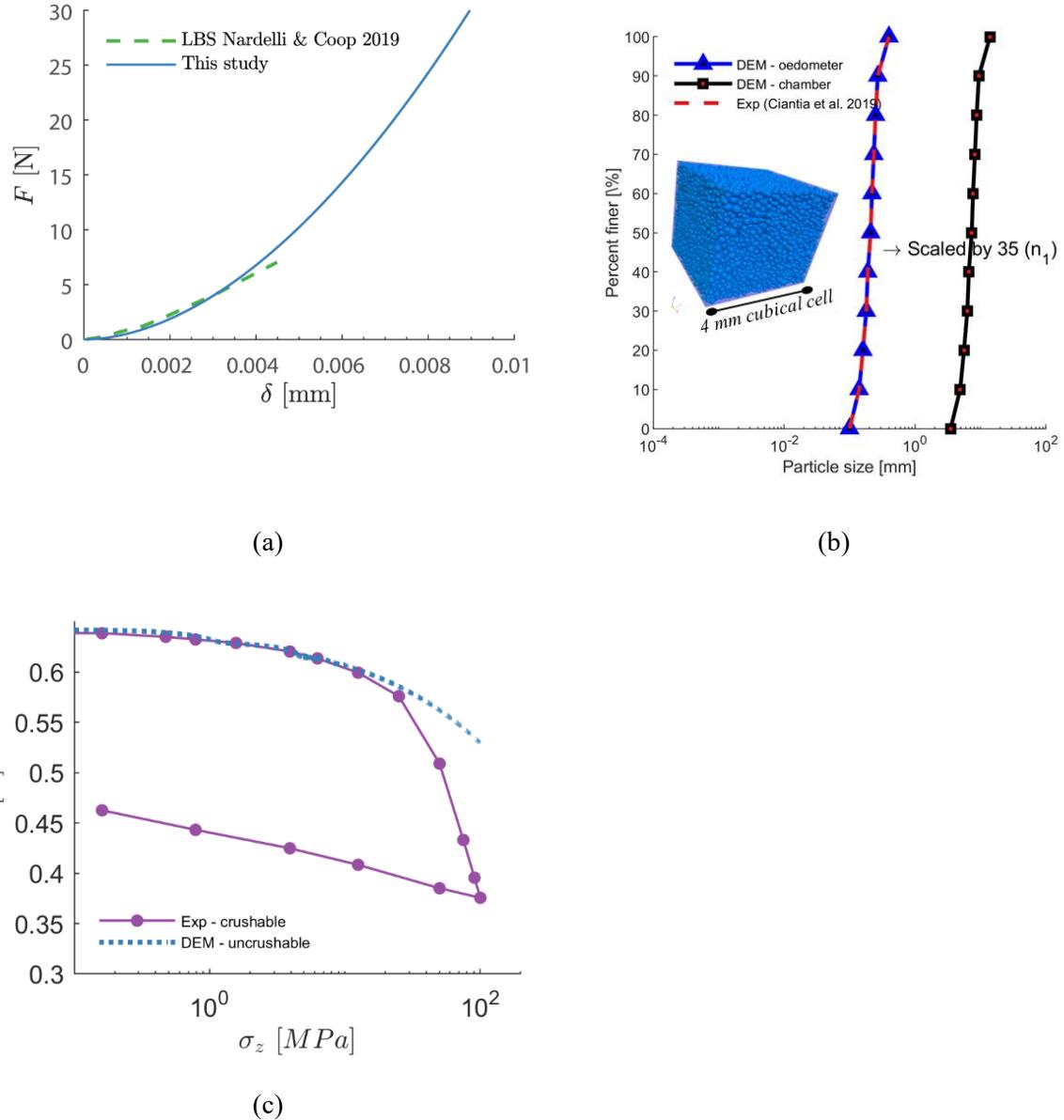


779

780 Figure 1 Typical burrowing steps of a razor clam: (i) the shell forms an anchor, (ii) the foot probes downward,
 781 (iii) the foot expands and the shell contracts, and (iv) the foot drags the shell downward. The dotted line denotes
 782 burrowing depth, and the arrows indicate movement direction of the shell and foot. Adapted from Trueman
 783 (1967) and Huang and Tao (2020).

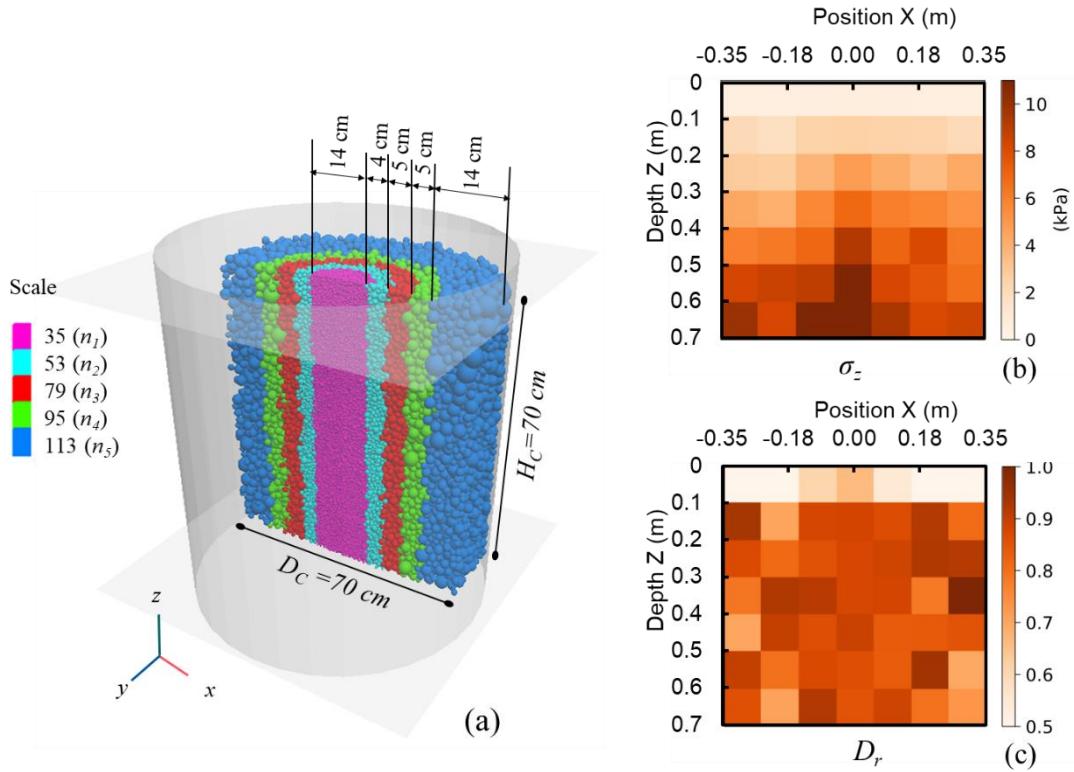
784

785


786

787 Figure 2 Schematic illustration of the rough surface contact model (after Otsubo et al., 2017).

788

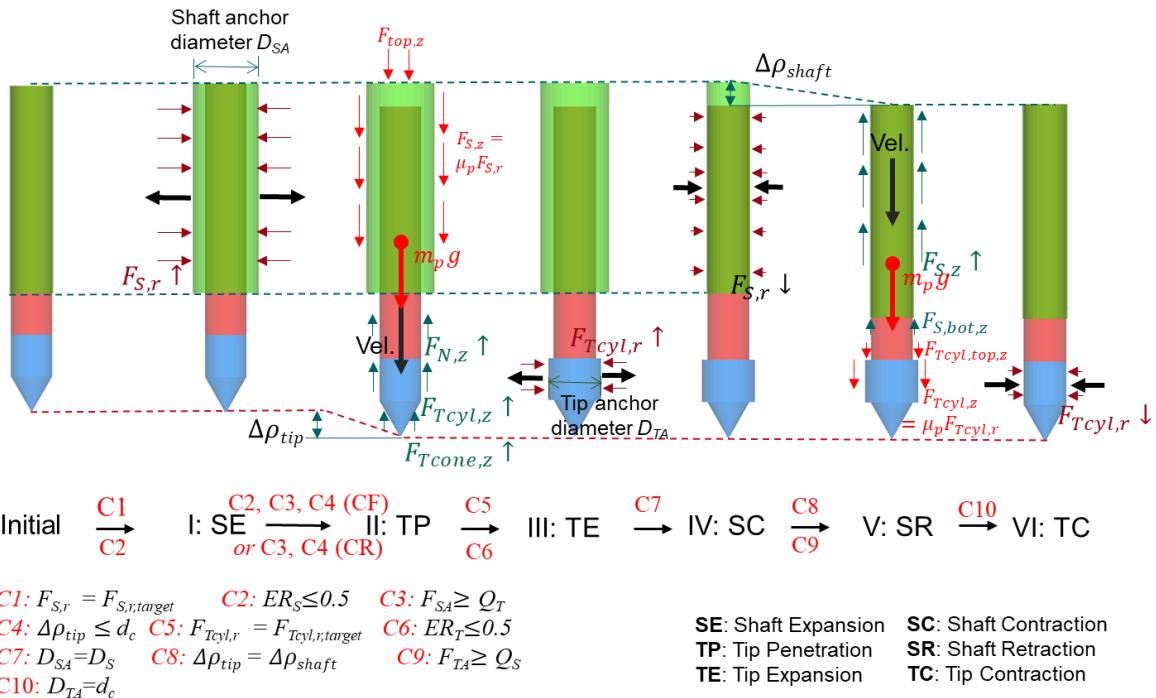

789

790

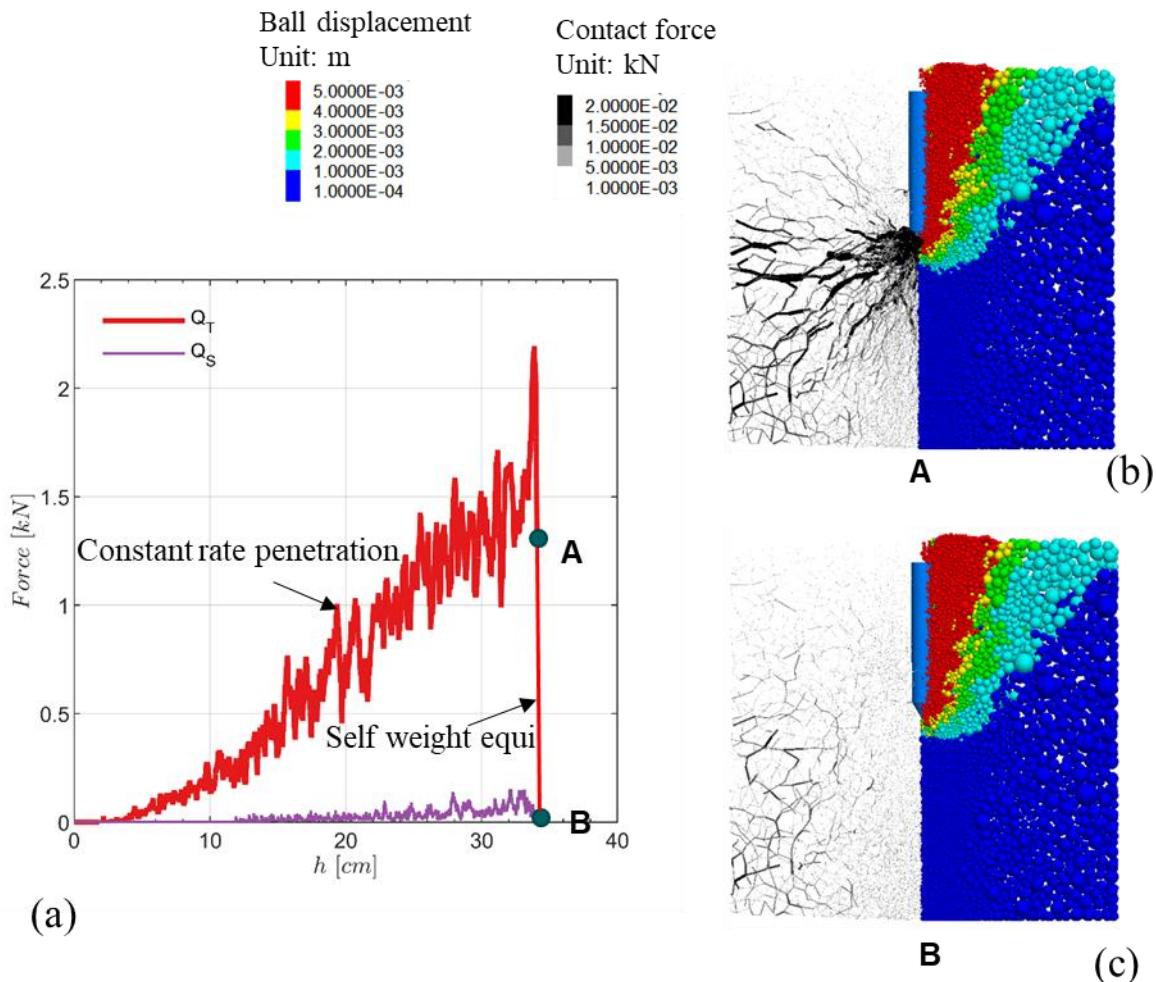
791 Figure 3 (a) Reproduction of load displacement curve of single grain test; (b) particle size distribution of
 792 Fontainebleau sand and DEM models for calibration; (c) reproduction of initial non-crushing loading stages of
 793 high pressure oedometric compression tests using the rough model (Zhang et al., 2021).


794

795


796 Figure 4 (a) View of DEM model with multi-upscaled particles, and sample quality check with (b) vertical stress
 797 distribution σ_z and (c) relative density D_r .

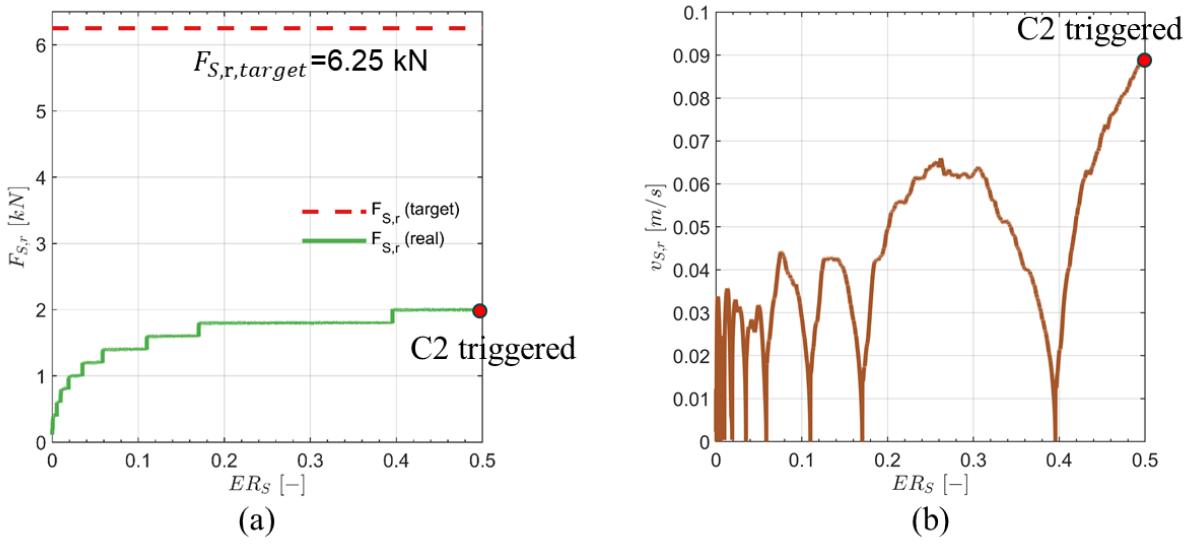
798



799

800 Figure 5 View of bio-inspired dual-anchor probe prototype.

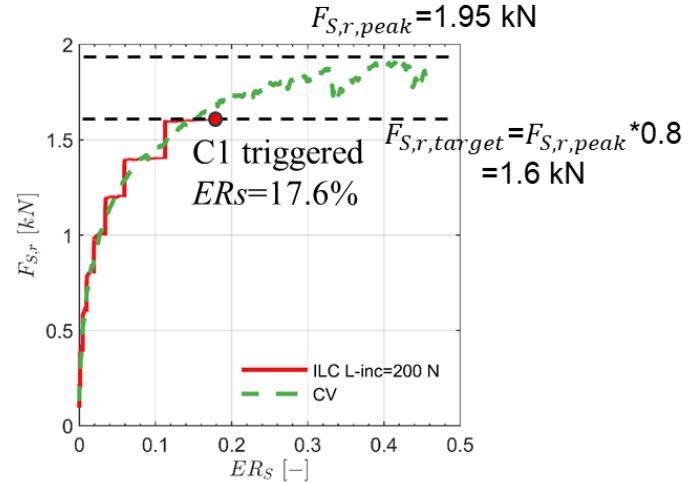
803 Figure 6 Schematic illustration of controlling criteria defined in each stage of one single self-burrowing cycle.
 804 Thick black arrows indicate movement direction of specific probe segments. Light blue and red arrows indicate
 805 the direction of forces. The 'up' or 'down' arrow after one force indicates increase or decrease of the force. The
 806 criteria defined in each stage present an 'OR' relation.



808

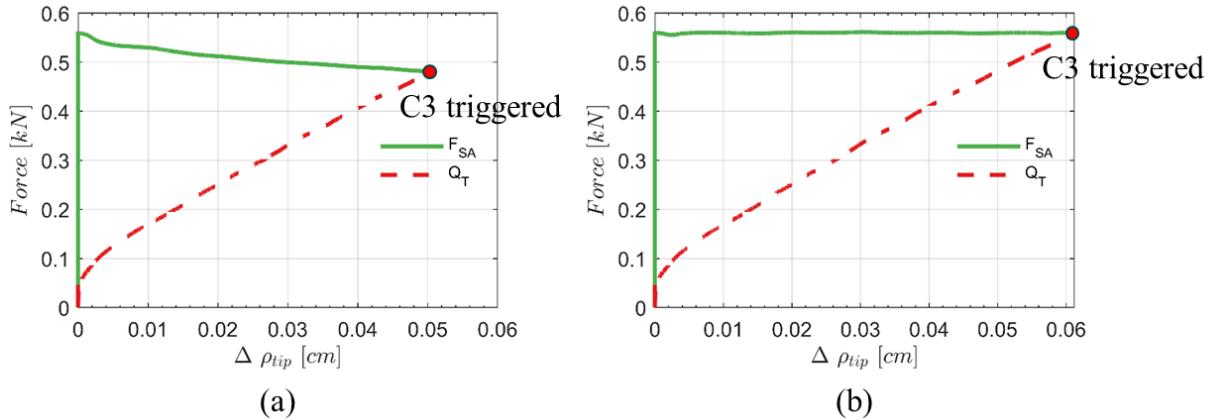
809 Figure 7 Preparations for self-burrowing: (a) tip resistance evolution with depth, (b) and (c) contact force (left
 810 half) and displacement field (right half) at point A and B in (a), respectively.

811


812

813

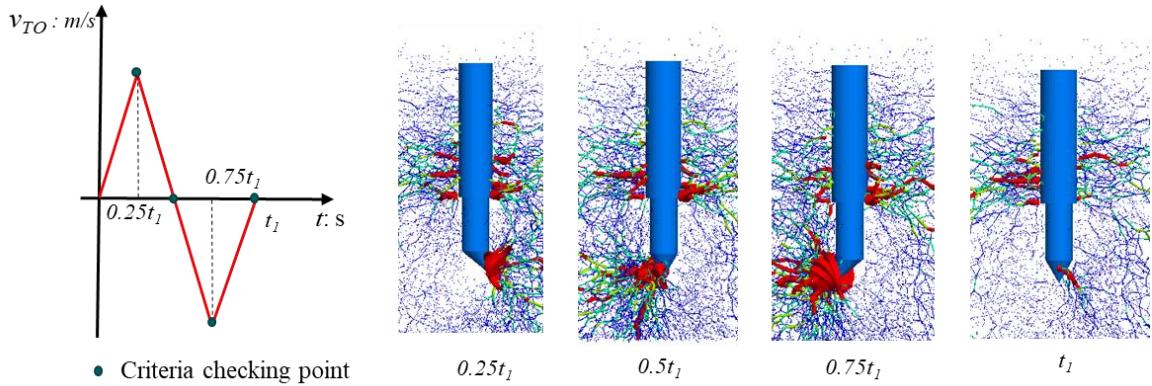
814 Figure 8 Loading strategy based on initial penetration resistance: (a) Radial force evolution and (b) radial
815 velocity against shaft expansion ratio.


816

817

818 Figure 9 Shaft radial force against expansion ratio in loading strategy based on maximum anchorage force.

819

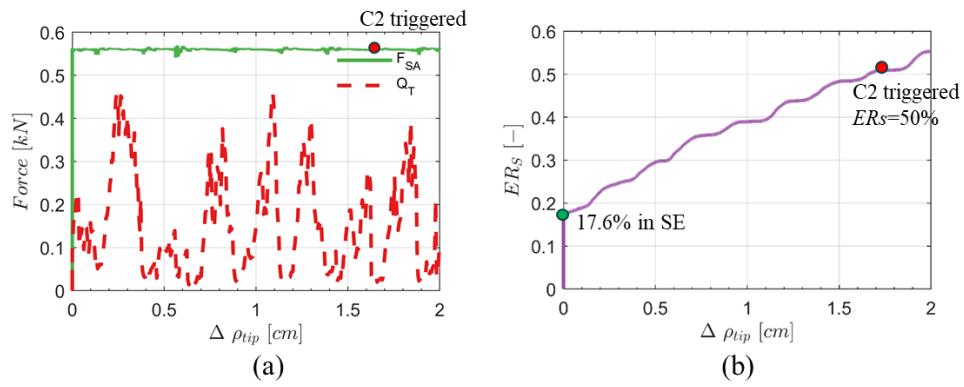


820

821 Figure 10 Force evolution against penetration depth under (a) CR and (b) CF shaft boundary condition.

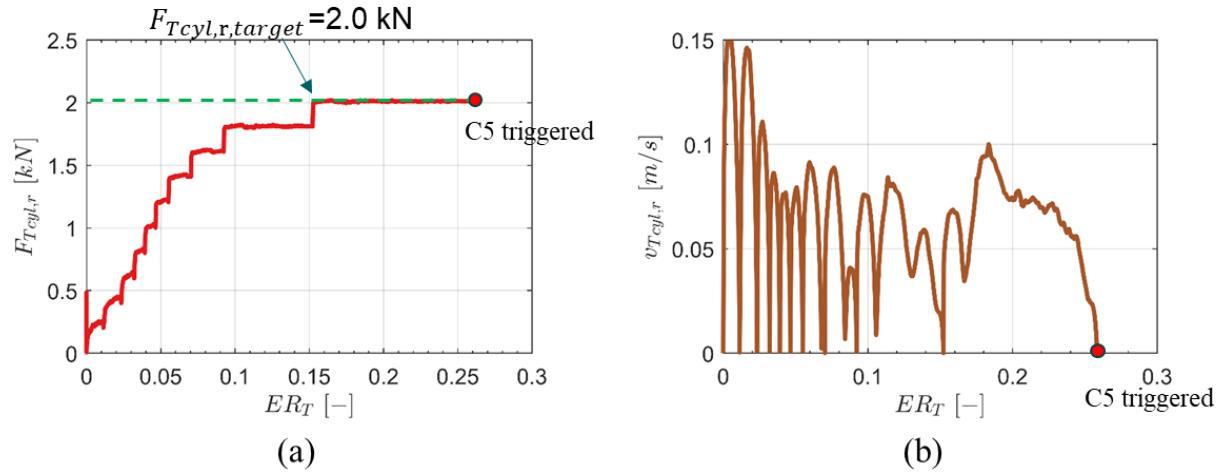
822

823

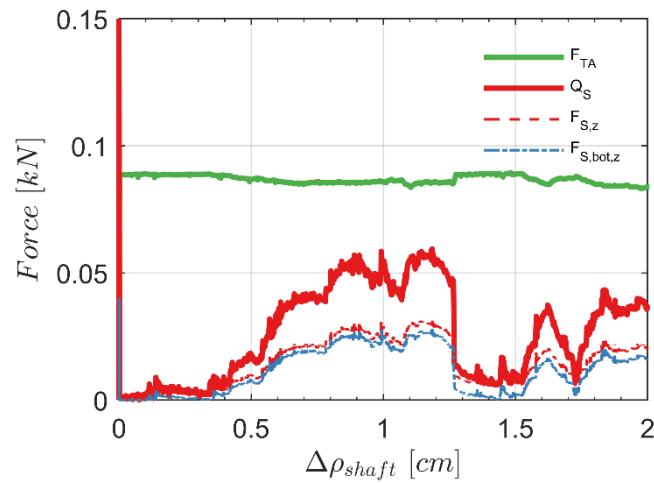


824

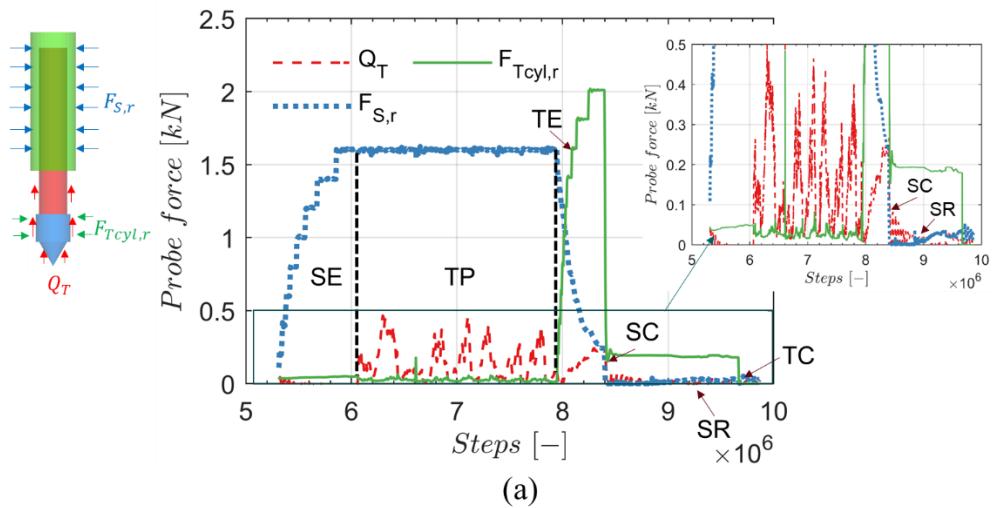
825 Figure 11 Tip oscillation algorithm and contact force development during oscillation. Contact force scales are
826 the same as in Figure 7.

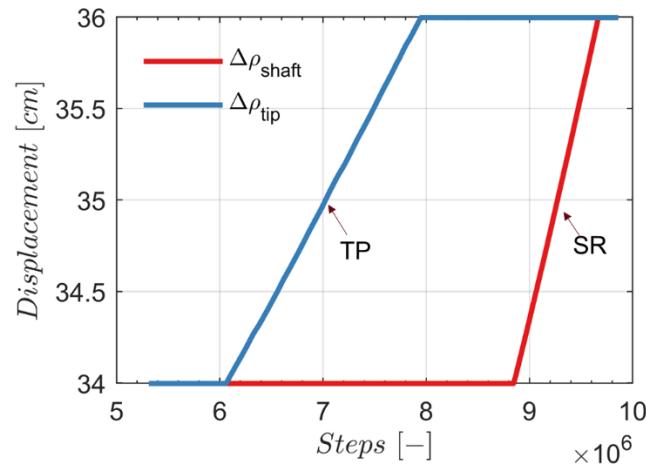

827

828

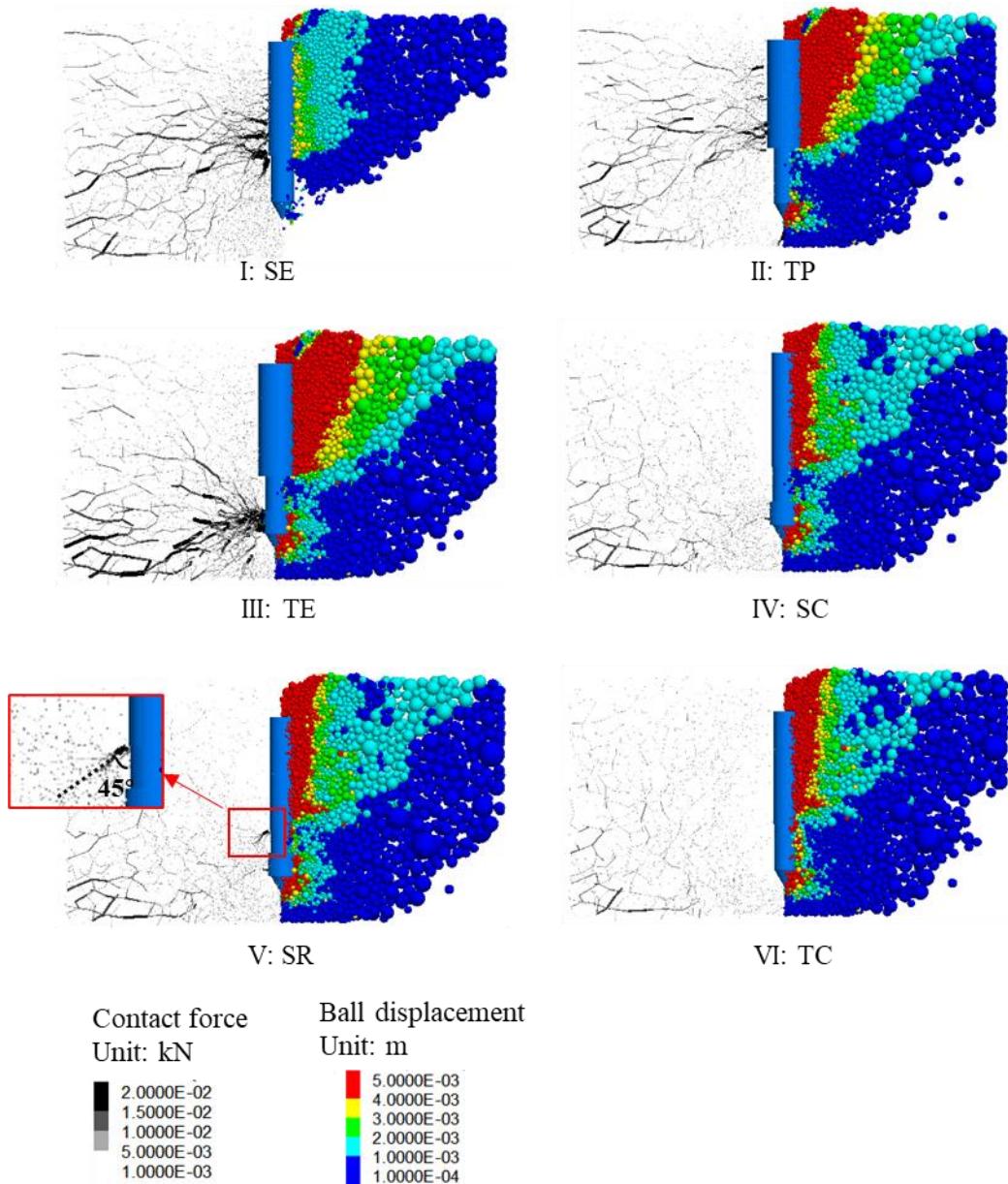


829


830 Figure 12 (a) Force evolution and (b) shaft radial expansion against penetration under CF shaft boundary
 831 condition.


834 Figure 13 Incremental loading for tip expansion: (a) tip radial force and (b) radial velocity.
 835

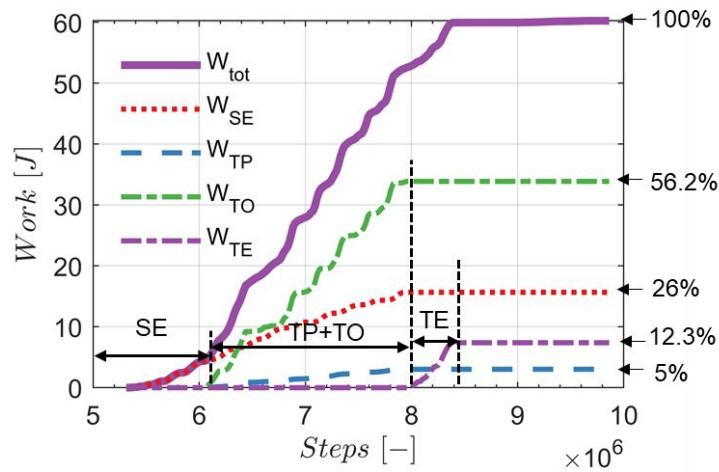
839 Figure 14 Evolution of relevant force elements with shaft retraction distance.
 840



(a)

(b)

846 Figure 15 (a) Force evolution and (b) displacement during one single self-burrowing cycle against numerical
 847 steps.

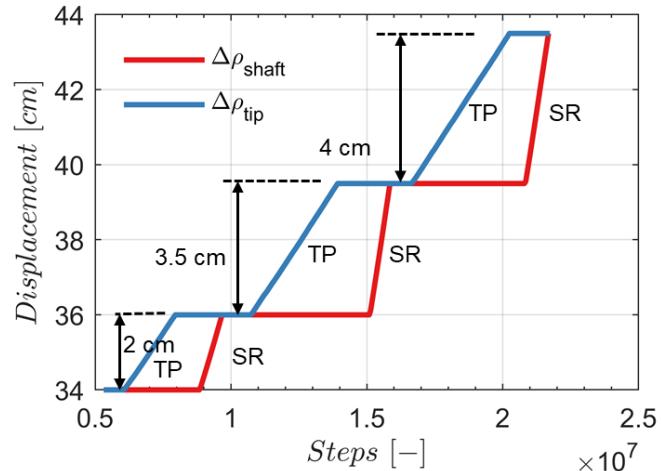


850

851 Figure 16 Micromechanical observations in each self-burrowing step. Left half of each image presents contact
 852 force network and right half presents particle displacement fields accumulated after initial penetration.

853

854



855

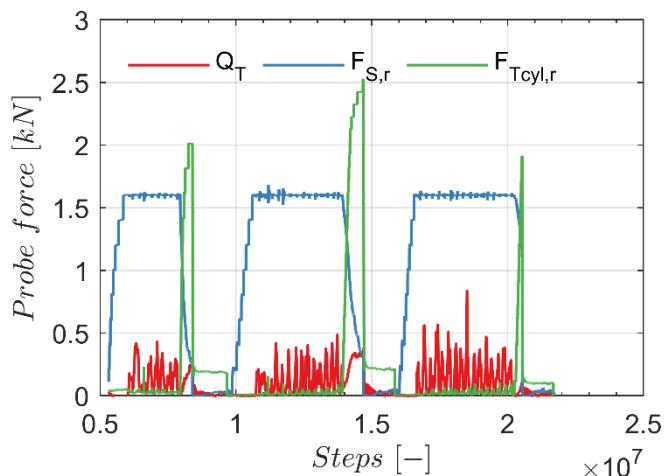
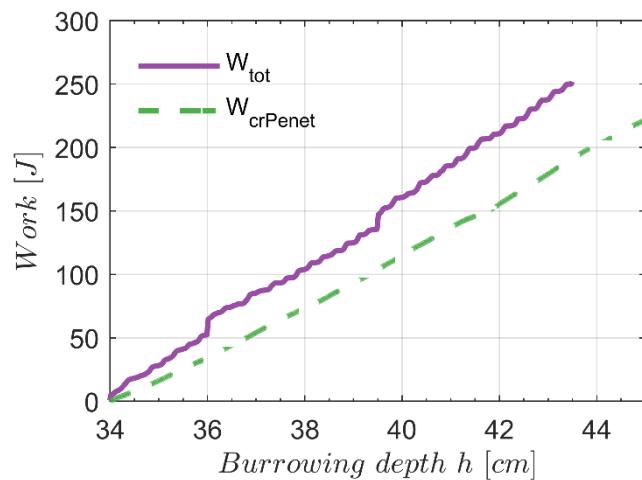

856

Figure 17 Evolution of work done through self-burrowing steps.

857


(a)

(b)

858 Figure 18 (a) Achieved burrowing distance and (b) measured force components during multiple cycles.

859

860

861 Figure 19 Energy comparisons measured in constant rate penetration and self-burrowing cycles.

862